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ABSTRACT: In the 1980’s, work by Coleman and by Giddings and Strominger linked
the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories.
We revisit such ideas, using features associated with a negative cosmological constant
and asymptotically AdS boundaries to strengthen the results, introduce a change in
perspective, and connect with recent replica wormhole discussions of the Page curve.
A key new feature is an emphasis on the role of null states. We explore this structure
in detail in simple topological models of the bulk that allow us to compute the full
spectrum of associated boundary theories. The dimension of the asymptotically AdS
Hilbert space turns out to become a random variable Z, whose value can be less than
the naive number k of independent states in the theory. For k > Z, consistency
arises from an exact degeneracy in the inner product defined by the gravitational path
integral, so that many a priori independent states differ only by a null state. We argue
that a similar property must hold in any consistent gravitational path integral. We
also comment on other aspects of extrapolations to more complicated models, and on
possible implications for the black hole information problem in the individual members
of the above ensemble.
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1 Introduction

The past year has seen several interesting developments in the study of black hole
information. In particular, it has been well-known for some time that the von Neumann
entropy Spaq of emitted Hawking radiation as a function of time gives an important
diagnostic of whether and to what degree information is preserved or lost in evaporating
black holes [1]. Familiar effective field theory would give an entropy that increases
monotonically throughout the evaporation, even though the black hole’s Bekenstein-
Hawking entropy Spy = % monotonically decreases to a value near zero. In contrast,
a model in which the black hole is a standard quantum system with density of states
Sgu coupled unitarily to the radiation field would — when the initial state is pure —
require Sp,q < Sy at all times. As a result, in such models S;.q generally increases
to a maximum, at which time it nearly equals Sgy, and then decreases monotontically
thereafter. The final phase with decreasing S,.q describes the return of information to
the external universe from the black hole.

Despite many arguments suggesting that the latter so-called ‘Page curve’ should
accurately approximate the result of black hole evaporation, for many years it was
unclear how such a result could be obtained from a controlled gravitational calculation;
see e.g. reviews in [2-6]. The plethora of proposals for new physics that might be
associated with obtaining this Page curve (including [3, 7-39]) were thus all properly
viewed as speculative and contained at least some optimistic extrapolation or ad hoc
ingredient.

Recently, however, it was noted that the ‘unitary’ Page curve, including the turnover
of Siaq, could be obtained by combining ideas from holography with effective field the-
ory [42, 43] — or equivalently with quantum field theory in curved space. In particular,
under very general conditions [42, 43] argued that one could obtain this result by com-
puting the generalized entropy Sgen = % + Spuk of an appropriate comdimension-2
quantum extremal surface (QES) , where the surface is chosen so that holography sug-
gests this might represent S,.q. Here Sy is the von Neumann entropy of bulk fields
outside the codimension-2 QES. See also further explorations of this idea in [44-47].

Critically, [48, 49] then pointed out that — at least in some contexts — this
seemingly-hybrid recipe in fact follows from replica trick calculations of S;.q using the
gravitational path integral (and in particular that this was implicit in earlier derivations
of the quantum corrected Ryu-Takayanagi [50, 51] and Hubeny-Rangamani-Takayanagi
[52] entropy formulae [53, 54]). While at this level the physical mechanisms behind such
results remain somewhat mysterious, the derivation from the gravitational path integral

1As an example, the firewall proposal of [23, 40, 41] did nothing to explain the dynamics from
which the supposed firewall might arise.



nevertheless implies that the explicit addition of novel physics is not required. Indeed,
it instead suggests that fundamental lessons might be revealed by carefully dissecting
the relevant calculations and studying the path integral in more detail.

A starting point for such further investigation is the observation of [49] that the
above replica trick results appear to be inconsistent with one might normally call a
single well-defined theory. In particular, rather than taking single well-defined val-
ues, partition-function-like quantities seem to have both a mean value and a non-zero
variance. This feature is associated with the fact that dominant saddles in the replica
computations involve connected bulk spacetimes with disconnected asymptotically AdS
boundaries. Such geometries have been termed spacetime wormholes, or Euclidean
wormholes when the geometry is Euclidean.

This relation will be reviewed below, but is familiar from older discussions [55-58].
In particular, refs. [55-57] argued that spacetime wormholes require the gravitational
Hilbert space to include spacetimes with compact Cauchy surfaces, and thus for which
space at a moment of time has no asymptotically AdS boundary. This part of the
gravitational Hilbert space was called the baby universe sector. Furthermore, it was
argued that entanglement with this sector typically led the rest of the theory (here the
asymptotically AdS sector) to act as if it were part of an ensemble of theories. However,
a particular member of the ensemble could be chosen by selecting an appropriate baby
universe state.

Our goal here is to combine the above ideas to better understand the ensembles
associated with replica trick computations and to extract implications for particular
members of such ensembles. We begin in section 2 by reviewing the connection between
spacetime wormholes and ensemble-like properties, and by revisiting the baby universe
ideas of [55-57]. In doing so, we incorporate features associated with a negative cosmo-
logical constant and asymptotically AdS boundaries. This both strengthens the results
and allows a useful change in perspective. In particular, we avoid the use of ‘third
quantized perturbation theory’ and emphasize that certain results follow exactly from
any well-defined path integral. We also focus on the key role played by null states.

The output is a description of how (say, partition-function-like) quantities at asymp-
totically AdS boundaries have a spectrum of possible values determined by the gravita-
tional path integral. Below, we focus on quantities Z [j * J] that might be interpreted
as computing the inner product of a state created by a source J on the past half of
the Euclidean AdS boundary with another state created by a source J = (J*)* on the
future half of a Euclidean AdS boundary, where * denotes CPT conjugation. However,
the most general partition-function-like quantities allowed by our formalism include
quantities that in a dual CFT would describe matrix elements of operators as well as
e.g. Trp™ for a wide variety of density matrices. The Rényi entropies of [44, 49] are



then functions of these quantities. In accordwith the original works [55-57], our anal-
ysis will show that one may generally describe such quantities as bring drawn from an
ensemble of their possible values with the particular ensemble specified by the choice
of baby universe state.

After describing this framework in section 2, section 3 introduces some simple toy
models in which the gravitational path integral can be performed exactly including
the full sum over possible topologies. The toy models are topological and involve
finite-dimensional Hilbert spaces. An interesting feature of the models is that the
dimension of the asymptotically AdS Hilbert space becomes a random variable Z,
whose value can be less than the naive number £ of independent states in the theory.
For k > Z, consistency turns out to arise from an exact degeneracy in the inner
product defined by the gravitational path integral. This degeneracy means that many
a priori independent states differ by a null state, and so should be regarded as linearly
dependent in the gravitational Hilbert space. Section 4 relates this degeneracy to
diffeomorphism invariance, black holes, and the Page curve, arguing in particular that
the replica computations of [48, 49] will imply a corresponding degeneracy in more
general contexts. In section 5, we describe the approximation in which wormhole effects
are small, analogous to the third quantised formalism of [57], and emphasise that the
appearance of null states is associated with the failure of this approximation. We close
with some summary and final discussion in section 6.

2 The gravitational path integral with spacetime wormholes

2.1 Path integrals and ensembles

We begin by describing a natural set of observables in any theory of gravity. For
definiteness and convenience, we will assume locally AdS,,; asymptotics. This is the
context in which we have the most control and the clearest interpretation in terms of
possible CF'T duals.

Our theory will be defined by the path integral over a set of fields (including a
metric) denoted collectively by ®, with action S[®]. Each boundary is associated with
a set of admissible boundary conditions labelled by J, describing the behaviour of
the fields & ~ J near the given boundary. In particular, J includes a d-dimensional
boundary metric on a boundary manifold M. We will focus on the case where the
boundary metric has Euclidean signature, but Lorentzian or complex metrics are also
allowed. We will generally take each M to be connected, and introduce disconnected
boundary manifolds by specifying multiple such boundaries, each with its own J. How-
ever, there is no harm in letting M be disconnected, and the notation below remains



consistent. For each field other than the metric, J typically includes a function on
the d-dimensional boundary M specifying an appropriate boundary condition for that
field; e.g., it will typically specify what in the AdS/CFT context is known as the “non-
normalisable part” of the field. In all cases, by S[®], we then mean the holographically
renormalised action with boundary condition J.

Now, the gravitational path integral with asymptotically AdS boundary conditions
specified by J is usually interpreted as computing a partition function Z[J]. This is
particularly familiar in the AdS/CFT context [59, 60] where it gives the partition func-
tion of the dual CFT?, but the identification of this quantity as a partition function
in fact dates back to the first discussions of Euclidean approaches to black hole ther-
modynamics (see e.g. [61]). Motivated by this interpretation, with an eye toward the
ideas of [55-57], and following [62], we introduce the following notation for the path
integral defined by an asymptotic boundary with n connected components, each with
an associated J;:

<Z[J1] . Z[Jn]> = [ Do (2.1)

N
This equation defines the left hand side as the path integral over all configurations
with n asymptotic boundaries with boundary conditions specified by Ji,...,J,. The
notation is chosen to be suggestive of a particular interpretation to be described below.

The presence of spacetime wormholes in the path integral now leads to a phe-
nomenon which is very puzzling from the standard AdS/CFT point of view [58, 63]
(see [55, 56] for earlier discussions of the asymptotically flat analogue in which S-
matrix elements play the role of our partition functions). The path integral (2.1) does
generally not factorize over disconnected boundaries:

(zln)215)) # (210]){210)). (22

The difference between right and left sides arises because the sum over topologies
in the Euclidean path integral for <Z [1]Z [J2]> not only yields terms of the form

T, T, for any pair T, T5 of terms associated separately with <Z[J1]> and <Z[J2]>, but
also contains additional contributions from terms in which the two boundaries lie in
the same connected component of the bulk manifold; see figure 1. We use the term
spacetime wormhole, or sometimes Euclidean wormhole, to refer to any such connection.

2We emphasize, however, that we allow very general notions of ‘sources’ and thus very general
notions of ‘partition functions.” In particular, one may use sources to prepare initial and final states
and to insert operators, so that one should be able to represent any matrix element of any operator
in the dual CFT should as some Z[J]. In the same way, any Rényi entropy of any state that can be
prepared by sources (and perhaps restricted to any region) should again be some Z[J].



Note that spacetime wormholes are generally localized in both space and time, and
thus differ qualitatively from spatial wormholes like the familiar Einstein-Rosen bridge
that exist on every smooth Cauchy slice of the maximally extended Lorentz signature
Schwarzschild spacetime.

- - O

(z1n)205]) = O O " CQD

Figure 1: The gravitational path integral with spacetime wormholes does not factor-
ize. The top line gives a diagramatic representation of the path integrals <Z [J ]1> and
(Z[J5]) that would naively define partition functions Z[.J;] and Z[Jo]. The natural path
integral (Z[J1]Z[.J5]) associated with a pair of boundaries yields all terms generated
by multiplying (Z[J1]){(Z[J5]), but also contains additional connected contributions
schematically shown as the second term in the bottom line.

The two sides of (2.2) must thus differ unless the contributions with extra connec-
tions exactly cancel among themselves, or unless such contributions are excluded. The
first option appears to require fine tuning, and the second the imposition of non-local
constraints that undermine the presumed local nature of the theory. It is also difficult to
see how one might introduce useful such constraints without destroying other apparent
successes of the Euclidean path integral, such as the description of the Hawking-Page
transition for AdS black holes, which is associated with a change in the topology of the
dominant Euclidean saddle. We therefore allow terms with extra connections, and at
least for the moment assume that they lead to a non-zero difference between the two
sides of (2.2). It follows that we cannot simply interpret (Z[.J1]), (Z[J5]) as partition
functions with product (Z[J;]Z[J5]).

From the bulk point of view, the extra connections appear to describe dynamical
interactions between a priori independent asymptotic regions. This point of view is
not naturally compatible with standard AdS/CFT, but it may instead be consistent to
interpret (Z[J;]Z[.J5]---) as the expectation value of a product of partition functions
in an ensemble of boundary dual theories. In this interpretation, the connected con-
tributions would describe probabilistic correlations from the ensemble average rather
than dynamical interactions.



While these two interpretations may at first seem to be in tension, in analogous
settings it was argued by [55-57] that they are in fact consistent. The rest of section
2 will be dedicated to providing a version of this discussion that incorporates features
associated with asymptotically AdS boundaries. We find that using these new features
allow strengthened conclusions, and perhaps as a result we will take a slightly different
perspective than that of [55-57].

Before turning to the detailed discussion in section 2.2, it is useful to provide a
brief overview. As in [55-57], the connection between the above two interpretations is
motivated by realizing that summing over arbitrary topologies in our path integrals,
and in particular over manifolds with arbitrary numbers of connected components,
means that generic terms in (Z[J;]Z[J5] -+ ) contain factors associated with compact
spacetimes having no boundaries whatsoever. The idea that the Hilbert space of a
theory can be identified by cutting open the path integral then suggests that we should
also slice open such compact spacetimes. Doing so identifies a new sector not associated
on this slice with any of the asymptotically AdS boundaries, but which is instead
associated with spatially compact universes; see figure 2. We call this the baby universe
sector following [55-57|, where the name comes from the idea that one can in many
cases [64—67] think of the closed universe having been emitted by a (here asymptotically
AdS) parent universe.

Parent Baby

Figure 2: Slicing open a spacetime with a boundary and a handle (left) can give a
disconnected geometry on the slice, including a closed ‘baby universe’ that has become
detached from the parent asymptotically AdS universe. The baby universe does not
intersect the asymptotically AdS boundary (red line) at the moment of time described
by the indicated slice.

The discussion of baby universes is simplest in the context of Euclidean path in-
tegrals with boundary conditions .J; given by Euclidean metrics, but our discussion
does not exclude more general contexts. In particular, one can choose boundary condi-
tions with Lorentzian pieces of the metric, using a Schwinger-Keldysh type formalism



in which Euclidean sections of the metric are used to prepare states and Lorentzian
sections give real time evolution. In such a case, it is useful to think of the gravitational
path integral as involving complex metrics.

Such constructions allow us to describe quite general observables that might be
associated with a putative dual CFT. Indeed, the set of observables we are using is
also sufficient to describe coupling to an auxiliary quantum system, as is important
in [43-48]. To do this, we can simply allow sources J to be operators in the auxiliary
system, and then include a corresponding auxlliary path integral to compute the effects
of such operators. We discuss this construction in more detail in section 4.

Note that the ability of Euclidean or complex universes to split and join as shown
in figure 2 indicates that baby universes can affect the physics of universes with asymp-
totically AdS boundaries. In this context, it becomes clear that the definition of our
path integral (2.1) includes an implicit choice of the initial and final state of closed
baby universes. Most naturally, the path integral computes expectation values in the
Hartle-Hawking no-boundary state [68], defined by the absence of additional bound-
aries besides those required by the Z[J] insertions. But this is not the only choice of
baby universe state that we can describe with our gravitational path integral, and other
choices will be associated with different ensembles. In particular, we will construct spe-
cial ‘a-states’ of baby universes in which the factorisation property is restored, and no
ensemble is required.

One further comment is in order before turning to the details. In the above discus-
sion we have written our amplitudes as if the path integral gives some definite, finite
value. However, in all but the very simplest contexts, gravitational path integrals have
been defined only as asymptotic expansions (perhaps with nonperturbative contribu-
tions) in some small coupling. Both loop expansions and sums over nonperturbative
sectors will typically fail to converge, and there may be no obvious, natural or unique
way to define a finite result. The distinction between exact quantities with finite values
of parameters and asymptotic expansions may well be important, and we will return
to this issue in section 6. Nonetheless, for the remainder of this section we will treat
the path integral in (2.1) as if it gives well-defined exact results.

2.2 The baby universe Hilbert space

As described above, one can obtain a natural Hilbert space interpretation by cutting
open the path integral (2.1). In particular, we split each history over which we sum
into a ‘past’ and ‘future’ that meet on some slice where we imagine summing over a
complete set of intermediate states. There is a choice of how we cut, constrained by
the way in which the asymptotic boundaries are labelled past or future. For now, we
will choose to place each connected component of the boundary either entirely to the



past or entirely entirely to future of our cut, so that our intermediate slice intersects
no asymptotically AdS boundaries (generalizing in section 2.4). We thus identify the
relevant Hilbert space as the space of closed universes in the theory. We call this the
‘baby universe’ Hilbert space Hgy for the reasons described above.

One might hope to describe elements of the baby universe Hilbert space as wave-
functions of all possible spatial metrics (and field configurations on those metrics).
A complication is that, as usual in a gravitational theory, diffeomorphism invariance
forbids a notion of universal time that might be used specify precisely where the
past/future cut is to be made. Proceeding in this manner would thus require im-
posing the gravitational constraints (the Wheeler-DeWitt equation) on the resulting
wavefunctions. This is made particularly challenging in the current context where
spacetime wormholes are important, so that the associated splitting and joining of
universes should modify these constraints [57].

However, we can bypass these difficulties entirely by using our asymptotic bound-
aries to define states in the baby universe Hilbert space. Given a set {.Ji,...,J,} of
boundary conditions, there is a state

ZL0] -+ 21l ) € Hp, (2.3)

defined by the specified boundary conditions for the path integral. This is particularly
natural for sources defining Euclidean signature boundary metrics and in the presence of
a negative cosmological constant. While a negative cosmological constant tends to cause
universes to collapse in Lorentzian time evolution (perhaps with a sinusoidal form),
after Wick rotation to Euclidean signature it tends to cause accelerated expansion
with respect to Euclidean time. As a result, such closed cosmologies naturally have
Euclidean signature asymptotically AdS boundaries at infinite Euclidean times.
We will think of the boundary conditions associated with the state (2.3) as living
‘in the past.” They can then be paired with bra-vectors living ‘in the future’ — though
one should understand that these are simply names without intrinsic meaning. Note
that the ordering of the Z[J;] in (2.3) is not important. Reordering the sources gives
equivalent boundary conditions for the path integral, and so must define the same state.
An important special case is m = 0, giving the Hartle-Hawking state with no boundary
in the past:
No boundaries (m = 0) — ‘HH> € Hgu. (2.4)

Here we emphasize that this is not just a state on a single universe, but that it instead

represents a state of the full collection of an indefinite number of baby universes.
States of the form (2.3) defined by different sources, or even with different numbers

of sources m, are generally not mutually orthogonal in any useful sense. Note that



the physical notion of inner product cannot simply be assumed to have any particular
form, but is something we must compute from the theory. It must thus follow from
an appropriate path integral. Now, some readers may be confused by the fact that
in quantum field theory one typically uses first-quantized path integrals to compute
Green’s functions and not to compute inner products. However, as explained in e.g.
[69], in defining the gravitational path integral one must make a choice — in some
languages, associated with specifying the contour of integration — as to whether it
fully imposes the gravitational constraints or instead defines a Green’s function. We
simply choose the former, and we take the correlators (2.1) to be computed with the
same specifications. With this understanding, the path integral indeed computes the
inner product® which is then given by

(ZL0)- 21T\ 2L0) - 20l ) = (2L 2100200 - 2], (2.5)

Here the right hand side is just the amplitude defined in (2.1) with boundary conditions
Z[J] and Z[J*], and where x is the CPT conjugate operation on boundary conditions
J. This operation should have the property that if we act with * on every boundary,
the amplitude is complex conjugated:

(2107)--2155)) = (Z1h] -+ 210]) (2.6)

This guarantees that the inner product (2.5) is Hermitian. If we can interpret Z[.J] as
random variables with correlation functions <Z (1] Z [Jn]>, then (2.5) reduces to a
standard construction in probability theory, in which the covariance matrix of pairs of
random variables defines an inner product. In particular, showing that the amplitudes
follow from expectation values of a distribution with nonnegative probabilities would
imply that our inner product is positive semi-definite.

