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Abstract: In the 1980’s, work by Coleman and by Giddings and Strominger linked

the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories.

We revisit such ideas, using features associated with a negative cosmological constant

and asymptotically AdS boundaries to strengthen the results, introduce a change in

perspective, and connect with recent replica wormhole discussions of the Page curve.

A key new feature is an emphasis on the role of null states. We explore this structure

in detail in simple topological models of the bulk that allow us to compute the full

spectrum of associated boundary theories. The dimension of the asymptotically AdS

Hilbert space turns out to become a random variable Z, whose value can be less than

the naive number k of independent states in the theory. For k > Z, consistency

arises from an exact degeneracy in the inner product defined by the gravitational path

integral, so that many a priori independent states differ only by a null state. We argue

that a similar property must hold in any consistent gravitational path integral. We

also comment on other aspects of extrapolations to more complicated models, and on

possible implications for the black hole information problem in the individual members

of the above ensemble.
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1 Introduction

The past year has seen several interesting developments in the study of black hole

information. In particular, it has been well-known for some time that the von Neumann

entropy Srad of emitted Hawking radiation as a function of time gives an important

diagnostic of whether and to what degree information is preserved or lost in evaporating

black holes [1]. Familiar effective field theory would give an entropy that increases

monotonically throughout the evaporation, even though the black hole’s Bekenstein-

Hawking entropy SBH = A
4G

monotonically decreases to a value near zero. In contrast,

a model in which the black hole is a standard quantum system with density of states

SBH coupled unitarily to the radiation field would — when the initial state is pure —

require Srad ≤ SBH at all times. As a result, in such models Srad generally increases

to a maximum, at which time it nearly equals SBH, and then decreases monotontically

thereafter. The final phase with decreasing Srad describes the return of information to

the external universe from the black hole.

Despite many arguments suggesting that the latter so-called ‘Page curve’ should

accurately approximate the result of black hole evaporation, for many years it was

unclear how such a result could be obtained from a controlled gravitational calculation;

see e.g. reviews in [2–6]. The plethora of proposals for new physics that might be

associated with obtaining this Page curve (including [3, 7–39]) were thus all properly

viewed as speculative and contained at least some optimistic extrapolation or ad hoc

ingredient.1

Recently, however, it was noted that the ‘unitary’ Page curve, including the turnover

of Srad, could be obtained by combining ideas from holography with effective field the-

ory [42, 43] — or equivalently with quantum field theory in curved space. In particular,

under very general conditions [42, 43] argued that one could obtain this result by com-

puting the generalized entropy Sgen = A
4G

+ Sbulk of an appropriate comdimension-2

quantum extremal surface (QES) , where the surface is chosen so that holography sug-

gests this might represent Srad. Here Sbulk is the von Neumann entropy of bulk fields

outside the codimension-2 QES. See also further explorations of this idea in [44–47].

Critically, [48, 49] then pointed out that — at least in some contexts — this

seemingly-hybrid recipe in fact follows from replica trick calculations of Srad using the

gravitational path integral (and in particular that this was implicit in earlier derivations

of the quantum corrected Ryu-Takayanagi [50, 51] and Hubeny-Rangamani-Takayanagi

[52] entropy formulae [53, 54]). While at this level the physical mechanisms behind such

results remain somewhat mysterious, the derivation from the gravitational path integral

1As an example, the firewall proposal of [23, 40, 41] did nothing to explain the dynamics from

which the supposed firewall might arise.
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nevertheless implies that the explicit addition of novel physics is not required. Indeed,

it instead suggests that fundamental lessons might be revealed by carefully dissecting

the relevant calculations and studying the path integral in more detail.

A starting point for such further investigation is the observation of [49] that the

above replica trick results appear to be inconsistent with one might normally call a

single well-defined theory. In particular, rather than taking single well-defined val-

ues, partition-function-like quantities seem to have both a mean value and a non-zero

variance. This feature is associated with the fact that dominant saddles in the replica

computations involve connected bulk spacetimes with disconnected asymptotically AdS

boundaries. Such geometries have been termed spacetime wormholes, or Euclidean

wormholes when the geometry is Euclidean.

This relation will be reviewed below, but is familiar from older discussions [55–58].

In particular, refs. [55–57] argued that spacetime wormholes require the gravitational

Hilbert space to include spacetimes with compact Cauchy surfaces, and thus for which

space at a moment of time has no asymptotically AdS boundary. This part of the

gravitational Hilbert space was called the baby universe sector. Furthermore, it was

argued that entanglement with this sector typically led the rest of the theory (here the

asymptotically AdS sector) to act as if it were part of an ensemble of theories. However,

a particular member of the ensemble could be chosen by selecting an appropriate baby

universe state.

Our goal here is to combine the above ideas to better understand the ensembles

associated with replica trick computations and to extract implications for particular

members of such ensembles. We begin in section 2 by reviewing the connection between

spacetime wormholes and ensemble-like properties, and by revisiting the baby universe

ideas of [55–57]. In doing so, we incorporate features associated with a negative cosmo-

logical constant and asymptotically AdS boundaries. This both strengthens the results

and allows a useful change in perspective. In particular, we avoid the use of ‘third

quantized perturbation theory’ and emphasize that certain results follow exactly from

any well-defined path integral. We also focus on the key role played by null states.

The output is a description of how (say, partition-function-like) quantities at asymp-

totically AdS boundaries have a spectrum of possible values determined by the gravita-

tional path integral. Below, we focus on quantities Z[J̃∗, J ] that might be interpreted

as computing the inner product of a state created by a source J on the past half of

the Euclidean AdS boundary with another state created by a source J̃ = (J̃∗)∗ on the

future half of a Euclidean AdS boundary, where ∗ denotes CPT conjugation. However,

the most general partition-function-like quantities allowed by our formalism include

quantities that in a dual CFT would describe matrix elements of operators as well as

e.g. Tr ρn for a wide variety of density matrices. The Rényi entropies of [44, 49] are
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then functions of these quantities. In accordwith the original works [55–57], our anal-

ysis will show that one may generally describe such quantities as bring drawn from an

ensemble of their possible values with the particular ensemble specified by the choice

of baby universe state.

After describing this framework in section 2, section 3 introduces some simple toy

models in which the gravitational path integral can be performed exactly including

the full sum over possible topologies. The toy models are topological and involve

finite-dimensional Hilbert spaces. An interesting feature of the models is that the

dimension of the asymptotically AdS Hilbert space becomes a random variable Z,

whose value can be less than the naive number k of independent states in the theory.

For k > Z, consistency turns out to arise from an exact degeneracy in the inner

product defined by the gravitational path integral. This degeneracy means that many

a priori independent states differ by a null state, and so should be regarded as linearly

dependent in the gravitational Hilbert space. Section 4 relates this degeneracy to

diffeomorphism invariance, black holes, and the Page curve, arguing in particular that

the replica computations of [48, 49] will imply a corresponding degeneracy in more

general contexts. In section 5, we describe the approximation in which wormhole effects

are small, analogous to the third quantised formalism of [57], and emphasise that the

appearance of null states is associated with the failure of this approximation. We close

with some summary and final discussion in section 6.

2 The gravitational path integral with spacetime wormholes

2.1 Path integrals and ensembles

We begin by describing a natural set of observables in any theory of gravity. For

definiteness and convenience, we will assume locally AdSd+1 asymptotics. This is the

context in which we have the most control and the clearest interpretation in terms of

possible CFT duals.

Our theory will be defined by the path integral over a set of fields (including a

metric) denoted collectively by Φ, with action S[Φ]. Each boundary is associated with

a set of admissible boundary conditions labelled by J , describing the behaviour of

the fields Φ ∼ J near the given boundary. In particular, J includes a d-dimensional

boundary metric on a boundary manifold M. We will focus on the case where the

boundary metric has Euclidean signature, but Lorentzian or complex metrics are also

allowed. We will generally take each M to be connected, and introduce disconnected

boundary manifolds by specifying multiple such boundaries, each with its own J . How-

ever, there is no harm in letting M be disconnected, and the notation below remains
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consistent. For each field other than the metric, J typically includes a function on

the d-dimensional boundaryM specifying an appropriate boundary condition for that

field; e.g., it will typically specify what in the AdS/CFT context is known as the “non-

normalisable part” of the field. In all cases, by S[Φ], we then mean the holographically

renormalised action with boundary condition J .

Now, the gravitational path integral with asymptotically AdS boundary conditions

specified by J is usually interpreted as computing a partition function Z[J ]. This is

particularly familiar in the AdS/CFT context [59, 60] where it gives the partition func-

tion of the dual CFT2, but the identification of this quantity as a partition function

in fact dates back to the first discussions of Euclidean approaches to black hole ther-

modynamics (see e.g. [61]). Motivated by this interpretation, with an eye toward the

ideas of [55–57], and following [62], we introduce the following notation for the path

integral defined by an asymptotic boundary with n connected components, each with

an associated Ji: 〈
Z[J1] · · ·Z[Jn]

〉
:=

∫
Φ∼J
DΦ e−S[Φ] (2.1)

This equation defines the left hand side as the path integral over all configurations

with n asymptotic boundaries with boundary conditions specified by J1, . . . , Jn. The

notation is chosen to be suggestive of a particular interpretation to be described below.

The presence of spacetime wormholes in the path integral now leads to a phe-

nomenon which is very puzzling from the standard AdS/CFT point of view [58, 63]

(see [55, 56] for earlier discussions of the asymptotically flat analogue in which S-

matrix elements play the role of our partition functions). The path integral (2.1) does

generally not factorize over disconnected boundaries:〈
Z[J1]Z[J2]

〉
6=
〈
Z[J1]

〉〈
Z[J2]

〉
. (2.2)

The difference between right and left sides arises because the sum over topologies

in the Euclidean path integral for
〈
Z[J1]Z[J2]

〉
not only yields terms of the form

T1T2 for any pair T1, T2 of terms associated separately with
〈
Z[J1]

〉
and

〈
Z[J2]

〉
, but

also contains additional contributions from terms in which the two boundaries lie in

the same connected component of the bulk manifold; see figure 1. We use the term

spacetime wormhole, or sometimes Euclidean wormhole, to refer to any such connection.

2We emphasize, however, that we allow very general notions of ‘sources’ and thus very general

notions of ‘partition functions.’ In particular, one may use sources to prepare initial and final states

and to insert operators, so that one should be able to represent any matrix element of any operator

in the dual CFT should as some Z[J ]. In the same way, any Rényi entropy of any state that can be

prepared by sources (and perhaps restricted to any region) should again be some Z[J ].
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Note that spacetime wormholes are generally localized in both space and time, and

thus differ qualitatively from spatial wormholes like the familiar Einstein-Rosen bridge

that exist on every smooth Cauchy slice of the maximally extended Lorentz signature

Schwarzschild spacetime.

󰁇
Z[J1]

󰁈
=

󰁇
Z[J2]

󰁈
=

󰁇
Z[J1]Z[J2]

󰁈
= +

Figure 1: The gravitational path integral with spacetime wormholes does not factor-

ize. The top line gives a diagramatic representation of the path integrals
〈
Z[J ]1

〉
and〈

Z[J2]
〉

that would naively define partition functions Z[J1] and Z[J2]. The natural path

integral
〈
Z[J1]Z[J2]

〉
associated with a pair of boundaries yields all terms generated

by multiplying
〈
Z[J1]

〉〈
Z[J2]

〉
, but also contains additional connected contributions

schematically shown as the second term in the bottom line.

The two sides of (2.2) must thus differ unless the contributions with extra connec-

tions exactly cancel among themselves, or unless such contributions are excluded. The

first option appears to require fine tuning, and the second the imposition of non-local

constraints that undermine the presumed local nature of the theory. It is also difficult to

see how one might introduce useful such constraints without destroying other apparent

successes of the Euclidean path integral, such as the description of the Hawking-Page

transition for AdS black holes, which is associated with a change in the topology of the

dominant Euclidean saddle. We therefore allow terms with extra connections, and at

least for the moment assume that they lead to a non-zero difference between the two

sides of (2.2). It follows that we cannot simply interpret
〈
Z[J1]

〉
,
〈
Z[J2]

〉
as partition

functions with product
〈
Z[J1]Z[J2]

〉
.

From the bulk point of view, the extra connections appear to describe dynamical

interactions between a priori independent asymptotic regions. This point of view is

not naturally compatible with standard AdS/CFT, but it may instead be consistent to

interpret
〈
Z[J1]Z[J2] · · ·

〉
as the expectation value of a product of partition functions

in an ensemble of boundary dual theories. In this interpretation, the connected con-

tributions would describe probabilistic correlations from the ensemble average rather

than dynamical interactions.
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While these two interpretations may at first seem to be in tension, in analogous

settings it was argued by [55–57] that they are in fact consistent. The rest of section

2 will be dedicated to providing a version of this discussion that incorporates features

associated with asymptotically AdS boundaries. We find that using these new features

allow strengthened conclusions, and perhaps as a result we will take a slightly different

perspective than that of [55–57].

Before turning to the detailed discussion in section 2.2, it is useful to provide a

brief overview. As in [55–57], the connection between the above two interpretations is

motivated by realizing that summing over arbitrary topologies in our path integrals,

and in particular over manifolds with arbitrary numbers of connected components,

means that generic terms in
〈
Z[J1]Z[J2] · · ·

〉
contain factors associated with compact

spacetimes having no boundaries whatsoever. The idea that the Hilbert space of a

theory can be identified by cutting open the path integral then suggests that we should

also slice open such compact spacetimes. Doing so identifies a new sector not associated

on this slice with any of the asymptotically AdS boundaries, but which is instead

associated with spatially compact universes; see figure 2. We call this the baby universe

sector following [55–57], where the name comes from the idea that one can in many

cases [64–67] think of the closed universe having been emitted by a (here asymptotically

AdS) parent universe.

Parent Baby

Figure 2: Slicing open a spacetime with a boundary and a handle (left) can give a

disconnected geometry on the slice, including a closed ‘baby universe’ that has become

detached from the parent asymptotically AdS universe. The baby universe does not

intersect the asymptotically AdS boundary (red line) at the moment of time described

by the indicated slice.

The discussion of baby universes is simplest in the context of Euclidean path in-

tegrals with boundary conditions Ji given by Euclidean metrics, but our discussion

does not exclude more general contexts. In particular, one can choose boundary condi-

tions with Lorentzian pieces of the metric, using a Schwinger-Keldysh type formalism
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in which Euclidean sections of the metric are used to prepare states and Lorentzian

sections give real time evolution. In such a case, it is useful to think of the gravitational

path integral as involving complex metrics.

Such constructions allow us to describe quite general observables that might be

associated with a putative dual CFT. Indeed, the set of observables we are using is

also sufficient to describe coupling to an auxiliary quantum system, as is important

in [43–48]. To do this, we can simply allow sources J to be operators in the auxiliary

system, and then include a corresponding auxlliary path integral to compute the effects

of such operators. We discuss this construction in more detail in section 4.

Note that the ability of Euclidean or complex universes to split and join as shown

in figure 2 indicates that baby universes can affect the physics of universes with asymp-

totically AdS boundaries. In this context, it becomes clear that the definition of our

path integral (2.1) includes an implicit choice of the initial and final state of closed

baby universes. Most naturally, the path integral computes expectation values in the

Hartle-Hawking no-boundary state [68], defined by the absence of additional bound-

aries besides those required by the Z[J ] insertions. But this is not the only choice of

baby universe state that we can describe with our gravitational path integral, and other

choices will be associated with different ensembles. In particular, we will construct spe-

cial ‘α-states’ of baby universes in which the factorisation property is restored, and no

ensemble is required.

One further comment is in order before turning to the details. In the above discus-

sion we have written our amplitudes as if the path integral gives some definite, finite

value. However, in all but the very simplest contexts, gravitational path integrals have

been defined only as asymptotic expansions (perhaps with nonperturbative contribu-

tions) in some small coupling. Both loop expansions and sums over nonperturbative

sectors will typically fail to converge, and there may be no obvious, natural or unique

way to define a finite result. The distinction between exact quantities with finite values

of parameters and asymptotic expansions may well be important, and we will return

to this issue in section 6. Nonetheless, for the remainder of this section we will treat

the path integral in (2.1) as if it gives well-defined exact results.

2.2 The baby universe Hilbert space

As described above, one can obtain a natural Hilbert space interpretation by cutting

open the path integral (2.1). In particular, we split each history over which we sum

into a ‘past’ and ‘future’ that meet on some slice where we imagine summing over a

complete set of intermediate states. There is a choice of how we cut, constrained by

the way in which the asymptotic boundaries are labelled past or future. For now, we

will choose to place each connected component of the boundary either entirely to the
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past or entirely entirely to future of our cut, so that our intermediate slice intersects

no asymptotically AdS boundaries (generalizing in section 2.4). We thus identify the

relevant Hilbert space as the space of closed universes in the theory. We call this the

‘baby universe’ Hilbert space HBU for the reasons described above.

One might hope to describe elements of the baby universe Hilbert space as wave-

functions of all possible spatial metrics (and field configurations on those metrics).

A complication is that, as usual in a gravitational theory, diffeomorphism invariance

forbids a notion of universal time that might be used specify precisely where the

past/future cut is to be made. Proceeding in this manner would thus require im-

posing the gravitational constraints (the Wheeler-DeWitt equation) on the resulting

wavefunctions. This is made particularly challenging in the current context where

spacetime wormholes are important, so that the associated splitting and joining of

universes should modify these constraints [57].

However, we can bypass these difficulties entirely by using our asymptotic bound-

aries to define states in the baby universe Hilbert space. Given a set {J1, . . . , Jm} of

boundary conditions, there is a state∣∣∣Z[J1] · · ·Z[Jm]
〉
∈ HBU, (2.3)

defined by the specified boundary conditions for the path integral. This is particularly

natural for sources defining Euclidean signature boundary metrics and in the presence of

a negative cosmological constant. While a negative cosmological constant tends to cause

universes to collapse in Lorentzian time evolution (perhaps with a sinusoidal form),

after Wick rotation to Euclidean signature it tends to cause accelerated expansion

with respect to Euclidean time. As a result, such closed cosmologies naturally have

Euclidean signature asymptotically AdS boundaries at infinite Euclidean times.

We will think of the boundary conditions associated with the state (2.3) as living

‘in the past.’ They can then be paired with bra-vectors living ‘in the future’ — though

one should understand that these are simply names without intrinsic meaning. Note

that the ordering of the Z[Ji] in (2.3) is not important. Reordering the sources gives

equivalent boundary conditions for the path integral, and so must define the same state.

An important special case is m = 0, giving the Hartle-Hawking state with no boundary

in the past:

No boundaries (m = 0) −→
∣∣∣HH

〉
∈ HBU. (2.4)

Here we emphasize that this is not just a state on a single universe, but that it instead

represents a state of the full collection of an indefinite number of baby universes.

States of the form (2.3) defined by different sources, or even with different numbers

of sources m, are generally not mutually orthogonal in any useful sense. Note that
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the physical notion of inner product cannot simply be assumed to have any particular

form, but is something we must compute from the theory. It must thus follow from

an appropriate path integral. Now, some readers may be confused by the fact that

in quantum field theory one typically uses first-quantized path integrals to compute

Green’s functions and not to compute inner products. However, as explained in e.g.

[69], in defining the gravitational path integral one must make a choice — in some

languages, associated with specifying the contour of integration — as to whether it

fully imposes the gravitational constraints or instead defines a Green’s function. We

simply choose the former, and we take the correlators (2.1) to be computed with the

same specifications. With this understanding, the path integral indeed computes the

inner product3 which is then given by〈
Z[J̃1] · · ·Z[J̃n]

∣∣∣Z[J1] · · ·Z[Jm]
〉

=
〈
Z[J̃∗1 ] · · ·Z[J̃∗n]Z[J1] · · ·Z[Jm]

〉
. (2.5)

Here the right hand side is just the amplitude defined in (2.1) with boundary conditions

Z[J ] and Z[J̃∗], and where ∗ is the CPT conjugate operation on boundary conditions

J . This operation should have the property that if we act with ∗ on every boundary,

the amplitude is complex conjugated:〈
Z[J∗1 ] · · ·Z[J∗n]

〉
=
〈
Z[J1] · · ·Z[Jn]

〉∗
. (2.6)

This guarantees that the inner product (2.5) is Hermitian. If we can interpret Z[J ] as

random variables with correlation functions
〈
Z[J1] · · ·Z[Jn]

〉
, then (2.5) reduces to a

standard construction in probability theory, in which the covariance matrix of pairs of

random variables defines an inner product. In particular, showing that the amplitudes

follow from expectation values of a distribution with nonnegative probabilities would

imply that our inner product is positive semi-definite.

Note that the states (2.3) need not be normalised. In particular, the norm of

the Hartle-Hawking state is given by what one might call the cosmological partition

function Z, defined by the path integral over all spacetimes without boundary:

Z =
〈
1
〉

=
〈

HH
∣∣HH

〉
=

∫
no boundary

DΦ e−S[Φ]. (2.7)

3In the language of Dirac constraint quantization [70], (2.5) corresponds to taking two arbitrary

‘kinematic’ states (which may not satisfy the constraints), projecting them onto the space of states

satisfying the constraints, and computing the physical inner product of the resulting projections. See

[71–75] for further comments, and [76–78] for connections to path integrals. As in [76, 77], using

(2.5) corresponds to simply skipping to the final answer without going through the intermediate steps

inherent in [70].
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For most purposes, it would be sufficient to consider normalised amplitudes, where

we divide by Z. This is equivalent to performing the path integral excluding closed

components of spacetime which do not connect to any asymptotic boundary.

