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ABSTRACT: We reformulate recent insights into black hole information in a manner
emphasizing operationally-defined notions of entropy, Lorentz-signature descriptions,
and asymptotically flat spacetimes. With the help of replica wormholes, we find that
experiments of asymptotic observers are consistent with black holes as unitary quantum
systems, with density of states given by the Bekenstein-Hawking formula. However, this
comes at the cost of superselection sectors associated with the state of baby universes.
Spacetimes studied by Polchinski and Strominger in 1994 provide a simple illustration
of the associated concepts and techniques, and we argue them to be a natural late-
time extrapolation of replica wormholes. The work aims to be self-contained and, in
particular, to be accessible to readers who have not yet mastered earlier formulations
of the ideas above.
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1 Introduction

Recent work has reinvigorated the idea (see e.g. [1-17]) that sums over topologies in the
gravitational path integral provide missing ingredients necessary to understand black
hole information and other issues in gravity and holography. In particular, [18, 19] built
on [20, 21] to argue that an exchange of dominance between two saddle-point ‘replica
wormhole’ geometries resolves a longstanding tension between the perturbative descrip-
tion of black hole evaporation and the interpretation of the black hole’s Bekenstein-
Hawking entropy as a density of states. Such effects have also been connected [22]
with the so-called baby universes and with the superselection sectors (‘a-states’) for
quantities associated with asymptotic boundaries described in [11-13]. See [23] for a
review and references to additional related work.

The bulk of the recent discussions have been couched in terms of Euclidean path
integrals. Indeed, even [19, 24] which discussed the effect of replica wormholes in
Lorentz signature did so by studying Euclidean signature replica wormholes, using
them to compute entropies as functions of Euclidean coordinates, and analytically
continuing the results to real times. But it is clearly of interest to understand an
intrinsically Lorentz-signature description, especially since topology change is generally
incompatible with having a smooth Lorentz-signature metric.

In addition, the recent discussions also rely heavily on AdS/CFT duality or related
concepts. This was true even for the asymptotically flat analyses of [25-28] in which
arguments were made by analogy with AdS/CFT. But reliance on AdS/CFT presents
difficulties as the physics of spacetime wormholes raises the so-called ‘factorization
problem’ that calls into question the standard interpretation of AdS/CFT. As a result,
questions have been raised [29] as to what physics is really being studied.

Our goal here is to reformulate the recent progress in a manner that i) focusses on
operationally defined quantities (the outcomes of ‘experiments’ performed by asymp-
totic observers), ii) can be stated and analyzed entirely in Lorentz signature, and iii)
emphasizes that the physics described follows directly from having a low energy grav-
itational path integral that sums over topologies. While we take the inclusion of this
sum over topologies as a fundamental assumption in this work, there will be no explicit
input from string theory, holography (AdS/CFT), or any other UV theory of gravity.
To underline the last point, we will work entirely with asymptotically flat spacetimes
(though analogous statements apply directly to the asymptotically AdS case as well).
As a result, AdS/CFT is mentioned only briefly in tangential comments.

Nevertheless, the interpretation of the black hole’s Bekenstein-Hawking entropy
(Spu = % + corrections) as a density of states will be a common touchpoint through-
out our discussion. We do not take this to be a fundamental assumption, but rather
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Figure 1: The Page curve for the entropy of Hawking radiation emitted before time
u (solid curve). For a while this is increasing, given by the thermal entropy (dotted
curve). But under BH unitarity it is bounded by the Bekenstein Hawking entropy
Spu ~ % (dashed curve). Consequently, after the Page time up,ge the entropy must
decrease, approximately saturating that bound.

a hypothesis to be constantly tested and explored. Indeed, while to some this inter-
pretation will seem natural due to the success of classical black hole thermodynamics
— or perhaps even required by this success, see e.g. [30] — it also flies in the face of
physics associated with quantum field theory on an evaporating black hole background
and perturbative quantum gravity (see e.g. [31-35]).

In particular, perturbative quantum gravity would suggest that Hawking radiation
is essentially thermal, which is in tension with the statistical interpretation that Sgg
counts black hole states. Under the standard laws of quantum mechanics, the density
of states is an upper bound on the entanglement of any system. Since Hawking evapo-
ration causes Sgy to decrease over time, the above interpretation thus would appear to
force the von Neumann entropy of Hawking radiation to become small in later stages
of the evaporation. As described by Page [36], it would then be natural to expect the
von Neumann entropy of radiation from a black hole that forms from rapid collapse to
begin at a small value, increase while thermal radiation is produced, but then to ‘turn
over’ and decrease once it comes close to saturating this bound, requiring deviations
from exact thermality.