Note that the states (2.3) need not be normalised. In particular, the norm of
the Hartle-Hawking state is given by what one might call the cosmological partition
function 3, defined by the path integral over all spacetimes without boundary:

3=(1)=(HH|HH) = / DP e 517, (2.7)

no boundary

3In the language of Dirac constraint quantization [70], (2.5) corresponds to taking two arbitrary
‘kinematic’ states (which may not satisfy the constraints), projecting them onto the space of states
satisfying the constraints, and computing the physical inner product of the resulting projections. See
[71-75] for further comments, and [76-78] for connections to path integrals. As in [76, 77], using
(2.5) corresponds to simply skipping to the final answer without going through the intermediate steps
inherent in [70].

— 10 —



For most purposes, it would be sufficient to consider normalised amplitudes, where
we divide by 3. This is equivalent to performing the path integral excluding closed
components of spacetime which do not connect to any asymptotic boundary.

We now have a space of states defined by (finite) linear combinations of the states
(2.3) in correspondence with formal polynomials of ‘partition functions’ Z[J], and an
inner product defined by extending (2.5) sesquilinearly. This is almost enough to con-
struct a baby universe Hilbert space. The missing ingredient is a single property that
we demand of our path integral (2.1), namely reflection positivity. This can be stated
as the requirement that (2.5) defines a positive semidefinite inner product on finite
linear combinations of states (2.3):

[[]* := (@|¥) >0 for all |¥) = ici

i=1

Z[Jia] - Z[Ji’mi]>. (2.8)

Thus is clearly required if our gravitational path integral is to define a standard quan-
tum theory, though it is cumbersome to verify directly for all states. While this can
be done for the simple toy models studied in section 3, for more complicated systems
it would be very useful to find properties that imply (2.8) but are easier to check.

Assuming (2.8), we now define the baby universe Hilbert space Hpy though a
standard construction, as the completion of the space of linear combinations of states
(2.3) with the inner product (2.5). Roughly speaking, states of Hpy are infinite sums
over states (2.3) with finite norm defined by (2.5).* Importantly, however, infinite
sums with different terms and coefficients may not give rise to distinct states in Hgy.
Equivalently, some infinite sums may be identified with the zero state in Hgy; i.e., for
appropriate coefficients ¢; one may find

oo
>
i=1

Naively, the Hilbert space Hpy may appear to consist of formal power series in

2]+ Z[Jm] ) = 0. (29)

the objects Z[J] with some convergence property. But it is in fact smaller since the
construction divides out by the set of ‘null states’ (2.9). This may seem like a minor
technical point. Of course, from one perspective the inner product defined by any

“Hpy is the set of equivalence classes of Cauchy sequences {|¥;)};, where two sequences {|¥;)},
{|®;)} are equivalent if || |¥;) —|®;)]|> — 0 as i,j — oo. Recall that a sequence is Cauchy when
[ 1%;) — |¥;)||> — 0 as i,j — oo. The inner product between two such sequences is defined by
the limit of the inner products of the terms, which exists and is the same for all members of the
equivalence class. Hgy is then a Hilbert space, so in particular is complete and the inner product is
positive definite. It is separable as long as the set of possible sources J has a countable dense subset
(assuming that amplitudes are continuous in J).

- 11 -
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Figure 3: In the presence of spacetime wormholes, different spatial slices of a spacetime
may have different number of connected components. Here, on the slice 31 we have two
circular universes, but on ¥, we have only one. These may be thought of as different
gauge choices for the same state.

gravitational path integrals naturally leads to a large set of such null states due to the
gravitational gauge symmetry. But we usually expect that symmetry to act trivially
at the asymptotically AdS boundaries where our sources J are defined; i.e., natural
sources J are invariant under familiar gravitational gauge symmetries. As a result, one
might expect the null states to simply encode possible senses in which one may have
accidentally introduced an overcomplete set of sources. However, one should expect
the sum over topologies to modify the gravitational gauge invariance so that it no
longer corresponds precisely to familiar diffeomorphisms. As illustrated in figure 3, one
expects different slices of the same spacetime to describe gauge equivalent states. But
including a sum over topologies means that two such slices may no longer be related
by a diffeomorphism, and in fact that they need not even contain the same number
of connected components for space at the given time. It will thus be important to
compute the effects of this modified gauge symmetry rather than to assume that they
take a familiar form. In particular, while one might naively expect the effect of such
modifications to be small, we will find sections 3 and 4 that in certain circumstances
they lead to dramatic physical consequences.

The above construction of Hpy is very similar to the construction of the Hilbert

- 12 —



space of a quantum field theory from its correlation functions in the Wightman [79]
or Osterwalder-Schrader (see Theorem 3-7 of [80], [81]) reconstuction theorems. In
this analogy, our objects Z[J] correspond to (smeared) local operators inserted in the
Euclidean past, and the inner products between states with finitely many operator
insertions are given by the (Euclidean) Wightman functions. The Hilbert space is
again defined by the above completion construction.

2.3 Operators and a-eigenstates

Having constructed the baby universe Hilbert space Hpy, we now introduce a set of
operators acting on it. Here we once again find asymptotic boundaries useful. In
particular, we take any boundary Z[J] to define an operator Z[J] on Hpy. The matrix
elements of this operator are defined by a path integral over all configurations with
boundaries specified by some initial and final states with an additional boundary Z[J].

Since the labelling of boundaries as past, future, and in between does not affect

—

the value of the path integral, the defining relation of the operator Z[.J] is

(Z10] -+ Z13a)| 210|210+ Z1n]) = (ZL0] -+ Z105]| ZI0\ 210 - Z10] ).
(2.10)
Since the span of the bra-vectors in (2.10) is dense in Hpy, we may write the action of
such operators as

ZUN| 210+ ZUnl) = 2101210 Z10)), (2.11)

extending the action of such operators to the full Hilbert space Hpy by continuity®.
For later use, we note that (2.11) implies that our defining states may be created by
acting with the Z[J] operators on the Hartle-Hawking no-boundary state,

210+ ZUnl) = ZL0] -+ 21l [ HE), (2.12)

and thus by combining (2.5) and (2.11) that we may identify our original path integral

as computing correlators in ‘H H > as advertised earlier:

<Z[J1]--~Z[Jm}> - <HH‘Z/[\MZTH‘HH> (2.13)

—

We also see that the Hermitian conjugate of Z[J] is given by taking the CPT conjugate
of the source:

/\T —_—

Z[7)' = Z[J7 (2.14)

SStrictly speaking, this is the case for bounded functions of the Z[J;]. As usual, unbounded
operators can be defined only on somewhat smaller domains.

— 13 —
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Thus far, we have really defined the Z[J] as operators on the baby universe pre-
Hilbert space (before taking the quotient by null vectors (2.9)). To show that Z[J] is
well-defined on Hgy, we must show that it maps null states to null states. But this
follows immediately from either (2.14) or (2.12). In particular, for any null state [\

and an arbitrary state |\I/>, we may define ‘\IJ'> = Z/[J\*] \I/> to write
(W|ZIJ)|N) = (W'|N) = 0. (2.15)

The last equality follows from the fact that ‘/\/' > is null, and since ’\I/> is arbitrary we

—

see that Z[J] |./\/ > is also null as desired.

The set of operators Z[J]| for all possible J turns out to have a powerful set of
properties. Firstly, since the states |Z[J;] - -+ Z[J;]) are unchanged by permutations of

—

the sources J;, it follows immediately from (2.11) that all Z[J] mutually commute®:

Z1J], 27| =o. (2.16)
In particular, this implies that each Z/[j] is normal (that is, it commutes with its
Hermitian conjugate), so that we may apply the spectral theorem. It then follows
from (2.16) that the Hilbert space Hpy has a basis of orthonormal states |a) which are
simultaneous eigenvectors for all Z[.J] operators:

—

Z[J)|a) = Za[J]|a)  VJ. (2.17)

Followingj_f')\f’)], we call these a-eigenstates, or a-states for short. The spectrum
{Z.[J]},, of Z|J] may be either discrete or continuous. In the latter case the |a)
are not normalisable states, but are instead delta function normalized. However, for
simplicity we use notation in either case as if |a) are normalisable eigenvectors, writing

(o/|a) = daras (2.18)

leaving the appropriate modifications for continuous spectrum implicit.
It turns out that the set {Z[J]} for all possible J in fact defines a complete com-
muting set of operators on Hpy, as the state |a) is determined up to a phase by its

eigenvalues Z,[J]. To see this, note that we can determine all matrix elements of |a)
/\T

via g
a> = <HH Z| ) - Z] ) O‘> (2.19)
= Zo[J{] - Zo[J;)(HH | ).

(2[5 210

6A similar result was derived in [55-57] using an additional assumption about locality of induced
couplings. Crucially, this assumption played no role in our argument above.
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This means that the a-states define a preferred orthonormal basis for Hgy; we can even
fix phases by choosing <HH‘0¢> > 0.

The above calculation of the matrix elements also shows that the Hartle-Hawking
state has non-zero overlap with every a-state, (HH|a) # 0. Otherwise |«) has vanishing
overlap with a dense set of states, and hence must be the zero state. If we define p, by
these overlaps according to

|(HH|0¢>\2
S S B . 2.2
Pa (HH|HH)’ (2.20)
we find
Pa > 0, E Do = 1, (2.21)

where the second follows from completeness and orthonormality of the o basis. Now,
by inserting complete sets of a-states, we can compute the general amplitude (2.1):

<Z[J1]"'Z[Jn]>: Z (HH |ag){ao| Z[N]| o) - - - (n-1| Z[ ]| aen ) { vy | HH )

@0,X1;5..-,0n

=3 paZali] - ZalJul. (2.22)

The normalising factor 3 is the norm of the Hartle-Hawking state (2.7).

Equation (2.22), along with (2.21), tells us that a gravitational path integral (2.1)
is quite generally compatible with an ensemble interpretation, exemplified by the ma-
trix ensemble dual to JT gravity in [62], and analogous to the random couplings of
[55, 56]. Specifically, the parameters « label the various theories in the ensemble, the
eigenvalues Z,[J] give definite values for observables in the theory associated with the
particular label «, and p, gives the probability of selecting « from the ensemble. The
states |a) making up our preferred eigenbasis of Hpy are in one-to-one correspondence
with members of the ensemble. A less extreme example of a-states is provided by the
‘eigenbranes’ described in [82] in the context of JT gravity, which act to constrain the
eigenvalues of Z[J], thus partially diagonalizing these operators. Note that we arrived
at a classical probability distribution because the relevant operators are mutually com-
muting (2.16). The only property required of the gravitational path integral (besides
its existence) was reflection positivity, to guarantee nonnegative probabilities.

With our new Hilbert space point of view, it is now clear that the ensemble de-
scribed above is not unique. Instead, through (2.13) it was associated with the implicit
choice of the Hartle-Hawking state in Hpy. While the Hartle-Hawking state is a par-
ticularly simple and natural choice, we are nevertheless free to select any state we like.
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In particular, if the initial state of the baby universes is an a-state, this selects a single
member of the ensemble so that amplitudes factorize:

(a|Z[1)Z11]|o) = (o] Z[1]|a)(a| Z[ 2] ) = Za[ 1) Zal o). (2.23)

Any other state |¥) is a superposition of a-states, and describes an ensemble with prob-
abilities p, = |(a|¥)[>. Classical probabilities are sufficient to describe the ensemble,
since relative phases between different a-states in /tge superposition are irrelevant for
correlation functionigf the commuting operators Z[.J|. In other words, with respect to
the algebra of the Z[.J], the a-states define superselection sectors.

If the path integral (2.1) already defines factorising amplitudes, so that our theory
of gravity has a single boundary dual, we have a trivial special case of the formalism
described here. In that case, the operators Z[J] are constants Z[J], and the Hilbert
space of closed universes Hgy is one-dimensional, spanned by the Hartle-Hawking state,

which is also the unique a-state. We discuss this possibility further in section 6.

2.4 More Hilbert spaces

The above discussion concerned the Hilbert space Hgy of closed ‘baby’ universes. We
constructed Hpy by cutting amplitudes in such a way that any given asymptotic bound-
ary lies completely on one side of the cut. We now generalize this construction to allow
cuts that intersect one or more components of the asymptotic boundary, thus splitting
such boundary components into two parts. This gives us many different Hilbert spaces
depending on the boundary conditions at the intersection, and in particular on the
choice of a (d — 1)-dimensional (perhaps oriented) spatial boundary geometry . We
thus call the resulting Hilbert space Hy, leaving implicit the other sources J on X.
Note that > can have any number of connected components, and if X is empty we find
again the Hilbert space Hy—y = Hpy of closed baby universes described above.

The construction of Hy, proceeds much as for Hgy, except that in addition to closed
asymptotic boundary conditions denoted by Z[J] we also have objects v[J] defining
boundary conditions on a piece M of an asymptotic boundary with OM = X. As
before, the manifold M, and in particular its boundary X, is implicitly included in the
sources J. For example, in the right panel of figure 2, M is the solid black semicircle
forming the past asymptotically AdS boundary and ¥ consists of the right and left
endpoints. In a dual interpretation, [J] would define a state on the CFT Hilbert
space with spatial geometry 3, as the wavefunction for a given CFT field configuration
on X would be computed by a path integral on M with sources J.

As before, we may choose M to be connected. Note that this does not imply
Y = OM to be connected. When ¥ is not, it can be useful to write > as the disjoint
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union ¥ = ¥y U---U Y, of components ¥; (where the ordering of the components is
meaningful, in case they have the same geometry). Generalizing (2.3), we then have
states

YLA] - ULl ZL] - Z10]) € Hs, (2:24)

where 9[J;] is associated with component ¥; for any source J. While this notation is
useful, it is also somewhat awkward if we take a given v¥[J;] to be associated with a
connected M;, whose boundary OM; = ¥; may again be disconnected. As a result,
one will sometimes need to use a number of distinct decompositions ¥ = > L--- 1LY,
(perhaps with different values of m) for a given Hsy.

The inner product on Hy generalizes (2.5) in a natural way if we note that a
boundary condition 9[.J;] in the ‘bra’ (on some M; with 9M; = ¥;) can be paired with
a boundary condition [J;] in the ‘ket’ (again on some M; with OM; = ¥;) to define
a boundary condition Z[.J*, J] associated with the closed boundary manifold M3M;
constructed by taking the manifold /\;lf (formed from M, by reversing the orientation )
and sewing M;" to M; along ;. In Z[j*, J], * again denotes CPT conjugation of
sources, and the sources on M*M are given locally by J* J. One may also wish
to restrict the allowed sources to vanish sufficiently quickly at >; so that the sources
defined on M; M; by such sewings are sufficiently smooth.

It is important that the above sewing is uniquely defined even when »; admits
isometries. In particular, recall that the above discussion fixed a manifold ¥ O ¥; from
the beginning, and at no point was there a quotient by diffeomorphisms of ¥. The
individual points of Y should thus be thought of as carrying definite labels, defining
the unique sewing of M to M. In particular, the notation in (2.24) is not invariant
under reordering of the ;.

We shall write the pairing as Z[J*,.J] = (w[j],w[JD. This notation is chosen

be suggestive of an inner product (-, -) of states in the dual CFT Hilbert space. The
distinguishability of points in X is motivated either by a dual CFT perspective, or from
familiar gravitational boundary conditions at asymptotically AdS boundaries. The
extended inner product is then defined by using the above pairing and and evaluating
the resulting path integral as before:

(wtdluta1) = ( (v, el) ) = (210°,1) (2:25)

We emphasize again that if ¥ contains identical connected components >, ¥,
the components are treated as distinguished and canonically ordered. Thus in the
notation of (2.24), [¢[J1][J2]) # [¢[J]y[Ji]). While the norms of these states will
agree, the inner product of these states with generic other kets will not (for example,
(OIBIWIR|NLR]) = (Z[J5, W ZLTE, ) # (Z[J5, J)Z15, ), even if 5, = 5,
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so this pairing makes sense). This is a special case of the statement that states need
not be invariant under symmetries of X.

As in the discussion of Hgy, the structure above is properly described as being
pre-Hilbert space. The actual Hilbert space Hy, is then constructed as a completion,
which includes a quotient with respect to the space of null vectors. This procedure
succeeds when the path integral is appropriately reflection positive, by which we mean
that the inner product it defines on the pre-Hilbert space is positive semi-definite. The
inner product on the final Hy is then positive definite as desired. Note that reflection
positivity on Hy is an additional requirement we impose on the path integral, not
necessarily implied by reflection positivity on Hgy; this will prove to be relevant for
the toy model discussed in section 3.

As before, we have operators Z[.J] acting on the Hilbert spaces Hy;, and in particular
which preserve the space of null states in the pre-Hilbert space for the same reason as
before. Again, these operators mutually commute. But now we also have a plethora
of new operators which can map between Hilbert spaces with different boundaries. In
particular, if ¢[J] is associated with M having OM = 3, then for any S there is an
operator

Y[J]  He = Hyy s, (2.26)
with Ol QN2 Z10]) = [oUIZ1) - 21)),  (227)

where in ¥ U'Y we define the components of ¥ to be ordered before components of .
We may use (2.26) even when M, M are disconnected. Note, however, that (when

— —_—

¥ # %) it does not make sense to ask whether ¢[J], ¢[J'] commute, as [J]Y[J] maps

He — Hyy svis, while [ J] maps Hs — Her g5
Nevertheless, one can build a dense set of states in Hy, by acting with such operators

on Hy = Hpy. As aresult, the fact that ¢[J] preserves the null space, and thus is truly

—

well-defined on Hy, follows/fiom (2.25) and the corresponding property for Z [j * J).
The adjoint operator ¥[J]" maps from Hs, 5. to Hs by taking the boundary con-
ditions defined by the state on which it acts, and gluing to boundary conditions of the
CPT conjugate source J* along the manifold X.
Since the Z[J] commute, it is again useful to diagonalize them using a-states. Thus
the Hilbert space splits as

My = EPHs. (2.28)
One can explicitly build the spaces H§, from the a-states of Hpy, as we may define

LA elnlia) = GLAT- - Ol o) € Mg, (2.29)
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and, the states (2.29) are dense in H$. In the special case ¥ = @ corresponding to
Hgpu, each HE is one dimensional, consisting of multiples of |a). It follows that all of
our boundary operators leave o unchanged. For example, evaluating the analogue of
(2.25) in a-states we have

(YL a; a1 an) = Za, [J5, 1] Gaas (2.30)

— - =

It also follows that Z[.J] commutes with [.J].
Finally, note that there is a natural map T from Hy, ® Hy, into Hy, », defined
by concatenation of sources:

[Tl Y img JZ1T0] - Z10,1) @ [0l o, ) Z[Ta] -+ Z[ T3 0,])

, , , , (2.31)
o |00 G, W) - U JZLT) - 2101, V2T - 213,01 ).

This maps acts nicely within each a-sector, taking H$ @HS, into H§, | 5, . In particular,

since acting on |HH) with the Z/[j] yields a dense set of states in Hpy, one may
write |a) = fo({Z]J;]})|HH) for some function f, that takes the value 1 on arguments

{Z,[Ji]} but which vanishes on {Z,/[J;]} for all &/ # . One then finds

@) ® o) = fafa

HH) = 6, o

@), (2.32)

and more generally
T HE, @HE — SaaHE s, (2.33)

Here we have used the notation ¢H for non-negative real ¢ to denote a Hilbert space
with inner product ¢ times that of H. In particular, ¢H = {0} for ¢ = 0. We will use
T, to denote the restriction of T to diagonal tensor products of the form H§ ® HS, .

It is natural to attempt to interpret H$ as the Hilbert space of a dual CFT C,
on Y; this is the natural formulation of an isomorphism between bulk and boundary
Hilbert spaces in the context of ensembles and baby universes. In this case, we would
expect T, to be an isomorphism, since this property would certainly hold true in a
local dual theory. But this is not always the case, as the map may not be surjective; we
will discuss an explicit example in section 3.6. The failure of T, to be an isomorphism
is a precise version of another potential ‘factorisation problem’ [83-85], which differs
from the partition function factorisation problem discussed in the introduction and the
start of this section. This new issue is naturally associated with spatial wormholes
while (2.2) is related to spacetime wormholes. In particular, the factorization problem
of [83-85] occurs when there are two-sided black hole states with a spatial wormhole
(Einstein-Rosen bridge) which cannot be represented as superpositions of products
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of ‘microstates’ in the corresponding one-sided Hilbert spaces. For example, in a bulk
theory with a standard Maxwell field but no charged particles, there are eternal charged
black holes but no one-sided counterparts. An extreme version appears in pure JT
gravity, which has a two-boundary Hilbert space but no single-sided Hilbert space. We
expect that this feature is an artefact of simple toy models, and would be absent in
more realistic theories.