We now have a space of states defined by (finite) linear combinations of the states

(2.3) in correspondence with formal polynomials of ‘partition functions’ Z[J ], and an

inner product defined by extending (2.5) sesquilinearly. This is almost enough to con-

struct a baby universe Hilbert space. The missing ingredient is a single property that

we demand of our path integral (2.1), namely reflection positivity. This can be stated

as the requirement that (2.5) defines a positive semidefinite inner product on finite

linear combinations of states (2.3):

∥∥Ψ
∥∥2

:=
〈
Ψ|Ψ

〉
≥ 0 for all

∣∣Ψ〉 =
N∑
i=1

ci

∣∣∣Z[Ji,1] · · ·Z[Ji,mi ]
〉
. (2.8)

Thus is clearly required if our gravitational path integral is to define a standard quan-

tum theory, though it is cumbersome to verify directly for all states. While this can

be done for the simple toy models studied in section 3, for more complicated systems

it would be very useful to find properties that imply (2.8) but are easier to check.

Assuming (2.8), we now define the baby universe Hilbert space HBU though a

standard construction, as the completion of the space of linear combinations of states

(2.3) with the inner product (2.5). Roughly speaking, states of HBU are infinite sums

over states (2.3) with finite norm defined by (2.5).4 Importantly, however, infinite

sums with different terms and coefficients may not give rise to distinct states in HBU.

Equivalently, some infinite sums may be identified with the zero state in HBU; i.e., for

appropriate coefficients ci one may find

∞∑
i=1

ci

∣∣∣Z[Ji,1] · · ·Z[Ji,mi ]
〉

= 0. (2.9)

Naively, the Hilbert space HBU may appear to consist of formal power series in

the objects Z[J ] with some convergence property. But it is in fact smaller since the

construction divides out by the set of ‘null states’ (2.9). This may seem like a minor

technical point. Of course, from one perspective the inner product defined by any

4HBU is the set of equivalence classes of Cauchy sequences {|Ψi〉}i∈N, where two sequences {|Ψi〉},
{|Φj〉} are equivalent if ‖ |Ψi〉 − |Φj〉 ‖2 → 0 as i, j → ∞. Recall that a sequence is Cauchy when

‖ |Ψi〉 − |Ψj〉 ‖2 → 0 as i, j → ∞. The inner product between two such sequences is defined by

the limit of the inner products of the terms, which exists and is the same for all members of the

equivalence class. HBU is then a Hilbert space, so in particular is complete and the inner product is

positive definite. It is separable as long as the set of possible sources J has a countable dense subset

(assuming that amplitudes are continuous in J).
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Σ1

Σ2

Figure 3: In the presence of spacetime wormholes, different spatial slices of a spacetime

may have different number of connected components. Here, on the slice Σ1 we have two

circular universes, but on Σ2 we have only one. These may be thought of as different

gauge choices for the same state.

gravitational path integrals naturally leads to a large set of such null states due to the

gravitational gauge symmetry. But we usually expect that symmetry to act trivially

at the asymptotically AdS boundaries where our sources J are defined; i.e., natural

sources J are invariant under familiar gravitational gauge symmetries. As a result, one

might expect the null states to simply encode possible senses in which one may have

accidentally introduced an overcomplete set of sources. However, one should expect

the sum over topologies to modify the gravitational gauge invariance so that it no

longer corresponds precisely to familiar diffeomorphisms. As illustrated in figure 3, one

expects different slices of the same spacetime to describe gauge equivalent states. But

including a sum over topologies means that two such slices may no longer be related

by a diffeomorphism, and in fact that they need not even contain the same number

of connected components for space at the given time. It will thus be important to

compute the effects of this modified gauge symmetry rather than to assume that they

take a familiar form. In particular, while one might naively expect the effect of such

modifications to be small, we will find sections 3 and 4 that in certain circumstances

they lead to dramatic physical consequences.

The above construction of HBU is very similar to the construction of the Hilbert
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space of a quantum field theory from its correlation functions in the Wightman [79]

or Osterwalder-Schrader (see Theorem 3-7 of [80], [81]) reconstuction theorems. In

this analogy, our objects Z[J ] correspond to (smeared) local operators inserted in the

Euclidean past, and the inner products between states with finitely many operator

insertions are given by the (Euclidean) Wightman functions. The Hilbert space is

again defined by the above completion construction.

2.3 Operators and α-eigenstates

Having constructed the baby universe Hilbert space HBU, we now introduce a set of

operators acting on it. Here we once again find asymptotic boundaries useful. In

particular, we take any boundary Z[J ] to define an operator Ẑ[J ] on HBU. The matrix

elements of this operator are defined by a path integral over all configurations with

boundaries specified by some initial and final states with an additional boundary Z[J ].

Since the labelling of boundaries as past, future, and in between does not affect

the value of the path integral, the defining relation of the operator Ẑ[J ] is〈
Z[J̃1] · · ·Z[J̃m̃]

∣∣∣Ẑ[J ]
∣∣∣Z[J1] · · ·Z[Jm]

〉
=
〈
Z[J̃1] · · ·Z[J̃m̃]

∣∣∣Z[J ]Z[J1] · · ·Z[Jm]
〉
.

(2.10)

Since the span of the bra-vectors in (2.10) is dense in HBU, we may write the action of

such operators as

Ẑ[J ]
∣∣∣Z[J1] · · ·Z[Jm]

〉
=
∣∣∣Z[J ]Z[J1] · · ·Z[Jm]

〉
, (2.11)

extending the action of such operators to the full Hilbert space HBU by continuity5.

For later use, we note that (2.11) implies that our defining states may be created by

acting with the Ẑ[J ] operators on the Hartle-Hawking no-boundary state,∣∣∣Z[J1] · · ·Z[Jm]
〉

= Ẑ[J1] · · · Ẑ[Jm]
∣∣∣HH〉, (2.12)

and thus by combining (2.5) and (2.11) that we may identify our original path integral

as computing correlators in
∣∣∣HH〉 as advertised earlier:〈

Z[J1] · · ·Z[Jm]
〉

=
〈

HH
∣∣∣Ẑ[J1] · · · Ẑ[Jm]

∣∣∣HH
〉
. (2.13)

We also see that the Hermitian conjugate of Ẑ[J ] is given by taking the CPT conjugate

of the source:

Ẑ[J ]
†

= Ẑ[J∗] (2.14)

5Strictly speaking, this is the case for bounded functions of the Z[Ji]. As usual, unbounded

operators can be defined only on somewhat smaller domains.
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Thus far, we have really defined the Ẑ[J ] as operators on the baby universe pre-

Hilbert space (before taking the quotient by null vectors (2.9)). To show that Ẑ[J ] is

well-defined on HBU, we must show that it maps null states to null states. But this

follows immediately from either (2.14) or (2.12). In particular, for any null state
∣∣N 〉

and an arbitrary state
∣∣Ψ〉, we may define

∣∣Ψ′〉 = Ẑ[J∗]
∣∣Ψ〉 to write〈

Ψ
∣∣Ẑ[J ]

∣∣N 〉 =
〈
Ψ′
∣∣N 〉 = 0. (2.15)

The last equality follows from the fact that
∣∣N 〉 is null, and since

∣∣Ψ〉 is arbitrary we

see that Ẑ[J ]
∣∣N 〉 is also null as desired.

The set of operators Ẑ[J ] for all possible J turns out to have a powerful set of

properties. Firstly, since the states
∣∣Z[J1] · · ·Z[Jm]

〉
are unchanged by permutations of

the sources Ji, it follows immediately from (2.11) that all Ẑ[J ] mutually commute6:[
Ẑ[J ], Ẑ[J ′]

]
= 0. (2.16)

In particular, this implies that each Ẑ[J ] is normal (that is, it commutes with its

Hermitian conjugate), so that we may apply the spectral theorem. It then follows

from (2.16) that the Hilbert space HBU has a basis of orthonormal states |α〉 which are

simultaneous eigenvectors for all Ẑ[J ] operators:

Ẑ[J ]|α〉 = Zα[J ]|α〉 ∀J. (2.17)

Following [55], we call these α-eigenstates, or α-states for short. The spectrum

{Zα[J ]}α of Ẑ[J ] may be either discrete or continuous. In the latter case the |α〉
are not normalisable states, but are instead delta function normalized. However, for

simplicity we use notation in either case as if |α〉 are normalisable eigenvectors, writing

〈α′|α〉 = δα′α , (2.18)

leaving the appropriate modifications for continuous spectrum implicit.

It turns out that the set {Ẑ[J ]} for all possible J in fact defines a complete com-

muting set of operators on HBU, as the state |α〉 is determined up to a phase by its

eigenvalues Zα[J ]. To see this, note that we can determine all matrix elements of |α〉
via 〈

Z[J1] · · ·Z[Jn]
∣∣∣α〉 =

〈
HH

∣∣∣Ẑ[J1]
†
· · · Ẑ[Jn]

†∣∣∣α〉
= Zα[J∗1 ] · · ·Zα[J∗n]

〈
HH

∣∣α 〉. (2.19)

6A similar result was derived in [55–57] using an additional assumption about locality of induced

couplings. Crucially, this assumption played no role in our argument above.
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This means that the α-states define a preferred orthonormal basis for HBU; we can even

fix phases by choosing
〈
HH
∣∣α〉 > 0.

The above calculation of the matrix elements also shows that the Hartle-Hawking

state has non-zero overlap with every α-state, 〈HH|α〉 6= 0. Otherwise |α〉 has vanishing

overlap with a dense set of states, and hence must be the zero state. If we define pα by

these overlaps according to

pα =
|〈HH |α 〉|2

〈HH |HH 〉
, . (2.20)

we find

pα > 0,
∑
α

pα = 1, (2.21)

where the second follows from completeness and orthonormality of the α basis. Now,

by inserting complete sets of α-states, we can compute the general amplitude (2.1):〈
Z[J1] · · ·Z[Jn]

〉
=
∑

α0,α1,...,αn

〈
HH

∣∣α0

〉〈
α0|Z[J1]

∣∣α1

〉
· · ·
〈
αn−1|Z[Jn]

∣∣αn〉〈αn|HH
〉

= Z
∑
α

pαZα[J1] · · ·Zα[Jn]. (2.22)

The normalising factor Z is the norm of the Hartle-Hawking state (2.7).

Equation (2.22), along with (2.21), tells us that a gravitational path integral (2.1)

is quite generally compatible with an ensemble interpretation, exemplified by the ma-

trix ensemble dual to JT gravity in [62], and analogous to the random couplings of

[55, 56]. Specifically, the parameters α label the various theories in the ensemble, the

eigenvalues Zα[J ] give definite values for observables in the theory associated with the

particular label α, and pα gives the probability of selecting α from the ensemble. The

states |α〉 making up our preferred eigenbasis of HBU are in one-to-one correspondence

with members of the ensemble. A less extreme example of α-states is provided by the

‘eigenbranes’ described in [82] in the context of JT gravity, which act to constrain the

eigenvalues of Ẑ[J ], thus partially diagonalizing these operators. Note that we arrived

at a classical probability distribution because the relevant operators are mutually com-

muting (2.16). The only property required of the gravitational path integral (besides

its existence) was reflection positivity, to guarantee nonnegative probabilities.

With our new Hilbert space point of view, it is now clear that the ensemble de-

scribed above is not unique. Instead, through (2.13) it was associated with the implicit

choice of the Hartle-Hawking state in HBU. While the Hartle-Hawking state is a par-

ticularly simple and natural choice, we are nevertheless free to select any state we like.
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In particular, if the initial state of the baby universes is an α-state, this selects a single

member of the ensemble so that amplitudes factorize:〈
α
∣∣Ẑ[J1]Ẑ[J2]

∣∣α〉 =
〈
α
∣∣Ẑ[J1]

∣∣α〉〈α∣∣Ẑ[J2]
∣∣α〉 = Zα[J1]Zα[J2]. (2.23)

Any other state |Ψ〉 is a superposition of α-states, and describes an ensemble with prob-

abilities pα = |〈α|Ψ〉|2. Classical probabilities are sufficient to describe the ensemble,

since relative phases between different α-states in the superposition are irrelevant for

correlation functions of the commuting operators Ẑ[J ]. In other words, with respect to

the algebra of the Ẑ[J ], the α-states define superselection sectors.

If the path integral (2.1) already defines factorising amplitudes, so that our theory

of gravity has a single boundary dual, we have a trivial special case of the formalism

described here. In that case, the operators Ẑ[J ] are constants Z[J ], and the Hilbert

space of closed universesHBU is one-dimensional, spanned by the Hartle-Hawking state,

which is also the unique α-state. We discuss this possibility further in section 6.

2.4 More Hilbert spaces

The above discussion concerned the Hilbert space HBU of closed ‘baby’ universes. We

constructedHBU by cutting amplitudes in such a way that any given asymptotic bound-

ary lies completely on one side of the cut. We now generalize this construction to allow

cuts that intersect one or more components of the asymptotic boundary, thus splitting

such boundary components into two parts. This gives us many different Hilbert spaces

depending on the boundary conditions at the intersection, and in particular on the

choice of a (d − 1)-dimensional (perhaps oriented) spatial boundary geometry Σ. We

thus call the resulting Hilbert space HΣ, leaving implicit the other sources J on Σ.

Note that Σ can have any number of connected components, and if Σ is empty we find

again the Hilbert space HΣ=∅ = HBU of closed baby universes described above.

The construction ofHΣ proceeds much as forHBU, except that in addition to closed

asymptotic boundary conditions denoted by Z[J ] we also have objects ψ[J ] defining

boundary conditions on a piece M of an asymptotic boundary with ∂M = Σ. As

before, the manifoldM, and in particular its boundary Σ, is implicitly included in the

sources J . For example, in the right panel of figure 2, M is the solid black semicircle

forming the past asymptotically AdS boundary and Σ consists of the right and left

endpoints. In a dual interpretation, ψ[J ] would define a state on the CFT Hilbert

space with spatial geometry Σ, as the wavefunction for a given CFT field configuration

on Σ would be computed by a path integral on M with sources J .

As before, we may choose M to be connected. Note that this does not imply

Σ = ∂M to be connected. When Σ is not, it can be useful to write Σ as the disjoint
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union Σ = Σ1 t · · · t Σm of components Σi (where the ordering of the components is

meaningful, in case they have the same geometry). Generalizing (2.3), we then have

states ∣∣∣ψ[J1] · · ·ψ[Jm]Z[J ′1] · · ·Z[J ′n]
〉
∈ HΣ, (2.24)

where ψ[Ji] is associated with component Σi for any source J . While this notation is

useful, it is also somewhat awkward if we take a given ψ[Ji] to be associated with a

connected Mi, whose boundary ∂Mi = Σi may again be disconnected. As a result,

one will sometimes need to use a number of distinct decompositions Σ = Σ1 t · · · tΣm

(perhaps with different values of m) for a given HΣ.

The inner product on HΣ generalizes (2.5) in a natural way if we note that a

boundary condition ψ[J̃i] in the ‘bra’ (on some M̃i with ∂M̃i = Σi) can be paired with

a boundary condition ψ[Ji] in the ‘ket’ (again on some Mi with ∂Mi = Σi) to define

a boundary condition Z[J̃∗, J ] associated with the closed boundary manifold M̃∗
iMi

constructed by taking the manifold M̃∗
i (formed from M̃i by reversing the orientation)

and sewing M̃∗
i to Mi along Σi. In Z[J̃∗, J ], ∗ again denotes CPT conjugation of

sources, and the sources on M̃∗M are given locally by J̃∗, J . One may also wish

to restrict the allowed sources to vanish sufficiently quickly at Σi so that the sources

defined on M̃iMi by such sewings are sufficiently smooth.

It is important that the above sewing is uniquely defined even when Σi admits

isometries. In particular, recall that the above discussion fixed a manifold Σ ⊇ Σi from

the beginning, and at no point was there a quotient by diffeomorphisms of Σ. The

individual points of Σ should thus be thought of as carrying definite labels, defining

the unique sewing of M̃ to M. In particular, the notation in (2.24) is not invariant

under reordering of the Σi.

We shall write the pairing as Z[J̃∗, J ] =
(
ψ[J̃ ], ψ[J ]

)
. This notation is chosen

be suggestive of an inner product (·, ·) of states in the dual CFT Hilbert space. The

distinguishability of points in Σ is motivated either by a dual CFT perspective, or from

familiar gravitational boundary conditions at asymptotically AdS boundaries. The

extended inner product is then defined by using the above pairing and and evaluating

the resulting path integral as before:〈
ψ[J̃ ]

∣∣∣ψ[J ]
〉

=
〈(

ψ[J̃ ], ψ[J ]
)〉

=
〈
Z[J̃∗, J ]

〉
(2.25)

We emphasize again that if Σ contains identical connected components Σ1,Σ2,

the components are treated as distinguished and canonically ordered. Thus in the

notation of (2.24),
∣∣ψ[J1]ψ[J2]

〉
6=
∣∣ψ[J2]ψ[J1]

〉
. While the norms of these states will

agree, the inner product of these states with generic other kets will not (for example,〈
ψ[J2]ψ[J1]

∣∣ψ[J1]ψ[J2]
〉

=
〈
Z[J∗2 , J1]Z[J∗1 , J2]

〉
6=
〈
Z[J∗2 , J2]Z[J∗1 , J1]

〉
, even if Σ1 = Σ2

– 17 –



so this pairing makes sense). This is a special case of the statement that states need

not be invariant under symmetries of Σ.

As in the discussion of HBU, the structure above is properly described as being

pre-Hilbert space. The actual Hilbert space HΣ is then constructed as a completion,

which includes a quotient with respect to the space of null vectors. This procedure

succeeds when the path integral is appropriately reflection positive, by which we mean

that the inner product it defines on the pre-Hilbert space is positive semi-definite. The

inner product on the final HΣ is then positive definite as desired. Note that reflection

positivity on HΣ is an additional requirement we impose on the path integral, not

necessarily implied by reflection positivity on HBU; this will prove to be relevant for

the toy model discussed in section 3.

As before, we have operators Ẑ[J ] acting on the Hilbert spacesHΣ, and in particular

which preserve the space of null states in the pre-Hilbert space for the same reason as

before. Again, these operators mutually commute. But now we also have a plethora

of new operators which can map between Hilbert spaces with different boundaries. In

particular, if ψ[J ] is associated with M having ∂M = Σ, then for any Σ̃ there is an

operator

ψ̂[J ] : HΣ̃ → HΣtΣ̃, (2.26)

with ψ̂[J ]
∣∣∣ψ̃[J̃ ]Z[J ′1] · · ·Z[J ′n]

〉
=
∣∣∣ψ[J ]ψ̃[J̃ ]Z[J ′1] · · ·Z[J ′n]

〉
, (2.27)

where in Σ t Σ̃ we define the components of Σ to be ordered before components of Σ̃.

We may use (2.26) even when M,M̃ are disconnected. Note, however, that (when

Σ 6= Σ′) it does not make sense to ask whether ψ̂[J ], ψ̂[J ′] commute, as ψ̂[J ]ψ̂[J ′] maps

HΣ̃ → HΣtΣ′tΣ̃, while ψ̂[J ′]ψ̂[J ] maps HΣ̃ → HΣ′tΣtΣ̃.

Nevertheless, one can build a dense set of states inHΣ by acting with such operators

on H∅ = HBU. As a result, the fact that ψ̂[J ] preserves the null space, and thus is truly

well-defined on HΣ, follows from (2.25) and the corresponding property for Ẑ[J̃∗, J ].

The adjoint operator ψ̂[J ]† maps from HΣ̃tΣ to HΣ̃ by taking the boundary con-

ditions defined by the state on which it acts, and gluing to boundary conditions of the

CPT conjugate source J∗ along the manifold Σ.

Since the Ẑ[J ] commute, it is again useful to diagonalize them using α-states. Thus

the Hilbert space splits as

HΣ =
⊕
α

Hα
Σ. (2.28)

One can explicitly build the spaces Hα
Σ from the α-states of HBU, as we may define∣∣∣ψ[J1] · · ·ψ[Jm];α
〉

:= ψ̂[J1] · · · ψ̂[Jm]
∣∣∣α〉 ∈ Hα

Σ, (2.29)
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and, the states (2.29) are dense in Hα
Σ. In the special case Σ = ∅ corresponding to

HBU, each Hα
∅ is one dimensional, consisting of multiples of |α〉. It follows that all of

our boundary operators leave α unchanged. For example, evaluating the analogue of

(2.25) in α-states we have〈
ψ[J2];α2

∣∣ψ[J1];α1

〉
= Zα1 [J∗2 , J1] δα1α2 . (2.30)

It also follows that Ẑ[J ] commutes with ψ̂[J̃ ].

Finally, note that there is a natural map Υ from HΣ1 ⊗ HΣ2 into HΣ1tΣ2 defined

by concatenation of sources:∣∣ψ[J11] · · ·ψ[J1,mΣ1
]Z[J ′11] · · ·Z[J ′1,n1

]
〉
⊗
∣∣ψ[J21] · · ·ψ[J2,mΣ2

]Z[J ′21] · · ·Z[J ′2,n2
]
〉

7→
∣∣ψ[J11] · · ·ψ[J1,mΣ1

]ψ[J21] · · ·ψ[J2,mΣ2
]Z[J ′11] · · ·Z[J ′1,n1

]Z[J ′21] · · ·Z[J ′2,n2
]
〉
.

(2.31)

This maps acts nicely within each α-sector, takingHα
Σ1
⊗Hα

Σ2
intoHα

Σ1tΣ2
. In particular,

since acting on |HH〉 with the Ẑ[J ] yields a dense set of states in HBU, one may

write |α〉 = fα({Z[Ji]})|HH〉 for some function fα that takes the value 1 on arguments

{Zα[Ji]} but which vanishes on {Zα′ [Ji]} for all α′ 6= α. One then finds∣∣α〉⊗ ∣∣α′〉 = fαfα′
∣∣HH

〉
= δα,α′

∣∣α〉, (2.32)

and more generally

Υ : Hα
Σ1
⊗Hα′

Σ2
→ δα,α′Hα

Σ1tΣ2
. (2.33)

Here we have used the notation cH for non-negative real c to denote a Hilbert space

with inner product c times that of H. In particular, cH = {0} for c = 0. We will use

Υα to denote the restriction of Υ to diagonal tensor products of the form Hα
Σ1
⊗Hα

Σ2
.

It is natural to attempt to interpret Hα
Σ as the Hilbert space of a dual CFT Cα

on Σ; this is the natural formulation of an isomorphism between bulk and boundary

Hilbert spaces in the context of ensembles and baby universes. In this case, we would

expect Υα to be an isomorphism, since this property would certainly hold true in a

local dual theory. But this is not always the case, as the map may not be surjective; we

will discuss an explicit example in section 3.6. The failure of Υα to be an isomorphism

is a precise version of another potential ‘factorisation problem’ [83–85], which differs

from the partition function factorisation problem discussed in the introduction and the

start of this section. This new issue is naturally associated with spatial wormholes

while (2.2) is related to spacetime wormholes. In particular, the factorization problem

of [83–85] occurs when there are two-sided black hole states with a spatial wormhole

(Einstein-Rosen bridge) which cannot be represented as superpositions of products
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of ‘microstates’ in the corresponding one-sided Hilbert spaces. For example, in a bulk

theory with a standard Maxwell field but no charged particles, there are eternal charged

black holes but no one-sided counterparts. An extreme version appears in pure JT

gravity, which has a two-boundary Hilbert space but no single-sided Hilbert space. We

expect that this feature is an artefact of simple toy models, and would be absent in

more realistic theories.

3 Example: a very simple topological theory

This section further explores the structure described in section 2 in very simple theories

of two-dimensional gravity. Indeed, the model described in section 3.1 is plausibly

the simplest possible such theory. Our models are inspired by recent work studying

spacetimes of nontrivial topology in JT gravity [62, 86, 87], along with the addition of

‘end-of-the-world brane’ dynamical boundaries [49]. We further simplify that class of

models by removing any notion of a dynamical metric or dilaton, leaving a theory of

topology alone. The resulting models are tractable enough to be solved exactly, and

for many details to be made explicit. They thus give a surprisingly clean illustration

of the ideas of section 2, and demonstrate the type of results to which such ideas can

lead.

We begin by presenting the simplest model (without end-of-the-world branes) in

section 3.1. This theory allows only one boundary condition Z, associated with a

single operator Ẑ of the class described in section 2.3, with the path integral defined by

a single bulk parameter S0 determining the suppression of nontrivial topology, along

with a (somewhat ad hoc) parameter S∂ associated with boundaries, whose preferred

value S∂ = S0 will be determined later by a consistency analysis in section 3.7. We

then evaluate its amplitudes in section 3.2 and construct the Hilbert space of closed

universes HBU in section 3.3. The most interesting output of this model is that the

spectrum of Ẑ turns out to be non-negative and discrete, and in fact takes non-negative

integer values for S∂ = S0, compatible with an interpretation as the dimension of a dual

Hilbert space. The model with end-of-the-world branes is then described in section 3.4,

and its α-states are described in section 3.5. Here we find that, no matter how many

species k of end-of-the-world brane states we allow, for S∂ = S0 all α-states define

an inner product on end-of-the-world brane states with rank equal to or less than

the eigenvalue Zα of Ẑ, compatible with states in a dual Hilbert space of dimension

Zα. This remarkable compression of the Hilbert space illustrates the importance of

understanding the null states 2.9 in extracting the correct physics. It also shows in this

model that results analogous to the Rényi entropy computations of [48, 49] will hold not
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just for typical members of the ensemble defined by the Hartle-Hawking no-boundary

state, but in fact for all allowed α-states.

We then return to the ad hoc parameter S∂ in section 3.7. First, we describe

how different choices for this parameter modify the model. We find that for generic

S∂ (and in particular S∂ = 0) the end-of-the-world brane models fail to be reflection

positive, and find the set of S∂ for which reflection positivity holds true. For values of

S∂ satisfying reflection positivity for any number k of end-of-the-world brane states, the

spectrum of Ẑ is a subset of the non-negative integers and the rank of the end-of-the-

world brane Hilbert space is bounded as above. In particular, the reflection positive

models have all the properties required to interpret Zα as the dimension of a Hilbert

space which contains the end-of-the-world brane states.

3.1 A theory of topological surfaces

We now consider a theory of purely topological two-dimensional gravity in which space-

time is a two-dimensional manifold7 (surface), but the only additional structure we in-

troduce is an orientation. We thus have neither a spacetime metric nor the conformal or

complex structure that would appear in the standard model of topological gravity [88].

The histories that can appear in a path integral are then the set of oriented topological

surfaces with boundaries dictated by the relevant boundary conditions. This set is dis-

crete and (for each connected component) is famously classified by genus and number

of circular boundaries [89, 90]. Since there is no possibility to add sources in this model,

we simply use Z to denote the boundary condition on any circular boundary.8

In this first model, the only boundaries are those fixed by boundary conditions. As

described in section 2.4, such boundaries should be thought of as distinguishable even

when their boundary conditions coincide. As a result, the space of allowed configura-

tions is the set of oriented surfaces with labelled boundaries, and two such configurations

are considered equivalent only when they are related by a diffeomorphism that preserves

each boundary separately.

We therefore define our path integral as a sum over such diffeomorphism classes

of surface M . Nevertheless, residual effects of diffeomorphism invariance can lead to a

nontrivial measure µ(M) on this space. This can arise when a group Γ(M ) of residual

gauge symmetries remains after gauge fixing diffeomorphisms. This naturally leads to

symmetry factors in the measure, of the form µ(M) = 1
|Γ(M)| . One may therefore expect

7For definiteness, we take smooth (not just topological) manifolds, and accordingly use the language

of equivalence under diffeomorphisms rather than homeomorphisms.
8We take the set of boundary conditions to be a vector space, so that a general boundary condition

assigns a (perhaps complex) weight to each non-negative integer n enumerating the possible numbers

of circular boundaries.
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to write our path integral in the tentative form∫
DΦ e−S[Φ] :=

∑
Surfaces M

µ(M) e−S[M ], (3.1)

where we sum over surfaces M obeying the appropriate boundary conditions, up to

diffeomorphisms acting trivially on the boundaries, weighted by an action S[M ].

One would ideally like to derive the measure factor µ(M) from a more complete

model. Here, we will be content to define the model with a well-motivated choice of mea-

sure that leads to natural results. Since boundaries are distinguishable, and since any

two surfaces related by boundary-preserving diffeomorphisms are already considered

equivalent, we will assume the trivial measure µ(M) = 1 for any connected manifold.

It then remains to discuss only contributions to µ(M) from boundary-preserving dif-

feomorphisms that interchange the connected components of M . These can act only

on compact connected components (i.e., the ones that have no boundary). With this

understanding, the detailed form of µ(M) turns out to have little effect on the physics

of interest. It leads only to a change of the ‘cosmological partition functon’ Z, the

sum over compact universes, which is an overall normalisation of amplitudes (though

at the end of section 3.3 we will encounter a situation in which our choice of measure is

physically important). Nevertheless, we regard diffeomorphisms that permute compact

connected components (necessarily with the same genus g) as residual gauge symme-

tries, and divide by the number of such permutations in the measure. This means that,

if M has mg connected components of genus g with no boundary for each g, we have

µ(M) =
1∏
gmg!

. (3.2)

Following the principles of effective field theory, we should now write down the most

general action allowed by the degrees of freedom. Fortunately, with only the topological

degrees of freedom available to us, there is a unique local such action S(M) = −S0χ(M),

proportional to the Euler characteristic χ of spacetime9, with a unique free parameter

S0. This is the Einstein-Hilbert action in two dimensions, and is the topological term

of the action in JT gravity.

Despite the apparent uniqueness for the action, we now introduce an additional

term −S∂|∂M |, where |∂M | denotes the number of circular boundaries of M . As

forewarned in the introduction to this section, for the moment the extra parameter

9Here we take locality to mean invariance under cutting and gluing surfaces. A precise version

of the above statement is then that exp(S0χ) is the most general form for the amplitudes of a two-

dimensional topological quantum field theory (TQFT) with trivial (one-dimensional) Hilbert space on

the circle.
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S∂ appears completely ad hoc. In particular, while this is an intrinsic function of

asymptotic boundaries, it is not a local counterterm. Indeed, as stated above, we expect

that the unique local theory of our form is given by setting S∂ = 0. We discuss how this

factor may arise in 3.7 below, perhaps most simply by introducing a new local degree of

freedom residing on boundaries. For now we simply note that the parameter effectively

just rescales the definition of Z; i.e., it can be removed by introducing Z̃ = eS∂Z and

replacing each Z in (3.1) by Z̃.

Since all values of S∂ are related by this scaling, it suffices to discuss only a single

value in detail, and then to use the above scaling to understand all other values. Until

section 3.7, we will thus confine discussion to the particularly simple case S∂ = S0. As

an a posteriori justification, we will show in section 3.7 that the end-of-the world brane

models fail to be reflection positive when S∂ = 0, and S∂ = S0 is the most natural

choice to cure this failure.

Our action is thus given by

S(M) = −S0χ(M)− S∂ n(M), (3.3)

where we choose S∂ = S0 (until section 3.7). (3.4)

The practical simplification of choosing S∂ = S0 is that it precisely cancels boundary

contributions to χ in the action. The amplitudes in our path integral thus take the

form 〈
Zn
〉

=
∑
M with
|∂M |=n

µ(M)eS0χ̃(M) , (3.5)

which we have written in terms of a modified Euler characteristic χ̃ that does not count

boundaries and which is given simply by

χ̃ =
∑

Connected
components

(2− 2g). (3.6)

Here g is the usual genus of each connected component that counts handles.

It will be useful below to sometimes use an alternate presentation of the sum (3.5).

Instead of summing over surfaces with labeled boundaries, we can write
〈
Zn
〉

as a sum

over ordered lists ML of connected manifolds, and also where we choose not to label

the boundaries. The number of ways to label the boundaries is then accounted for by

including a separate factor of the multinomial coefficient n!∏
i ni!

, where ni is the number

of boundaries in the ith entry of the list ML. As is well known, n!∏
i ni!

gives precisely the

number of ways to arrange n boundaries into lists of subsets that have ni boundaries

in the ith subset. For a list of length m, including a factor of 1
m!

then accounts for
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the fact that the components are not ordered in the original sum (3.5), and also for

the factor of µ(M) that arises when some items in the list both coincide and have no

boundaries (so that exchanging these items neither generates a new term in (3.5) nor

generates a new partition of the n boundaries). Thus we may rewrite (3.5) as〈
Zn
〉

=
∑

Ordered lists ML
of connected surfaces

with n boundaries

n!

m!
∏

i ni!
eS0χ̃ , (3.7)

where n, m, and ni are as above.

Before computing the amplitudes (3.5), it is useful to comment further on the

interpretation of Z in terms of a putative dual 0 + 1-dimensional quantum mechanics

(which we will sometimes call a CFT in analogy with AdS/CFT). Each Z would be

naturally associated with the path integral of this quantum mechanics on the circle,

which would describe the partition function Tr e−βH for a circle of length β. But since

we have no metric, there is no notion of boundary length β, and invariance under

diffeomorphisms of the boundary implies a vanishing Hamiltonian H = 0. This means

we have a topological quantum mechanics (a one-dimensional TQFT) where the only

observable is the trace of the identity operator, which is the dimension of the Hilbert

space:

Z
?
= TrHCFT

1 = dimHCFT (3.8)

A unitary dual quantum mechanics is therefore characterised by Z taking a value in

the natural numbers N (or perhaps by Z being infinite). In the presence of spacetime

wormholes connecting these boundaries, it would thus seem natural to find that Z is

a random variable taking nonnegative integer values. We will see below that this is

precisely the case for our model.

3.2 Evaluating the amplitudes

We now solve for the amplitudes
〈
Zn
〉

defined above. We begin by computing the

no-boundary partition function Z as in equation (2.7). This is the case n = 0, given

by the sum over arbitrary compact spacetimes without boundary. For this, we first

compute the sum λ over connected compact surfaces, which are classified by genus.

The measure is trivial for a connected surface, i.e. µ(M) = 1, so we have

λ :=
∑

Connected
compact surfaces

eS0χ =
∞∑
g=0

eS0(2−2g) =
e2S0

1− e−2S0
. (3.9)

With our amplitudes defined by (3.5), and in particular excluding boundaries from

the count in the Euler character, the value of λ is always the amplitude for any con-
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nected component of spacetime (with fixed but arbitrary boundaries) after summing

over connected topologies. This property determines all amplitudes of the model.

In the usual way, one may write Z as the exponential of the sum λ over connected

surfaces. For this, it is important that we include symmetry factors in our definition

of the measure µ(M). Indeed, the exponentiation is particularly explicit by using (3.7)

with n = ni = 0, in which lists of length m contribute 1
m!

times the mth power of the

sum in (3.9). We thus find

Z =
〈
1
〉

= eλ . (3.10)

In particular, in our model the path integral defined by the sum over topologies con-

verges.

We now introduce boundaries. To evaluate 〈Zn〉, it is simplest to compute a gen-

erating function 〈
euZ
〉

=
∞∑
n=0

un

n!

〈
Zn
〉
, (3.11)

and to extract the amplitudes from a power series in the ‘chemical potential’ u. Again,

we wish to write (3.11) as the exponential of a sum over connected geometries. This is

precisely the usual combinatorics familiar from Feynman diagrams, but it can also be

seen explicitly from (3.7) which gives

〈
euZ
〉

=
∑

Ordered lists ML
of connected surfaces

u
∑
i ni

m!
∏

i ni!
eS0χ̃(ML) , (3.12)

where m is the number of surfaces in the list ML, and ni for i = 1, . . .m is the number

of boundaries of the ith surface in the list. Since χ̃ for the disconnected surface ML is

the sum of χ̃ for the individual components, this disconnected pieces exponentiate,

log
〈
euZ
〉

=
∞∑
n=0

∑
Connected M
n boundaries

un

n!
eS0χ̃(M). (3.13)

Furthermore, since the factor un

n!
is determined entirely by n while the factor eS0χ̃(M)

depends only on the genus g, the double sum in (3.13) may be written as the product

log
〈
euZ
〉

=

(
∞∑
g=0

eS0
˜χ(M)

)(
∞∑
n=0

un

n!

)
= λeu. (3.14)

Here the last equality has used (3.9) to identify λ with the sum over g. We can extract

the correlators
〈
Zn
〉

by expanding the generating function exp (λeu) in powers of u.
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We pause to note that there is a more direct way to compute the amplitudes
〈
Zn
〉
.

Here we first divide by Z to remove contributions from closed manifolds and thus any

mention of µ(M). What remains is then just to simply count the relevant configurations

remaining in (3.5). Such configurations are classified according to which of the n

boundaries lie in the same connected component of spacetime, and thus by a partition

of the set {1, 2, . . . , n} labelling the boundaries. For each connected component of

spacetime, it then remains only to sum over genus, giving a factor of λ from (3.9). We

may thus compute the amplitudes from a counting of partitions, graded by the number

of subsets of {1, 2, . . . , n} that the partition defines:

Z−1
〈
Zn
〉

=
∑

Partitions p
of {1,2,...,n}

λ(Number of subsets in p) = Bn(λ). (3.15)

Here Bn is known as the Bell polynomial of order n (BellB[n,λ] in Mathematica; also

called Touchard polynomial). In agreement with our previous result, these polynomials

are indeed known to have the generating function exp(λ(eu − 1)) as in (3.14) after

dividing by Z = eλ.

To illustrate the counting in detail, consider the example of the third moment
〈
Zn
〉
;

i.e., the case n = 3. There are five distinct ways to divide the three boundaries into

connected components:

Z−1
〈
Z3
〉

= + + + +

= λ3 + 3λ2 + λ

(3.16)

Since the boundaries are distinguishable, the three configurations with two connected

components are counted separately, and there are no explicit symmetry factors in the

first line above.10 The alternative counting used in (3.7) would instead list each topolog-

ically distinct term in (3.16) only once, but would accompany each term by the number

NL of distinct ordered lists that one can construct from the connected components and

the factor of n!
m!

∏
ni!

from (3.7). This gives the identical result

Z−1
〈
Z3
〉

=
3!

3!(1!)3
+

2 3!

2!2!1!

3!

1!3!

= λ3 + 3λ2 + λ,

(3.17)

where the first term has (NL,m!, n!∏
ni!

) = (1, 3!, 3!
1!1!1!

) since the 3 components are all

identical but have only one boundary each, the second term has (NL,m!, n!∏
ni!

) =

10For indistinguishable boundaries the answer would be multiplied by 1
3! , or more generally by 1

n!

for n boundaries).
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(2, 2!, 3!
2!1!

) since the two components are not homeomorphic but the cylinder has 2

boundaries, and the third term has (NL,m!, n!∏
ni!

) = (1, 1, 3!
3!

) since all 3 boundaries lie

in the single connected component.

We now interpret the amplitudes in terms of a probability distribution where Z is

regarded as a random variable. To do this, we divide the generating function
〈
euZ
〉

by

the normalisation factor Z and write the result as the Taylor series for the exponential:

Z−1
〈
euZ
〉

=
∞∑
d=0

pd(λ)eud, pd(λ) = e−λ
λd

d!
. (3.18)

Extracting the coefficient of un

n!
from (3.18) gives

Z−1 〈Zn〉 =
∞∑
d=0

dnpd(λ), pd(λ) = e−λ
λd

d!
, (3.19)

showing that all moments can be generated from a single distribution for Z with support

on nonnegative integers d having manifestly non-negative probabilities Pr(Z = d) =

pd(λ). We thus identify Z as a Poisson random variable with mean λ. We may also

read this off directly from (3.14) using the fact that exp [λ(eu − 1)] is the moment

generating function for a Poisson random variable. Alternatively, one can see this

from the amplitudes (3.15) using the fact that Bn is the nth moment of the Poisson

distribution. The appearance of the Poisson distribution can be understood from the

result that all connected components of spacetime contribute the same amplitude λ

after summing over genus, independent of the number of boundaries. This corresponds

to the fact that the cumulants of the Poisson distribution (that is, the completely

connected correlation functions) are all equal to λ.

This is a surprising and remarkable result. As reviewed in section 5 below, a

perturbative description of the theory following [57] (based on a Fock space labelled

by number of baby universes and with wormholes treated as a small correction) would

have led to the expectation that Z should have a continuous distribution supported on

all real numbers. Instead, from our exact nonperturbative solution we find that the

support of Z is discrete, and limited to nonnegative values.

Furthermore, for our choice S∂ = S0 (or more generally for S∂ = S0 + log n for any

positive integer n), since Z takes nonnegative integer values d we find that the result is

compatible with the interpretation (3.8) in terms of an ensemble of dual Hilbert spaces.

Although at this stage this result appears to depend on fine tuning the parameter S∂,

we will see in section 3.7 that full consistency (in particular full reflection positivity)

of the model in fact favours precisely the relation S∂ = S0 + log n.

As a final comment, it is interesting that the relation (3.9) between the ‘bare’

parameter eS0 and the physically observable parameter λ is not injective, but is instead
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two-to-one. This means that there for a given value of eS0 , there is a second value eS̃0

that gives rise to the same λ, and hence the same theory. In particular, we find

e−S̃0 = 1− e−S0 . (3.20)

This is a strong–weak self-duality of the model in the sense that the semiclassical limit of

large S0 suppresses connected topologies (and thus describes weakly coupled universes),

but yields the same theory as a very small value of the dual S̃0. At the self-dual value

eS0 = 2 we have λ = 4, and smaller values of λ correspond to complex couplings, with

e−S0 ∈ 1
2

+ iR. From the point of view of the path integral in a semiclassical expansion

it is surprising that such a complex coupling gives rise to reflection positive amplitudes,

and hence to a unitary Hilbert space and positive probabilities.

3.3 The baby universe Hilbert space

We can now give a complete description of the Hilbert space of closed universes HBU.

Every state can be written as a linear combination of
∣∣Zm

〉
created by inserting m

boundaries in the past, with inner product〈
Zn
∣∣∣Zm

〉
=
〈
Zm+n

〉
= eλBm+n(λ)

=
∞∑
d=0

λd

d!
dm+n.

(3.21)

A more general state
∑∞

n=0 cn|Zn〉 can then be represented as |f(Z)〉, where f is a

function with Taylor coefficients cn, which grow slowly enough for convergence. De-

manding that the partial sums
{∑N

n=0 cn|Zn〉
}
N

form a Cauchy sequence guarantees

that f defines an entire analytic function (see appendix A.1). Before considering the

details of the inner product, we are thus led to the idea that HBU is a space of functions

f : R→ C (or perhaps f : C→ C), with argument Z.

We can read off the extension of the inner product to states |f(Z)〉 from the last

line in (3.21): 〈
g(Z)

∣∣∣f(Z)
〉

=
∞∑
d=0

λd

d!
g(d)f(d). (3.22)

This is (up to normalisation factor eλ) the covariance of random variables f(Z), g(Z)

where Z is Poisson distributed. But the salient feature of (3.22) is that it depends only

on the vales of f and g evaluated at non-negative integers (also known as the set N of
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natural numbers). In particular, we find that the state
∣∣f(Z)

〉
has zero norm whenever

the function f vanishes on N:∥∥∥ ∣∣f(Z)
〉 ∥∥∥2

= 0 ⇐⇒ f(d) = 0 for all d ∈ N. (3.23)

To form the Hilbert space HBU, we must quotient by such null states as in (2.9). For

example, since sin(πZ) vanishes on N we have the otherwise surprising relation

|sin(πZ)〉 =
∞∑
n=0

(−1)nπ2n+1

(2n+ 1)!