3 Example: a very simple topological theory

This section further explores the structure described in section 2 in very simple theories
of two-dimensional gravity. Indeed, the model described in section 3.1 is plausibly
the simplest possible such theory. Our models are inspired by recent work studying
spacetimes of nontrivial topology in JT gravity [62, 86, 87], along with the addition of
‘end-of-the-world brane’ dynamical boundaries [49]. We further simplify that class of
models by removing any notion of a dynamical metric or dilaton, leaving a theory of
topology alone. The resulting models are tractable enough to be solved exactly, and
for many details to be made explicit. They thus give a surprisingly clean illustration
of the ideas of section 2, and demonstrate the type of results to which such ideas can
lead.

We begin by presenting the simplest model (without end-of-the-world branes) in
section 3.1. This theory allows only one boundary condition Z, associated with a
single operator 7 of the class described in section 2.3, with the path integral defined by
a single bulk parameter Sy determining the suppression of nontrivial topology, along
with a (somewhat ad hoc) parameter Sy associated with boundaries, whose preferred
value Sy = Sy will be determined later by a consistency analysis in section 3.7. We
then evaluate its amplitudes in section 3.2 and construct the Hilbert space of closed
universes Hpy in section 3.3. The most interesting output of this model is that the
spectrum of Z turns out to be non-negative and discrete, and in fact takes non-negative
integer values for Sy = Sy, compatible with an interpretation as the dimension of a dual
Hilbert space. The model with end-of-the-world branes is then described in section 3.4,
and its a-states are described in section 3.5. Here we find that, no matter how many
species k of end-of-the-world brane states we allow, for Sy = Sy all a-states define
an inner product on end-of-the-world brane states with rank equal to or less than
the eigenvalue Z, of 7 , compatible with states in a dual Hilbert space of dimension
Zs. This remarkable compression of the Hilbert space illustrates the importance of
understanding the null states 2.9 in extracting the correct physics. It also shows in this
model that results analogous to the Rényi entropy computations of [48, 49] will hold not
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just for typical members of the ensemble defined by the Hartle-Hawking no-boundary
state, but in fact for all allowed a-states.

We then return to the ad hoc parameter Sy in section 3.7. First, we describe
how different choices for this parameter modify the model. We find that for generic
Sp (and in particular Sy = 0) the end-of-the-world brane models fail to be reflection
positive, and find the set of Sy for which reflection positivity holds true. For values of
Sy satisfying reflection positivity for any number k of end-of-the-world brane states, the
spectrum of Z is a subset of the non-negative integers and the rank of the end-of-the-
world brane Hilbert space is bounded as above. In particular, the reflection positive
models have all the properties required to interpret Z, as the dimension of a Hilbert
space which contains the end-of-the-world brane states.

3.1 A theory of topological surfaces

We now consider a theory of purely topological two-dimensional gravity in which space-
time is a two-dimensional manifold” (surface), but the only additional structure we in-
troduce is an orientation. We thus have neither a spacetime metric nor the conformal or
complex structure that would appear in the standard model of topological gravity [88].
The histories that can appear in a path integral are then the set of oriented topological
surfaces with boundaries dictated by the relevant boundary conditions. This set is dis-
crete and (for each connected component) is famously classified by genus and number
of circular boundaries [89, 90]. Since there is no possibility to add sources in this model,
we simply use Z to denote the boundary condition on any circular boundary.®

In this first model, the only boundaries are those fixed by boundary conditions. As
described in section 2.4, such boundaries should be thought of as distinguishable even
when their boundary conditions coincide. As a result, the space of allowed configura-
tions is the set of oriented surfaces with labelled boundaries, and two such configurations
are considered equivalent only when they are related by a diffeomorphism that preserves
each boundary separately.

We therefore define our path integral as a sum over such diffeomorphism classes
of surface M. Nevertheless, residual effects of diffeomorphism invariance can lead to a
nontrivial measure (M) on this space. This can arise when a group I'(M) of residual
gauge symmetries remains after gauge fixing diffeomorphisms. This naturally leads to
symmetry factors in the measure, of the form pu(M) = W}VI)I One may therefore expect

"For definiteness, we take smooth (not just topological) manifolds, and accordingly use the language
of equivalence under diffeomorphisms rather than homeomorphisms.

8We take the set of boundary conditions to be a vector space, so that a general boundary condition
assigns a (perhaps complex) weight to each non-negative integer n enumerating the possible numbers
of circular boundaries.
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to write our path integral in the tentative form

/D(Pes[@] = Z (M) eI, (3.1)

Surfaces M

where we sum over surfaces M obeying the appropriate boundary conditions, up to
diffeomorphisms acting trivially on the boundaries, weighted by an action S[M].

One would ideally like to derive the measure factor u(M) from a more complete
model. Here, we will be content to define the model with a well-motivated choice of mea-
sure that leads to natural results. Since boundaries are distinguishable, and since any
two surfaces related by boundary-preserving diffeomorphisms are already considered
equivalent, we will assume the trivial measure (M) = 1 for any connected manifold.
It then remains to discuss only contributions to (M) from boundary-preserving dif-
feomorphisms that interchange the connected components of M. These can act only
on compact connected components (i.e., the ones that have no boundary). With this
understanding, the detailed form of p(M) turns out to have little effect on the physics
of interest. It leads only to a change of the ‘cosmological partition functon’ 3, the
sum over compact universes, which is an overall normalisation of amplitudes (though
at the end of section 3.3 we will encounter a situation in which our choice of measure is
physically important). Nevertheless, we regard diffeomorphisms that permute compact
connected components (necessarily with the same genus g) as residual gauge symme-
tries, and divide by the number of such permutations in the measure. This means that,
if M has m, connected components of genus g with no boundary for each g, we have

1

B [1,mg!

Following the principles of effective field theory, we should now write down the most
general action allowed by the degrees of freedom. Fortunately, with only the topological

p(M) (3.2)

degrees of freedom available to us, there is a unique local such action S(M) = —Syx (M),
proportional to the Euler characteristic y of spacetime?, with a unique free parameter
Sp. This is the Einstein-Hilbert action in two dimensions, and is the topological term
of the action in JT gravity.

Despite the apparent uniqueness for the action, we now introduce an additional
term —Sp|0M |, where |0M| denotes the number of circular boundaries of M. As
forewarned in the introduction to this section, for the moment the extra parameter

9Here we take locality to mean invariance under cutting and gluing surfaces. A precise version
of the above statement is then that exp(Spy) is the most general form for the amplitudes of a two-
dimensional topological quantum field theory (TQFT) with trivial (one-dimensional) Hilbert space on
the circle.
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Sy appears completely ad hoc. In particular, while this is an intrinsic function of
asymptotic boundaries, it is not a local counterterm. Indeed, as stated above, we expect
that the unique local theory of our form is given by setting Sy = 0. We discuss how this
factor may arise in 3.7 below, perhaps most simply by introducing a new local degree of
freedom residing on boundaries. For now we simply note that the parameter effectively
just rescales the definition of Z; i.e., it can be removed by introducing Z = €52 Z and
replacing each Z in (3.1) by Z.

Since all values of Sy are related by this scaling, it suffices to discuss only a single
value in detail, and then to use the above scaling to understand all other values. Until
section 3.7, we will thus confine discussion to the particularly simple case Sy = Sy. As
an a posteriori justification, we will show in section 3.7 that the end-of-the world brane
models fail to be reflection positive when Sy = 0, and Sy = Sy is the most natural
choice to cure this failure.

Our action is thus given by

S(M) = =Sox(M) — Sy n(M),

where we choose Sy =Sy (until section 3.7).

The practical simplification of choosing Sy = Sy is that it precisely cancels boundary
contributions to y in the action. The amplitudes in our path integral thus take the
form

(z") = Y u(M)eSXn (3.5)

M with
|OM|=n

which we have written in terms of a modified Euler characteristic x¥ that does not count
boundaries and which is given simply by

X= Y  (2-29. (3.6)

Connected
components

Here g is the usual genus of each connected component that counts handles.

It will be useful below to sometimes use an alternate presentation of the sum (3.5).
Instead of summing over surfaces with labeled boundaries, we can write <Z ”> as a sum
over ordered lists My, of connected manifolds, and also where we choose not to label
the boundaries. The number of ways to label the boundaries is then accounted for by
including a separate factor of the multinomial coefficient HL;,, where n; is the number
of boundaries in the ith entry of the list M. As is well known, #;, gives precisely the
number of ways to arrange n boundaries into lists of subsets that have n; boundaries

1

in the ith subset. For a list of length m, including a factor of — then accounts for
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the fact that the components are not ordered in the original sum (3.5), and also for
the factor of u(M) that arises when some items in the list both coincide and have no
boundaries (so that exchanging these items neither generates a new term in (3.5) nor
generates a new partition of the n boundaries). Thus we may rewrite (3.5) as

n! S5
CEND s ey o7
Ordered lists M, 2

of connected surfaces
with n boundaries

where n, m, and n; are as above.

Before computing the amplitudes (3.5), it is useful to comment further on the
interpretation of Z in terms of a putative dual 0 4+ 1-dimensional quantum mechanics
(which we will sometimes call a CFT in analogy with AdS/CFT). Each Z would be
naturally associated with the path integral of this quantum mechanics on the circle,
which would describe the partition function Tre # for a circle of length 3. But since
we have no metric, there is no notion of boundary length 3, and invariance under
diffeomorphisms of the boundary implies a vanishing Hamiltonian H = 0. This means
we have a topological quantum mechanics (a one-dimensional TQFT) where the only
observable is the trace of the identity operator, which is the dimension of the Hilbert
space:

7 = Tragepr 1 = dim Hepr (3.8)

A unitary dual quantum mechanics is therefore characterised by Z taking a value in
the natural numbers N (or perhaps by Z being infinite). In the presence of spacetime
wormholes connecting these boundaries, it would thus seem natural to find that Z is
a random variable taking nonnegative integer values. We will see below that this is
precisely the case for our model.

3.2 Evaluating the amplitudes

We now solve for the amplitudes <Z”> defined above. We begin by computing the
no-boundary partition function 3 as in equation (2.7). This is the case n = 0, given
by the sum over arbitrary compact spacetimes without boundary. For this, we first
compute the sum A over connected compact surfaces, which are classified by genus.
The measure is trivial for a connected surface, i.e. u(M) =1, so we have

250

> _ e
A= Z eJ0x — 2650(2 29) = (=T (3.9)
g=0

Connected
compact surfaces

With our amplitudes defined by (3.5), and in particular excluding boundaries from
the count in the Euler character, the value of A is always the amplitude for any con-

— 24 —



nected component of spacetime (with fixed but arbitrary boundaries) after summing
over connected topologies. This property determines all amplitudes of the model.

In the usual way, one may write 3 as the exponential of the sum A over connected
surfaces. For this, it is important that we include symmetry factors in our definition
of the measure u(M). Indeed, the exponentiation is particularly explicit by using (3.7)
with n = n; = 0, in which lists of length m contribute % times the mth power of the
sum in (3.9). We thus find

3=(1)=¢" (3.10)

In particular, in our model the path integral defined by the sum over topologies con-
verges.
We now introduce boundaries. To evaluate (Z™), it is simplest to compute a gen-

erating function
o0

"
()= (2", (3.11)
n=0
and to extract the amplitudes from a power series in the ‘chemical potential’ u. Again,
we wish to write (3.11) as the exponential of a sum over connected geometries. This is
precisely the usual combinatorics familiar from Feynman diagrams, but it can also be
seen explicitly from (3.7) which gives

dimi -
RN - 52

Ordered lists M7,
of connected surfaces
where m is the number of surfaces in the list My, and n; for ¢ = 1,...m is the number
of boundaries of the ith surface in the list. Since x for the disconnected surface M is
the sum of y for the individual components, this disconnected pieces exponentiate,

log (e"7) = Z Z Z—TGSOX(M). (3.13)
n=0 Connected M
n boundaries

u

Furthermore, since the factor n—T is determined entirely by n while the factor eSoXx(M)

depends only on the genus g, the double sum in (3.13) may be written as the product

log (e"7) = (i eSOX(M)) (i Z—T) = Ae". (3.14)

Here the last equality has used (3.9) to identify A with the sum over g. We can extract

the correlators <Z ”> by expanding the generating function exp (Ae*) in powers of u.
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We pause to note that there is a more direct way to compute the amplitudes <Z ">
Here we first divide by 3 to remove contributions from closed manifolds and thus any
mention of p(M). What remains is then just to simply count the relevant configurations
remaining in (3.5). Such configurations are classified according to which of the n
boundaries lie in the same connected component of spacetime, and thus by a partition
of the set {1,2,...,n} labelling the boundaries. For each connected component of
spacetime, it then remains only to sum over genus, giving a factor of A from (3.9). We
may thus compute the amplitudes from a counting of partitions, graded by the number
of subsets of {1,2,...,n} that the partition defines:

371 <Zn> _ Z )\(Number of subsets in p) _ Bn<)\) (315>
Partitions p
of {1,2,...,n}
Here B, is known as the Bell polynomial of order n (Bel1B[n,A] in Mathematica; also
called Touchard polynomial). In agreement with our previous result, these polynomials
are indeed known to have the generating function exp(A(e* — 1)) as in (3.14) after
dividing by 3 = €”.
To illustrate the counting in detail, consider the example of the third moment <Z ”>;
i.e., the case n = 3. There are five distinct ways to divide the three boundaries into
connected components:

R o\ Y e N S A
37727 7<+7\+%+>><+>f (3.16)
=X 4+3\2 4\

Since the boundaries are distinguishable, the three configurations with two connected
components are counted separately, and there are no explicit symmetry factors in the
first line above.!® The alternative counting used in (3.7) would instead list each topolog-
ically distinct term in (3.16) only once, but would accompany each term by the number
Ny, of distinct ordered lists that one can construct from the connected components and

the factor of H ; from (3.7). This gives the identical result

23 ON_ 3! O
-1/ 73 D
3L = 31( 1' 3 7< T o o T, (3.17)
=X+ 3)2 4,
where the first term has (Np,m!, o —) = (1,3], 25;) since the 3 components are all
identical but have only one boundary each, the second term has (N, m ’Hn ,) =

0For indistinguishable boundaries the answer would be multiplied by %, or more generally by %
for n boundaries).
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(2,21 2:,)’—1,) since the two components are not homeomorphic but the cylinder has 2

boundaries, and the third term has (N, m!, Hn_"'lz') = (1,1, 3) since all 3 boundaries lie
in the single connected component.

We now interpret the amplitudes in terms of a probability distribution where Z is
regarded as a random variable. To do this, we divide the generating function <6“Z > by

the normalisation factor 3 and write the result as the Taylor series for the exponential:

- u - u — )\d
371 (") = Zpd()\)e d pa(A) =e /\E' (3.18)
d=0 '
Extracting the coefficient of %+ from (3.18) gives
372 =D d'pa(N), pa(N) =€ o (3.19)
d=0 ’

showing that all moments can be generated from a single distribution for Z with support
on nonnegative integers d having manifestly non-negative probabilities Pr(Z = d) =
pa(A). We thus identify Z as a Poisson random variable with mean A. We may also
read this off directly from (3.14) using the fact that exp[A(e" — 1)] is the moment
generating function for a Poisson random variable. Alternatively, one can see this
from the amplitudes (3.15) using the fact that B, is the nth moment of the Poisson
distribution. The appearance of the Poisson distribution can be understood from the
result that all connected components of spacetime contribute the same amplitude A
after summing over genus, independent of the number of boundaries. This corresponds
to the fact that the cumulants of the Poisson distribution (that is, the completely
connected correlation functions) are all equal to A.

This is a surprising and remarkable result. As reviewed in section 5 below, a
perturbative description of the theory following [57] (based on a Fock space labelled
by number of baby universes and with wormholes treated as a small correction) would
have led to the expectation that Z should have a continuous distribution supported on
all real numbers. Instead, from our exact nonperturbative solution we find that the
support of Z is discrete, and limited to nonnegative values.

Furthermore, for our choice Sy = Sy (or more generally for Sy = Sy + logn for any
positive integer n), since Z takes nonnegative integer values d we find that the result is
compatible with the interpretation (3.8) in terms of an ensemble of dual Hilbert spaces.
Although at this stage this result appears to depend on fine tuning the parameter Sy,
we will see in section 3.7 that full consistency (in particular full reflection positivity)
of the model in fact favours precisely the relation Sy = Sy + logn.

As a final comment, it is interesting that the relation (3.9) between the ‘bare’
parameter e and the physically observable parameter \ is not injective, but is instead
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two-to-one. This means that there for a given value of e, there is a second value e

that gives rise to the same A, and hence the same theory. In particular, we find
g0 =1 ¢ 50, (3.20)

This is a strong—weak self-duality of the model in the sense that the semiclassical limit of
large Sy suppresses connected topologies (and thus describes weakly coupled universes),
but yields the same theory as a very small value of the dual Sy. At the self-dual value
e% = 2 we have \ = 4, and smaller values of \ correspond to complex couplings, with
e~ ¢ % +¢R. From the point of view of the path integral in a semiclassical expansion
it is surprising that such a complex coupling gives rise to reflection positive amplitudes,
and hence to a unitary Hilbert space and positive probabilities.

3.3 The baby universe Hilbert space

We can now give a complete description of the Hilbert space of closed universes Hgy.
Every state can be written as a linear combination of ‘Zm> created by inserting m
boundaries in the past, with inner product

(7l = ()

(3.21)

A more general state Y~ c¢,|Z") can then be represented as |f(Z)), where f is a
function with Taylor coefficients ¢,,, which grow slowly enough for convergence. De-
manding that the partial sums {Ziv:o cn\Z”>} form a Cauchy sequence guarantees
that f defines an entire analytic function (see ei\i)pendix A.1). Before considering the
details of the inner product, we are thus led to the idea that Hgy is a space of functions
f:R — C (or perhaps f : C — C), with argument Z.

We can read off the extension of the inner product to states |f(Z)) from the last
line in (3.21):

(92)|1(2)) = " Zol f(a). (3:22)
d=0
This is (up to normalisation factor e*) the covariance of random variables f(Z), g(Z)

where Z is Poisson distributed. But the salient feature of (3.22) is that it depends only
on the vales of f and g evaluated at non-negative integers (also known as the set N of
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natural numbers). In particular, we find that the state ‘ f(Z )> has zero norm whenever
the function f vanishes on N:

| 1r@) H2=o > f(d)=0forall d € N. (3.23)

To form the Hilbert space Hpy, we must quotient by such null states as in (2.9). For
example, since sin(rZ) vanishes on N we have the otherwise surprising relation

e n 2n+1
|sin(7Z)) Z |z = 0. (3.24)
— 2n +1

More generally, for any f we have |sin(7rZ) f(Z)) = 0, so in some sense the space
of null states is the same size as the total space before the quotient. Similarly, the
Hartle-Hawking state can be represented by the constant function f(Z) = 1, or more
generally by any function that has f(d) = 1 for all d € N (for example, [HH) = |e*"%%)
for any integer j). To emphasise the impact of the quotient by null states, note that by
adding vectors of the form |Z"sin(7Z)) we can change any finite number of coefficients
¢y, (for n # 0) in the expansion of the state "~ ¢,|Z") at will. As a result, the only
physical information in any finite collection of coefficients ¢, is the overlap with the
Z = 0 eigenstate (given by cp).

These considerations reveal an enormous degeneracy in how states of Hgy are
represented as sums of |Z™). We regard this degeneracy as a gauge equivalence. As
described in section 2.2 this gauge symmetry is a natural modification of diffeomorphism
invariance associated with allowing topology change in the functional integral. But
the enormous power of this seemingly natural modification comes as a surprise. This
indicates that the corrections to diffeomorphism invariance are not generic, but are
instead highly correlated. As a result, the corrections conspire to enhance the impact
of the gauge symmetry, and thus to produce the degeneracy observed above. Such
conspiracies call out for a more fundamental explantation, and we will see in sections
3.7 and 4 below that at least some of these conspiracies are in fact implied by reflection
positivity of our path integral.