∣∣Z2n+1
〉

= 0. (3.24)

More generally, for any f we have
∣∣ sin(πZ)f(Z)

〉
= 0, so in some sense the space

of null states is the same size as the total space before the quotient. Similarly, the

Hartle-Hawking state can be represented by the constant function f(Z) = 1, or more

generally by any function that has f(d) = 1 for all d ∈ N (for example, |HH〉 = |e2πijZ〉
for any integer j). To emphasise the impact of the quotient by null states, note that by

adding vectors of the form |Zn sin(πZ)〉 we can change any finite number of coefficients

cn (for n 6= 0) in the expansion of the state
∑∞

n=0 cn|Zn〉 at will. As a result, the only

physical information in any finite collection of coefficients cn is the overlap with the

Z = 0 eigenstate (given by c0).

These considerations reveal an enormous degeneracy in how states of HBU are

represented as sums of |Zn〉. We regard this degeneracy as a gauge equivalence. As

described in section 2.2 this gauge symmetry is a natural modification of diffeomorphism

invariance associated with allowing topology change in the functional integral. But

the enormous power of this seemingly natural modification comes as a surprise. This

indicates that the corrections to diffeomorphism invariance are not generic, but are

instead highly correlated. As a result, the corrections conspire to enhance the impact

of the gauge symmetry, and thus to produce the degeneracy observed above. Such

conspiracies call out for a more fundamental explantation, and we will see in sections

3.7 and 4 below that at least some of these conspiracies are in fact implied by reflection

positivity of our path integral.

In parallel with the treatment in section 2.3, we can now discuss the α-states of our

model. These are the eigenstates
∣∣∣Z = d

〉
of Ẑ, labelled by d ∈ N, and they must form

a basis for HBU. When expressed as a sum of the states |Zn〉 states, we may choose

coefficients defining the Taylor series of any analytic function taking a non-zero value

at Z = d but vanishing at other natural numbers, since multiplication by Z acts as

multiplication by the constant d on such a function. One of the infinitely many ways
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to represent such eigenstates states is then∣∣∣Z = d
〉

=

(
λd

d!

)−1/2 ∣∣∣∣ sin(πZ)

π(Z − d)

〉
, (3.25)

where the coefficient is chosen to enforce the normalisation〈
Z = d′

∣∣∣Z = d
〉

= δdd′ . (3.26)

Finally, we discuss the spacetime interpretation of our operator Ẑ and its eigen-

states
∣∣Z = d

〉
. From (3.22), note that projecting the states

∣∣f(Z)
〉

onto the (here,

one-dimensional) subspace where Ẑ takes the value d is equivalent to restricting the

sum on the right-hand side of (3.22) to the given eigenvalue d, or equivalently to terms

of order λd. But due to (3.9) (and the fact that the analogous equations are identical for

any fixed number n > 0 of boundaries on the connected surface), these give precisely

the contributions in (3.5) that arise from spacetimes with d connected components.

We thus find that working in the eigenspace with eigenvalue d is equivalent to restrict-

ing the sum over amplitudes to terms where the universe has precisely d connected

components11.

In other words, the operator Ẑ counts the number of connected components of

spacetime! This is quite surprising, since this is not a quantity we would naturally

associate with a Cauchy slice if we were to attempt to quantise by gauge fixing diffeo-

morphisms (unlike the number of connected components of space, which is a natural

observable when universes cannot split and join, but is not gauge invariant when they

can).

The α-states are designed to make amplitudes factorise (2.23), and it is interesting

to note how our model achieves this. To work in an α-state
∣∣Z = d

〉
, we can impose the

nonlocal constraint that spacetime has exactly d connected components. This does not

exclude wormhole configurations connecting multiple boundaries, but provides addi-

tional correlations between disconnected configurations of boundaries. It thus achieves

factorisation in a surprising way, which may be instructive for less simple models. Note

that our choice of symmetry factors on spacetimes without boundary, which otherwise

only acts to renormalise Z, is crucial for this simple description of α-state correlation

functions.

Since Ẑ takes values in N, HBU has a natural representation as a harmonic oscillator

Hilbert space in which Ẑ acts as a number operator.12 We can define the annihilation

11We thank Xi Dong for discussions on this point.
12This is not to be confused with the free Fock space description of section 5, in which Ẑ is a

harmonic oscillator position operator.
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operator a as acting to shift functions of Z,

a
∣∣f(Z)

〉
=
√
λ
∣∣f(Z + 1)

〉
, (3.27)

so that we have the relations

Ẑ = N = a†a ,

a|Z = 0〉 = 0 , and

|Z = d〉 =
1√
d!

(a†)d|Z = 0〉.
(3.28)

In this description, the Hartle-Hawking state is a coherent state, which can be repre-

sented as ∣∣HH
〉

= e
√
λa† |Z = 0〉. (3.29)

The distribution of the associated ensemble then follows from the well-known fact that

the number operator follows a Poisson distribution in a coherent state.

3.4 End-of-the-world branes

We now extend the model described above by introducing dynamical boundaries, which

(following [49]) we call end-of-the-world (EOW) branes. We choose to include an arbi-

trary number k of species of EOW brane, so each of these boundaries is labelled by an

index i ∈ {1, 2, . . . , k}. Equivalently, we can place a topological quantum mechanics

on the EOW branes, with zero Hamiltonian and a k-dimensional Hilbert space, so that

i labels an orthonormal basis of states in that Hilbert space. Apart from the species

label, the only local data on an EOW brane is an orientation compatible with the

spacetime it bounds.

Introducing the EOW branes has two effects. Firstly, they can appear as closed

boundaries in the sum over topologies, but this is largely unimportant, only acting to

change the value of λ so that it is no longer given by (3.9). More importantly, the

EOW branes allow us to impose a new class of possible boundary conditions. Namely,

we can specify that we have a boundary condition which is an oriented interval labelled

at its endpoints by EOW brane species i and j. Since the interval is oriented, we may

refer to it as having a past endpoint that creates an EOW brane of type i and a future

endpoint that destroys an EOW brane of type j. We refer to both past and future

labels as EOW brane sources. In a putative 0+1 dual, the condition that a boundary

creates an EOW brane with label i corresponds to the preparation of a certain 0+1

dual state ψi. We denote a boundary interval between EOW branes i and j by (ψj, ψi)

since the bulk path integral with this boundary condition should compute the inner
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Figure 4: A spacetime contributing to an amplitude
〈
(ψj, ψi)(ψi, ψj)Z

〉
. The solid

red lines indicate asymptotically AdS boundaries, and the dashed green lines are EOW

brane boundaries. The spacetime has two boundary components, each with the topol-

ogy of a circle. One (solid red circle at bottom) is a single circular asymptotically

AdS boundary (a Z-boundary). The other is formed by a pair of asymptotically AdS

segments connected by a pair of EOW brane segments to form a topological circle.

product between these states.

(ψj, ψi) =

j

i

(3.30)

Since the boundaries carry an orientation, the notation distinguishes bra-vectors from

ket-vectors so that (ψj, ψi) 6= (ψi, ψj); in general, these are CPT conjugate boundary

conditions. This coincides with the general notation introduced in section 2.2.

Including the ψi, the most general amplitude can now be written〈
Zm(ψj1 , ψi1) · · · (ψjn , ψin)

〉
. (3.31)

The associated boundary conditions for the path integral require m circular boundaries

without EOW brane sources and n additional interval boundary segments labelled ap-

propriately with EOW brane species. Since the EOW branes are dynamical, the path

integral is then computed by summing over all oriented surfaces whose circular bound-

aries are of the following three types: 1) circular EOW brane boundaries, each labelled

by an arbitrary species independent of all boundary conditions, 2) m circular bound-

aries without EOW brane labels as dictated by the number of Z’s in the amplitude,

and 3) additional circular boundaries formed by partitioning into subsets the oriented

intervals (ψj, ψi) dictated by the boundary conditions and, for each subset, forming a

circle by connecting the (ψj, ψi) segments using oriented EOW brane segments whose

species labels match the source labels at both endpoints. See figure 4 for an example.
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We now know the set of amplitudes to compute and the corresponding config-

urations over which we are to sum. It remains only to specify the measure on the

configurations. As before, the Euler characteristic is the unique local action without

introducing additional degrees of freedom. However, we will again include a parame-

ter S∂ associated with each circular boundary. We use the same S∂ for every circular

boundary, no matter how it is formed from asymptotic pieces and EOW branes. Again,

we will see in section 3.7 that this can be obtained by introducing additional local de-

grees of freedom which reside on both asymptotic and EOW brane boundaries, and

integrating them out. While this no longer corresponds to a simple scaling of our oper-

ators, we will nonetheless once again focus on the case S∂ = S0, resulting in an action

which counts only genus and not the number of boundary components, and comment

on the extension to other values in section 3.7.

It remains to specify the symmetry factors that will be the analog of µ(M) in (3.1).

In doing so, it is useful to note that, since all asymptotic boundaries are treated as dis-

tinguishable, they will not contribute to symmetry factors. The only indistinguishable

boundaries are those formed by circles involving EOW branes alone. Furthermore, such

circles are completely independent of the boundary conditions. They thus enter all of

our sums in precisely the same way as the genus g. The analogue of (3.5) for our new

model is then 〈
Zm(ψj1 , ψi1) · · · (ψjn , ψin)

〉
=
∑
M

µ(M)eS0χ̃ , (3.32)

where we sum over diffeomorphism classes of surface M with the boundary conditions

specified on the left hand side. The measure µ is analogous to (3.2) but includes addi-

tional factors associated with counting end-of-the-world branes using Bose statistics.

We may now proceed to evaluate the above amplitudes. As a first step, we again

define λ as the sum over connected surfaces with no asymptotic boundaries in analogy

with (3.9). However, this sum must now allow for the possibility of circular EOW brane

boundaries, each with k possible species labels. Since EOW brane boundaries can be

specified in precisely the same way for each genus, this simply multiplies the result

(3.9) by an overall factor counting the number of possible such labelled boundaries.

For a fixed number n of EOW brane boundaries, including symmetry factors we count
kn

n!
ways to label the boundaries with k species. Summing this factor over n shows the

new factor to be ek and we obtain

λ =
e2S0

1− e−2S0
ek. (3.33)

As before, we can now compute all amplitudes through a generating function,

where we sum over all configurations, with any number of asymptotic boundaries, and

– 33 –



fugacities u and tij (with i = 1, · · · , k) for the Z and (ψj, ψi) boundaries respectively.

As we explain below, this yields〈
exp

(
uZ +

k∑
i,j=1

tij(ψj, ψi)

)〉
= exp

[
λ

eu

det(I − t)

]
, (3.34)

where t is the k × k matrix with entries tij, and I the k × k identity matrix.

Once again, we compute this result by writing it as the exponential of a sum over

connected spacetimes, each weighted by a factor of λ from summing over genus and

closed EOW branes. The connected contribution is a sum over all possible bound-

aries we could insert on a given connected spacetime (excepting circular EOW brane

boundaries, which have already been absorbed into λ). This sum is itself given as the

exponential of a sum over distinct types of boundaries:

eu

det(I − t)
= exp

[
u+

∞∑
n=1

1

n
Tr tn

]
(3.35)

The u accounts for insertions of circle boundaries Z as before. The nth term in the

sum comes from boundary components consisting of n intervals corresponding to some

(ψj, ψi), alternating with n EOW branes. Summing over species of EOW branes results

in the matrix product and trace, and the factor of 1
n

avoids overcounting equivalent

configurations where the n component intervals are cyclically permuted.

For an alternative route to this result where various factors are more explicit, we

can present (3.32) as a sum over ordered lists of connected manifolds. This is readily

obtained from (3.7) by recognizing that the circular EOW brane boundaries enter every

sum on the same footing with the genus g. We have〈
Zm(ψj1 , ψi1) · · · (ψjn , ψin)

〉
(3.36)

=
∑

L,{Di,Ii}

1≤i≤L with

∑
i Ii=nI∑
iDi=D

∑
Ordered lists ML

of L connected surfaces
where entry i has Di,Ii

distinguishable/indistinguishable
boundaries

C(D)
um

L!

k
∑
i Ii∏
i Ii!

D!∏
iDi!

eS0χ̃ ,

where the factor kIi
Ii!

for each connected manifold counts the number of ways (including

symmetry factors) to assign EOW brane labels to Ii indistinguishable circular bound-

aries and the factor D!∏
iDi!

again counts partitions of the D distinguishable boundaries

into (labelled) subsets of size Di. Finally, the factor C(D) represents the number of

ways to form D distinguishable boundaries from the specified boundary conditions

(together with interpolating EOW brane segments).
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In comparing with (3.36), the relation to the exponential of (3.34) is clear from the

factor of 1/L! in (3.36), the inclusion of factors of
kIi
Ii!

in (3.34), and the defining property

of generating functions. By this last feature, we mean the fact that the definition of the

generating functions (3.34) converts the factors C(D) D!∏
iDi!

counting the number of ways

to match distinguishable boundaries to boundary conditions into the above-described

weighted sum over all possible boundary conditions for each connected component.

We now interpret the amplitudes as describing an ensemble, for which (3.34) is the

(unnormalised) generating function for moments of random variables Z and (ψj, ψi).

Let us first set t = 0 in order to consider the marginal distribution of Z. We then

recover the old result (3.14) without EOW branes, so Z is again Poisson distributed,

though with a new value of λ given by (3.33).

We can now characterise the distribution of (ψj, ψi) by conditioning on Z = d for

each fixed d ∈ N. To find the corresponding conditional generating functions, we Taylor

expand the exponential in (3.34) and write each term as an average over the Poisson

probabilities pd(λ) = e−λ λ
d

d!
:〈

exp

(
uZ +

k∑
i,j=1

tij(ψj, ψi)

)〉
= eλ

∞∑
d=0

eudpd(λ)

〈
exp

k∑
i,j=1

tij(ψj, ψi)

〉
Z=d

=⇒

〈
exp

(
k∑

i,j=1

tij(ψj, ψi)

)〉
Z=d

= det(I − t)−d. (3.37)

The result is the generating function for a standard complex Wishart distribution [91]

with d degrees of freedom.

To make this more transparent, and to simultaneously explain this distribution to

the uninitiated reader, we can rewrite the generating function by introducing kd ‘aux-

iliary’ complex variables ψai , arranged in a d× k matrix. The index i = 1, . . . , k labels

the EOW brane states, and we will interpret a = 1, . . . , d as labels for an orthonormal

basis of the boundary Hilbert space HCFT (which is d-dimensional based on our inter-

pretation (3.8) of Z). The ψai variables will be interpreted as the components of the

EOW brane states ψi in this orthonormal basis.

In terms of the ψai variables, our Wishart generating function (3.37) can now be

written as a Gaussian integral:

det(1− t)−d =

∫ k∏
i=1

d∏
a=1

(
1

π
dψai dψ̄

a
i e
−ψ̄ai ψai

)
exp

(
k∑

i,j=1

tij

d∑
a=1

ψ̄ajψ
a
i

)
(3.38)

Comparing with the expectation value (3.37) we are computing, we can read off the
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distribution by identifying the matrix of inner products (ψj, ψi) as

(ψj, ψi) =
d∑
a=1

ψ̄ajψ
a
i (3.39)

from the final factor in the integral. The remainder of the integral gives the measure

for the ψai , as independent random variables, each chosen from a complex normal

(Gaussian) distribution with unit variance:

ψai ∼ independent standard complex normal random variables. (3.40)

In the 0+1 dual interpretation, this means that the wavefunction of each EOW

brane states is selected independently and uniformly at random from the unit sphere of

a d-dimensional Hilbert space HCFT, and then multiplied by a random normalization

so that its squared norm is drawn from an appropriate χ2-distribution. In particular,

the number of linearly independent states, given by the rank of the matrix of inner

products, is bounded by Z: with probability one we have

rank(ψj, ψi) = min{k, Z}. (3.41)

This is another surprising and remarkable result from such a simple model, since in

the semiclassical limit (without the exponentially small effects of spacetime wormholes)

the k EOW brane states appear to be orthogonal, and we can choose k to be as large as

we like. As discussed below in section 5, even if we include Euclidean wormholes there

is an expansion in e−S0 which for a finite number of amplitudes at any finite order gives

no obvious sign that apparently distinct EOW brane states must in fact be linearly

dependent. Nonetheless, in the complete solution after summing all nonperturbative

effects, we find that the number of linearly independent states is truncated. As in [49],

as and discussed further in section 4, this is a version of the semiclassical Page curve

[1].

At first sight, this appears to require an enormous conspiracy in the nonperturba-

tive contributions, which might lead one to suspect that it is an artefact of studying

particularly simple models. We will show below that this is not the case, since it follows

from a more primitive principal, namely reflection positivity of the path integral. For

this, we must study the Hilbert space interpretation of the model with EOW branes.

3.5 Baby universe Hilbert space with EOW branes

We now incorporate the EOW branes into the baby universe Hilbert space. This

enlarges the space relative to that of section 3.3 because, along with circular closed
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universes, we also have k2 new types of universe whose spatial slice is an interval

bounded by EOW branes, say with labels i and j (where the orientation defines a

preferred order). On the other hand, the above-mentioned conspiracies will also imply

the existence of new null states.

It is most straightforward to constructHBU from the α-states. These are eigenstates

of the Ẑ operator as before, but now are simultaneously eigenstates of the k2 operators
̂(ψj, ψi) as well; note that Hermitian conjugation acts on these operators by swapping

i, j. We label the corresponding eigenvalues by Zα and (ψj, ψi)α, so we have

Ẑ
∣∣α〉 = Zα

∣∣α〉
̂(ψj, ψi)

∣∣α〉 = (ψj, ψi)α
∣∣α〉. (3.42)

The set of α-states is determined by the allowed sets of eigenvalues, which is constrained

by (3.41).

As in section 3.3, the eigenvalues Zα of Ẑ are given by the nonnegative integers

d. Indeed, we can still define states |Z = d〉 by any of the means discussed in that

section, for example by (3.25). However, they are now not full α-states, since they

are eigenstates only of Ẑ and not of ̂(ψj, ψi). Instead they are the projections of the

Hartle-Hawking state onto the corresponding eigenspace of Ẑ. We can generate the

rest of this eigenspace by acting with the operators ̂(ψj, ψi) on |Z = d〉.
In each such eigenspace, we can now diagonalise the operators ̂(ψj, ψi). Their

simultaneous eigenvalues correspond to Hermitian k × k positive definite matrices of

rank at most d (though any rank other than min(d, k) has probability zero in any

normalizable state). The baby universe Hilbert space therefore decomposes as a direct

sum:

HBU =
∞⊕
d=0

HZ=d

HZ=d = L2(Md
k )

Md
k = {Hermitian p.d. k × k matrices, rank ≤ d}.

(3.43)

The summands HZ=d are the usual L2 spaces of square integrable functions on the

relevant space of restricted rank matrices Md
k (defined with any convenient smooth

measure). For d ≤ k, Md
k forms a (2kd − d2)-dimensional manifold; we can write

(ψj, ψi) =
∑d

a=1 ψ̄
a
jψ

a
i as in (3.39) so that the 2kd counts the number of independent

real parameters in ψai while the d2 subtracts for the invariance under unitary rotations

of the a directions. For d ≥ k, the restriction on rank is vacuous.

With this description, the α-states are delta function wavefunctions living in the

subspaces HZ=d, supported on some particular matrix (ψj, ψi)α ∈ Md
k . In particular,
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we write their inner product as

〈α′|α〉 = δαα′ , (3.44)

where δαα′ is the product of a Kronecker delta δZαZα′ for the eigenvalue of Ẑ with an

appropriate Dirac delta function on Md
k associated with the choice of L2 measure in

(3.43).

Finally, the wavefunction of the Hartle-Hawking state in this description is given

by 〈
α
∣∣HH

〉
=

√
λZα

Zα!
fZα
(
(ψj, ψi)α

)
, (3.45)

where fZα is the probability density function of the complex Wishart distribution with

Zα degrees of freedom with respect to the measure on our L2 space; this is the overlap〈
α
∣∣Z = Zα

〉
= fZα . For Zα ≥ k, this density is given explicitly in (3.65).

3.6 Hilbert spaces with boundaries

Our discussion of Hilbert spaces is not yet complete. In particular, other Hilbert spaces

of interest arise when we insert complete sets of states on Cauchy slices that intersect

‘asymptotically AdS’ boundaries. Here there are two types of boundary, distinguished

by their orientation; we call them ‘left’ and ‘right’ boundaries of space. In a 0+1 dual,

the two types of boundaries would correspond to CPT conjugate theories.

In our model, the most general slice Σ of the asymptotically AdS boundaries will

consist of nL left boundaries and nR right boundaries. We thus denote the associated

Hilbert spaceHΣ from section 2.4 asHnL,nR . Reversing the orientation of all boundaries

gives the dual (Hermitian conjugate) Hilbert space, so H∗nL,nR = HnR,nL . The simplest

of these isHBU = H0,0, which we have already discussed. We will be primarily interested

in the one-sided Hilbert space H0,1 (related to H1,0 by duality) and the two-sided space

H1,1.