In parallel with the treatment in section 2.3, we can now discuss the a-states of our
model. These are the eigenstates ’Z = d> of 7 , labelled by d € N, and they must form

a basis for Hgy. When expressed as a sum of the states |Z") states, we may choose
coefficients defining the Taylor series of any analytic function taking a non-zero value
at Z = d but vanishing at other natural numbers, since multiplication by Z acts as
multiplication by the constant d on such a function. One of the infinitely many ways
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to represent such eigenstates states is then

)-(7)

where the coefficient is chosen to enforce the normalisation

—;22(71263) > , (3.25)

<Z:d’

7 = d> — S (3.26)

Finally, we discuss the spacetime interpretation of our operator 7 and its eigen-
states |Z = d). From (3.22), note that projecting the states |f(Z)) onto the (here,
one-dimensional) subspace where Z takes the value d is equivalent to restricting the
sum on the right-hand side of (3.22) to the given eigenvalue d, or equivalently to terms
of order \¢. But due to (3.9) (and the fact that the analogous equations are identical for
any fixed number n > 0 of boundaries on the connected surface), these give precisely
the contributions in (3.5) that arise from spacetimes with d connected components.
We thus find that working in the eigenspace with eigenvalue d is equivalent to restrict-
ing the sum over amplitudes to terms where the universe has precisely d connected
components'!.

In other words, the operator 7 counts the number of connected components of
spacetime! This is quite surprising, since this is not a quantity we would naturally
associate with a Cauchy slice if we were to attempt to quantise by gauge fixing diffeo-
morphisms (unlike the number of connected components of space, which is a natural
observable when universes cannot split and join, but is not gauge invariant when they
can).

The a-states are designed to make amplitudes factorise (2.23), and it is interesting
to note how our model achieves this. To work in an a-state ’Z = d>, we can impose the
nonlocal constraint that spacetime has exactly d connected components. This does not
exclude wormhole configurations connecting multiple boundaries, but provides addi-
tional correlations between disconnected configurations of boundaries. It thus achieves
factorisation in a surprising way, which may be instructive for less simple models. Note
that our choice of symmetry factors on spacetimes without boundary, which otherwise
only acts to renormalise 3, is crucial for this simple description of a-state correlation
functions.

Since Z takes values in N, Hgu has a natural representation as a harmonic oscillator
Hilbert space in which Z acts as a number operator.'? We can define the annihilation

HWe thank Xi Dong for discussions on this point.
12This is not to be confused with the free Fock space description of section 5, in which Z is a
harmonic oscillator position operator.
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operator a as acting to shift functions of Z,

a|f(2)) = VA|f(Z + 1)), (3.27)
so that we have the relations
Z=N-= ala,
alZ =0) =0, and (3.28)
Z = d) = ——(a)"Z = 0).

In this description, the Hartle-Hawking state is a coherent state, which can be repre-
sented as
|HH) = e"'|Z = 0). (3.29)

The distribution of the associated ensemble then follows from the well-known fact that
the number operator follows a Poisson distribution in a coherent state.

3.4 End-of-the-world branes

We now extend the model described above by introducing dynamical boundaries, which
(following [49]) we call end-of-the-world (EOW) branes. We choose to include an arbi-
trary number k of species of EOW brane, so each of these boundaries is labelled by an
index i € {1,2,...,k}. Equivalently, we can place a topological quantum mechanics
on the EOW branes, with zero Hamiltonian and a k-dimensional Hilbert space, so that
1 labels an orthonormal basis of states in that Hilbert space. Apart from the species
label, the only local data on an EOW brane is an orientation compatible with the
spacetime it bounds.

Introducing the EOW branes has two effects. Firstly, they can appear as closed
boundaries in the sum over topologies, but this is largely unimportant, only acting to
change the value of A\ so that it is no longer given by (3.9). More importantly, the
EOW branes allow us to impose a new class of possible boundary conditions. Namely,
we can specify that we have a boundary condition which is an oriented interval labelled
at its endpoints by EOW brane species i and j. Since the interval is oriented, we may
refer to it as having a past endpoint that creates an EOW brane of type ¢ and a future
endpoint that destroys an EOW brane of type 7. We refer to both past and future
labels as EOW brane sources. In a putative 0+1 dual, the condition that a boundary
creates an EOW brane with label ¢ corresponds to the preparation of a certain 0+1
dual state 1;. We denote a boundary interval between EOW branes i and j by (v;, )
since the bulk path integral with this boundary condition should compute the inner
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Figure 4: A spacetime contributing to an amplitude ((v;,;)(¢;,¢;)Z). The solid
red lines indicate asymptotically AdS boundaries, and the dashed green lines are EOW
brane boundaries. The spacetime has two boundary components, each with the topol-
ogy of a circle. One (solid red circle at bottom) is a single circular asymptotically
AdS boundary (a Z-boundary). The other is formed by a pair of asymptotically AdS
segments connected by a pair of EOW brane segments to form a topological circle.

product between these states.

(Y5, 101) = (3.30)

Since the boundaries carry an orientation, the notation distinguishes bra-vectors from

ket-vectors so that (v;,1;) # (¢;,1;); in general, these are CPT conjugate boundary

conditions. This coincides with the general notation introduced in section 2.2.
Including the v;, the most general amplitude can now be written

(27 W) -+ (5 05,))- (3:31)

The associated boundary conditions for the path integral require m circular boundaries
without EOW brane sources and n additional interval boundary segments labelled ap-
propriately with EOW brane species. Since the EOW branes are dynamical, the path
integral is then computed by summing over all oriented surfaces whose circular bound-
aries are of the following three types: 1) circular EOW brane boundaries, each labelled
by an arbitrary species independent of all boundary conditions, 2) m circular bound-
aries without EOW brane labels as dictated by the number of Z’s in the amplitude,
and 3) additional circular boundaries formed by partitioning into subsets the oriented
intervals (¢;,1;) dictated by the boundary conditions and, for each subset, forming a
circle by connecting the (¢;,1;) segments using oriented EOW brane segments whose
species labels match the source labels at both endpoints. See figure 4 for an example.
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We now know the set of amplitudes to compute and the corresponding config-
urations over which we are to sum. It remains only to specify the measure on the
configurations. As before, the Euler characteristic is the unique local action without
introducing additional degrees of freedom. However, we will again include a parame-
ter Sy associated with each circular boundary. We use the same Sy for every circular
boundary, no matter how it is formed from asymptotic pieces and EOW branes. Again,
we will see in section 3.7 that this can be obtained by introducing additional local de-
grees of freedom which reside on both asymptotic and EOW brane boundaries, and
integrating them out. While this no longer corresponds to a simple scaling of our oper-
ators, we will nonetheless once again focus on the case Sy = 5y, resulting in an action
which counts only genus and not the number of boundary components, and comment
on the extension to other values in section 3.7.

It remains to specify the symmetry factors that will be the analog of (M) in (3.1).
In doing so, it is useful to note that, since all asymptotic boundaries are treated as dis-
tinguishable, they will not contribute to symmetry factors. The only indistinguishable
boundaries are those formed by circles involving EOW branes alone. Furthermore, such
circles are completely independent of the boundary conditions. They thus enter all of
our sums in precisely the same way as the genus g. The analogue of (3.5) for our new
model is then

(250, 00) (W, 00,) ) = D0 (MY, (3.32)

where we sum over diffeomorphism classes of surface M with the boundary conditions
specified on the left hand side. The measure p is analogous to (3.2) but includes addi-
tional factors associated with counting end-of-the-world branes using Bose statistics.

We may now proceed to evaluate the above amplitudes. As a first step, we again
define A as the sum over connected surfaces with no asymptotic boundaries in analogy
with (3.9). However, this sum must now allow for the possibility of circular EOW brane
boundaries, each with k& possible species labels. Since EOW brane boundaries can be
specified in precisely the same way for each genus, this simply multiplies the result
(3.9) by an overall factor counting the number of possible such labelled boundaries.
For a fixed number n of EOW brane boundaries, including symmetry factors we count
L

7 ways to label the boundaries with k species. Summing this factor over n shows the

new factor to be ¥ and we obtain

6250 L

= ¢~
1 —e25%

A\ (3.33)

As before, we can now compute all amplitudes through a generating function,
where we sum over all configurations, with any number of asymptotic boundaries, and
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fugacities v and t;; (with ¢ = 1,--- , k) for the Z and (¢;,;) boundaries respectively.
As we explain below, this yields

<exp <uZ + Xk: tii (1, W) > = exp Pﬁu—w} , (3.34)

ij=1

where ¢ is the k x & matrix with entries ¢;;, and I the k x k identity matrix.

Once again, we compute this result by writing it as the exponential of a sum over
connected spacetimes, each weighted by a factor of A from summing over genus and
closed EOW branes. The connected contribution is a sum over all possible bound-
aries we could insert on a given connected spacetime (excepting circular EOW brane
boundaries, which have already been absorbed into A). This sum is itself given as the
exponential of a sum over distinct types of boundaries:

=1
N STy
u nzln T

The u accounts for insertions of circle boundaries Z as before. The nth term in the

eu

det(I—1) P

(3.35)

sum comes from boundary components consisting of n intervals corresponding to some
(¢4, ), alternating with n EOW branes. Summing over species of EOW branes results
in the matrix product and trace, and the factor of % avoids overcounting equivalent
configurations where the n component intervals are cyclically permuted.

For an alternative route to this result where various factors are more explicit, we
can present (3.32) as a sum over ordered lists of connected manifolds. This is readily
obtained from (3.7) by recognizing that the circular EOW brane boundaries enter every
sum on the same footing with the genus g. We have

<Zm(wjl,%) (Y win)> (3.36)
u™ kil D! )
- Z Z C(D)— eSoX
LAD; I} Ordered lists M, Ll Hz Il Hz D;!

. oy o Li=ng of L connected surfaces
1<i<L with ZZD-—D where entry ¢ has D;,I;
i 7*7 distinguishable/indistinguishable
boundaries

where the factor ’% for each connected manifold counts the number of ways (including

symmetry factors) to assign EOW brane labels to I; indistinguishable circular bound-
D!
into (labelled) subsets of size D;. Finally, the factor C(D) represents the number of

aries and the factor again counts partitions of the D distinguishable boundaries

ways to form D distinguishable boundaries from the specified boundary conditions
(together with interpolating EOW brane segments).

— 34 —



In comparing with (3.36), the relation to the exponential of (3.34) is clear from the
factor of 1/L!in (3.36), the inclusion of factors of l;—l, in (3.34), and the defining property
of generating functions. By this last feature, we mean the fact that the definition of the
generating functions (3.34) converts the factors C'(D) % counting the number of ways
to match distinguishable boundaries to boundary conditions into the above-described
weighted sum over all possible boundary conditions for each connected component.

We now interpret the amplitudes as describing an ensemble, for which (3.34) is the
(unnormalised) generating function for moments of random variables Z and (;, ;).
Let us first set ¢ = 0 in order to consider the marginal distribution of Z. We then
recover the old result (3.14) without EOW branes, so Z is again Poisson distributed,
though with a new value of A given by (3.33).

We can now characterise the distribution of (1}, ;) by conditioning on Z = d for
each fixed d € N. To find the corresponding conditional generating functions, we Taylor
expand the exponential in (3.34) and write each term as an average over the Poisson

probabilities pg(A) = e_’\%:
k 00 k
< exp (UZ + )ty ¢i))> =Yy 6"dpd()\)< oxp Yty (1, wi>>
ij=1 d=0 ij=1 Z=d
k
i,j=1 Z=d

The result is the generating function for a standard complex Wishart distribution [91]
with d degrees of freedom.

To make this more transparent, and to simultaneously explain this distribution to
the uninitiated reader, we can rewrite the generating function by introducing kd ‘aux-
iliary’ complex variables ¢, arranged in a d x k matrix. The index ¢ =1, ..., k labels
the EOW brane states, and we will interpret a = 1,...,d as labels for an orthonormal
basis of the boundary Hilbert space Hcepr (which is d-dimensional based on our inter-
pretation (3.8) of Z). The 9¢ variables will be interpreted as the components of the
EOW brane states 1; in this orthonormal basis.

In terms of the ¢ variables, our Wishart generating function (3.37) can now be
written as a Gaussian integral:

k d 1 ~ k d
det(1 —¢)~% = / H 11 (;dwgdqu e—w%’wé’) exp (Z ti; Zw;w;) (3.38)

i=1 a=1 i,j=1 a=1

Comparing with the expectation value (3.37) we are computing, we can read off the
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distribution by identifying the matrix of inner products (v;, ;) as

d
(1) = ) W (3.39)
a=1

from the final factor in the integral. The remainder of the integral gives the measure
for the ¢, as independent random variables, each chosen from a complex normal
(Gaussian) distribution with unit variance:

1 ~ independent standard complex normal random variables. (3.40)

In the 0+1 dual interpretation, this means that the wavefunction of each EOW
brane states is selected independently and uniformly at random from the unit sphere of
a d-dimensional Hilbert space Hcpr, and then multiplied by a random normalization
so that its squared norm is drawn from an appropriate x2-distribution. In particular,
the number of linearly independent states, given by the rank of the matrix of inner
products, is bounded by Z: with probability one we have

rank(v;,1;) = min{k, Z}. (3.41)

This is another surprising and remarkable result from such a simple model, since in
the semiclassical limit (without the exponentially small effects of spacetime wormholes)
the kK EOW brane states appear to be orthogonal, and we can choose k to be as large as
we like. As discussed below in section 5, even if we include Euclidean wormholes there
is an expansion in e~*° which for a finite number of amplitudes at any finite order gives
no obvious sign that apparently distinct EOW brane states must in fact be linearly
dependent. Nonetheless, in the complete solution after summing all nonperturbative
effects, we find that the number of linearly independent states is truncated. As in [49],
as and discussed further in section 4, this is a version of the semiclassical Page curve
[1].

At first sight, this appears to require an enormous conspiracy in the nonperturba-
tive contributions, which might lead one to suspect that it is an artefact of studying
particularly simple models. We will show below that this is not the case, since it follows
from a more primitive principal, namely reflection positivity of the path integral. For
this, we must study the Hilbert space interpretation of the model with EOW branes.

3.5 Baby universe Hilbert space with EOW branes

We now incorporate the EOW branes into the baby universe Hilbert space. This
enlarges the space relative to that of section 3.3 because, along with circular closed

— 36 —



universes, we also have k? new types of universe whose spatial slice is an interval
bounded by EOW branes, say with labels ¢ and j (where the orientation defines a
preferred order). On the other hand, the above-mentioned conspiracies will also imply
the existence of new null states.

It is most straightforward to construct Hpy from the a-states. These are eigenstates
of/tli 7 operator as before, but now are simultaneously eigenstates of the k? operators
(1;,1;) as well; note that Hermitian conjugation acts on these operators by swapping
i,j. We label the corresponding eigenvalues by Z, and (¢;, ), so we have

/\2\@ = Za|)
(5, ¥3) |@) = (5, ¢3)a |v).

The set of a-states is determined by the allowed sets of eigenvalues, which is constrained
by (3.41).

As in section 3.3, the eigenvalues Z, of Z are given by the nonnegative integers
d. Indeed, we can still define states |Z = d) by any of the means discussed in that

(3.42)

section, for example by (3.25). However, they are now not full a-states, since they
are eigenstates only of 7 and not of (m) Instead they are the projections of the
Hartle-Hawking state onto the corresponding eigens;ﬁ(a of Z. We can generate the
rest of this eigenspace by acting with the operators (¢;,1;) on |Z = d).

In each such eigenspace, we can now diagonalise the operators (t;,v;). Their
simultaneous eigenvalues correspond to Hermitian k X k positive definite matrices of
rank at most d (though any rank other than min(d, k) has probability zero in any
normalizable state). The baby universe Hilbert space therefore decomposes as a direct
sum:

Hey = P Hz-a
d=0
3.43
Hz—a = L*(M) 4
M = {Hermitian p.d. k x k matrices, rank < d}.

The summands Hz—4 are the usual L? spaces of square integrable functions on the
relevant space of restricted rank matrices M (defined with any convenient smooth
measure). For d < k, M forms a (2kd — d?)-dimensional manifold; we can write
(¢, 1) = ZZZI 1&?@/}{1 as in (3.39) so that the 2kd counts the number of independent
real parameters in ¢¢ while the d* subtracts for the invariance under unitary rotations
of the a directions. For d > k, the restriction on rank is vacuous.

With this description, the a-states are delta function wavefunctions living in the
subspaces Hz—g4, supported on some particular matrix (¢;,1;), € M{. In particular,
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we write their inner product as
(]a) = daar, (3.44)

where dq4/ is the product of a Kronecker delta 07,z , for the eigenvalue of 7 with an
appropriate Dirac delta function on M associated with the choice of L? measure in
(3.43).

Finally, the wavefunction of the Hartle-Hawking state in this description is given

by

(o) - \/—fza (000 15

where f_ is the probability density function of the complex Wishart distribution with
Z,, degrees of freedom with respect to the measure on our L? space; this is the overlap
<04‘Z = Zo) = fz,. For Z, > k, this density is given explicitly in (3.65).

3.6 Hilbert spaces with boundaries

Our discussion of Hilbert spaces is not yet complete. In particular, other Hilbert spaces
of interest arise when we insert complete sets of states on Cauchy slices that intersect
‘asymptotically AdS’ boundaries. Here there are two types of boundary, distinguished
by their orientation; we call them ‘left’ and ‘right’ boundaries of space. In a 041 dual,
the two types of boundaries would correspond to CPT conjugate theories.

In our model, the most general slice ¥ of the asymptotically AdS boundaries will
consist of ny left boundaries and ng right boundaries. We thus denote the associated

Hilbert space Hy from section 2.4 as H Reversing the orientation of all boundaries

nr,nR-
gives the dual (Hermitian conjugate) Hilbert space, so H}, . = Hnpn,- The simplest
of these is Hguy = Ho,0, which we have already discussed. We will be primarily interested
in the one-sided Hilbert space Ho (related to H; ¢ by duality) and the two-sided space
Hl,l-

We begin by considering the single boundary Hilbert space Hg 1, which is spanned
by states of the form |¢;; Z™ (;,,¥s,) - - - (¥, ¢4, )). Recall that the operator QZZ maps
Hpu to Hoa (or more generally Hy, n, — Hnpnp+1). All of the above states can
be produced by acting with the operator 1@ on a state of closed baby universes. In
particular, we can span Hy; by acting with one of the k operators 1@ (fori=1,...k)

on a-states of Hgy. The inner product on such states is

(s 0| ) = (| (P, 0] @) = G (15, 1)ar (3.46)

so in particular, the different a-sectors are orthogonal, and Hy; admits a direct sum
decomposition

Hor = EPHS, (3.47)
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(where this is to be understood in the appropriate sense given that some of the param-
eters defining v are continuous). The inner product on each sector Hg, is simply given
by the matrix of eigenvalues (1, 1;),. On sectors with Z, < k, this is degenerate, and
HG, is Z,-dimensional:

dim H§, = min{k, Z,}. (3.48)

Next, we look at the two-boundary sector H; ;. In the same way, this Hilbert space
can be populated by acting with boundary creating operators on states of Hgy, for
example on a-states. We have the same direct sum structure as before, H11 = @, H{ ;.
States within each Hf; can be created by acting with separate EOW brane states
on left and right boundaries using z/ﬂ}i@ But we now have an additional possibility
where we introduce a single asymptotic boundary that connects left and right. In a
general theory, one might call this the cylinder boundary (with topology > times an
interval), and one might think of it as obtained by cutting in half a partition function
on ¥ x S'. By acting on !HH>, it thus creates a state that one expects to interpret as a
‘thermofield double’ in some CFT dual. In our case the cylinder degenerates to a line
segment (since X is a point), which we can think of as half of a Z circle. We denote the
boundary condition by \_/, the associated operator by O, and the resulting state

by ‘\J> = Q HH> Thus,

H7, is spanned by W}‘,%;a% ‘\,J; 04>, (3.49)
and the inner products of these states are given by

<¢;27 ¢i2; O/‘@/);l ) 1/11'1; Oé> - 5aa’<wi27 ¢i1)a <¢j17 wj2>av
<\>ja O/W;I ’ %1, Oé> = 5aa/(wj17 wh)aa (350>
<\,J;o/|\,/; ) = o Za.