We begin by considering the single boundary Hilbert space H0,1, which is spanned

by states of the form |ψi;Zm (ψj1 , ψi1) · · · (ψjn , ψin)〉. Recall that the operator ψ̂i maps

HBU to H0,1 (or more generally HnL,nR → HnL,nR+1). All of the above states can

be produced by acting with the operator ψ̂i on a state of closed baby universes. In

particular, we can span H0,1 by acting with one of the k operators ψ̂i (for i = 1, . . . k)

on α-states of HBU. The inner product on such states is〈
ψj;α

′∣∣ψi;α〉 =
〈
α′
∣∣ ̂(ψj, ψi)∣∣α〉 = δαα′(ψj, ψi)α , (3.46)

so in particular, the different α-sectors are orthogonal, and H0,1 admits a direct sum

decomposition

H0,1 =
⊕
α

Hα
0,1, (3.47)
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(where this is to be understood in the appropriate sense given that some of the param-

eters defining α are continuous). The inner product on each sector Hα
0,1 is simply given

by the matrix of eigenvalues (ψj, ψi)α. On sectors with Zα < k, this is degenerate, and

Hα
0,1 is Zα-dimensional:

dimHα
0,1 = min{k, Zα}. (3.48)

Next, we look at the two-boundary sector H1,1. In the same way, this Hilbert space

can be populated by acting with boundary creating operators on states of HBU, for

example on α-states. We have the same direct sum structure as before, H1,1 =
⊕

αHα
1,1.

States within each Hα
1,1 can be created by acting with separate EOW brane states

on left and right boundaries using ψ̂∗j ψ̂i. But we now have an additional possibility

where we introduce a single asymptotic boundary that connects left and right. In a

general theory, one might call this the cylinder boundary (with topology Σ times an

interval), and one might think of it as obtained by cutting in half a partition function

on Σ×S1. By acting on
∣∣HH

〉
, it thus creates a state that one expects to interpret as a

‘thermofield double’ in some CFT dual. In our case the cylinder degenerates to a line

segment (since Σ is a point), which we can think of as half of a Z circle. We denote the

boundary condition by , the associated operator by ̂ , and the resulting state

by
∣∣∣ 〉

= ̂∣∣∣HH
〉

. Thus,

Hα
1,1 is spanned by

∣∣ψ∗j , ψi;α〉, ∣∣ ;α
〉
, (3.49)

and the inner products of these states are given by〈
ψ∗j2 , ψi2 ;α′

∣∣ψ∗j1 , ψi1 ;α
〉

= δαα′(ψi2 , ψi1)α (ψj1 , ψj2)α,〈
;α′
∣∣ψ∗j1 , ψi1 ;α

〉
= δαα′(ψj1 , ψi1)α,〈

;α′
∣∣ ;α

〉
= δαα′Zα.

(3.50)

From the first of these, we see that for fixed α the states |ψ∗j , ψi;α
〉

span a subspace

isomorphic to the tensor product of two single boundary subspaces, so this tensor

product embeds naturally in Hα
1,1; i.e., Hα

0,1 ⊗Hα
1,0 ⊆ Hα

1,1. This inclusion could be an

exact equality, but only if the new state | ;α
〉

can be built from a linear combination

of factorised states |ψ∗j , ψi;α
〉
. This suggests that we look for a linear combination

∣∣∆〉 =
∣∣ ;α

〉
−

k∑
i,j=1

cij
∣∣ψ∗j , ψi;α〉 (3.51)

with zero norm. Such a vector would be projected out of the Hilbert space H1,1, giving

|∆〉 = 0 and providing an identity relating the cylinder state
∣∣ 〉

to a superposition

of one-sided states.
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Before computing the norm of our ansatz |∆〉, we first change to a more convenient

basis diagonalising the EOW brane inner product in the α-state in question (with

eigenvalues (ψj, ψi)α). Specifically, we pick linear combinations φa of the ψi boundary

conditions for which (φb, φa)α = δab, with the index a = 1, . . . , r running up to the rank

of the matrix of inner products. In this basis, we rewrite our candidate null state and

compute its norm:

∣∣∆〉 = | ;α
〉
−

r∑
a,b=1

cab|φ∗b , φa;α
〉

(3.52)

〈
∆
∣∣∆〉 =

〈
;α
∣∣ ;α

〉
−

r∑
a,b=1

cab
〈

;α
∣∣φ∗b , φa;α〉

−
r∑

a,b=1

c∗ab
〈
φ∗b , φa;α

∣∣ ;α
〉

+
r∑

a,b,a′,b′=1

cabc
∗
a′b′

〈
φ∗b′ , φa′ ;α

∣∣φ∗b , φa;α〉
= Zα − 2

r∑
a=1

Re caa +
r∑

a,b=1

|cab|2

= Zα − r (cab = δab).

In the last line we have chosen the coefficients cab = δab to be δab, as this minimizes〈
∆
∣∣∆〉.
The above calculation teaches us two things. Firstly, for the norm to be nonnegative

we have an inequality which applies in all α states:

Reflection positivity =⇒ Zα ≥ rank(ψj, ψi)α. (3.53)

This explains our empirical result (3.41) that the rank of the EOW brane inner product

is bounded by Zα, in terms of reflection positivity of the path integral. The same

argument can be used in much more general models, and we repeat it with the inclusion

of a conserved energy in section 4, where we also connect it with the Page curve [1].

Secondly, we find that if the inequality (3.53) is saturated, we have |∆〉 = 0, and

hence an identity

| ;α
〉

=
r∑

a=1

|φ∗a, φa;α
〉
. (3.54)

Since the ‘factorized states’ |ψ∗j , ψi;α
〉

then span the two-sided Hilbert space Hα
1,1, we

also find an equivalence between Hilbert spaces

Hα
0,1 ⊗Hα

1,0 ≡ Hα
1,1 . (3.55)
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This factorization holds in our model for sectors with Zα ≤ k; i.e., when there are

enough EOW branes to populate a one-sided Hilbert space of dimension Zα.

To emphasise the importance of α-states in this argument, we examine how it

fails in a more general (normalised) state |Ψ〉 ∈ HBU, such as the Hartle-Hawking

state. Specifically, let us choose linear combinations φa of EOW brane states ψi to

diagonalise the expectation value of the inner product in the state |Ψ〉; i.e., we take〈
Ψ
∣∣ ̂(φb, φa)∣∣Ψ〉 = δab , (3.56)

where a, b = 1, · · · , r, with r = rank
〈
Ψ
∣∣ ̂(ψj, ψi)∣∣Ψ〉. If we now compute the norm of

the state ∣∣∆〉 =
∣∣ ; Ψ

〉
−

r∑
a=1

∣∣φ∗a, φa; Ψ
〉
, (3.57)

we find an extra term, coming from the overlaps
〈
φ∗b , φb; Ψ

∣∣φ∗a, φa; Ψ
〉
:

〈
∆
∣∣∆〉 =

〈
Ψ
∣∣Ẑ∣∣Ψ〉− r +

r∑
a,b=1

VarΨ [(φb, φa)] . (3.58)

Here we have defined the variance of boundary condition X as the connected amplitude

for XX†,

VarΨ[X] =
〈
Ψ
∣∣X̂X̂†∣∣Ψ〉− 〈Ψ∣∣X̂∣∣Ψ〉〈Ψ∣∣X̂†∣∣Ψ〉. (3.59)

This vanishes in α-states, though is generically non-zero.

For example, in the Hartle-Hawking state, the expectation value of the overlaps of

EOW brane states is already diagonal,〈
HH
∣∣ ̂(ψj, ψi)∣∣HH

〉〈
HH
∣∣HH

〉 = λδij (3.60)

so we can define φa = λ−1/2ψa, and we have r = k. The variance of the individual

terms (φb, φa) is small,

VarHH[(φb, φa)] = λ−1(1 + δab), (3.61)

but there are k2 such terms, so they are collectively important when k is of order λ

or larger. As a result, (3.58) gives no meaningful bound relating the rank of the inner

product (ψj, ψi) to the partition function Z. Note that this is not really an issue of

fluctuations in the particular parameter Zα, as the same discussion applies to the states

|Z = d〉, which fix the eigenvalue of Ẑ but not those of ̂(ψj, ψi).
Returning to the issue of reflection positivity, we should also discuss the Hilbert

spaces HnL,nR associated with arbitrary numbers of left and right boundaries. But
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in our model all possible boundary conditions creating such states can be formed by

combining with the above ψi. In superselection sectors with Zα ≤ k, the above

result then implies HnL,nR = H⊗nL1,0 ⊗H
⊗nR
0,1 and the inner product on HnL,nR is positive

definite. In superselection sectors with Zα > k the higher Hilbert spaces are not tensor

products of the lower Hilbert spaces. But much as above, considering states similar to

(3.57) again shows the inner product to be positive for Zα > k = r. We thus see by

direct calculation that our path integral satisfies reflection positivity.

3.7 The boundary parameter S∂

We now discuss the parameter S∂, contributing an action proportional to the number

of boundaries. First we describe how changing S∂ from its preferred value S∂ = S0

alters the physics, and thus in particular explain why this value is preferred. We then

discuss how we might naturally incorporate such a parameter in the model.

Let us first consider the model without EOW branes, discussed in sections 3.1,

3.2 and 3.3. There the only effect of S∂ is to rescale the quantities and operators

associated with the Z boundaries. We thus find an ensemble interpretation in which

Z is eS∂−S0 times a Poisson random variable, so that the α-states are characterised

by Ẑ eigenvalues Zα ∈ eS∂−S0N. From the gravitational perspective, there is nothing

wrong with this model for any positive value of S∂. In particular, reflection positivity is

preserved for all Hilbert spaces. Complex values are excluded by reflection positivity on

H1,1, which is spanned by orthogonal states | ;α〉 with norm 〈 ;α| ;α〉 = Zα.

From the boundary perspective, there is a good dual interpretation only when eS∂−S0

is a nonnegative integer, so that Zα takes nonnegative integer values which can be

interpreted as the dimension of a dual Hilbert space. Nothing from the bulk perspective

appears to prefer such values, so our choice S∂ = S0 appears to be rather artificial.

This changes once we introduce the EOW brane states. The bulk then provides a

principled reason to prefer particular values of S∂, as the inner product on EOW brane

states will otherwise fail to be positive semidefinite. To see this, we focus on a sector of

HBU with fixed Ẑ eigenvalue Z = d, in which our EOW brane amplitudes are given by

the generating function (3.37), reproduced below with fugacities tij rescaled by a factor

of i for later convenience and with the matrix of EOW brane inner products encoded

in a k × k Hermitian matrix M , Mij = (ψj, ψi):

χd,k(t) =
〈
eiTr(tM)

〉
Z=d

= det(1− it)−d (3.62)

For d ∈ N, by introducing dk auxiliary Gaussian variables we showed in (3.38) that this

gives a probability distribution for M , and hence a reflection positive inner product

on HBU. This argument does not apply for d /∈ N, so we must find a different way to

determine whether we have a positive semidefinite inner product.
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If M is to be interpreted as a random variable selected from some probability

distribution, (3.62) defines χd,k as the characteristic function of the distribution. This

is the Fourier transform of the probability density function pd,k, which is in general a

distribution on the space of k × k Hermitian matrices. It thus determines our inner

product, which acts on a space of functions f, g of k × k Hermitian matrices M :

〈g|f〉 =

∫
dMpd,k(M)g(M)∗f(M), (3.63)

where χd,k(t) =

∫
dMeiTr(tM)pd,k(M). (3.64)

The distribution pd,k is determined uniquely from the inverse Fourier transform of

χd,k.
13 For this to define a positive semidefinite inner product, we need pd,k to be

a nonnegative distribution (that is, it gives positive values when integrated against

positive test functions such as |f(M)|2). The question of whether the Z = d subspace

of HBU has a positive semidefinite inner product is equivalent to the existence of a

probability distribution with characteristic function χd,k.

A succinct summary answering this question is contained in [92], to which we refer

the reader for the results we now use. For d > k, the inverse Fourier transform of χd,k is

a continuous function of M , taking non-zero values only on positive-definite matrices:

pd,k(M) = Nd,k det(M)d−ke−TrM , M positive definite,

N−1
d,k = π

k(k−1)
2 Γ(d)Γ(d− 1) · · ·Γ(d− (k − 1)).

(3.65)

This is manifestly nonnegative and so defines a probability distribution. This result

extends to d > k − 1, where the probability density diverges at the edge where M

becomes degenerate, but is still integrable. This is easiest to see from the density in

terms of the eigenvalues of M ; fixing k−1 positive eigenvalues and taking the last λ→ 0,

the density goes as λd−k. The important result for us is that this range d > k−1, along

with the smaller nonnegative integer values of d already covered by (3.38), turns out

to exhaust the values of d for which the inner product on HBU is positive semidefinite:

χd,k(t) = det(1− it)−d defines a probability distribution

⇐⇒ d ∈ {0, 1, 2, . . . , k − 2} ∪ [k − 1,∞).
(3.66)

We can intuit this from (3.65) by analytic continuation of the density in d. As d

approaches k − 1, the density goes to zero for any fixed positive definite matrix from

13Our integration measure on Hermitian matrices is defined as the flat measure on independent real

components, dM =
∏

i dMii

∏
i<j dReMijd ImMij , and here we take t to be a Hermitian matrix so

that Tr(tM) is real.
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the zero in normalisation factor Nd=k−1,k = 0, but the probability density piles up near

detM = 0 and we end up with a probability density supported on the submanifold of

singular matrices with rank k−1. However, if we try to go further to k−2 < d < k−1,

the probability density becomes negative. Even for values of d < k − 1 at which the

probability density appears to be positive, the density is not integrable near detM = 0.

On the other hand, since χd,k is analytic (so its Fourier transform decays exponentially)

and χd,k(t = 0) = 1, the integral of the distribution pd,k over all M is well-defined and

equal to unity. The resolution is that pd,k becomes a singular distribution which must

be defined by a principal value prescription, and which is not positive definite on the

singular submanifold detM = 0.

As a result, the inner product on HBU can be positive definite only when all sectors

with d /∈ N have d ≥ k − 1. For a given S∂, this requirement is most stringent for the

smallest non-zero eigenvalue of Zα, namely d = eS∂−S0 . We thus find that reflection

positivity can hold only when either S∂ − S0 is the logarithm of a positive integer, or

S∂ > S0 + log(k − 1).

We can use the arguments of the last section to slightly strengthen our restrictions

on S∂ by considering positivity in Hilbert spaces with boundaries, and in particular in

H1,1. The discussion leading to (3.53) shows that positivity in H1,1 requires rankM ≤ d

for the matrix of inner products M in each sector Z = d. This is violated by the

distribution (3.65) in the range k−1 < d < k, sinceM has probability density supported

on matrices with full rank, rankM = k. This gives us our final result:

Reflection positivity =⇒ eS∂−S0 ∈ N or S∂ > S0 + log k. (3.67)

For any non-zero number of EOW brane species, we find that a non-zero value of S∂ is

required; the absence of a boundary action S∂ = 0 does not lead to a reflection positive

theory. The most natural choice is the minimal value S∂ = S0, which is the definition

of the theory we used throughout the rest of this section.

The failure of models with S∂ = 0 motivates us to explain the physics that might

lead to an action counting the number of boundary components |∂M |. This is nontriv-

ial, because |∂M | is not a local action. For example, if we take a cylinder (with two

boundaries), we can slice it in two along its length, and glue together the two edges

of each piece so that we form two separate cylinders. The resulting manifold has four

boundaries, so |∂M | is not preserved by this cut and paste.

However, we can achieve the same effect with a local action by introducing a new

degree of freedom on each boundary. This should propagate along both asymptotic

and EOW brane boundaries. Note that we regard this as part of the bulk dynam-

ics that happens to be localised at the boundary, and not part of the dual ‘CFT’

dynamics. Most simply, this can be a topological quantum mechanics with Hilbert
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space H∂. In that case, each boundary provides a factor of dimH∂, and we can re-

gard −S∂|∂M | = − log dimH∂ as a nonlocal effective action from integrating out this

dynamics. This gives a local definition of our theory, but only if eS0 is an integer.

This is not entirely satisfactory: besides the somewhat artificial restriction on S0, it

seems that this degree of freedom should allow for additional boundary conditions that

project onto a particular state of this boundary quantum mechanics, in which case we

are again left with the theory S∂ = 0.

A slightly different possibility is that some local bulk dynamics gives rise to a path

integral localised at the boundary, but one which cannot be described by any quantum

mechanics. This seems like a strange situation at first sight, but we note that pre-

cisely this phenomenon occurs for JT gravity. In that theory, a local bulk theory gives

rise to a degree of freedom associated with asymptotic boundaries, described by the

Schwarzian path integral [93, 94]. The Schwarzian alone is not a consistent quantum

mechanics, since the path integral on the circle cannot be interpreted as Tr e−βH for

any Hamiltonian H [85, 95]. This possibility arises from a quotient by residual gauge

symmetries acting nontrivially on the boundary (in that case, an SL(2,R)). Nonethe-

less, the gravitational theory (for example, the Lorentzian theory on a spacetime lying

between two boundaries, has a good Hilbert space interpretation. While we do not have

a concrete proposal to make at this time, we speculate that some analogous dynamics

(or an appropriate accounting of residual gauge freedom) could naturally give rise to

a theory of topology which includes a boundary effective action S∂. In particular, we

hope that our model might be obtained as a limit of a theory with more dynamics, and

that this construction might offer insight into this possibility.

3.8 Spacetime ‘D-branes’

We conclude the discussion of the model with some interpretative remarks for some of

the results in terms of ‘spacetime D-branes,’ which we call SD-branes below. An SD-

brane means an object on which spacetime can end, and as such is seen from spacetime

as D-branes are seen from the worldsheet in string theory. In particular, they are not

localised in spacetime in any way. This will be similar in spirit to the discussion of

D-branes and ‘eigenbranes’ in [62, 82], though the framework of the Hilbert space of

baby universes provides a new interpretation. We will focus on the model without

EOW branes.

To study the theory in the presence of an SD-brane, we should introduce a new

type of boundary of spacetime, interpreted as spacetime ending on the SD-brane. We

will assign a free (possibly complex) parameter g to these boundaries, interpreted as a

coupling to the SD-brane. To compute an amplitude in the presence of an SD-brane,

we should allow for any number (including zero) of these additional boundaries; i.e., the
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spacetime is allowed to end many times on the same SD-brane. But for the purposes of

computing amplitudes, each SD-brane boundary acts much the same as a Z boundary,

so we can account for them by inserting factors of gZ. To avoid overcounting different

spacetimes connecting to the SD-brane, we must divide by factorials of the number of

boundaries, treating the new boundaries as indistinguishable and introducing further

symmetry factors where appropriate. We thus have the following recipe for computing

the amplitude in the presence of an SD-brane with coupling g:〈
f(Z) SD-braneg

〉
=
〈
f(Z)

〉
+
〈
f(Z)gZ

〉
+
〈
f(Z)1

2
(gZ)2

〉
+
〈
f(Z) 1

3!
(gZ)3

〉
+ · · ·

=
〈
f(Z)egZ

〉
. (3.68)

As before, the notation on the left-hand side indicates the boundary conditions for the

path integral. But from the right-hand side we learn that the insertion of an SD-brane

is equivalent to inserting the operator egẐ . In other words, the SD-brane is not a

new object at all! Instead, a state
∣∣∣ SD-braneg

〉
containing an SD-brane was already

present in HBU as a coherent state
∣∣egZ〉 of baby universes. We may thus identify the

corresponding boundary conditions:

SD-braneg = egZ . (3.69)

This exponential of Z is somewhat analogous to the determinant det(E−H) introduced

in [62], where it was interpreted as a brane in JT gravity. The determinant is analogous

because it can be written as the exponential exp (Tr log(E −H)) of the single boundary

object Tr log(E −H) (single-trace in the dual matrix integral).

Now, what do the amplitudes actually look like in the presence of an SD-brane?

To answer this, we compute the generating function (3.11) in an SD-brane state:〈
SD-braneg

∣∣∣euZ∣∣∣ SD-braneg

〉
=
〈
eg
∗ZeuZegZ

〉
=
〈
e(u+2 Re g)Z

〉
= exp

(
λeu+2 Re g

)
= exp

(
λ̃eu
)
, λ̃ = e2 Re gλ .

(3.70)

We here used the result
〈
euZ
〉

= exp(λeu) of (3.14) in the Hartle-Hawking state, with

a shifted value of u due to the presence of the SD-brane. The result (3.70) tells us

is that amplitudes in the presence of an SD-brane are the same as amplitudes in the

Hartle-Hawking state, but with a different value of the coupling λ. In fact, we can move

between any positive real values of λ by adding an appropriate SD-brane. This is a
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familiar situation from worldsheet string theory, where different values of an apparently

free parameter (e.g. the coupling of the string to the Euler characteristic) turn out to

describe different states of the same theory (e.g. coherent states of the dilaton).

We can also make use of these SD-branes in yet one more way by considering the

effect of the imaginary part of the coupling θ = Im g. This has no effect in the amplitude

(3.70), and to see its relevance we must allow for a different kind of SD-brane state

in which g is not fixed but instead has a superposition of different values for θ. First,

we note that the representation of the SD-brane as egZ and the integer spectrum for

Z imply that θ should be understood to be periodic with period 2π. A natural basis

of states superposing different values of θ is thus defined by the Fourier transformed

states, ∣∣∣∣∣ ˜SD-braned

〉
:=

∫ π

−π

dθ

2π
e−idθ

∣∣∣ SD-braneiθ

〉
, d ∈ N, (3.71)

where for simplicity we will now focus on the case g = iθ, or Re g = 0. In particular,

the above basis diagonalizes the inner product:〈
˜SD-braned′

∣∣∣∣∣ ˜SD-braned

〉
= δdd′

λ̃d

d!
(d, d′ ∈ N). (3.72)

For d < 0, this inner product vanishes, indicating that the resulting state is null.

To understand these states better, we may use the representation (3.69) of the

SD-brane states as an exponential to write them as∣∣∣∣∣ ˜SD-braned

〉
:=

∫ π

−π

dθ

2π
e−idθ

∣∣∣eiθZ〉 = (−1)d

∣∣∣∣∣ sin(πZ)

π(Z − d)

〉
. (3.73)

But this is precisely the expression we gave in (3.25) for the α-state
∣∣Z = d

〉
! Further-

more, it is now clear that taking Re g 6= 0 simply rescales the resulting state
∣∣Z = d

〉
.

This means that we can give a somewhat geometric description of a given α-sector

by including a particular (Fourier transformed) S̃D-brane. This S̃D-brane is not a new

fundamental object, but is built from a coherent state of interacting baby universes.

The S̃D-brane description of α-states is at first sight rather different from the alterna-

tive geometric interpretation given in section 3.3 where the Z = d sector arose after

constraining the path integral to spacetimes with d connected components. However,

we see that the two are equivalent in the end. We expect a similar equivalence to arise

in the model with EOW branes, and correspondingly in the JT gravity contexts of

[62, 82].
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4 Entropy bounds and the Page curve

A remarkable property of our models above was the strong role played by null states,

and in particular the bound (3.41) on the rank of the inner product in any α-sector

with Zα = d. In section 3.6 we showed this bound to follow from an abstract argument

involving the cylinder state
∣∣∣ 〉

in the Hilbert space H1,1 associated with a pair of

disconnected boundaries. As the reader may already realize, it is straightforward to

generalize this argument so as to apply to very general reflection positive gravitational

path integrals. More realistic models will likely have an infinite number of states in

any HΣ, so to obtain a meaningful bound on the number of states we must impose a

constraint. We will achieve this here by bounding the entropy of mixed states in HΣ

with a given expected energy E.

4.1 Entropy bounds

We now state this form of the argument using the more general notation from section 2.

The ideas are closely related to those in [96]. As before, we work in some definite (but

arbitrary) α-sector of the given theory and also choose a spatial boundary manifold Σ;

i.e., we consider a particular Hilbert space Hα
Σ from section 2.4.

One property we require of our theory is that there is a notion of time evolution,

here in Euclidean time. This means that the allowed boundary conditions include

Euclidean ‘cylindrical’ boundary manifolds Cβ = Σ × Iβ for intervals Iβ of arbitrary

length β > 0. According to the general principles of section 2, this boundary condition

describes an operator on Hα
Σ that we may call e−βH and for which e−β1He−β1H =

e−(β1+β2)H . For a given state
∣∣∣ψ[J ]

〉
defined by sources J on a boundary manifold M

(with ∂M = Σ), the action of e−βH on
∣∣∣ψ[J ]

〉
simply defines a new source Jβ on a

larger boundary manifold Mβ = IβM constructed by gluing Iβ to M,

e−βH
∣∣∣ψ[J ]

〉
=
∣∣∣ψ[Jβ]

〉
. (4.1)

The final property we require of our theory is that the CPT conjugation acting

on boundary conditions acts trivially on Iβ. When e−βH is trace-class, this condition

ensures that states φa ∈ Hα
Σ define a Hermitian matrix (φb, e

−βHφa)α which can be

diagonalized to yield discrete eigenvalues with finite degeneracy. We will take this

to be the case for now and return later to the possibility that e−βH might fail to be

trace-class.

The above semi-group property of e−βH then implies that the eigenvectors can be

chosen to be independent of β. Together with Hermiticity, it also implies the relation
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e−βH =
(
e−βH/2

)†
e−βH/2 so that the eigenvalues must be non-negative. Henceforth, we

thus take φa to denote such an orthonormal eigenbasis of Hα
Σ with eigenvalues e−βEa .

The key fact is then that the boundary conditions e−βH must also define an operator

on the baby universe Hilbert space HBU, which we can use to define cylinder states by

acting on the α-states
∣∣∣α〉 ∈ HBU in direct analogy with section 3.6:

ê−βH
∣∣∣α〉 =

∣∣∣ β;α
〉
∈ Hα

Σ∗tΣ . (4.2)

We will be interested in forming mixed states on Hα
Σ, which can be thought of as

elements of the Hilbert space Hα
Σ∗⊗Hα

Σ, spanned by products φ∗b⊗φa of our eigenstates

φa ∈ Hα
Σ and their CPT conjugates. This space of density matrices is isometrically

embedded via states |φ∗b , φa;α〉 into the ‘two-sided Hilbert space’ Hα
Σ∗tΣ associated

with two copies of our spatial boundary Σ. Since these latter states were built from

orthonormal eigenstates of e−βH on Hα
Σ, the overlaps are given by〈

φ∗b , φa;α
∣∣

β/2;α
〉

= δabe
−βEa/2 , (4.3)〈

φ∗b′ , φa′ ;α
∣∣φ∗b , φa;α〉 = δab′δa′b . (4.4)

The last overlap we require is the norm of the state
∣∣

β/2;α
〉
. This involves gluing

two cylinders of length β/2 to create boundary conditions with a circle of length β:

we have β̂/2

†

β̂/2 = Ẑ(β), where the operator Ẑ(β) acting on HBU is defined by

boundary conditions Σ × S1
β, with a thermal circle S1

β of length β. The norm of our

cylinder state is then given by〈
β/2;α

∣∣
β/2;α

〉
= Zα(β), (4.5)

where Zα(β) is the eigenvalue of Ẑ(β) in the α state, Ẑ(β)
∣∣α〉 = Zα(β)

∣∣α〉.
We now introduce a state∣∣∆〉 =

∣∣
β/2;α

〉
−
∑
a

e−βEa/2
∣∣φ∗a, φa;α〉, (4.6)

and impose that its norm is nonnegative,

〈∆|∆〉 = Zα(β)−
∑
a

e−βEa ≥ 0. (4.7)

As in section 3.6, it is important that this computation was performed in a fixed α-

sector. While we arrived at (4.6) under the assumption that e−βH is trace class, a

similar argument using approximate eigenvectors would in any case bound the trace of
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e−βH by Zα(β). Thus the case where e−βH fails to be trace class cannot occur and we

can use (4.6) and (4.7) as written.

We can use the inequality (4.7) to make some more direct statements about the

spectrum of states in Hα
Σ. Firstly, we can use it to bound the number of orthogonal

states N(E) with bounded energy Ea ≤ E. In a thermodynamic limit, we would

usually expect this to be dominated by states with energy close to the maximum, so

N(E) is controlled by the density of states at energy E. To bound this quantity, note

that
∑

a e
−βEa ≥ N(E)e−βE, by dropping all states with Ea > E in the sum. From the

result (4.7) we can then say that N(E) ≤ eβEZα(β) for any β. The sharpest bound is

obtained by minimising over all β, finding

logN(E) ≤ Sα(E), (4.8)

where

Sα(E) := inf
β
{βE + logZα(β)}. (4.9)

This quantity is nothing but the Legendre transform of logZα(β), which is the usual way

of obtaining the canonical entropy from a partition function. In a semiclassical theory,

and in the overwhelming majority of α-states, we expect Sα(E) to be approximately

the Bekenstein-Hawking entropy of an appropriate black hole. This is because Zα(β) is

defined by the Gibbons-Hawking path integral with periodic Euclidean boundary condi-

tions [61], computed semiclassically by the on-shell action of a classical Euclidean black

hole. The associated entropy Sα(E), defined as the Legendre transform of logZα(β),

is then given by the Bekenstein-Hawking formula. This remains accurate in typical α

states (in the measure of the Hartle-Hawking ensemble) as long as the variance of the

Ẑ(β) operator is small. This is the case if connected wormhole configurations between

two asymptotic Z(β) boundaries are suppressed.

The same quantity Sα(E) appears in a stronger bound, constraining the von Neu-

mann entropy S(ρ) of any mixed state ρ on Hα
Σ. This constraint depends on the energy

expectation value E = Tr(ρH), where from our earlier considerations we can define H

on Hα
Σ by matrix elements (φb, Hφa)α = Eaδab. Specifically, we prove that

S(ρ) ≤ Sα(E) for ρ any density matrix on Hα
Σ with Tr(ρH) = E. (4.10)

It suffices to show this for the density matrix that maximises S(ρ) subject to the energy

constraint. This is simply a Gibbs state,

ρGibbs(β) =
e−βH

ZGibbs(β)
, ZGibbs(β) = Tr(e−βH) =

∑
a

e−βEa , (4.11)
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where we choose β to fix the desired energy,

E = − ∂

∂β
logZGibbs(β). (4.12)

Note that ZGibbs is precisely the quantity we bounded in (4.7), with the inequality

ZGibbs(β) ≤ Zα(β). Now, we can compute the von Neumann entropy of ρGibbs as the

Legendre transform of ZGibbs:

S(ρGibbs(E)) = inf
β
{βE + logZGibbs(β)} (4.13)

≤ Sα(E) (4.14)

The inequality follows because Sα(E) is defined in (4.9) by the same minimisation as

used here to obtain S(ρGibbs(E)), after replacing ZGibbs(β) by the larger function Zα(β).

This demonstrates the claimed entropy bound (4.10).

4.2 Consequences and interpretations

Our results (4.8) and (4.10) show that, for theories defined by reflection positive path

integrals, the density of states in any Hα
Σ is bounded by Sα(E) from (4.9), which

generically we expect to be given by the Bekenstein-Hawking entropy of an appropriate

black hole.

We interpret this result as a semiclassical Page curve. The class of mixed states

ρ on Hα
Σ that we can prepare by asymptotic sources includes old black holes. For

example, we can create pure state black holes by collapse, couple to an auxiliary ‘bath’

system into which the Hawking radiation escapes, and trace out the bath. In the

usual semiclassical description, it seems that this process can produce states of a given

energy with arbitrarily large entropy. This entropy comes from the large interior which

grows with time (in particular linearly with time along a ‘nice slice’ [97]), which can

be populated with a growing number number of naively distinct possible low energy

states. Our result shows that in an alpha sector of a reflection positive path integral,

nonperturbative effects giving exponentially small overlaps between these states must

conspire to produce surprising linear relations between them. Such relations must occur

after the Page time so that the entropy of the black hole is bounded by the Bekenstein-

Hawking entropy, to satisfy (4.10). If this inequality is (approximately) saturated, the

entropy of the black hole (i.e. the density matrix on Hα
Σ) and of the radiation will follow

the Page curve.

We expect that in contexts where the naive number of states in HΣ can be made

arbitrarily large, one will find that the bound S(ρ) ≤ Sα(E) of (4.10) can be saturated,

as in our model with large k. In particular, we expect this to hold for the old black
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holes in the discussion above. This requires saturation of the inequality in (4.7) for all

β, and so |∆〉 becomes a null state. Note that |∆〉 = 0 is equivalent to the statement

that Zα(β) is equal to the actual thermal partition function Tr e−βH on HΣ,α. The

result that the function Zα(β) can be written as a thermal trace is a strong constraint

on the eigenvalues of Ẑ(β), which should be viewed as generalizing the result Zα ∈ N
from our models in section 3.

In the case of saturation, the statement that |∆〉 is null leads to a gauge equivalence∣∣
β/2;α

〉
=
∑
a

e−βEa/2
∣∣φ∗a, φa;α〉. (4.15)

Following [11], the cylinder state is naturally associated with a two-sided black hole with

an Einstein-Rosen bridge joining the two boundaries. We see the familiar equivalence

between this and a superposition of product states emerging as an example of our gauge

equivalence.

To connect further with our desire to understand black hole evaporation, we recall

from section 2 that for any state ρ prepared with asymptotic sources, the Rényi (and

von Neumann) entropies Sn(ρ) of ρ again define operators on HBU and take definite

values in α-sectors. These entropies are then subject to versions of the above bound

in each α-sector, and as a result so are their expectation values
〈
Sn(ρ)

〉
in the Hartle-

Hawking state. In the context of black holes, any such entropies will then reproduce an

appropriate Page curve defined by the Bekenstein-Hawking entropy. In particular, the

final result will then be much as in the recent discussions of replica wormholes [48, 49]

which in our language are indeed the most natural saddle points contributing to the

average entropy
〈
Sn(ρ)

〉
.14 The argument above shows that similar results will then

hold when one computes the full result of any reflection positive gravitational path

integral. Further, it tells us that these bounds hold not just on average, but in every

α-state. This puts additional constraints on higher moments of the entropy.

It is, however, important to note the precise sense in which the entropies
〈
Sn(ρ)

〉
have just been defined. From our perspective, the basic quantities are the eigenvalues

Sn,α(ρ) of Ŝn(ρ) in the various α-states. These are entropies defined separately on each

HΣ,α. Working in the Hartle-Hawking state then computes the average
〈
Sn(ρ)

〉
of

such entropies over the α-states in the Hartle-Hawking ensemble. In particular, while

this
〈
Sn(ρ)

〉
is computed by replica wormholes (to a first approximation), it manifestly

does not include entanglement with the baby universe sector.

14More properly, the replica wormholes are saddle points for
〈

Tr(ρn)
〉

, but the distinction is unim-

portant as long as the variance of these quantities is small.
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This is a physically useful notion of entropy as the α-sectors are superselected from

the standpoint of asymptotic observers, and entanglement with superselection sectors

is in principle unobservable. Nevertheless, if one wishes to consider the entropy of some

density matrix on the full space HΣ (and not just on a single α-sector) defined by some

fixed set of sources, entanglement with baby universes will generally lead to much larger

entropies that exceed the Bekenstein-Hawking entropy and thus do not reproduce the

expected Page curve. In this more mathematical sense, Hawking was correct [98] that

information is lost in black hole evaporation. This is all in direct parallel with the

conclusions of [55–57, 99] from long ago. We will also discuss such connections in more

detail in a forthcoming companion paper.

5 On third-quantized perturbation theory

5.1 Formulating a wormhole perturbation theory

We have been interested above in contexts where spacetime wormholes provide the

dominant effects. But in most circumstances spacetime wormholes are not the minimum

action configurations. In such cases, it is natural to expect other configurations to

dominate, and for the contributions of spacetime wormholes to be nonperturbatively

suppressed by a factor of the form e−S, where S, of order G−1
N , is the action of a

wormhole. This holds for computing simple amplitudes in our models of section 3, for

which higher topologies are suppressed by factors of the large parameter λ. In such cases

it is natural to use an approximation where different universes evolve independently at

leading order, and where spacetime wormholes are included as perturbative interactions

between universes. The resulting perturbation theory is the ‘third quantised’ formalism

of [57]. This approximation was also emphasized in other contemporaneous literature

on wormholes [55, 56, 99, 100].

We now describe an analogous approximation in our framework. This will serve

both to complete the connection to the above literature and to provide a better under-

standing of the interesting circumstances described above in which this approximation

fails. Nevertheless, this section represents a distraction from the main line of inquiry

presented here, and some readers may wish to skip directly to section 6.

The early works [55–57] focused on studying microscopic wormholes, with the intent

of describing physics on distances scales much larger than the wormhole’s characteristic

size (say, Planck scale). The relevant scale is the ‘width’ of the wormhole mouth,

thought of as some length scale associated with the cross-sectional area. In contrast,

the separation between the spacetime regions associated with the wormhole mouths

can be much larger. In that context, it is most natural to describe the physics using
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the operators of the low energy effective field theory, studying the effect of integrating

out the microscopic wormholes. In contrast, we have wormhole mouths which, as with

replica wormholes, are determined by a classical or quantum extremal surface. As a

result, our wormholes will typically have a size similar to some black hole horizon, which

may be both macroscopic and large. For us it thus will be more natural to discuss CFT

boundary operators Ẑ[J ] in place of the low energy bulk fields. This captures much

of the same physics, and is analogous to using an S-matrix description in place of an

effective Lagrangian.15 The effects on the bulk effective field theory that arise from

integrating out macroscopic wormholes will be explored in section 6.

Suppose then that, for some theory and amplitude of interest, the contribution

from topologies connecting many boundaries is suppressed relative to disconnected

topologies. This holds for familiar simple amplitudes in theories of interest, including

the model discussed in section 3, as well as for JT gravity — though it does not hold

for all amplitudes, as we will discuss below. In a case where it does, at zeroth order

of approximation we may neglect the connected contributions, obtaining an amplitude

that approximately factorizes:

Z−1
〈
Z[J1] · · ·Z[Jn]

〉
≈ Z−n

〈
Z[J1]

〉
· · ·
〈
Z[Jn]

〉
(5.1)

Identifying an asymptotically AdS boundary Z[J ] with an operator Ẑ[J ] acting on the

baby universe Hilbert space HBU as in (2.11), at this leading order of approximation

we can simply replace Ẑ[J ] with a multiple of the identity operator Z−1〈Z[J ]〉. In

particular, at this level of approximation, acting with any Ẑ[J ] on
∣∣HH

〉
yields another

state proportional to
∣∣HH

〉
, so the baby universe Hilbert space defined in section 2.2

collapses to a single dimension.

To incorporate nontrivial wormhole physics, we must go to next order in the approx-

imation, allowing contributions to the path integral from spacetimes that connect either

one or two asymptotic boundaries, but not more. The contributions from spacetimes

with one asymptotic boundary are then analogous to quantum field theory tadpoles,

while the two boundary contributions are analogous to quantum field theory propaga-

tors. In particular, the Hilbert space HBU becomes nontrivial, and takes the form of a

Fock space. To see this, we define ‘single universe states’ by subtracting the ‘tadpole

contributions’ from one boundary states; i.e., one need only introduce the modified

(tilded) states

|̃Z[J ]〉 = |Z[J ]〉 − Z−1〈Z[J ]〉|HH〉, (5.2)

15In the language of [101], the effects of higher topology we study are more closely analogous

to ‘wormhole interactions’, as opposed to the ‘instanton interactions’ arising from nearby wormhole

mouths of primary interest in that work.

– 54 –



and similarly for states involving larger numbers of universes. Loosely speaking, the

spacetime created by the operator Ẑ[J ] is most likely to immediately cap off, failing

to create a closed universe. It is natural to subtract this possibility, in which case

we are most likely to create a single closed universe which can propagate to another

asymptotic boundary, justifying the name of ‘single universe state’. Going to higher

orders in the approximation would require additional subtractions for this description

to remain valid.

The resulting Fock space structure can be used to define baby universe creation

and annihilation operators a†J , aJ∗ , where in particular we have

aJ |HH〉 = 0; (5.3)

a†J |HH〉 = |Z[J ]〉 − Z−1〈Z[J ]〉|HH〉, (5.4)

and the algebra [aJ1 , aJ2 ] = 0,[
aJ1 , a

†
J2

]
=
〈
Z[J∗1 ]Z[J2]

〉
− Z−1

〈
Z[J∗1 ]

〉〈
Z[J2]

〉
. (5.5)

One can then write corrections to the boundary operators Ẑ[J ] in terms of baby universe

creation and annihilation operators:

Ẑ[J ] ∼ Z−1
〈
Z[J ]

〉
+ a†J + aJ∗ + · · · , (5.6)

where · · · indicates higher order terms.

One is then tempted to think of the states |̃Z[J ]〉 as (approximations to) states of

a single closed baby universe, with a wavefunction for the metric and other fields deter-

mined by the source J (and by varying J we would expect to obtain an overcomplete

set of coherent states). We can diagonalise the inner product on the single-universe

Hilbert space, taking linear combinations of Ẑ[J ] for different J to give operators Ẑi
which are chosen to be Hermitian and give amplitudes satisfying

Z−1〈ZiZj〉 − Z−2〈Zi〉〈Zj〉 = δij . (5.7)

We can then write Ẑi = 〈Zi〉+a†i +ai+ · · · , with a more conventional oscillator algebra

[ai, a
†
j] = δij labelled by an orthonormal basis of single-universe states. Repeated

applications of a†i are then said to create more universes, which can interact through

topologies connecting three or more boundaries and into which we could incorporate as

higher order terms in (5.6). As long as these higher topologies are suppressed, we can

thus construct a useful perturbation theory, where the inner product in (5.5) gives the

‘free propagator’ for single universe states, with higher topologies contributing vertices.
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In particular, as noted above, based on the validity of the free approximation

HBU appears to be well described by a Bosonic Fock space built on the single-universe

Hilbert space. The Hartle-Hawking state provides the oscillator ground state, and

multi-universe states are built by acting with a†i operators. Alternatively, in the free

approximation we can think of HBU in terms of the wavefunction Ψ(Zi), a function of

the real variables Zi. The operator Ẑi then acts as a position operator (or a free field

operator in QFT, where the label i could be momentum, for example), multiplying by

Zi. As the oscillator vacuum, the Hartle-Hawking state has a Gaussian wavefunction

for each Zi, shifted to be centred on 〈Zi〉.
It is now tempting to use this free Fock space description to describe the spectrum

of Ẑ[J ], and hence the dual ensemble and the α-states. We are led to expect that the

spectrum of {Zi} has continuous support on the whole of R, independently for every

i. In the resulting ensemble the Zi, and hence the Z[J ], are normally distributed at

the first nontrivial order described above, with covariance matrix given by the single-

universe inner product16 in (5.5). At each higher order, corrections from interactions

would then appear to contribute only small non-Gaussian corrections to the measure,

the conclusion reached in [101], for example. However, in this respect, we have been

misled by the free ‘approximation’ 5.6. It turns out to be invalid because, while per-

turbation theory is accurate in many circumstances, it is not applicable in α-states,

as we will argue in a moment. The true, nonperturbative spectrum is smaller because

the Fock space description of the Hilbert space is invalid once we take into account the

null states (2.9) by which we must quotient by to obtain HBU. Due to the null states,

the ‘universe number’ which grades the Fock space is not a diffeomorphism invariant

observable.

Before we describe the breakdown of third-quantised perturbation theory, we clar-

ify that it is not necessarily signalled by the dominance of spacetime wormhole effects.