From the first of these, we see that for fixed o the states |17, 1;; a> span a subspace
isomorphic to the tensor product of two single boundary subspaces, so this tensor
product embeds naturally in H$; i.e., Hg; @ HYy € HY;. This inclusion could be an
exact equality, but only if the new state [\_/; a> can be built from a linear combination
of factorised states W;’f, Wi; a>. This suggests that we look for a linear combination

|A) =[\Jsa) = Z ci |07, i ) (3.51)

ij=1

with zero norm. Such a vector would be projected out of the Hilbert space H; 1, giving
|A) = 0 and providing an identity relating the cylinder state ‘\J> to a superposition
of one-sided states.
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Before computing the norm of our ansatz |A), we first change to a more convenient
basis diagonalising the EOW brane inner product in the a-state in question (with
eigenvalues (;,;),). Specifically, we pick linear combinations ¢, of the v, boundary
conditions for which (¢, ¢g)a = dap, with the index a = 1, ..., r running up to the rank
of the matrix of inner products. In this basis, we rewrite our candidate null state and
compute its norm:

T

1A) =\ Jsa) = > carldy, dai ) (3.52)
a,b=1
(Ala) = (\Jsal\Jsa) = Y ca(\Ssald), duia)
a,b=1
- Z CZb<¢Zv¢a;a|\>/;a> + Z CabCZ’b’<¢Z’7¢a’;a ¢Z7¢a;a>
a,b=1 a,b,a’ b'=1
=7, — QZRecaa + Z |ca|?
a=1 a,b=1
= Za -r (Cab = 5ab>-

In the last line we have chosen the coefficients c,, = 04, to be d,p, as this minimizes
(A|A).

The above calculation teaches us two things. Firstly, for the norm to be nonnegative
we have an inequality which applies in all o states:

Reflection positivity = Z, > rank(¢;, ¥;)a. (3.53)

This explains our empirical result (3.41) that the rank of the EOW brane inner product
is bounded by Z,, in terms of reflection positivity of the path integral. The same
argument can be used in much more general models, and we repeat it with the inclusion
of a conserved energy in section 4, where we also connect it with the Page curve [1].

Secondly, we find that if the inequality (3.53) is saturated, we have |A) = 0, and
hence an identity

\Jsa) = |h, das ). (3.54)

Since the ‘factorized states’ |¢;, Wi; a> then span the two-sided Hilbert space H{;, we
also find an equivalence between Hilbert spaces

H&l ® H?,o = ?,1 . (3.55)
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This factorization holds in our model for sectors with Z, < k; i.e., when there are
enough EOW branes to populate a one-sided Hilbert space of dimension Z,,.

To emphasise the importance of a-states in this argument, we examine how it
fails in a more general (normalised) state |¥) € Hpy, such as the Hartle-Hawking
state. Specifically, let us choose linear combinations ¢, of EOW brane states ¢; to
diagonalise the expectation value of the inner product in the state |¥); i.e., we take

(9](B1, 60)|®) = b, (3.56)
where a,b = 1,--- ,r, with » = rank <\If‘(m)‘\ll> If we now compute the norm of
the state .

A) = [\ ¥) = D |60, 603 ), (3.57)
a=1
we find an extra term, coming from the overlaps <¢;‘;, Op; \I/‘gzﬁ;;, Ou; \I/>:
(A]A) = (0| Z|T) —r + > Varg [(¢y, ¢a)] - (3.58)
a,b=1

Here we have defined the variance of boundary condition X as the connected amplitude
for X XT,
Varg[X] = (| XXT|0) — (0] X |0) (| XT|0). (3.59)

This vanishes in a-states, though is generically non-zero.
For example, in the Hartle-Hawking state, the expectation value of the overlaps of
EOW brane states is already diagonal,

SRR w0
(HH]HH) ? '

so we can define ¢, = A\~/21),, and we have r = k. The variance of the individual
terms (¢, ) is small,
Varua|(¢p, ¢a)] = A7 (1 4 dap), (3.61)

but there are k? such terms, so they are collectively important when k is of order A
or larger. As a result, (3.58) gives no meaningful bound relating the rank of the inner
product (¢;,1;) to the partition function Z. Note that this is not really an issue of
fluctuations in the particular parameter Z,, as the same d'ﬁcgsion applies to the states
|Z = d), which fix the eigenvalue of Z but not those of (), 1s).

Returning to the issue of reflection positivity, we should also discuss the Hilbert
spaces Hp, n, associated with arbitrary numbers of left and right boundaries. But
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in our model all possible boundary conditions creating such states can be formed by
combining \_J with the above ;. In superselection sectors with Z, < k, the above
result then implies H,,, ., = 7—[%6“ ® H??R and the inner product on H,,, ,,, is positive
definite. In superselection sectors with Z, > k the higher Hilbert spaces are not tensor
products of the lower Hilbert spaces. But much as above, considering states similar to
(3.57) again shows the inner product to be positive for Z, > k = r. We thus see by

direct calculation that our path integral satisfies reflection positivity.

3.7 The boundary parameter Sy

We now discuss the parameter Sy, contributing an action proportional to the number
of boundaries. First we describe how changing Sy from its preferred value Sy = 5
alters the physics, and thus in particular explain why this value is preferred. We then
discuss how we might naturally incorporate such a parameter in the model.

Let us first consider the model without EOW branes, discussed in sections 3.1,
3.2 and 3.3. There the only effect of Sy is to rescale the quantities and operators
associated with the Z boundaries. We thus find an ensemble interpretation in which
Z is e%7% times a Poisson random variable, so that the a-states are characterised
by Z eigenvalues Z, € e%~°°N. From the gravitational perspective, there is nothing
wrong with this model for any positive value of Sy. In particular, reflection positivity is
preserved for all Hilbert spaces. Complex values are excluded by reflection positivity on
H1 1, which is spanned by orthogonal states |\__/; &) with norm (\_/;«a|\_/J; ) = Z,.
From the boundary perspective, there is a good dual interpretation only when e%—5
is a nonnegative integer, so that 7, takes nonnegative integer values which can be
interpreted as the dimension of a dual Hilbert space. Nothing from the bulk perspective
appears to prefer such values, so our choice Sy = Sy appears to be rather artificial.

This changes once we introduce the EOW brane states. The bulk then provides a
principled reason to prefer particular values of Sy, as the inner product on EOW brane
states will otherwise fail to be positive semidefinite. To see this, we focus on a sector of
Hpy with fixed Z eigenvalue Z = d, in which our EOW brane amplitudes are given by
the generating function (3.37), reproduced below with fugacities ¢;; rescaled by a factor
of 7 for later convenience and with the matrix of EOW brane inner products encoded
in a k x k Hermitian matrix M, M;; = (¢¥;,1;):

Xak(t) = <eiTr(tM)>Z:d = det(1 —4t) ™ (3.62)

For d € N, by introducing dk auxiliary Gaussian variables we showed in (3.38) that this
gives a probability distribution for M, and hence a reflection positive inner product
on Hpy. This argument does not apply for d ¢ N, so we must find a different way to
determine whether we have a positive semidefinite inner product.
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If M is to be interpreted as a random variable selected from some probability
distribution, (3.62) defines x4 as the characteristic function of the distribution. This
is the Fourier transform of the probability density function p,j, which is in general a
distribution on the space of k x k& Hermitian matrices. It thus determines our inner
product, which acts on a space of functions f, g of k& x £ Hermitian matrices M:

(alf) = / M pas(M)g(M)* F(M), (3.63)
where xqx(t) = /dMeiTr(tM)pd7k(M). (3.64)

The distribution pgj is determined uniquely from the inverse Fourier transform of
Xax-'> For this to define a positive semidefinite inner product, we need pg; to be
a nonnegative distribution (that is, it gives positive values when integrated against
positive test functions such as |f(M)|?). The question of whether the Z = d subspace
of Hgy has a positive semidefinite inner product is equivalent to the existence of a
probability distribution with characteristic function x .

A succinct summary answering this question is contained in [92], to which we refer
the reader for the results we now use. For d > £k, the inverse Fourier transform of x4 is
a continuous function of M, taking non-zero values only on positive-definite matrices:

pax(M) = Ny det(M)*F e~ M M positive definite, (3.65)
_ 3.65
A= n T T(dT(d—1)--T(d— (k—1)).

This is manifestly nonnegative and so defines a probability distribution. This result
extends to d > k£ — 1, where the probability density diverges at the edge where M
becomes degenerate, but is still integrable. This is easiest to see from the density in
terms of the eigenvalues of M; fixing k—1 positive eigenvalues and taking the last A — 0,
the density goes as A%, The important result for us is that this range d > k — 1, along
with the smaller nonnegative integer values of d already covered by (3.38), turns out
to exhaust the values of d for which the inner product on Hgy is positive semidefinite:

Xar(t) = det(1 — it)~¢ defines a probability distribution

(3.66)
— de{0,1,2,....,k—2} Uk —1,00).

We can intuit this from (3.65) by analytic continuation of the density in d. As d
approaches k — 1, the density goes to zero for any fixed positive definite matrix from

130ur integration measure on Hermitian matrices is defined as the flat measure on independent real
components, dM = HZ dM;; ], ; dRe M;;dIm M,;, and here we take ¢ to be a Hermitian matrix so
that Tr(tM) is real.

i<j
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the zero in normalisation factor Ny = 0, but the probability density piles up near
det M = 0 and we end up with a probability density supported on the submanifold of
singular matrices with rank £ — 1. However, if we try to go further to k—2 < d < k—1,
the probability density becomes negative. Even for values of d < k — 1 at which the
probability density appears to be positive, the density is not integrable near det M = 0.
On the other hand, since x4y is analytic (so its Fourier transform decays exponentially)
and xqx(t = 0) = 1, the integral of the distribution pyj over all M is well-defined and
equal to unity. The resolution is that p,, becomes a singular distribution which must
be defined by a principal value prescription, and which is not positive definite on the
singular submanifold det M = 0.

As a result, the inner product on Hpy can be positive definite only when all sectors
with d ¢ N have d > k — 1. For a given Sy, this requirement is most stringent for the
smallest non-zero eigenvalue of Z,, namely d = e52=% . We thus find that reflection
positivity can hold only when either Sy — Sy is the logarithm of a positive integer, or
So > Sy + log(k — 1).

We can use the arguments of the last section to slightly strengthen our restrictions
on Sy by considering positivity in Hilbert spaces with boundaries, and in particular in
H11. The discussion leading to (3.53) shows that positivity in H; ; requires rank M < d
for the matrix of inner products M in each sector Z = d. This is violated by the
distribution (3.65) in the range k—1 < d < k, since M has probability density supported
on matrices with full rank, rank M = k. This gives us our final result:

Reflection positivity = ¢ € N or Sy > Sy + log k. (3.67)

For any non-zero number of EOW brane species, we find that a non-zero value of Sy is
required; the absence of a boundary action Sy = 0 does not lead to a reflection positive
theory. The most natural choice is the minimal value Sy = Sy, which is the definition
of the theory we used throughout the rest of this section.

The failure of models with Sy = 0 motivates us to explain the physics that might
lead to an action counting the number of boundary components |0M|. This is nontriv-
ial, because |0M]| is not a local action. For example, if we take a cylinder (with two
boundaries), we can slice it in two along its length, and glue together the two edges
of each piece so that we form two separate cylinders. The resulting manifold has four
boundaries, so |[0M| is not preserved by this cut and paste.

However, we can achieve the same effect with a local action by introducing a new
degree of freedom on each boundary. This should propagate along both asymptotic
and EOW brane boundaries. Note that we regard this as part of the bulk dynam-
ics that happens to be localised at the boundary, and not part of the dual ‘CFT’
dynamics. Most simply, this can be a topological quantum mechanics with Hilbert
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space Hy. In that case, each boundary provides a factor of dim Hg, and we can re-
gard —Sy|OM| = —logdim Hy as a nonlocal effective action from integrating out this
dynamics. This gives a local definition of our theory, but only if e% is an integer.
This is not entirely satisfactory: besides the somewhat artificial restriction on Sp, it
seems that this degree of freedom should allow for additional boundary conditions that
project onto a particular state of this boundary quantum mechanics, in which case we
are again left with the theory Sy = 0.

A slightly different possibility is that some local bulk dynamics gives rise to a path
integral localised at the boundary, but one which cannot be described by any quantum
mechanics. This seems like a strange situation at first sight, but we note that pre-
cisely this phenomenon occurs for JT gravity. In that theory, a local bulk theory gives
rise to a degree of freedom associated with asymptotic boundaries, described by the
Schwarzian path integral [93, 94]. The Schwarzian alone is not a consistent quantum
mechanics, since the path integral on the circle cannot be interpreted as Tre ## for
any Hamiltonian H [85, 95]. This possibility arises from a quotient by residual gauge
symmetries acting nontrivially on the boundary (in that case, an SL(2,R)). Nonethe-
less, the gravitational theory (for example, the Lorentzian theory on a spacetime lying
between two boundaries, has a good Hilbert space interpretation. While we do not have
a concrete proposal to make at this time, we speculate that some analogous dynamics
(or an appropriate accounting of residual gauge freedom) could naturally give rise to
a theory of topology which includes a boundary effective action Sy. In particular, we
hope that our model might be obtained as a limit of a theory with more dynamics, and
that this construction might offer insight into this possibility.

3.8 Spacetime ‘D-branes’

We conclude the discussion of the model with some interpretative remarks for some of
the results in terms of ‘spacetime D-branes,” which we call SD-branes below. An SD-
brane means an object on which spacetime can end, and as such is seen from spacetime
as D-branes are seen from the worldsheet in string theory. In particular, they are not
localised in spacetime in any way. This will be similar in spirit to the discussion of
D-branes and ‘eigenbranes’ in [62, 82|, though the framework of the Hilbert space of
baby universes provides a new interpretation. We will focus on the model without
EOW branes.

To study the theory in the presence of an SD-brane, we should introduce a new
type of boundary of spacetime, interpreted as spacetime ending on the SD-brane. We
will assign a free (possibly complex) parameter g to these boundaries, interpreted as a
coupling to the SD-brane. To compute an amplitude in the presence of an SD-brane,
we should allow for any number (including zero) of these additional boundaries; i.e., the
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spacetime is allowed to end many times on the same SD-brane. But for the purposes of
computing amplitudes, each SD-brane boundary acts much the same as a Z boundary,
so we can account for them by inserting factors of gZ. To avoid overcounting different
spacetimes connecting to the SD-brane, we must divide by factorials of the number of
boundaries, treating the new boundaries as indistinguishable and introducing further
symmetry factors where appropriate. We thus have the following recipe for computing
the amplitude in the presence of an SD-brane with coupling ¢:

(F(@)[SDbrane, ) = (1(2)) + (£(2)927 ) + {F(2)}(92)) + { [(2)4(92)" ) + -+
= (f(2)e%). (3.68)

As before, the notation on the left-hand side indicates the boundary conditions for the

path integral. But from the right-hand side we learn that the insertion of an SD-brane
is equivalent to inserting the operator e9?. In other words, the SD-brane is not a

new object at alll Instead, a state ‘ SD-brane, > containing an SD-brane was already

present in Hpy as a coherent state |egZ > of baby universes. We may thus identify the
corresponding boundary conditions:

SD-brane, | = 7. (3.69)

This exponential of Z is somewhat analogous to the determinant det(F — H) introduced
in [62], where it was interpreted as a brane in JT gravity. The determinant is analogous
because it can be written as the exponential exp (Trlog(E — H)) of the single boundary
object Trlog(F — H) (single-trace in the dual matrix integral).

Now, what do the amplitudes actually look like in the presence of an SD-brane?
To answer this, we compute the generating function (3.11) in an SD-brane state:

uz

< SD-brane, ||e

SD-brane, > = <eg*Ze“Ze~"Z>

— <e(u+2 Reg)Z>

u+2 Reg)

(3.70)
= exp ()\e

= exp (Xe“) , A = e2Rea) .

We here used the result <e“Z > = exp(Ae*) of (3.14) in the Hartle-Hawking state, with

a shifted value of u due to the presence of the SD-brane. The result (3.70) tells us
is that amplitudes in the presence of an SD-brane are the same as amplitudes in the
Hartle-Hawking state, but with a different value of the coupling A. In fact, we can move
between any positive real values of A by adding an appropriate SD-brane. This is a

— 46 —



familiar situation from worldsheet string theory, where different values of an apparently
free parameter (e.g. the coupling of the string to the Euler characteristic) turn out to
describe different states of the same theory (e.g. coherent states of the dilaton).

We can also make use of these SD-branes in yet one more way by considering the
effect of the imaginary part of the coupling § = Im ¢g. This has no effect in the amplitude
(3.70), and to see its relevance we must allow for a different kind of SD-brane state
in which ¢ is not fixed but instead has a superposition of different values for 6. First,
we note that the representation of the SD-brane as ¢9% and the integer spectrum for
Z imply that 6 should be understood to be periodic with period 27. A natural basis
of states superposing different values of  is thus defined by the Fourier transformed

SDf-b\r;ned > ::/ g—ee_ide‘>, deN, (3.71)
2w

where for simplicity we will now focus on the case g = i, or Reg = 0. In particular,

states,

the above basis diagonalizes the inner product:

d!

—_ — —_— ~d
< SD-braney ‘ SD-braneg > = 5dd/)\— (d,d € N). (3.72)

For d < 0, this inner product vanishes, indicating that the resulting state is null.
To understand these states better, we may use the representation (3.69) of the
SD-brane states as an exponential to write them as

—_ — a0 d9 .
| SD-braney > = / 2—6_2d9
. 2

ei0Z> — (~1)

m(Z —d)

M> (3.73)

But this is precisely the expression we gave in (3.25) for the a-state |Z = d)! Further-
more, it is now clear that taking Re g # 0 simply rescales the resulting state ‘Z = d>.

This means that we can give a somewhat geometric description of a given a-sector
by including a particular (Fourier transformed) SD-brane. This SD-brane is not a new
fundamental object, but is built from a coherent state of interacting baby universes.
The SD-brane description of a-states is at first sight rather different from the alterna-
tive geometric interpretation given in section 3.3 where the Z = d sector arose after
constraining the path integral to spacetimes with d connected components. However,
we see that the two are equivalent in the end. We expect a similar equivalence to arise
in the model with EOW branes, and correspondingly in the JT gravity contexts of
(62, 82].
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4 Entropy bounds and the Page curve

A remarkable property of our models above was the strong role played by null states,
and in particular the bound (3.41) on the rank of the inner product in any a-sector
with Z, = d. In section 3.6 we showed this bound to follow from an abstract argument
involving the cylinder state ’\/> in the Hilbert space H;; associated with a pair of
disconnected boundaries. As the reader may already realize, it is straightforward to
generalize this argument so as to apply to very general reflection positive gravitational
path integrals. More realistic models will likely have an infinite number of states in
any Hy, so to obtain a meaningful bound on the number of states we must impose a
constraint. We will achieve this here by bounding the entropy of mixed states in Hy
with a given expected energy FE.

4.1 Entropy bounds

We now state this form of the argument using the more general notation from section 2.
The ideas are closely related to those in [96]. As before, we work in some definite (but
arbitrary) a-sector of the given theory and also choose a spatial boundary manifold ¥;
i.e., we consider a particular Hilbert space H$: from section 2.4.

One property we require of our theory is that there is a notion of time evolution,
here in Euclidean time. This means that the allowed boundary conditions include
Euclidean ‘cylindrical” boundary manifolds Cz = X x I3 for intervals Ig of arbitrary
length S > 0. According to the general principles of section 2, this boundary condition
describes an operator on H$ that we may call e ## and for which e A e Al =

e~ BitB)H For g given state ‘¢[J]> defined by sources J on a boundary manifold M

(with OM = %), the action of e ?# on ‘w[J]> simply defines a new source Jz on a
larger boundary manifold Mgz = I3 M constructed by gluing Iz to M,

ey () = [e1s). (4.1

The final property we require of our theory is that the CPT conjugation acting
on boundary conditions acts trivially on I5. When e ## is trace-class, this condition
ensures that states ¢, € H$ define a Hermitian matrix (gbb,e*ﬁH ®a)a which can be
diagonalized to yield discrete eigenvalues with finite degeneracy. We will take this
to be the case for now and return later to the possibility that e ? might fail to be
trace-class.

The above semi-group property of e ## then implies that the eigenvectors can be
chosen to be independent of 5. Together with Hermiticity, it also implies the relation
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e Pl = (e*ﬁH/Q)T e PH/2 50 that the eigenvalues must be non-negative. Henceforth, we
thus take ¢, to denote such an orthonormal eigenbasis of H$ with eigenvalues e=#Fa.

The key fact is then that the boundary conditions e=#* must also define an operator
on the baby universe Hilbert space Hpy, which we can use to define cylinder states by
acting on the a-states ‘oz> € Hpy in direct analogy with section 3.6:

—

e*ﬁH)a> = )\Jﬂ;a> € Hyy - (4.2)

We will be interested in forming mixed states on H$, which can be thought of as
elements of the Hilbert space H$. ® H$;, spanned by products ¢; ® ¢, of our eigenstates
0o € HS and their CPT conjugates. This space of density matrices is isometrically
embedded via states |9}, ¢q; ) into the ‘two-sided Hilbert space’ H%. 5, associated
with two copies of our spatial boundary 3. Since these latter states were built from
orthonormal eigenstates of e ## on HE, the overlaps are given by

<¢Z? Qba; alvg/g; Oé> = 5ab6_ﬁEa/2 5 (43)
<¢Z’a gba ; b gba; Oé> = 5ab’5a’b . (44)

The last overlap we require is the norm of the state |k>/ 82> a>. This involves gluing
two cylinders of length §/2 to create boundary conditions with a circle of length 3:

—

—_— T —_— —_—
we have \_J;, \ )y = Z(B), where the operator Z(3) acting on Hpy is defined by
boundary conditions ¥ x S}, with a thermal circle S}g of length B. The norm of our
cylinder state is then given by

(N2 |\ g o @) = Za(B), (4.5)

where Z, () is the eigenvalue of Z/(E) in the a state, Z (B)|a) = Za(B)|x).
We now introduce a state

|A> = ‘\Jﬂ/Q;a> — ZG_BEG/Q '04>, (4.6)

a’

and impose that its norm is nonnegative,

(AJA) = Ze BB >, (4.7)

As in section 3.6, it is important that this computation was performed in a fixed a-
sector. While we arrived at (4.6) under the assumption that e ?# is trace class, a

similar argument using approximate eigenvectors would in any case bound the trace of
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e PH by Z,(B). Thus the case where e ? fails to be trace class cannot occur and we
can use (4.6) and (4.7) as written.

We can use the inequality (4.7) to make some more direct statements about the
spectrum of states in H§. Firstly, we can use it to bound the number of orthogonal
states N(E) with bounded energy E, < E. In a thermodynamic limit, we would
usually expect this to be dominated by states with energy close to the maximum, so
N(E) is controlled by the density of states at energy E. To bound this quantity, note
that Y e PP« > N(E)e PF by dropping all states with F, > F in the sum. From the
result (4.7) we can then say that N(E) < e?FZ,(B) for any 3. The sharpest bound is
obtained by minimising over all £, finding

log N(E) < S,(E), (4.8)

where

Sal(E) = inf{BE + log Zu(8)}. (4.9)

This quantity is nothing but the Legendre transform of log Z,,(/3), which is the usual way
of obtaining the canonical entropy from a partition function. In a semiclassical theory,
and in the overwhelming majority of a-states, we expect S,(F) to be approximately
the Bekenstein-Hawking entropy of an appropriate black hole. This is because Z,(/3) is
defined by the Gibbons-Hawking path integral with periodic Euclidean boundary condi-
tions [61], computed semiclassically by the on-shell action of a classical Euclidean black
hole. The associated entropy S,(E), defined as the Legendre transform of log Z,(8),
is then given by the Bekenstein-Hawking formula. This remains accurate in typical «
states (in the measure of the Hartle-Hawking ensemble) as long as the variance of the
Z/(B\) operator is small. This is the case if connected wormhole configurations between
two asymptotic Z(/3) boundaries are suppressed.

The same quantity S,(E) appears in a stronger bound, constraining the von Neu-
mann entropy S(p) of any mixed state p on H$. This constraint depends on the energy
expectation value £ = Tr(pH), where from our earlier considerations we can define H
on ‘H$ by matrix elements (¢, Hpo)o = Eudap. Specifically, we prove that

S(p) < Su(E) for p any density matrix on Hs, with Tr(pH) = E. (4.10)

It suffices to show this for the density matrix that maximises S(p) subject to the energy
constraint. This is simply a Gibbs state,

e PH

=7 A i = —BHY — ~BEa
Zaivbs(B)’ Zaivbs(B) = Tr(e™™) Z@ : (4.11)

a

PGibbs (/3 )
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where we choose (8 to fix the desired energy,

E = 0 10g ZGibbs(B)~ (412)

0B
Note that Zginbs is precisely the quantity we bounded in (4.7), with the inequality
Zaivbs(8) < Zo(B). Now, we can compute the von Neumann entropy of paibbs as the
Legendre transform of Zgipps:

S(PGibbs(E)) = l%f{ﬁE + log ZGibbs(ﬁ)} (413)

< Su(E) (4.14)

The inequality follows because S, (F) is defined in (4.9) by the same minimisation as
used here to obtain S(pgibbs(F)), after replacing Zginns(5) by the larger function Z,(3).
This demonstrates the claimed entropy bound (4.10).

4.2 Consequences and interpretations

Our results (4.8) and (4.10) show that, for theories defined by reflection positive path
integrals, the density of states in any H$ is bounded by S,(FE) from (4.9), which
generically we expect to be given by the Bekenstein-Hawking entropy of an appropriate
black hole.

We interpret this result as a semiclassical Page curve. The class of mixed states
p on H§ that we can prepare by asymptotic sources includes old black holes. For
example, we can create pure state black holes by collapse, couple to an auxiliary ‘bath’
system into which the Hawking radiation escapes, and trace out the bath. In the
usual semiclassical description, it seems that this process can produce states of a given
energy with arbitrarily large entropy. This entropy comes from the large interior which
grows with time (in particular linearly with time along a ‘nice slice’ [97]), which can
be populated with a growing number number of naively distinct possible low energy
states. Our result shows that in an alpha sector of a reflection positive path integral,
nonperturbative effects giving exponentially small overlaps between these states must
conspire to produce surprising linear relations between them. Such relations must occur
after the Page time so that the entropy of the black hole is bounded by the Bekenstein-
Hawking entropy, to satisfy (4.10). If this inequality is (approximately) saturated, the
entropy of the black hole (i.e. the density matrix on H$) and of the radiation will follow
the Page curve.

We expect that in contexts where the naive number of states in Hy, can be made
arbitrarily large, one will find that the bound S(p) < S, (FE) of (4.10) can be saturated,
as in our model with large k. In particular, we expect this to hold for the old black
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holes in the discussion above. This requires saturation of the inequality in (4.7) for all
B, and so |A) becomes a null state. Note that |A) = 0 is equivalent to the statement
that Z,(8) is equal to the actual thermal partition function Tre "7 on Hs,. The
result that the function Z, (/) can be written as a thermal trace is a strong constraint
on the eigenvalues of Z/(F), which should be viewed as generalizing the result Z, € N
from our models in section 3.

In the case of saturation, the statement that |A) is null leads to a gauge equivalence

NS gppiar) =D e

a

Dry Pa; ). (4.15)

Following [11], the cylinder state is naturally associated with a two-sided black hole with
an Einstein-Rosen bridge joining the two boundaries. We see the familiar equivalence
between this and a superposition of product states emerging as an example of our gauge
equivalence.

To connect further with our desire to understand black hole evaporation, we recall
from section 2 that for any state p prepared with asymptotic sources, the Rényi (and
von Neumann) entropies S, (p) of p again define operators on Hpy and take definite
values in a-sectors. These entropies are then subject to versions of the above bound
in each a-sector, and as a result so are their expectation values <Sn(p)> in the Hartle-
Hawking state. In the context of black holes, any such entropies will then reproduce an
appropriate Page curve defined by the Bekenstein-Hawking entropy. In particular, the
final result will then be much as in the recent discussions of replica wormholes [48, 49]
which in our language are indeed the most natural saddle points contributing to the
average entropy <Sn(p)>.14 The argument above shows that similar results will then
hold when one computes the full result of any reflection positive gravitational path
integral. Further, it tells us that these bounds hold not just on average, but in every
a-state. This puts additional constraints on higher moments of the entropy.

It is, however, important to note the precise sense in which the entropies <Sn(p)
have just been defined. From our perspective, the basic quantities are the eigenvalues

—

Sn.a(p) of S,(p) in the various a-states. These are entropies defined separately on each
Hs o Working in the Hartle-Hawking state then computes the average <Sn(p)> of
such entropies over the a-states in the Hartle-Hawking ensemble. In particular, while
this <Sn(,0)> is computed by replica wormholes (to a first approximation), it manifestly

does not include entanglement with the baby universe sector.

More properly, the replica wormholes are saddle points for <Tr(p”)>, but the distinction is unim-

portant as long as the variance of these quantities is small.
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This is a physically useful notion of entropy as the a-sectors are superselected from
the standpoint of asymptotic observers, and entanglement with superselection sectors
is in principle unobservable. Nevertheless, if one wishes to consider the entropy of some
density matrix on the full space Hy (and not just on a single a-sector) defined by some
fixed set of sources, entanglement with baby universes will generally lead to much larger
entropies that exceed the Bekenstein-Hawking entropy and thus do not reproduce the
expected Page curve. In this more mathematical sense, Hawking was correct [98] that
information is lost in black hole evaporation. This is all in direct parallel with the
conclusions of [55-57, 99] from long ago. We will also discuss such connections in more
detail in a forthcoming companion paper.

5 On third-quantized perturbation theory

5.1 Formulating a wormhole perturbation theory

We have been interested above in contexts where spacetime wormholes provide the
dominant effects. But in most circumstances spacetime wormholes are not the minimum
action configurations. In such cases, it is natural to expect other configurations to
dominate, and for the contributions of spacetime wormholes to be nonperturbatively
suppressed by a factor of the form e~ where S, of order Gy, is the action of a
wormhole. This holds for computing simple amplitudes in our models of section 3, for
which higher topologies are suppressed by factors of the large parameter A. In such cases
it is natural to use an approximation where different universes evolve independently at
leading order, and where spacetime wormholes are included as perturbative interactions
between universes. The resulting perturbation theory is the ‘third quantised’ formalism
of [57]. This approximation was also emphasized in other contemporaneous literature
on wormbholes [55, 56, 99, 100].

We now describe an analogous approximation in our framework. This will serve
both to complete the connection to the above literature and to provide a better under-
standing of the interesting circumstances described above in which this approximation
fails. Nevertheless, this section represents a distraction from the main line of inquiry
presented here, and some readers may wish to skip directly to section 6.

The early works [55-57] focused on studying microscopic wormholes, with the intent
of describing physics on distances scales much larger than the wormhole’s characteristic
size (say, Planck scale). The relevant scale is the ‘width’ of the wormhole mouth,
thought of as some length scale associated with the cross-sectional area. In contrast,
the separation between the spacetime regions associated with the wormhole mouths
can be much larger. In that context, it is most natural to describe the physics using
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the operators of the low energy effective field theory, studying the effect of integrating
out the microscopic wormholes. In contrast, we have wormhole mouths which, as with
replica wormholes, are determined by a classical or quantum extremal surface. As a
result, our wormholes will typically have a size similar to some black hole horizon, which
may be both macroscopic and large. For us it thus will be more natural to discuss CF'T
boundary operators Z[J] in place of the low energy bulk fields. This captures much
of the same physics, and is analogous to using an S-matrix description in place of an
effective Lagrangian.!® The effects on the bulk effective field theory that arise from
integrating out macroscopic wormholes will be explored in section 6.

Suppose then that, for some theory and amplitude of interest, the contribution
from topologies connecting many boundaries is suppressed relative to disconnected
topologies. This holds for familiar simple amplitudes in theories of interest, including
the model discussed in section 3, as well as for JT gravity — though it does not hold
for all amplitudes, as we will discuss below. In a case where it does, at zeroth order
of approximation we may neglect the connected contributions, obtaining an amplitude
that approximately factorizes:

37210 2100 ~ 37 2100) -+ (Z10) (5.1)
Identifying an asymptotically AdS boundary Z[J] with an operator Z/[j ] acting on the
baby universe Hilbert space Hpy as in (2.11), at this leading order of approximation
we can simply replace Z[J] with a multiple of the identity operator 37'(Z[J]). In
particular, at this level of approximation, acting with any Z[.J] on |HH> yields another
state proportional to ‘HH>, so the baby universe Hilbert space defined in section 2.2
collapses to a single dimension.

To incorporate nontrivial wormhole physics, we must go to next order in the approx-
imation, allowing contributions to the path integral from spacetimes that connect either
one or two asymptotic boundaries, but not more. The contributions from spacetimes
with one asymptotic boundary are then analogous to quantum field theory tadpoles,
while the two boundary contributions are analogous to quantum field theory propaga-
tors. In particular, the Hilbert space Hgy becomes nontrivial, and takes the form of a
Fock space. To see this, we define ‘single universe states’ by subtracting the ‘tadpole
contributions’ from one boundary states; i.e., one need only introduce the modified
(tilded) states

|Z[J]) = |Z[J7]) — 37'(2[J])|HH), (5.2)

15Tn the language of [101], the effects of higher topology we study are more closely analogous
to ‘wormhole interactions’, as opposed to the ‘instanton interactions’ arising from nearby wormhole
mouths of primary interest in that work.
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and similarly for states involving larger numbers of universes. Loosely speaking, the
spacetime created by the operator Z[J] is most likely to immediately cap off, failing
to create a closed universe. It is natural to subtract this possibility, in which case
we are most likely to create a single closed universe which can propagate to another
asymptotic boundary, justifying the name of ‘single universe state’. Going to higher
orders in the approximation would require additional subtractions for this description
to remain valid.

The resulting Fock space structure can be used to define baby universe creation
and annihilation operators aTJ, a g+, where in particular we have

CLJ‘HH> = O;
a})[HH) = |Z[J]) — 371(Z[J])[HH), (5.4)

and the algebra [a;,,a,] =0,

s, ab| = (z10218]) - 37 (2101){20]). (5.5)
One can then write corrections to the boundary operators Z/[} | in terms of baby universe
creation and annihilation operators:

Z10) ~ 3 NZIT)) + af +age+--- (5.6)

where - - - indicates higher order terms.

—~—

One is then tempted to think of the states |Z[J]) as (approximations to) states of
a single closed baby universe, with a wavefunction for the metric and other fields deter-
mined by the source J (and by varying J we would expect to obtain an overcomplete
set of coherent states). We can diagonalise the inner product on the single-universe
Hilbert space, taking linear combinations of Z[J] for different J to give operators Z
which are chosen to be Hermitian and give amplitudes satisfying

3NZiZy) — 372 Z;) = b (5.7)
We can then write Z; = (Z;) +al +a;+- - -, with a more conventional oscillator algebra
[ai,a;] = 0;; labelled by an orthonormal basis of single-universe states. Repeated

applications of a;r are then said to create more universes, which can interact through
topologies connecting three or more boundaries and into which we could incorporate as
higher order terms in (5.6). As long as these higher topologies are suppressed, we can
thus construct a useful perturbation theory, where the inner product in (5.5) gives the
‘free propagator’ for single universe states, with higher topologies contributing vertices.
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In particular, as noted above, based on the validity of the free approximation
Hpu appears to be well described by a Bosonic Fock space built on the single-universe
Hilbert space. The Hartle-Hawking state provides the oscillator ground state, and
multi-universe states are built by acting with aj» operators. Alternatively, in the free
approximation we can think of Hpy in terms of the wavefunction ¥(Z;), a function of
the real variables Z;. The operator Z then acts as a position operator (or a free field
operator in QFT, where the label i could be momentum, for example), multiplying by
Z;. As the oscillator vacuum, the Hartle-Hawking state has a Gaussian wavefunction
for each Z;, shifted to be centred on (Z;).

It is now tempting to use this free Fock space description to describe the spectrum
of Z|[J], and hence the dual ensemble and the a-states. We are led to expect that the
spectrum of {Z;} has continuous support on the whole of R, independently for every
i. In the resulting ensemble the Z;, and hence the Z[.J], are normally distributed at
the first nontrivial order described above, with covariance matrix given by the single-
universe inner product'® in (5.5). At each higher order, corrections from interactions
would then appear to contribute only small non-Gaussian corrections to the measure,
the conclusion reached in [101], for example. However, in this respect, we have been
misled by the free ‘approximation’ 5.6. It turns out to be invalid because, while per-
turbation theory is accurate in many circumstances, it is not applicable in a-states,
as we will argue in a moment. The true, nonperturbative spectrum is smaller because
the Fock space description of the Hilbert space is invalid once we take into account the
null states (2.9) by which we must quotient by to obtain Hgy. Due to the null states,
the ‘universe number’ which grades the Fock space is not a diffeomorphism invariant
observable.

Before we describe the breakdown of third-quantised perturbation theory, we clar-
ify that it is not necessarily signalled by the dominance of spacetime wormhole effects.
It may happen that the most important contribution to an amplitude comes from a
nontrivial topology, but higher topologies remain negligible. This occurs prominently
in two recent examples. The first is the spectral form factor (Z(8 + it)Z(8 — it)) of
JT gravity [62, 86, 102], for which the contribution from the disconnected topology de-
cays in time, while the connected topology gives a contributions that is exponentially
suppressed but growing. Eventually, the connected topology dominates, giving the
‘ramp’. A second example is the nth Rényi entropy of an evaporating black hole after
the Page time, which can be described as a sum of n-boundary amplitudes; the domi-
nant configuration is a ‘replica wormhole’, a spacetime which connects the n boundaries

16This is equivalent to the statement that the vacuum state of a free field theory is Gaussian with
corresponding covariance matrix.
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[48, 49]. However, higher topologies continue to be suppressed in such cases, and a simi-
lar perturbation theory remains valid; it simply happens to be dominated by n-universe
vertices, so requires their inclusion.'”

Instead, we are interested in cases when the third quantised perturbation theory
fails entirely, and many topologies must be considered at once. For example, this oc-
curs when we compute amplitudes with a parametrically large number of boundary
components, giving very large moments of Z[J]|. Equivalently, we can describe these
amplitudes as the overlaps of states with very large universe occupation number!®.
While any particular process of splitting and joining universes is suppressed, the total
amplitude of such interactions is enhanced by combinatorial factors counting the num-
ber of processes with many possible universes (or joining many possible boundaries).
This allows higher topologies to become important.

Crucially, this breakdown of perturbation theor/y\ applies to a-states and so is vi-
tally important for understanding the spectrum of Z[J]. The approximation of weakly
interacting baby universes is thus not a reliable guide to the details of the spectrum.
In the free theory, the a-states are like position eigenstates in the harmonic oscillator.
They thus have infinite expectation value for the number operator. As we reduce the
uncertainty in the a parameters and create a baby universe wavefunction with a more
narrow spread, the mean universe occupation number increases, and eventually becomes
exponentially large. At that point, the above approximation is not self-consistent for
studying such states.