It may happen that the most important contribution to an amplitude comes from a

nontrivial topology, but higher topologies remain negligible. This occurs prominently

in two recent examples. The first is the spectral form factor 〈Z(β + it)Z(β − it)〉 of

JT gravity [62, 86, 102], for which the contribution from the disconnected topology de-

cays in time, while the connected topology gives a contributions that is exponentially

suppressed but growing. Eventually, the connected topology dominates, giving the

‘ramp’. A second example is the nth Rényi entropy of an evaporating black hole after

the Page time, which can be described as a sum of n-boundary amplitudes; the domi-

nant configuration is a ‘replica wormhole’, a spacetime which connects the n boundaries

16This is equivalent to the statement that the vacuum state of a free field theory is Gaussian with

corresponding covariance matrix.
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[48, 49]. However, higher topologies continue to be suppressed in such cases, and a simi-

lar perturbation theory remains valid; it simply happens to be dominated by n-universe

vertices, so requires their inclusion.17

Instead, we are interested in cases when the third quantised perturbation theory

fails entirely, and many topologies must be considered at once. For example, this oc-

curs when we compute amplitudes with a parametrically large number of boundary

components, giving very large moments of Ẑ[J ]. Equivalently, we can describe these

amplitudes as the overlaps of states with very large universe occupation number18.

While any particular process of splitting and joining universes is suppressed, the total

amplitude of such interactions is enhanced by combinatorial factors counting the num-

ber of processes with many possible universes (or joining many possible boundaries).

This allows higher topologies to become important.

Crucially, this breakdown of perturbation theory applies to α-states and so is vi-

tally important for understanding the spectrum of Ẑ[J ]. The approximation of weakly

interacting baby universes is thus not a reliable guide to the details of the spectrum.

In the free theory, the α-states are like position eigenstates in the harmonic oscillator.

They thus have infinite expectation value for the number operator. As we reduce the

uncertainty in the α parameters and create a baby universe wavefunction with a more

narrow spread, the mean universe occupation number increases, and eventually becomes

exponentially large. At that point, the above approximation is not self-consistent for

studying such states.

In retrospect, it should not be surprising that perturbation theory is of limited use

for determining the spectrum of observables. As a simple example of similar behavior,

if we perturb around the minimum of a potential in quantum mechanics, we cannot

at any finite order tell whether the configuration space is compact, and hence if the

momentum should be quantised.19

The truncation of the spectrum of Ẑ[J ] is invisible at any finite order in the third-

quantised perturbation theory. Thus in that description it could be seen only via some

nonperturbative effect, or in an exact solution if one turns out to be available. Our

models of 3 provide a simple example of the latter. Recall that, in terms of the usual

bulk perturbation theory in GN , the spacetime wormholes describing third-quantised

17This perturbation theory is also useful for discussing the average entanglement spectrum close to

the Page time [49], though it requires summation of a class of ‘tree-level’ diagrams involving vertices

of all valences.
18This notion is well-defined only in the third quantised perturbation theory, but can nonetheless

be used to diagnose whether that perturbation theory is self-consistent.
19We mentioned above the natural third quantization interpretation of Ẑ[J ] as a position-like oper-

ator, but we could equally well have interpreted it as an analogue of free particle momentum
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interactions are already nonperturbative, so the relevant expansion parameter is of the

form e−S for an action S of order G−1
N . From this point of view, the compression of the

Hilbert space is then a doubly nonperturbative effect, contributing to simple amplitudes

as e−c e
−S

for some (possibly imaginary) constant c.

5.2 Perturbation theory in the topological model

To give some insight into the validity of third quantised perturbation theory, we dis-

cuss its applicability in the context of the model of section 3. We will restrict our

considerations to the model without EOW branes.

The small parameter that suppresses topology is e−S0 , with S0 multiplying the

Euler characteristic. It is natural to organise the third quantised perturbation theory

as an expansion in that parameter, with higher genus topologies appearing as loops.

However, the details of such an expansion (particularly accounting for diffeomorphisms

of connected surfaces) are not necessary for the point we wish to illustrate. To simplify

the discussion, we thus instead assume that the full connected correlators (and thus

any sums over connected surfaces with given boundaries) have already been computed

exactly. These are all given by the same number λ, so our perturbation theory will be

an expansion in inverse powers of λ. As noted in section 3, this expansion is organised

by counting the number of connected components of spacetime.

Let us begin by noting a precise sense in which the free Gaussian approximation

is appropriate at large λ. This follows from first observing that a sum of N indepen-

dent Poisson distributions with parameter λ/N is again a Poisson distribution, with

parameter λ. Taking λ and N large with fixed ratio then implies that we can apply

the central limit theorem to the Poisson distribution as λ → ∞. Specifically, we may

define

X =
Z − λ√

2λ
, (5.8)

which has mean zero and variance unity. This X is just new encoding of the boundary

condition Z, with the shift by λ acting to subtract the ‘tadpole’ and set 〈X〉 = 0,

and with an additional rescaling to fix the variance Z−1〈X2〉 = 1
2
. The central limit

theorem then implies that as λ → ∞ the distribution of X converges to a normal

(and thus Gaussian) distribution. In particular, at large λ any amplitudes 〈f(X)〉 for

bounded continuous functions f (fixed independently of λ) approach those computed

by integrating against a Gaussian. These are the vacuum amplitudes of a harmonic

oscillator, with wavefunction ∝ e−
x2

2 , so this defines the ‘free’ Gaussian approximation

mentioned above.

We will return to the discussion of this wavefunction later. Before doing so, we the

large λ expansion to study the moments Z−1〈Zn〉 = Bn(λ) and note both when and
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how that expansion fails as we also take n to be large. For fixed n, the leading order

contribution at large λ comes from completely disconnected spacetimes, giving Bn(λ) ∼
λn. At the next order, we have spacetimes with n− 1 disconnected components, which

requires one ‘cylinder’, a component joining two boundaries.20 There are
(
n
2

)
= n(n−1)

2

choices of which boundaries to join, so we have

Bn(λ) = λn +
n(n− 1)

2
λn−1 + · · · λ→∞, fixed n. (5.9)

At the next order, we have spacetimes with n− 2 components, which means either two

cylinders, or a ‘pair of pants’ connecting a trio of boundaries to the same component

of spacetime. We can continue in this way to any desired order λn−k in the expansion

by accounting for possible topologies with n− k connected components.

Now, let us consider what happens when n also becomes large. The first sign of

trouble occurs when n if of order
√
λ, when the second term in the above expansion

is no longer smaller than the first. There are roughly n2/2 ways to choose pairs of

boundaries to join by a cylinder (neglecting the correction from choosing the same

boundary twice), which is sufficiently large to overcome the suppression by λ. But this

does not apply only for a single cylinder; terms with any number of cylinder components

again contribute at the same (leading) order. In some sense our free approximation has

failed.

However, it turns out that the large λ expansion remains useful because we can

explicitly account for the sum over configurations with k cylinder components. For

2k � n, there are approximately 1
k!

(
n2

2

)k
ways to select k pairs of boundaries to join

with a cylinder, where we have neglected the correction from ‘interactions’, where the

same boundary is chosen more than once. Summing over this ‘free gas of cylinders’

gives us a multiplicative correction to the nth moment of Z,

Bn(λ) ∼ λne
n2

2λ λ, n→∞, fixed
n2

λ
. (5.10)

In this regime, we can now systematically correct (5.10) in powers of λ−1 as before.

Such corrections can account for including higher topologies with more boundaries as

well as compensating for the overcounting of cylinder configurations.

From (5.10), we see that 〈Zn〉 is dominated by contributions with roughly n2

λ
cylin-

der components. This can be much greater than one and the analysis will remain ap-

plicable, though it should certainly remain much less than n, so we must have n� λ.

20For simplicity of language, we will call this a cylinder even though it packages a sum over surfaces

of all genus with two boundaries. A more precise language might refer to it as a renormalized cylinder.
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If this is the case, the correction from the cylinders is small in the sense that it is

subleading to the λn term when expressed as an expansion of logBn(λ).

Taking n larger still, (5.10) remains accurate until n is of order λ2/3. At that point

we find significant corrections from including any number of connected components

having three boundaries each (‘pairs of pants’), and also from certain aspects of the

overcounting of configurations of multiple cylinders. In the latter context, the relevant

configurations are those in which two cylinders end on the same boundary. We pre-

viously included these configurations for simplicity (and to obtain a definite power of

λ), but since they are not allowed we must now compensate by subtracting off their

contributions. Together, these two effects multiply (5.10) an extra factor of e−
n3

3λ2 . This

pattern continues, with similar e# nk

λk−1 corrections appearing whenever n becomes of

order λ1− 1
k for k = 2, 3, 4, . . .. As discussed in appendix A.2, this structure is also

apparent from a direct asymptotic expansion of Bn(λ).

In summary, in the regime λ � n the large λ expansion remains a tractable way

to compute the moments 〈Zn〉 and is organized by types of contributing geometries.

However, once n is of order λ, this perturbation theory breaks down catastrophically,

since there is no longer any suppression of connected topologies with many boundaries.

This is the regime in which the novel effects of null states and gauge invariance become

relevant, truncating the spectrum of Z and making its discreteness apparent.

To explain this last statement in more detail, we first describe the state |Zn〉 in

the free approximation. We begin by translating to the harmonic oscillator position

variable variable X introduced in (5.8), writing Zn = λn
(

1 +
√

2
λ
X
)n

. Expanding

logZn at large λ (but any fixed n), this gives logZn = n log λ+
√

2
λ
nX+O(nλ−1). We

may thus approximate Zn ∼ λn exp
(√

2
λ
nX
)

. For sufficiently small n that the free

approximation is applicable, we therefore have an approximate equivalence between the

following states: ∣∣Zn
〉
' Z1/2λne

√
2
λ
nX̂
∣∣0〉 ' (eλ)n

∣∣∣enλZ〉 (5.11)

Here the final equality uses (5.8), and the middle state lives in the harmonic oscillator

Hilbert space of the free approximation. In particular, |0〉 is the (normalized) oscillator

vacuum with wavefunction ψ(X) ∝ e−
X2

2 . After applying the exponential operator, the

resulting wavefunction is a shifted Gaussian, which is a coherent state of the harmonic

oscillator with average occupation number (here, ‘universe number’) n2

λ
. From the

above analysis, it follows that the free approximation is valid for universe numbers

N � λ.
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Now, a wavefunction of width ∆X in the X variable has an occupation number

that scales as N ' (∆X)−2 as the width goes to zero, where the leading contribution

comes from writing occupation number in terms of the Harmonic oscillator Hamiltonian

and focusing on the kinetic term. In terms of the width ∆Z in Z, this is N ' λ(∆Z)−2.

But resolving the natural integer discreteness in the spectum of Z requires ∆Z ∼ 1,

and hence N of order λ. As a result, and as one might expect, the discreteness of

the Z spectrum is thus associated with the complete breakdown of third quantised

perturbation theory.

We can also see directly that this regime is connected with the appearance of

null states, and thus the appearance of new gauge equivalences. Perhaps the simplest

equivalence is that between the Hartle-Hawking state and the exponential
∣∣e2πiZ

〉
. Note

that any state
∣∣eαZ〉 is described in the free approximation by a coherent state with

average occupation number N ∼ |α|2λ. But for α of order one (for example, for

α = 2πi) this is of order λ and the free approximation fails.

All these phenomena occur when the state of baby universes has unsuppressed

interactions with a given boundary. Roughly speaking, if we have a state of HBU

containing N closed universes and introduce a new boundary, the new boundary will

connect to any given universe with amplitude λ−1. Hence it will connect to some

universe with amplitude N/λ. This effect becomes of leading order at N of order λ,

when the free description breaks down. We emphasise that this heuristic is appropriate

for N � λ when the free approximation can be used, but that N itself becomes ill-

defined once it becomes of order λ. At that point, null states appear and, furthermore,

the null states are not preserved by any notion of universe number operator N̂ .

6 Discussion

As with many works motivated by the black hole information problem, various readers

may wish to focus on either the technical aspects of the above results or, alternatively,

on their further significance for quantum gravity. For this reason, we separate our

discussion below into more technical remarks in section 6.1 and a broader consideration

of implications in section 6.2

6.1 Summary and future directions

We have seen that combining features of AdS asymptotics with the basic perspective

of Coleman [55] and of Giddings and Strominger [56, 57] from the late 1980’s leads to

a sharp structure in which states in a ‘baby universe Hilbert space’ HBU control an

ensemble of results for quantities Z[J ] computed at asymptotically AdS boundaries.
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This version of the argument uses only manifest properties of the path integral and

makes no further assumptions about locality.

Nevertheless, the final result is much the same as in [55, 56]. In particular, the full

bulk theory naturally includes both HBU and what one may call asymptotically AdS

states, and there is a sense in which the two sectors interact. However, the theory has

superselection sectors for the algebra of operators on the asymptotically AdS states,

so that an observer with no access to HBU naturally experiences an ensemble. The

superselection sectors are associated with a complete orthonormal basis {
∣∣α〉} of HBU

in which the Z[J ] take definite values and exhibit factorization. Thus for a given state∣∣Ψ〉 ∈ HBU, the probability of outcome Zα[J ] is pα =
∣∣〈Ψ∣∣α〉∣∣2. Furthermore, all

properties of the full spectrum of superselection sectors can at least in principle be

computed from correlators in the Hartle-Hawking no-boundary state
∣∣HH

〉
∈ HBU.

We then explored this construction in detail in simple topological models inspired

by Jackiw-Teitelboim gravity with and without end-of-the-world branes (EOW branes,

see e.g. [49, 103]), and perhaps also with an extra boundary degree of freedom. Without

EOW branes, there is a single asymptotically AdS boundary condition Z, for which

the associated operator Ẑ is naturally interpreted as the dimension of the CFT Hilbert

space. This operator is also present in the model with EOW branes. Interestingly,

the models predict this operator to have a quantized spectrum with eigenvalues Zα ∈
eS∂−S0N, where S∂ is a parameter associated with the extra boundary degree of freedom.

The potential eigenstates associated with other potential eigenvalues turn out to be null

states. Perhaps even more intriguingly, unless S∂ is taken to be larger than S0 + log k,

the models with EOW branes are reflection positive only when all Zα are nonnegative

integers, and thus only when eS∂−S0 ∈ N. The particular ensemble defined by the

Hartle-Hawking no-boundary state gives a Poisson distribution for the Zα.

Models with EOW branes have additional boundary conditions (ψj, ψi) for i, j =

1, . . . k. The (ψj, ψi) are naturally interpreted as the matrix of inner products between

EOW brane states in a dual boundary quantum mechanics. For given (integer) Zα,

the eigenvalues of ̂(ψj, ψi) take the form
∑

a ψ̄
a
jψ

a
i for some rectangular matrix ψai of

size k × Zαk . As a result, the rank of any (ψj, ψi)α cannot exceed either k or Zα.

The ensemble defined by the Hartle-Hawking no-boundary state arises from choosing

independent complex Gaussian random entries for each of the ψai .

For k � Zα, this structure (ψj, ψi)α =
∑

a ψ̄
a
jψ

a
i requires a sizeable compression of

the naive the CFT Hilbert space (which would have had dimension k). In particular,

any list of more than Zα states in the CFT Hilbert space turns out to be linearly depen-

dent due to the presence of null states. We also argued that a similar constraint on the

number of linearly dependent states must arise in any theory where the gravitational
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path integral defines a positive semi-definite physical inner product. Our general ar-

gument is closely related to ideas in [96], and various related suggestions can be found

in e.g. [104–108]. But the result is deeply related to recent successes [42, 43, 48, 49] in

reproducing various forms of the Page curve associated with the black hole information

problem. With hindsight one can say that it was implicit in all of these works, and in

fact moderately explicit in [49]. But here we see that it is an exact statement at finite

Z in every possible baby universe state.

Indeed, in order to explain the Rényi computations of [49] for typical members of

the Hartle-Hawking ensemble some version of this compression must occur whenever

the number of a priori independent states inside a quantum extremal surface exceeds

the generalized entropy defined by the region outside. And due to a maximin argument

[42, 43], one expects this to occur whenever the number of a priori independent quantum

states that can exist inside a given bulk domain of dependence with fixed exterior

geometry exceeds the area of the codimension-2 surface where the past and future

boundaries of this domain of dependence intersect; see also [109] for more on quantum

maximin surfaces.

In the context of black hole evaporation, for general baby universe states
∣∣Ψ〉 this

picture gives a sense in which interactions with baby universes formally lead to loss

of information during the evaporation of black holes. But as described previously in

[55–57, 99], since the α-states define superselection sectors for asymptotic observers,

any given asymptotic observer can find no operational signs of this information loss.

In particular, while the observer may not be able to predict the exact outcome of an

experiment involving black holes, they may simply consider the experiment to be a

partial measurement of the previously unknown value of (in this interpretation unique)

value of α describing the universe in which they live. To the extent that α has been

measured, no further information is then lost.

At the technical level there remain many interesting generalizations to explore in

the future. For example, even in the models discussed here, it would be useful to

understand if one can formulate the Hilbert spaces HBU using slices at ‘finite time’,

or in other words without reference to asymptotic boundaries. Moving beyond the

current model, one would like to add topological matter, and also to explore a similarly

topological version of the de Sitter models of [110] and [49]. Work along these lines is

in progress and we hope to report soon. In the longer term, it is also clearly of interest

to study more realistic models.
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6.2 Transcending the ensemble: implications and interpretations for each

α-sector

We now turn to more speculative comments concerning the implications of our results

above.

A key lesson from this work appears to be that, at least in sufficiently simple mod-

els, gravitational path integrals by themselves succeed in describing a great deal of

microscopic information. In particular, in our models the bulk path integral leads to

a definite construction of the possible boundary theories — defined by simultaneous

eigenvalues Zα[J ] — and also of the ensemble defined by the Hartle-Hawking state.

However, this was possible only due to the exact solubility of the model, and in par-

ticular the convergence of the sum over topologies. In more realistic models, we will

surely not be so fortunate.

Even in the simple case of JT gravity and its cousins [49, 62, 87], the gravita-

tional path integral fails to converge. Though the model is sufficiently simple that the

path integral for any given topology is exactly computable, the sum over topologies

is an asymptotic series with zero radius of convergence in the expansion parameter

e−S0 . While there is an extremely natural completion of the model defined by a dual

double-scaled matrix integral, it remains unclear whether the gravitational path inte-

gral uniquely selects this completion, or how it is realised in the bulk. This completion

is associated with nonperturbative effects in the sum over topologies, which are doubly

nonperturbative in GN . The same doubly nonperturbative scale was associated with

truncation of the baby universe Hilbert space in our model, suggesting a tantalising

connection to explore in more generality.

If we apply the ideas of this paper to more conventional ‘top-down’ examples of

AdS/CFT duality, such as type IIB supergravity (or string theory) with AdS5 × S5

boundary conditions, there are several possible outcomes. The first possibility, sug-

gested by our simple model and JT gravity, is that a nonperturbatively complete bulk

theory defines a large Hilbert space HBU of baby universes. The eigenstates
∣∣α〉 would

then be associated with a menagerie of dual CFTs, and the Hartle-Hawking state again

defines an ensemble of them. However, this is in tension with the established statement

of the duality, which uniquely selects N = 4 Yang-Mills theory as a CFT dual.21 A

nontrivial ensemble would require surprising new families of maximally supersymmet-

ric CFTs; in particular, since N = 4 Yang-Mills is the unique such theory at weak

21Recall that a given α-state determines partition functions for all possible boundary conditions on

the bulk fields. These boundary conditions include specifications the flux on S5 and the asymptotic

dilaton, associated with the rank N of the dual U(N) gauge group and the ’t Hooft coupling λ

respectively. An α-state would specify a family of theories labelled by these parameters.
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coupling, these new CFTs must be strongly coupled throughout their moduli space.

Perhaps the more likely scenario is that N = 4 Yang-Mills is the unique dual and

there is no ensemble. The baby universe Hilbert space interpretation is that HBU is

one-dimensional, so the Hartle-Hawking state is the unique state of closed universes.

The nonperturbative diffeomorphism invariance that produced null states is then re-

quired to act in the most emphatic possible fashion, rendering every possible state

gauge equivalent. This unique state must then also be an α-state, and must exhibit

factorization despite the existence of spacetime wormholes. Nevertheless, in analogy

with typical α-states in our model, it remains possible that simple spacetime wormhole

configurations still give excellent approximations to certain amplitudes. Of course, in

analogy with highly atypical α-states in our model, it is also possible that that simple

spacetime wormhole configurations always receive large corrections.

An intermediate position is that the bulk theory leads to an ensemble interpretation

in an asymptotic (say, large N) expansion, but there is a unique theory at any finite N .

This is consistent with the observation [111] that essentially any effective field theory

in AdS solves the bootstrap order by order in large N perturbation theory. We can

thus emulate a consistent CFT in a large N expansion, which nevertheless need not

exist at any given finite N .

In any case, the suggestion is that the gravitational path integral should contain

the full physics in each consistent α-sector. And since the baby universe state in such

sectors does not change, there is no room in a given sector for information loss. As

a result, the gravitational path integral should teach us how each consistent α-sector

transfers information to the outgoing Hawking radiation.