In retrospect, it should not be surprising that perturbation theory is of limited use
for determining the spectrum of observables. As a simple example of similar behavior,
if we perturb around the minimum of a potential in quantum mechanics, we cannot
at any finite order tell whether the configuration space is compact, and hence if the
momentum should be quantised.’ -

The truncation of the spectrum of Z[J] is invisible at any finite order in the third-
quantised perturbation theory. Thus in that description it could be seen only via some
nonperturbative effect, or in an exact solution if one turns out to be available. Our
models of 3 provide a simple example of the latter. Recall that, in terms of the usual
bulk perturbation theory in G, the spacetime wormholes describing third-quantised

1TThis perturbation theory is also useful for discussing the average entanglement spectrum close to
the Page time [49], though it requires summation of a class of ‘tree-level’ diagrams involving vertices
of all valences.

18This notion is well-defined only in the third quantised perturbation theory, but can nonetheless
be used to diagnose whether that perturbation theory is self-consistent.

19We mentioned above the natural third quantization interpretation of Z[J] as a position-like oper-
ator, but we could equally well have interpreted it as an analogue of free particle momentum
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interactions are already nonperturbative, so the relevant expansion parameter is of the
form e~ for an action S of order G’]_Vl. From this point of view, the compression of the
Hilbert space is then a doubly nonperturbative effect, contributing to simple amplitudes
as e=¢¢° for some (possibly imaginary) constant c.

5.2 Perturbation theory in the topological model

To give some insight into the validity of third quantised perturbation theory, we dis-
cuss its applicability in the context of the model of section 3. We will restrict our
considerations to the model without EOW branes.

The small parameter that suppresses topology is e, with S, multiplying the
Euler characteristic. It is natural to organise the third quantised perturbation theory
as an expansion in that parameter, with higher genus topologies appearing as loops.
However, the details of such an expansion (particularly accounting for diffeomorphisms
of connected surfaces) are not necessary for the point we wish to illustrate. To simplify
the discussion, we thus instead assume that the full connected correlators (and thus
any sums over connected surfaces with given boundaries) have already been computed
exactly. These are all given by the same number A, so our perturbation theory will be
an expansion in inverse powers of X\. As noted in section 3, this expansion is organised
by counting the number of connected components of spacetime.

Let us begin by noting a precise sense in which the free Gaussian approximation
is appropriate at large A. This follows from first observing that a sum of N indepen-
dent Poisson distributions with parameter A/N is again a Poisson distribution, with
parameter A. Taking A and N large with fixed ratio then implies that we can apply
the central limit theorem to the Poisson distribution as A — oo. Specifically, we may

define
Z — A

N

which has mean zero and variance unity. This X is just new encoding of the boundary

condition Z, with the shift by A acting to subtract the ‘tadpole’ and set (X) = 0,

and with an additional rescaling to fix the variance 3 1(X?) = % The central limit

theorem then implies that as A — oo the distribution of X converges to a normal

X = (5.8)

(and thus Gaussian) distribution. In particular, at large A any amplitudes (f(X)) for
bounded continuous functions f (fixed independently of \) approach those computed
by integrating against a Gaussian. These are the vacuum amplitudes of a harmonic

N

T

oscillator, with wavefunction oc e~ 2, so this defines the ‘free’ Gaussian approximation
mentioned above.

We will return to the discussion of this wavefunction later. Before doing so, we the
large A expansion to study the moments 37'(Z") = B,()\) and note both when and
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how that expansion fails as we also take n to be large. For fixed n, the leading order
contribution at large A comes from completely disconnected spacetimes, giving B,,(\) ~

A". At the next order, we have spacetimes with n — 1 disconnected components, which

n) _ n(n—1)

requires one ‘cylinder’, a component joining two boundaries.?’ There are (2 5

choices of which boundaries to join, so we have

n(n —1)

B,(A) = A"+ 5

Ao N = oo, fixed n. (5.9)
At the next order, we have spacetimes with n — 2 components, which means either two
cylinders, or a ‘pair of pants’ connecting a trio of boundaries to the same component
of spacetime. We can continue in this way to any desired order A"~* in the expansion
by accounting for possible topologies with n — k connected components.

Now, let us consider what happens when n also becomes large. The first sign of
trouble occurs when n if of order v/A, when the second term in the above expansion
is no longer smaller than the first. There are roughly n?/2 ways to choose pairs of
boundaries to join by a cylinder (neglecting the correction from choosing the same
boundary twice), which is sufficiently large to overcome the suppression by A. But this
does not apply only for a single cylinder; terms with any number of cylinder components
again contribute at the same (leading) order. In some sense our free approximation has
failed.

However, it turns out that the large A expansion remains useful because we can
explicitly account for the sum over configurations with k cylinder components. For

k
n? ways to select k pairs of boundaries to join

2
with a cylinder, where we have neglected the correction from ‘interactions’, where the

2k < n, there are approximately % (

same boundary is chosen more than once. Summing over this ‘free gas of cylinders’
gives us a multiplicative correction to the nth moment of 7,

2 2

Bo(\) ~ MeB A\,n — oo, fixed "7 (5.10)

In this regime, we can now systematically correct (5.10) in powers of A™! as before.

Such corrections can account for including higher topologies with more boundaries as
well as compensating for the overcounting of cylinder configurations.

From (5.10), we see that (Z™) is dominated by contributions with roughly ”72 cylin-

der components. This can be much greater than one and the analysis will remain ap-

plicable, though it should certainly remain much less than n, so we must have n < .

20For simplicity of language, we will call this a cylinder even though it packages a sum over surfaces
of all genus with two boundaries. A more precise language might refer to it as a renormalized cylinder.
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If this is the case, the correction from the cylinders is small in the sense that it is
subleading to the A" term when expressed as an expansion of log B,,(\).

Taking n larger still, (5.10) remains accurate until n is of order A%/3. At that point
we find significant corrections from including any number of connected components
having three boundaries each (‘pairs of pants’), and also from certain aspects of the
overcounting of configurations of multiple cylinders. In the latter context, the relevant
configurations are those in which two cylinders end on the same boundary. We pre-
viously included these configurations for simplicity (and to obtain a definite power of
A), but since they are not allowed we must now compensate by subtracting off their

n3
contributions. Together, these two effects multiply (5.10) an extra factor of e 33. This

k
n
#3E=T corrections appearing whenever n becomes of

pattern continues, with similar e
order \I=% for k = 2,3,4,.... As discussed in appendix A.2, this structure is also
apparent from a direct asymptotic expansion of B, ().

In summary, in the regime A < n the large A expansion remains a tractable way
to compute the moments (Z") and is organized by types of contributing geometries.
However, once n is of order A, this perturbation theory breaks down catastrophically,
since there is no longer any suppression of connected topologies with many boundaries.
This is the regime in which the novel effects of null states and gauge invariance become
relevant, truncating the spectrum of Z and making its discreteness apparent.

To explain this last statement in more detail, we first describe the state |Z™) in
the free approximation. We begin by translating to the harmonic oscillator position

variable variable X introduced in (5.8), writing Z" = A" <1 + \/gX > . Expanding
log Z™ at large A (but any fixed n), this gives log Z™ = nlog A + \/an +O0(nA7h). We

may thus approximate Z" ~ A" exp <\/an ) For sufficiently small n that the free
approximation is applicable, we therefore have an approximate equivalence between the
following states:

|Z™) ~ 31/2)\”6\/§”X‘0> ~ (e\)”

e%Z> (5.11)

Here the final equality uses (5.8), and the middle state lives in the harmonic oscillator
Hilbert space of the free approximation. In particular, |0) is the (normalized) oscillator
2

vacuum with wavefunction (X)) o e~"% . After applying the exponential operator, the

resulting wavefunction is a shifted Gaussian, which is a coherent state of the harmonic

. . . . 2
oscillator with average occupation number (here, ‘universe number’) %-. From the

above analysis, it follows that the free approximation is valid for universe numbers
N <.
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Now, a wavefunction of width AX in the X variable has an occupation number
that scales as N ~ (AX)™2 as the width goes to zero, where the leading contribution
comes from writing occupation number in terms of the Harmonic oscillator Hamiltonian
and focusing on the kinetic term. In terms of the width AZ in Z, thisis N ~ A\(AZ) 2.
But resolving the natural integer discreteness in the spectum of Z requires AZ ~ 1,
and hence N of order A\. As a result, and as one might expect, the discreteness of
the Z spectrum is thus associated with the complete breakdown of third quantised
perturbation theory.

We can also see directly that this regime is connected with the appearance of
null states, and thus the appearance of new gauge equivalences. Perhaps the simplest
equivalence is that between the Hartle-Hawking state and the exponential |62”Z > Note
that any state }e"‘Z > is described in the free approximation by a coherent state with
average occupation number N ~ |a?A. But for a of order one (for example, for
« = 27i) this is of order A\ and the free approximation fails.

All these phenomena occur when the state of baby universes has unsuppressed
interactions with a given boundary. Roughly speaking, if we have a state of Hgy
containing N closed universes and introduce a new boundary, the new boundary will
connect to any given universe with amplitude A~!. Hence it will connect to some
universe with amplitude N/A. This effect becomes of leading order at N of order A,
when the free description breaks down. We emphasise that this heuristic is appropriate
for N < X\ when the free approximation can be used, but that N itself becomes ill-
defined once it becomes of order A\. At that point, null states appear and, furthermore,
the null states are not preserved by any notion of universe number operator N.

6 Discussion

As with many works motivated by the black hole information problem, various readers
may wish to focus on either the technical aspects of the above results or, alternatively,
on their further significance for quantum gravity. For this reason, we separate our
discussion below into more technical remarks in section 6.1 and a broader consideration
of implications in section 6.2

6.1 Summary and future directions

We have seen that combining features of AdS asymptotics with the basic perspective
of Coleman [55] and of Giddings and Strominger [56, 57] from the late 1980’s leads to
a sharp structure in which states in a ‘baby universe Hilbert space’ Hgy control an
ensemble of results for quantities Z[J] computed at asymptotically AdS boundaries.
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This version of the argument uses only manifest properties of the path integral and
makes no further assumptions about locality.

Nevertheless, the final result is much the same as in [55, 56]. In particular, the full
bulk theory naturally includes both Hgy and what one may call asymptotically AdS
states, and there is a sense in which the two sectors interact. However, the theory has
superselection sectors for the algebra of operators on the asymptotically AdS states,
so that an observer with no access to Hgy naturally experiences an ensemble. The
superselection sectors are associated with a complete orthonormal basis {‘a>} of Hpy
in which the Z[J] take definite values and exhibit factorization. Thus for a given state
}\I/> € Hpu, the probability of outcome Z,[J] is p, = }<\Il|oz>’2. Furthermore, all
properties of the full spectrum of superselection sectors can at least in principle be
computed from correlators in the Hartle-Hawking no-boundary state !HH> € Hpu.

We then explored this construction in detail in simple topological models inspired
by Jackiw-Teitelboim gravity with and without end-of-the-world branes (EOW branes,
see e.g. [49, 103]), and perhaps also with an extra boundary degree of freedom. Without
EOW branes, there is a single asymptotically AdS boundary condition Z, for which
the associated operator 7 is naturally interpreted as the dimension of the CF'T Hilbert
space. This operator is also present in the model with EOW branes. Interestingly,
the models predict this operator to have a quantized spectrum with eigenvalues Z,, €
e3~5N, where Sy is a parameter associated with the extra boundary degree of freedom.
The potential eigenstates associated with other potential eigenvalues turn out to be null
states. Perhaps even more intriguingly, unless Sj is taken to be larger than Sy + log k,
the models with EOW branes are reflection positive only when all Z, are nonnegative
integers, and thus only when %9~ € N. The particular ensemble defined by the
Hartle-Hawking no-boundary state gives a Poisson distribution for the Z,.

Models with EOW branes have additional boundary conditions (1;,;) for i,j =
1,... k. The (v;,v;) are naturally interpreted as the matrix of inner products between
EOW brane states in a dual boundary quantum mechanics. For given (integer) Z,,
the eigenvalues of (m) take the form Y %¢¢ for some rectangular matrix ¢ of
size k X Z,,. As a result, the rank of any (¢;,1;), cannot exceed either k or Z,.
The ensemble defined by the Hartle-Hawking no-boundary state arises from choosing
independent complex Gaussian random entries for each of the {.

For k > Z,, this structure (¢;,%i)a = >_, f&?wf requires a sizeable compression of
the naive the CFT Hilbert space (which would have had dimension k). In particular,
any list of more than Z, states in the CFT Hilbert space turns out to be linearly depen-
dent due to the presence of null states. We also argued that a similar constraint on the
number of linearly dependent states must arise in any theory where the gravitational
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path integral defines a positive semi-definite physical inner product. Our general ar-
gument is closely related to ideas in [96], and various related suggestions can be found
in e.g. [104-108]. But the result is deeply related to recent successes [42, 43, 48, 49| in
reproducing various forms of the Page curve associated with the black hole information
problem. With hindsight one can say that it was implicit in all of these works, and in
fact moderately explicit in [49]. But here we see that it is an exact statement at finite
Z in every possible baby universe state.

Indeed, in order to explain the Rényi computations of [49] for typical members of
the Hartle-Hawking ensemble some version of this compression must occur whenever
the number of a priori independent states inside a quantum extremal surface exceeds
the generalized entropy defined by the region outside. And due to a maximin argument
[42, 43], one expects this to occur whenever the number of a priori independent quantum
states that can exist inside a given bulk domain of dependence with fixed exterior
geometry exceeds the area of the codimension-2 surface where the past and future
boundaries of this domain of dependence intersect; see also [109] for more on quantum
maximin surfaces.

In the context of black hole evaporation, for general baby universe states ‘\Il> this
picture gives a sense in which interactions with baby universes formally lead to loss
of information during the evaporation of black holes. But as described previously in
[55-57, 99|, since the a-states define superselection sectors for asymptotic observers,
any given asymptotic observer can find no operational signs of this information loss.
In particular, while the observer may not be able to predict the exact outcome of an
experiment involving black holes, they may simply consider the experiment to be a
partial measurement of the previously unknown value of (in this interpretation unique)
value of o describing the universe in which they live. To the extent that o has been
measured, no further information is then lost.

At the technical level there remain many interesting generalizations to explore in
the future. For example, even in the models discussed here, it would be useful to
understand if one can formulate the Hilbert spaces Hgy using slices at ‘finite time’,
or in other words without reference to asymptotic boundaries. Moving beyond the
current model, one would like to add topological matter, and also to explore a similarly
topological version of the de Sitter models of [110] and [49]. Work along these lines is
in progress and we hope to report soon. In the longer term, it is also clearly of interest
to study more realistic models.
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6.2 Transcending the ensemble: implications and interpretations for each
a-sector

We now turn to more speculative comments concerning the implications of our results
above.

A key lesson from this work appears to be that, at least in sufficiently simple mod-
els, gravitational path integrals by themselves succeed in describing a great deal of
microscopic information. In particular, in our models the bulk path integral leads to
a definite construction of the possible boundary theories — defined by simultaneous
eigenvalues Z,[J] — and also of the ensemble defined by the Hartle-Hawking state.
However, this was possible only due to the exact solubility of the model, and in par-
ticular the convergence of the sum over topologies. In more realistic models, we will
surely not be so fortunate.

Even in the simple case of JT gravity and its cousins [49, 62, 87|, the gravita-
tional path integral fails to converge. Though the model is sufficiently simple that the
path integral for any given topology is exactly computable, the sum over topologies
is an asymptotic series with zero radius of convergence in the expansion parameter
e~%0. While there is an extremely natural completion of the model defined by a dual
double-scaled matrix integral, it remains unclear whether the gravitational path inte-
gral uniquely selects this completion, or how it is realised in the bulk. This completion
is associated with nonperturbative effects in the sum over topologies, which are doubly
nonperturbative in G. The same doubly nonperturbative scale was associated with
truncation of the baby universe Hilbert space in our model, suggesting a tantalising
connection to explore in more generality.

If we apply the ideas of this paper to more conventional ‘top-down’ examples of
AdS/CFT duality, such as type IIB supergravity (or string theory) with AdSs x S°
boundary conditions, there are several possible outcomes. The first possibility, sug-
gested by our simple model and JT gravity, is that a nonperturbatively complete bulk
theory defines a large Hilbert space Hpy of baby universes. The eigenstates |a> would
then be associated with a menagerie of dual CFTs, and the Hartle-Hawking state again
defines an ensemble of them. However, this is in tension with the established statement
of the duality, which uniquely selects N' = 4 Yang-Mills theory as a CFT dual.?! A
nontrivial ensemble would require surprising new families of maximally supersymmet-
ric CFTs; in particular, since N' = 4 Yang-Mills is the unique such theory at weak

21Recall that a given a-state determines partition functions for all possible boundary conditions on
the bulk fields. These boundary conditions include specifications the flux on S® and the asymptotic
dilaton, associated with the rank N of the dual U(N) gauge group and the 't Hooft coupling A
respectively. An a-state would specify a family of theories labelled by these parameters.
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coupling, these new CFTs must be strongly coupled throughout their moduli space.

Perhaps the more likely scenario is that N' = 4 Yang-Mills is the unique dual and
there is no ensemble. The baby universe Hilbert space interpretation is that Hgy is
one-dimensional, so the Hartle-Hawking state is the unique state of closed universes.
The nonperturbative diffeomorphism invariance that produced null states is then re-
quired to act in the most emphatic possible fashion, rendering every possible state
gauge equivalent. This unique state must then also be an a-state, and must exhibit
factorization despite the existence of spacetime wormholes. Nevertheless, in analogy
with typical a-states in our model, it remains possible that simple spacetime wormhole
configurations still give excellent approximations to certain amplitudes. Of course, in
analogy with highly atypical a-states in our model, it is also possible that that simple
spacetime wormhole configurations always receive large corrections.

An intermediate position is that the bulk theory leads to an ensemble interpretation
in an asymptotic (say, large N) expansion, but there is a unique theory at any finite N.
This is consistent with the observation [111] that essentially any effective field theory
in AdS solves the bootstrap order by order in large N perturbation theory. We can
thus emulate a consistent CFT in a large N expansion, which nevertheless need not
exist at any given finite N.

In any case, the suggestion is that the gravitational path integral should contain
the full physics in each consistent a-sector. And since the baby universe state in such
sectors does not change, there is no room in a given sector for information loss. As
a result, the gravitational path integral should teach us how each consistent a-sector
transfers information to the outgoing Hawking radiation.