With this in mind, we recall that a key feature of the discussion in [55–57] was the

idea that one could integrate out the spacetime wormholes and describe their effects in

terms of a modified effective action in which the detailed couplings were controlled by

the α-states. In other words, the original theory with specified couplings and spacetime

wormholes was equivalent (from the asymptotic point of view) to a theory with an

ensemble of bulk couplings but where spacetime wormholes were forbidden. The same

construction will apply in our context, but with one important distinction. Namely,

[55–57] focussed on wormholes with Planck-sized cross-sections under the assumption

that microscopic wormholes would dominate in any physical process. But the mouths of

the replica wormholes in [48, 49] are determined by the location of a quantum extremal

surface. As a result, they approximately coincide with the relevant black hole horizons

and thus are macroscopic in size. Integrating out such wormholes thus induces an

ensemble of highly non-local couplings in the effective action. Indeed, the couplings

naturally mediate transitions in which any given interior configuration specifying the

geometry and matter fields arbitrarily far inside the black hole can be replaced by any
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other, no matter deep the black holes throat may have become. At least for replica

numbers n near 1, the action for a replica wormhole whose mouth has area A is of

order A
4G

[112], so the amplitude for such processes should be exponentially small in

this quantity. However, in an old black hole the large number of internal states can lead

to a large effect as seen directly above and in [49] (and as foreshadowed in [113–115]).

The exact location and nature of the above non-local interactions is clearly of some

interest. In particular, while quantum extremal surfaces may appear outside the black

hole’s event horizon [45], for black holes evaporating into a vacuum they should always

lie inside [42, 43]. Were all of the physics determined by replica wormholes confined

far enough inside the horizon, there would be no possibility of affecting the exterior,

and in particular no way it could purify the emitted Hawking radiation. However, any

separation of the QES from the horizon arises from time dependence, which is typically

associated with quantum effects. The backreaction of such effects on the spacetime

is then suppressed by a power of G. As a result, the QES tends to be adiabatically

close to any horizon, and thus separated by an amount only of order G. In addition,

since the QES is determined by balancing the quantum effect of evaporating against a

classical effect, the saddle-point is somewhat broad. A rough estimate of the width of

the saddle-point suggests that the typical fluctuations of the area are also of order G.22

This places the QES outside the horizon with order one amplitude. The associated

non-local interactions will then naturally transfer information from the deep black hole

interior into the outgoing Hawking radiation in much the form suggested in [22, 30].

However, for a full understanding of the physics associated with such interactions it

appears one must take into account the corrections they imply for the theory’s physical

inner product. As described in section 4, such corrections are associated with extend-

ing the familiar diffeomorphism invariance of gravitational systems to a more general

slicing invariance of the path integral with topology change. Extending this to arbi-

trary Euclidean time evolution — even involving processes that change the topology of

the slice used to define the quantum state — implies spacetimes of different topologies

to be gauge related. In other words, this is a restatement of the old maxim that for

gravitational systems time evolution is a gauge symmetry unless it involves evolution

along an asymptotic boundary. This then directly implies that the path integral com-

22For example, we can perform the path integral over replicated geometries and matter, while leaving

unfixed the location of the QES where branching between replicas occurs. This leaves a final integral

over the QES location to compute, which is roughly
∫
e−Sgen for n close to 1, where Sgen is the

generalised entropy of the QES and we integrate over its location. The integral over the area of the

QES (fixing ingoing time, for example) is then
∫
dA e−Sgen(A), with Sgen(A) ∼ A

4G + # log(A0 − A)

[42, 43], where A0 is the area of the (stretched) horizon. At the saddle point, where A0−A is of order

G, we have S′′gen(A) of order G−2 leading to a width ∆A of order G.
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putes the gauge invariant physical product as one would expect from general arguments

[69, 76–78] (though admittedly those arguments are most direct in contexts where it is

not obvious that topology change should be included).

As a result, one may think of the induced nonlocal interactions as modifying the

gravitational constraints; i.e., with new terms in the Wheeler-DeWitt equation. The

interesting feature, however, is that these modifications are highly non-generic. In the

regime that in our models corresponds to k � Zα , there are a large number of strongly

correlated small corrections, where the correlations conspire to give a large number of

null states; i.e., they make the physical inner product highly degenerate so that a priori

independent states are in fact linearly dependent in the physical Hilbert space, and

so that the dimension of the physical Hilbert space is bounded by Zα. Furthermore,

following ideas related to [96], we argued in section 4 that null states must enforce a

similar bound in a general reflection positive gravitational path integral.

It is this bound that leads to the Page curve, and which thus determines the rate

at which the above interactions transfer information out of the black hole. As a result,

while the above non-local interactions are intimately tied to this change in the inner

product, it is natural to think of the former as secondary and the latter as primary. In

particular, it is in terms of the inner product that (for reflection positive path integrals)

we find a clean statement of the correlations and conspiracies inherent in the details of

the induced interactions; see again section 4.

We believe the explicit demonstration of such a large number of null states to be

a lesson of fundamental importance. It implies that — due to the above mentioned

conspiracies — the gauge symmetry of gravitational systems is much larger and more

powerful than had been previously established. The idea that bounds on entropy

might be related to such a gauge symmetry date back at least to the early 1990’s, when

such suggestions arose in discussions of black hole complementarity proposals (see e.g.

comments in [104]) and cosmological analogues in de Sitter space. It is also much like

the truncation of the bulk Hilbert space implicit in random tensor network models [116,

117] in which the disorder is implemented by inserting randomly chosen projections

into the bulk. However, we now see this to be a direct result of the gravitational path

integral.

The physics of this enlarged gravitational gauge invariance remains to be under-

stood in detail, especially in the context of more realistic models. Nevertheless, the

argument of section 4 indicates that the long discussed relation [11, 96, 118, 119] be-

tween two-sided bulk black holes and bulk thermofield double states (4.15) should be

understood as an example of this gauge equivalence. In particular, we now see that the

so-called “superselection sectors” of [120] — which were argued there to be physically
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distinct — are in fact gauge equivalent.23

We now speculate further on the implications of this enhanced gauge invariance for

issues involving black hole information and the connection to other works. It seems clear

that in sufficiently old black holes (where the number of a priori independent internal

states is sufficiently large), this gauge invariance implies that vast numbers of a priori

independent states must in fact to be regarded as physically equivalent. Furthermore, at

least in our model, this happens in an essentially random way that does not respect any

additional structure24. Extrapolating this result to more complicated models suggests

that one will find many states which a priori seem to have very different physics — and

in particular in which infalling observers have vastly different experiences — but which

are nevertheless gauge equivalent. For example, just as there can be gauge equivalence

between Alice meeting Bob and Alice finding only empty space, there is no reason for

the physical inner product to respect Alice’s notion of particle number (as distinguished,

say, from total charges coupled to a gauge field), or even her notion of particle number in

a given mode. As a result, even for pure state black holes, the experience of observers

inside the black hole may fundamentally fail to be well-defined as a gauge invariant

concept. One may view this as a variant of the firewall-like possibility described in

[41] that black holes may have ‘no interior’, or at least no interior from which familiar

physics can be extracted.

Nevertheless, as with any gauge symmetry, one is free to fix a gauge in order to

define a language (i.e., a set of observables) with which to describe the physics. In par-

ticular, as noted above, at the level of Hilbert spaces any gauge invariance is naturally

associated with what one may roughly call a projection P from some kinematic Hilbert

space Hkin to a physical Hilbert space25 Hphys ⊂ Hkin. In this sense, one may think

of a general gauge fixing procedure as a choice of linear subspace HGF ⊂ Hkin such

that P defines a bijection between HGF and Hphys. Within a given such gauge fixing

scheme, it may then be that the experiences of infalling observers become well-defined.

For example, in describing the interior of a black hole of radius R0 that recently formed

from collapse, it would be natural to choose a gauge in which the interior is of size

comparable to R0 (even if such small interiors are gauge equivalent to certain much

larger interiors that might form when an initially much larger black hole decays to size

R0), and in particular in which standard effective field theory is a good approximation.

23This gauge equivalence resolves a problem noted in that work concerning how such superselection

sectors in transform under permutations.
24In particular, the spectrum of possibilities allows any Hermitian inner product of the appropriate

rank.
25A structure of this general sort is inherent in Dirac’s constraint quantization of gauge systems

[70], though the interested reader can consult [71–75] for a variety of more technical treatments.
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With this in mind, we recall that the discussions of [42, 44–49, 121] described

a close parallel between old black holes that have been radiating into an external

system (‘the bath’) and the ER=EPR paradigm of [31]. In particular, these works

suggested that infalling observers experience only standard physics even at the horizon

of black holes that have been evaporating for longer than the Page time. At first sight

such statements may seem to be in great tension with our bound on the number of

linearly independent states inside the black hole. But this tension can be resolved by

interpreting the comments of [42, 44–49, 121] as providing a gauge fixed description,

where in this case the choice of gauge depends on the state of the bath. In other words,

if the black hole system with physical Hilbert space Hphys is considered in the presence

of another system with Hilbert space Hbath then, even if the bath system by itself

has no gauge invariance, one is free to gauge fix by choosing a general linear subspace

HGF, joint ⊂ Hkin ⊗ Hbath for which P defines a bijection to Hphys ⊗ Hbath. Note that

there is no requirement for HGF, joint be a tensor product HGF0 ⊗ Hbath for any fixed

subspace HGF0 ⊂ Hkin. Instead, one is free to effectively let the choice of subspace

HGF0 ⊂ Hkin vary with the choice of state in Hbath.

The connection with the above works is particularly clear in the discussion of Petz

reconstruction in [49]. There one wishes to reconstruct an operator O on Hkin using an

operator OR on Hbath. Now, since OR is an operator on Hbath, it is automatically gauge

invariant. However, since the operators O discussed in that work were constructed

without regard to the (random) physical inner product, they are not gauge invariant.

This is consistent, as OR reconstructs O only on a subspace Hcode ⊂ Hkin⊗Hbath that

similarly fails to be gauge invariant. However, at least to good approximation we can

think of Hcode as defining a partial gauge fixing (meaning that we could choose some

HGF,joint ⊃ Hcode. In particular, we may use any bath bra-state 〈ψbath| to define a linear

map from Hcode to Hkin via its natural action on Hbath. And for any choice of 〈ψbath|,
the image defines a subspace Hψ ⊂ Hkin with at most dimension dcode � eSBH , i.e.,

where this dimension is much less than the dimension of Hphys. As a result, with high

probability distinct states in Hψ will project to distinct states of Hphys. In this sense

Hcode approximately satisfies the requirements for a partial gauge fixing; a complete

gauge fixing would result from extending Hcode to make the projection of each Hψ

isomorphic to Hphys.

We note that such a gauge fixed interpretation allows all of the hallmarks of what

is often called state dependence [25–28] and which is naturally associated with the

ER=EPR paradigm. In particular, in contexts where one expects to find only a small

number of black hole states (states in Hphys) for each bath state, it will be possible

to choose a partial gauge fixing of the form described above that selects only states in

Hkin with no drama at the horizon. In particular, one will be able to choose a code

– 69 –



subspace within which the evolution can be well-described by standard local effective

field theory. In addition, we note that standard objections [40, 41, 122–124] to state

dependence focus on non-uniqueness of the predicted physics, and that such objections

are clearly moot in a context where the state dependence is simply a choice of gauge

(so that non uniqueness of HGF is to be expected, and so that the gauge invariant

predictions are in fact identical).

Nevertheless, the non-uniqueness arguments of [40, 41, 122–124] then show the sort

of states that, while they appear at first sight to be physically distinct, must in fact be

related by the enlarged gauge symmetry described above. In particular, tracing through

such leads to other gauges in which infalling observers experience varying amounts and

types of drama at the horizon, as well as to gauges where the observer simply fails to

exist in the interior of the black hole.26 Furthermore, just as there is a particular gauge

(or class of gauges) realizing ER=EPR-like scenarios, it seems likely that one can also

find gauges realizing fuzzball scenarios (see e.g. [17, 19, 24, 29, 125–129], the non-violent

non-locality proposal27 [20, 22, 30]), proposals emphasizing the bulk Wheeler-DeWitt

equation [130, 131], the black hole final state proposal [14], and perhaps other proposals

as well.

On the other hand, the above discussion immediately raises the question of how

different experiences of a given observer could possibly be gauge related, and thus how

the above scenario could possibly be realized in models that are sufficiently realistic to

describe our own universe. While there is surely more to be said about this issue, we

note that any gauge fixing scheme can be used to define an associated gauge invariant

observable. I.e., just as one can use Coulomb gauge in electromagnetism to define

gauge invariant operators (“the potential in Coulomb gauge”), in the above scenario

one can use any gauge to define a notion of observer inside the black hole. The variety

of possible gauges would then mean that there are a variety of possible gauge invariant

definitions of the observer which happen to coincide (or nearly coincide) under familiar

conditions outside old black holes but which differ greatly inside old black holes. One

may then rephrase the above statement in a less surprising manner: While we may

well-enough understand how to define an observer at the leading semi-classical level,

26If one imposes the constraint that the observer survives (in a recognizable form) for a given

proper time behind the black hole horizon, then one would expect a generic gauge consistent with this

constraint to predict the maximum amount of such drama consistent with the observer’s survival to

that point.
27The non-locality scale Ld in spacetime dimension d is set by the condition ∆A ∼ G described

in footnote 22. On a Killing slice of a static black hole of area-radius R, the corresponding proper

distance from the event horizon would be Ld ∼
(

`p
R

) d−4
2

`p. With respect to the definitions of [22], Ld

then gives “non-violent” physics for d < 4.
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there may be many possible extensions of this definition at the level of non-perturbative

physics, and predictions for the observer inside old black holes may depend sensitively

on the choice of this extension28. The scenario described above (in which apparently

distinct observer experiences are gauge related) may thus be considered to be just

another version of this idea. It will likely be of great interest to further explore such

conjectures and related physics in future work.
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A Limits of moments of the Poisson distribution

In this appendix, we study the moments 〈Zn〉 of a Poisson random variable Z with

mean λ in various limits. This is useful to ascertain the convergence properties of sums∑
n cn|Zn〉 constructing states of HBU in section 3, and to illustrate the failure of the

third quantised perturbation theory of section 5 in our model.

The moments are given by the Bell polynomials,

Z−1〈Zn〉 = Bn(λ), (A.1)

defined by

Bn(λ) = e−λ
∞∑
d=0

λd

d!
dn . (A.2)

28Note that if there is a priori no mechanism for selecting one such definition as preferred, then

it is natural to adopt a Bayesian approach and declare that all such extensions are realized with

equal probability (or more generally that they are realized according to some probability measure

describing the priors of the given theorist studying the system). The question of ‘what does an observer

experience when falling into a black hole’ would then be an inherently probabilistic one, somewhat

akin to asking ‘what does an observer experience when they are decohered into many Everett branches

of the wavefunction of the universe?’ We have already conjectured above that with high probability

the observer simply fails to exist inside the black hole in a generic gauge, and that post-selecting only

on existence of the observer would lead to high drama.
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From this, one can check the recurrence relation

Bn+1(λ) = λ(B′n(λ) + Bn(λ)) (A.3)

and B0(λ) = 1, from which we can see that Bn(λ) is a monic polynomial of order n. In

particular this gives us the scaling at large λ and fixed n,

Bn(λ) ∼ λn, λ→∞, n fixed. (A.4)

A.1 Large n and convergence

For studying convergence of
∑

n cn|Zn〉, we require the moments at large n and fixed

λ. For this, observe that the ratio of consecutive terms in the sum defining Bn(λ) is

λ

d

(
d

d− 1

)n
∼ λ

d
en/d, (A.5)

where the asymptotic form applies for 1� n� d2. For large n, the ratio is unity and

hence the dth term in the sum is maximal when d ∼ n
logn

. Substituting this value back

into the sum, we can find an estimate of Bn(λ) at large n, which we can write as

Bn(λ)

n!
∼ e−n log logn+o(n), n→∞, λ fixed. (A.6)

logBn(λ) ∼ n log n− n log log n− n+ o(n), n→∞, λ fixed. (A.7)

For a more carful derivation and many more terms in the expansion, it is convenient

to write d = n
logn

(
1 + x√

n

)
and take the limit of the terms in the sum as n → ∞ at

fixed x. In this limit, the series becomes a Gaussian integral in x. From this, we can

estimate the norm of the basis state ‖|Zn〉‖ =
√
〈Zn|Zn〉 = e−λ/2

√
B2n(λ):

log ‖|Zn〉‖ = n log n− n log log n− n(1− log 2) + o(n) as n→∞. (A.8)

Now we can begin to characterise convergence of sums
∑
cn|Zn〉 in the baby uni-

verse Hilbert space of section 3.3. By definition, the series converges if the partial sums

form a Cauchy sequence. That is,

∞∑
n=0

cn|Zn〉 converges ⇐⇒

∥∥∥∥∥
n2∑

n=n1

cn|Zn〉

∥∥∥∥∥→ 0 as n1, n2 →∞, (A.9)

where in this limit we can take n1, n2 to infinity separately at different rates.29 We will

not characterise such series completely, but find a sufficient condition to give us a class

of convergent series, and a necessary condition to constrain them.

29It may not be that every element of the completion can be represented by such a Cauchy sequence

of partial sums. It is false for the ‘free’ version where we allow only discs and cylinders, replacing the

Poisson distribution by its Gaussian approximation: in that case, this class of Cauchy sequences yields

only analytic wavefunctions.
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First, a necessary condition for convergence (coming from n1 = n2) is that the

norm of individual terms go to zero

Convergence =⇒ |cn|
∥∥|Zn〉

∥∥→ 0 as n→∞. (A.10)

Now, from (A.8), we see that
∥∥|Zn〉

∥∥ is eventually larger than Rn for any R > 0, so

|cn|Rn is bounded, which implies that f(z) := cnz
n converges in the disc |z| < R. Since

this holds for all R, we find that our series defines an entire analytic function,

∞∑
n=0

cn|Zn〉 converges =⇒ f(z) =
∑

cnz
n is entire analytic. (A.11)

We can thus characterise convergent series in terms of the class of allowed analytic

functions. Improving on the analyticity result, we can bound the growth of allowed

functions f . To do this, we introduce the order of an analytic function, which is

the infimum over all ρ such that |f(z)| < exp(|z|ρ) for sufficiently large z. We can

strengthen our necessary condition to

∞∑
n=0

cn|Zn〉 converges =⇒ f(z) =
∑

cnz
n has order ≤ 1, (A.12)

which means that for every ε > 0, we have |f(z)| < exp(|z|1+ε) for sufficiently large |z|.
To show this, we use a result expressing the order in terms of the Taylor coefficients,

namely order(f) = lim supn→∞
n logn

log(1/|cn|) . For the norm of the terms in the series to go

to zero, we must have log(1/|cn|)− log
∥∥|Zn〉

∥∥ go to infinity, so for sufficiently large n

we have log(1/|cn|) > log
∥∥|Zn〉

∥∥. From (A.8), for any ε > 0 and sufficiently large n we

have log
∥∥|Zn〉

∥∥ > (1 − ε)n log n. In turn, this means that log(1/|cn|) > (1 − ε)n log n

for large enough n, and hence lim supn→∞
n logn

log(1/|cn|) ≤ 1.

Our sufficient condition is absolute convergence, which means that the sum of

norms converges, and follows from the triangle inequality for the norm.∑
n

|cn|
∥∥|Zn〉

∥∥ convergent =⇒
∑
n

cn|Zn〉 convergent. (A.13)

Now, from (A.8), we have the result that
∥∥|Zn〉

∥∥ decays faster than n!an for any a.

From this, we can find a simple sufficient bound on the coefficients for convergence,

|cn| < A
xn

n!
for some A, x =⇒

∑
n

cn|Zn〉 convergent. (A.14)

In particular, this means that any exponential function |exZ〉, or more generally a

function of exponential type, defines a convergent series by its Taylor expansion.

The gap between our sufficient and necessary conditions (order one functions that

are not of exponential type) is small but nonempty, for example containing 1
Γ(−z) .
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A.2 Large λ and n

Here, we study a limit of λ→∞ and n→∞ at fixed ratio ν = n
λ
, which will interpolate

between the large λ fixed n and large n fixed λ results. We could proceed from the

same series expression, but we use an alternative method, starting from an integral

representation of Bn(λ). This expression extracts the moments from the generating

function (3.11) by a contour integral

Bn(λ)

n!
=

1

2πi

∮
du

un+1
eλ(eu−1), (A.15)

where the contour encircles the origin. We can evaluate this by steepest descent, looking

for stationary points of

S(u) = eu − 1− ν log u . (A.16)

The stationary points S ′(u) = 0 solve ν = ueu, and the relevant saddle point is the

unique positive solution, which defines the Lambert W function or product logarithm,

u∗ = W (ν). (A.17)

Applying the steepest descent method at this saddle point gives us

Bn(λ)

n!
∼ eλS(u∗)

u∗
√

2πS ′′(u∗)λ
. (A.18)

This result in fact interpolates between our two previous results for large λ fixed n (by

taking ν � 1) and large n fixed λ (by taking ν � 1).

It is interesting in particular to see how the large λ result breaks down when n

becomes large. Taking ν � 1 we have u∗ = ν − ν2 +O(ν3), so S(u∗) ∼ −ν log ν + ν +
1
2
ν2 + · · · , with higher terms all integer powers of ν. Substituting this into the steepest

descent result, we have

eλS(u∗)

u∗
√

2πS ′′(u∗)λ
∼ en log λ−n logn+n+n2

2λ
+···

√
2πn

∼ λn

n!
e
n2

2λ
+···, (A.19)

where we applied Stirling’s approximation to the factorial. The terms in the exponential

are of the form nk

λk−1 for k = 2, 3, . . ., and become relevant when n is of order λ1−1/k.

The first correction occurs from the k = 2 term shown explicitly, first relevant when n

is of order
√
λ, when it contributes an order one rescaling of Bn(λ):

Bn(λ) ∼ λne
n2

2λ , λ→∞, n
2

λ
fixed. (A.20)

Higher order terms in the exponential are given by higher orders in the expansion of

S(u∗) at small ν.
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