With this in mind, we recall that a key feature of the discussion in [55-57] was the
idea that one could integrate out the spacetime wormholes and describe their effects in
terms of a modified effective action in which the detailed couplings were controlled by
the a-states. In other words, the original theory with specified couplings and spacetime
wormholes was equivalent (from the asymptotic point of view) to a theory with an
ensemble of bulk couplings but where spacetime wormholes were forbidden. The same
construction will apply in our context, but with one important distinction. Namely,
[55-57] focussed on wormholes with Planck-sized cross-sections under the assumption
that microscopic wormholes would dominate in any physical process. But the mouths of
the replica wormholes in [48, 49| are determined by the location of a quantum extremal
surface. As a result, they approximately coincide with the relevant black hole horizons
and thus are macroscopic in size. Integrating out such wormholes thus induces an
ensemble of highly non-local couplings in the effective action. Indeed, the couplings
naturally mediate transitions in which any given interior configuration specifying the
geometry and matter fields arbitrarily far inside the black hole can be replaced by any
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other, no matter deep the black holes throat may have become. At least for replica
numbers n near 1, the action for a replica wormhole whose mouth has area A is of
order % [112], so the amplitude for such processes should be exponentially small in
this quantity. However, in an old black hole the large number of internal states can lead
to a large effect as seen directly above and in [49] (and as foreshadowed in [113-115]).
The exact location and nature of the above non-local interactions is clearly of some
interest. In particular, while quantum extremal surfaces may appear outside the black
hole’s event horizon [45], for black holes evaporating into a vacuum they should always
lie inside [42, 43]. Were all of the physics determined by replica wormholes confined
far enough inside the horizon, there would be no possibility of affecting the exterior,
and in particular no way it could purify the emitted Hawking radiation. However, any
separation of the QES from the horizon arises from time dependence, which is typically
associated with quantum effects. The backreaction of such effects on the spacetime
is then suppressed by a power of G. As a result, the QES tends to be adiabatically
close to any horizon, and thus separated by an amount only of order G. In addition,
since the QES is determined by balancing the quantum effect of evaporating against a
classical effect, the saddle-point is somewhat broad. A rough estimate of the width of
the saddle-point suggests that the typical fluctuations of the area are also of order G.%2
This places the QES outside the horizon with order one amplitude. The associated
non-local interactions will then naturally transfer information from the deep black hole
interior into the outgoing Hawking radiation in much the form suggested in [22, 30].
However, for a full understanding of the physics associated with such interactions it
appears one must take into account the corrections they imply for the theory’s physical
inner product. As described in section 4, such corrections are associated with extend-
ing the familiar diffeomorphism invariance of gravitational systems to a more general
slicing invariance of the path integral with topology change. Extending this to arbi-
trary Euclidean time evolution — even involving processes that change the topology of
the slice used to define the quantum state — implies spacetimes of different topologies
to be gauge related. In other words, this is a restatement of the old maxim that for
gravitational systems time evolution is a gauge symmetry unless it involves evolution
along an asymptotic boundary. This then directly implies that the path integral com-

22For example, we can perform the path integral over replicated geometries and matter, while leaving
unfixed the location of the QES where branching between replicas occurs. This leaves a final integral
over the QES location to compute, which is roughly [ e~ %=en for n close to 1, where Sgen is the
generalised entropy of the QES and we integrate over its location. The integral over the area of the
QES (fixing ingoing time, for example) is then [dAe™%en(4) with See,(A) ~ % + #log(Ap — A)
[42, 43], where Ay is the area of the (stretched) horizon. At the saddle point, where Ay — A is of order
G, we have S”_ (A) of order G~2 leading to a width AA of order G.

gen
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putes the gauge invariant physical product as one would expect from general arguments
(69, 76-78] (though admittedly those arguments are most direct in contexts where it is
not obvious that topology change should be included).

As a result, one may think of the induced nonlocal interactions as modifying the
gravitational constraints; i.e., with new terms in the Wheeler-DeWitt equation. The
interesting feature, however, is that these modifications are highly non-generic. In the
regime that in our models corresponds to k > Z, , there are a large number of strongly
correlated small corrections, where the correlations conspire to give a large number of
null states; i.e., they make the physical inner product highly degenerate so that a priori
independent states are in fact linearly dependent in the physical Hilbert space, and
so that the dimension of the physical Hilbert space is bounded by Z,. Furthermore,
following ideas related to [96], we argued in section 4 that null states must enforce a
similar bound in a general reflection positive gravitational path integral.

It is this bound that leads to the Page curve, and which thus determines the rate
at which the above interactions transfer information out of the black hole. As a result,
while the above non-local interactions are intimately tied to this change in the inner
product, it is natural to think of the former as secondary and the latter as primary. In
particular, it is in terms of the inner product that (for reflection positive path integrals)
we find a clean statement of the correlations and conspiracies inherent in the details of
the induced interactions; see again section 4.

We believe the explicit demonstration of such a large number of null states to be
a lesson of fundamental importance. It implies that — due to the above mentioned
conspiracies — the gauge symmetry of gravitational systems is much larger and more
powerful than had been previously established. The idea that bounds on entropy
might be related to such a gauge symmetry date back at least to the early 1990’s, when
such suggestions arose in discussions of black hole complementarity proposals (see e.g.
comments in [104]) and cosmological analogues in de Sitter space. It is also much like
the truncation of the bulk Hilbert space implicit in random tensor network models [116,
117] in which the disorder is implemented by inserting randomly chosen projections
into the bulk. However, we now see this to be a direct result of the gravitational path
integral.

The physics of this enlarged gravitational gauge invariance remains to be under-
stood in detail, especially in the context of more realistic models. Nevertheless, the
argument of section 4 indicates that the long discussed relation [11, 96, 118, 119] be-
tween two-sided bulk black holes and bulk thermofield double states (4.15) should be
understood as an example of this gauge equivalence. In particular, we now see that the
so-called “superselection sectors” of [120] — which were argued there to be physically
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distinct — are in fact gauge equivalent.?

We now speculate further on the implications of this enhanced gauge invariance for
issues involving black hole information and the connection to other works. It seems clear
that in sufficiently old black holes (where the number of a priori independent internal
states is sufficiently large), this gauge invariance implies that vast numbers of a priori
independent states must in fact to be regarded as physically equivalent. Furthermore, at
least in our model, this happens in an essentially random way that does not respect any
additional structure?*. Extrapolating this result to more complicated models suggests
that one will find many states which a priori seem to have very different physics — and
in particular in which infalling observers have vastly different experiences — but which
are nevertheless gauge equivalent. For example, just as there can be gauge equivalence
between Alice meeting Bob and Alice finding only empty space, there is no reason for
the physical inner product to respect Alice’s notion of particle number (as distinguished,
say, from total charges coupled to a gauge field), or even her notion of particle number in
a given mode. As a result, even for pure state black holes, the experience of observers
inside the black hole may fundamentally fail to be well-defined as a gauge invariant
concept. One may view this as a variant of the firewall-like possibility described in
[41] that black holes may have ‘no interior’, or at least no interior from which familiar
physics can be extracted.

Nevertheless, as with any gauge symmetry, one is free to fix a gauge in order to
define a language (i.e., a set of observables) with which to describe the physics. In par-
ticular, as noted above, at the level of Hilbert spaces any gauge invariance is naturally
associated with what one may roughly call a projection P from some kinematic Hilbert
space Hyin to a physical Hilbert space® Hpnys C Hiin- In this sense, one may think
of a general gauge fixing procedure as a choice of linear subspace Hgr C Hyin such
that P defines a bijection between Hgp and Hphys. Within a given such gauge fixing
scheme, it may then be that the experiences of infalling observers become well-defined.
For example, in describing the interior of a black hole of radius Ry that recently formed
from collapse, it would be natural to choose a gauge in which the interior is of size
comparable to Ry (even if such small interiors are gauge equivalent to certain much
larger interiors that might form when an initially much larger black hole decays to size
Ryp), and in particular in which standard effective field theory is a good approximation.

23This gauge equivalence resolves a problem noted in that work concerning how such superselection
sectors in transform under permutations.

24Tn particular, the spectrum of possibilities allows any Hermitian inner product of the appropriate
rank.

25A structure of this general sort is inherent in Dirac’s constraint quantization of gauge systems
[70], though the interested reader can consult [71-75] for a variety of more technical treatments.
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With this in mind, we recall that the discussions of [42, 44-49, 121] described
a close parallel between old black holes that have been radiating into an external
system (‘the bath’) and the ER=EPR paradigm of [31]. In particular, these works
suggested that infalling observers experience only standard physics even at the horizon
of black holes that have been evaporating for longer than the Page time. At first sight
such statements may seem to be in great tension with our bound on the number of
linearly independent states inside the black hole. But this tension can be resolved by
interpreting the comments of [42, 44-49, 121] as providing a gauge fixed description,
where in this case the choice of gauge depends on the state of the bath. In other words,
if the black hole system with physical Hilbert space Hpnys is considered in the presence
of another system with Hilbert space Hpan then, even if the bath system by itself
has no gauge invariance, one is free to gauge fix by choosing a general linear subspace
Har, joint C Hiin @ Hpagn for which P defines a bijection to Hpnys © Hpatn. Note that
there is no requirement for Har, joins be a tensor product Hgr, ® Hpaen for any fixed
subspace Har, C Hiin- Instead, one is free to effectively let the choice of subspace
Her, C Hyin vary with the choice of state in Hpatn-

The connection with the above works is particularly clear in the discussion of Petz
reconstruction in [49]. There one wishes to reconstruct an operator O on Hy, using an
operator Or on Hyain. Now, since Op is an operator on Hyain, it is automatically gauge
invariant. However, since the operators O discussed in that work were constructed
without regard to the (random) physical inner product, they are not gauge invariant.
This is consistent, as Og reconstructs O only on a subspace Heode C Hiin @ Hpath that
similarly fails to be gauge invariant. However, at least to good approximation we can
think of Hcoqe as defining a partial gauge fixing (meaning that we could choose some
Her joint O Heode- In particular, we may use any bath bra-state (pam| to define a linear
map from Heode t0 Hiin Via its natural action on Hpaen. And for any choice of (Ypatml,
the image defines a subspace H, C Hyn with at most dimension dgoge < eSBH e,
where this dimension is much less than the dimension of Hnys. As a result, with high
probability distinct states in H, will project to distinct states of Hpnys. In this sense
Heode approximately satisfies the requirements for a partial gauge fixing; a complete
gauge fixing would result from extending H..qe to make the projection of each H,
isomorphic to Hppys.

We note that such a gauge fixed interpretation allows all of the hallmarks of what
is often called state dependence [25-28] and which is naturally associated with the
ER=EPR paradigm. In particular, in contexts where one expects to find only a small
number of black hole states (states in Hpuys) for each bath state, it will be possible
to choose a partial gauge fixing of the form described above that selects only states in
Hiin With no drama at the horizon. In particular, one will be able to choose a code
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subspace within which the evolution can be well-described by standard local effective
field theory. In addition, we note that standard objections [40, 41, 122-124] to state
dependence focus on non-uniqueness of the predicted physics, and that such objections
are clearly moot in a context where the state dependence is simply a choice of gauge
(so that non uniqueness of Hqr is to be expected, and so that the gauge invariant
predictions are in fact identical).

Nevertheless, the non-uniqueness arguments of [40, 41, 122-124] then show the sort
of states that, while they appear at first sight to be physically distinct, must in fact be
related by the enlarged gauge symmetry described above. In particular, tracing through
such leads to other gauges in which infalling observers experience varying amounts and
types of drama at the horizon, as well as to gauges where the observer simply fails to
exist in the interior of the black hole.?® Furthermore, just as there is a particular gauge
(or class of gauges) realizing ER=EPR-like scenarios, it seems likely that one can also
find gauges realizing fuzzball scenarios (see e.g. [17, 19, 24, 29, 125-129], the non-violent
non-locality proposal®” [20, 22, 30]), proposals emphasizing the bulk Wheeler-DeWitt
equation [130, 131], the black hole final state proposal [14], and perhaps other proposals
as well.

On the other hand, the above discussion immediately raises the question of how
different experiences of a given observer could possibly be gauge related, and thus how
the above scenario could possibly be realized in models that are sufficiently realistic to
describe our own universe. While there is surely more to be said about this issue, we
note that any gauge fixing scheme can be used to define an associated gauge invariant
observable. l.e., just as one can use Coulomb gauge in electromagnetism to define
gauge invariant operators (“the potential in Coulomb gauge”), in the above scenario
one can use any gauge to define a notion of observer inside the black hole. The variety
of possible gauges would then mean that there are a variety of possible gauge invariant
definitions of the observer which happen to coincide (or nearly coincide) under familiar
conditions outside old black holes but which differ greatly inside old black holes. One
may then rephrase the above statement in a less surprising manner: While we may
well-enough understand how to define an observer at the leading semi-classical level,

26Tf one imposes the constraint that the observer survives (in a recognizable form) for a given
proper time behind the black hole horizon, then one would expect a generic gauge consistent with this
constraint to predict the maximum amount of such drama consistent with the observer’s survival to
that point.

2"The non-locality scale Ly in spacetime dimension d is set by the condition AA ~ G described
in footnote 22. On a Killing slice of a static black Eo}e of area-radius R, the corresponding proper

distance from the event horizon would be Ly ~ (%) e £,. With respect to the definitions of [22], Lq

then gives “non-violent” physics for d < 4.
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there may be many possible extensions of this definition at the level of non-perturbative
physics, and predictions for the observer inside old black holes may depend sensitively

on the choice of this extension?®.

The scenario described above (in which apparently
distinct observer experiences are gauge related) may thus be considered to be just
another version of this idea. It will likely be of great interest to further explore such

conjectures and related physics in future work.

Acknowledgments This work was motivated and facilitated by three specific con-
versations, first with Geoffrey Pennington, second with Xi Dong, and third Steve Gid-
dings, as well as by a long history of discussing black hole information with the entire
UCSB High Energy and Gravity group. We also acknowledge interesting conversations
with Daniel Harlow, Gary Horowitz, Ted Jacobson, Javier Magéan, Juan Maldacena,
Xiaoliang Qi, Steve Shenker, Mark Srednicki, Douglas Stanford, Herman Verlinde and
Edward Witten. We are grateful for support from NSF grant PHY 1801805 and funds
from the University of California. H.M. was also supported in part by a DeBenedictis
Postdoctoral Fellowship, and D.M. thanks UCSB’s KITP for their hospitality during
the final portions of this work. As a result, this research was also supported in part by
the National Science Foundation under Grant No. NSF PHY-1748958 to the KITP.

A Limits of moments of the Poisson distribution

In this appendix, we study the moments (Z™) of a Poisson random variable Z with
mean A in various limits. This is useful to ascertain the convergence properties of sums
>, CnlZ™) constructing states of Hpy in section 3, and to illustrate the failure of the
third quantised perturbation theory of section 5 in our model.

The moments are given by the Bell polynomials,

37HZ") = Ba(\), (A.1)
defined by
% \d
B\ =Y %dn | (A.2)
d=0

28Note that if there is a priori no mechanism for selecting one such definition as preferred, then
it is natural to adopt a Bayesian approach and declare that all such extensions are realized with
equal probability (or more generally that they are realized according to some probability measure
describing the priors of the given theorist studying the system). The question of ‘what does an observer
experience when falling into a black hole’ would then be an inherently probabilistic one, somewhat
akin to asking ‘what does an observer experience when they are decohered into many Everett branches
of the wavefunction of the universe?” We have already conjectured above that with high probability
the observer simply fails to exist inside the black hole in a generic gauge, and that post-selecting only
on existence of the observer would lead to high drama.
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From this, one can check the recurrence relation
Bui1(A) = MB,(A) + Ba(N)) (A.3)

and By(\) = 1, from which we can see that B, (\) is a monic polynomial of order n. In
particular this gives us the scaling at large A and fixed n,

Bn(X) ~ A", A — 00, n fixed. (A.4)
A.1 Large n and convergence

For studying convergence of ) ¢,|Z™), we require the moments at large n and fixed
A. For this, observe that the ratio of consecutive terms in the sum defining B, () is

A d \" X
S =) ~ Zed
y (d— 1> Pl (A.5)

where the asymptotic form applies for 1 < n < d?. For large n, the ratio is unity and

hence the dth term in the sum is maximal when d ~ g

Substituting this value back

into the sum, we can find an estimate of B, (\) at large n, which we can write as
B, (A
# ~ g mloglognto(n) oo\ fixed. (A.6)
n!
log B, (A) ~ nlogn —nloglogn —n+o(n), n— oo, A fixed. (A7)

For a more carful derivation and many more terms in the expansion, it is convenient
to write d = % (1 + \%) and take the limit of the terms in the sum as n — oo at
fixed x. In this limit, the series becomes a Gaussian integral in x. From this, we can

estimate the norm of the basis state [||Z")|| = /(2" Z") = e™%\/By,()\):
log |||Z™)|| = nlogn — nloglogn — n(1 — log2) + o(n) as n — 00. (A.8)

Now we can begin to characterise convergence of sums » ¢,|Z™) in the baby uni-
verse Hilbert space of section 3.3. By definition, the series converges if the partial sums
form a Cauchy sequence. That is,

o] n2
ch|Z”> converges <= Z e Z™) || — 0 as ny,ng — o0, (A.9)
n=0 n=ni

where in this limit we can take ny, ny to infinity separately at different rates.?? We will
not characterise such series completely, but find a sufficient condition to give us a class
of convergent series, and a necessary condition to constrain them.

29Tt may not be that every element of the completion can be represented by such a Cauchy sequence
of partial sums. It is false for the ‘free’ version where we allow only discs and cylinders, replacing the
Poisson distribution by its Gaussian approximation: in that case, this class of Cauchy sequences yields
only analytic wavefunctions.
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First, a necessary condition for convergence (coming from n; = ng) is that the
norm of individual terms go to zero

Convergence = |c,[|||Z™)|| — 0 as n — occ. (A.10)

Now, from (A.8), we see that H|Z”)H is eventually larger than R"™ for any R > 0, so
|c,,|R™ is bounded, which implies that f(z) := ¢,2" converges in the disc |z| < R. Since
this holds for all R, we find that our series defines an entire analytic function,

ch‘2n> converges —> f(z) = Z cp2" is entire analytic. (A.11)
n=0

We can thus characterise convergent series in terms of the class of allowed analytic
functions. Improving on the analyticity result, we can bound the growth of allowed
functions f. To do this, we introduce the order of an analytic function, which is
the infimum over all p such that |f(z)| < exp(|z|?) for sufficiently large z. We can
strengthen our necessary condition to

ch]Z”> converges —> f(z) = chz” has order < 1, (A.12)
n=0

which means that for every € > 0, we have | f(2)| < exp(|z|**¢) for sufficiently large |z|.
To show this, we use a result expressing the order in terms of the Taylor coefficients,
namely order(f) = limsup,,_, ., log"(ll‘)%. For the norm of the terms in the series to go
to zero, we must have log(1/|c,|) — log|||Z™)|| go to infinity, so for sufficiently large n
we have log(1/|c,|) > log|||Z™)||. From (A.8), for any € > 0 and sufficiently large n we
have log |||Z")|| > (1 — €)nlogn. In turn, this means that log(1/|c,|) > (1 — €)nlogn
for large enough n, and hence limsup,,_, bgn(ll"% <1

Our sufficient condition is absolute convergence, which means that the sum of

norms converges, and follows from the triangle inequality for the norm.

Z lcal[[|Z™) || convergent = ch|Z”> convergent. (A.13)

Now, from (A.8), we have the result that ||[|Z")| decays faster than nla" for any a.
From this, we can find a simple sufficient bound on the coefficients for convergence,

l.n
len| < A— for some A,z —> ch|Z”> convergent. (A.14)

n!

n
In particular, this means that any exponential function |e®?), or more generally a
function of exponential type, defines a convergent series by its Taylor expansion.
The gap between our sufficient and necessary conditions (order one functions that
1

are not of exponential type) is small but nonempty, for example containing =k
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A.2 Large A and n

Here, we study a limit of A\ — oo and n — oo at fixed ratio v = 3, which will interpolate
between the large A fixed n and large n fixed A results. We could proceed from the
same series expression, but we use an alternative method, starting from an integral
representation of B, (). This expression extracts the moments from the generating
function (3.11) by a contour integral

Bn()‘> _ L% du e)\(e"fl) <A15)

n! 2w ) unt! ’

where the contour encircles the origin. We can evaluate this by steepest descent, looking
for stationary points of
S(u)=e"—1—vlogu. (A.16)

The stationary points S’'(u) = 0 solve v = ue”, and the relevant saddle point is the
unique positive solution, which defines the Lambert W function or product logarithm,

u, = W(v). (A.17)
Applying the steepest descent method at this saddle point gives us
Bn()\) e)\S(u*)

n! Us /275" (U )N

This result in fact interpolates between our two previous results for large A fixed n (by
taking v < 1) and large n fixed A (by taking v > 1).

It is interesting in particular to see how the large A result breaks down when n
becomes large. Taking v < 1 we have u, = v — 2 + O(v3), so S(u,) ~ —vlogr +v +
%VZ + - .-, with higher terms all integer powers of v. Substituting this into the steepest
descent result, we have

(A.18)

2
AS (ux) nlog A—nlog n+n+ o<+ n o
e e 2X A
~ ~ —eaxt, (A.19)

Us/ 275" (U )\ 27 n!

where we applied Stirling’s approximation to the factorial. The terms in the exponential

‘ 3

>

are of the form /\Z—fl for k = 2,3,..., and become relevant when n is of order \'=/*.
The first correction occurs from the k = 2 term shown explicitly, first relevant when n
is of order v/), when it contributes an order one rescaling of B, (\):

N

2
Ba(\) ~ A"eBx, A oo, % fixed. (A.20)

Higher order terms in the exponential are given by higher orders in the expansion of
S(uy) at small v.
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