The resulting ‘Page curve’ is shown in figure 1. It will feature many times in our
discussion below, again as a touchpoint to be compared with various calculations. In
particular, the downward sloping part of the Page curve requires information inside
the black hole to be returned to the external universe. The literature on black hole
information often describes this as a result of requiring ‘unitarity’. But, as noted



above, there are rather more assumptions involved than just strict unitary evolution of
the full quantum gravity system. In the present work we will thus instead use the term
‘Bekenstein-Hawking unitarity’ (or BH unitarity) to refer to this suite of ideas, which
we summarize as follows:!

Bekenstein-Hawking unitarity: in order to describe measurements of dis-
tant observers, black holes can be modelled as a quantum system with density
of states B whose evolution is unitary (up to possible interactions with other
quantum systems).

We emphasize that our definition of BH unitarity is operational, referring to observa-
tions. In contrast, as we discuss further below, the von Neumann entropy of Hawking
radiation is not a directly observable quantity; rather, it can only be inferred indirectly
from other measurements. Looking ahead, this will be important for our conclusions
since it allows BH unitarity to be satisfied despite the fact the the von Neumann en-
tropy may not, strictly speaking, follow the Page curve in figure 1. This discussion has
strong overlap with those of [11-14].

We will see below that many of the concepts and techniques related to Lorentz-
signature spacetime wormholes, baby universes, and the like are well-illustrated by
spacetimes described by Polchinski and Strominger in 1994 [14], which we dub ‘PS
wormholes’. Indeed, while PS wormholes are not under semi-classical control, and
while analyzing them in isolation leads to apparent violations of BH unitary [14], we
will argue them to be a natural late-time extrapolation of the replica wormholes that
were shown in [18, 19] to reproduce the Page curve. Since this extrapolation turns
out to lead to several simplifications, we will devote significant time to discussing PS
wormholes in effort to make our treatment as explicit as possible.

Indeed, a final goal of this work is to make the manuscript below accessible to those
who have not yet mastered the above references. Rather than review those works in
detail, we instead return to the logical beginning and start in section 2 with a brief
review of the Hawking effect in a fixed black hole background, but emphasizing both the
path integral approach and the in-in formalism that will be useful in later parts of this
work. While none of this material is new, it differs sufficiently from the most common
treatments in the literature. We then use this perspective to discuss the inclusion of
semiclassical quantum gravity and perturbative back-reaction in section 3. This sets
up the standard challenge for BH unitarity associated with apparent large deviations

from the the Page curve, and which is often called ‘the black hole information problem’
(34, 37-39].

!The same concept was called ‘the central dogma’ by [23] in analogy with the term’s use in biology.
We do not follow this terminology here, so that we might avoid appearing dogmatic.



The following sections resolve this problem by identifying new saddles for the grav-
itational path integral. Some possible effects of new saddles, and especially on mea-
surements of entropy by asymptotic observers, are illustrated in section 4 through the
study of PS wormholes. Although the inclusion of PS wormholes requires assumptions
about physics beyond semiclassical control, it provides a simple introduction to ideas
that will be of use later in this work. A key such point is that spacetime wormholes
lead to correlations between the outcomes of what might at first appear to be com-
pletely independent experiments. We also discuss challenges for BH unitary raised by
PS wormholes alone, setting the stage to introduce and include replica wormholes in
section 5. Doing so resolves the PS challenges and reproduces the Page curve using cal-
culations that are fully under semiclassical control. We will also see that PS wormholes
are a natural late-time extrapolation of replica wormholes.

It then remains to provide a Hilbert space description of the physics of the Page
curve, and to characterise the correlations arising from replica wormholes. This is done
in section 6 by slicing open the above path integrals. We find a ‘baby universe’ Hilbert
space of intermediate states which defines superselection sectors associated with the
values of asymptotic quantities. As a result, it leads to an ensemble description of the
theory from the viewpoint of asymptotic observers. Again, the PS wormholes provide a
simple illustration. Section 7 concludes with a summary and discussion of open issues.

2 Hawking radiation and the path integral

This section contains a schematic overview of Hawking’s original calculation [40] of the
production radiation using linear quantum fields in a fixed classical spacetime, without
back-reaction or evaporation. We also recall how this calculation can be reformulated
in terms of a path integral, and how the path integral can be used to compute the
Rényi entropies of the Hawking radiation. This review lays the groundwork for the
semiclassical quantum gravity discussions in section 3. In keeping with the general
philosophy of this paper, we will emphasise the computation of observables accessible
to an asymptotic observer. Readers seeking a more thorough review of the Hawking
effect in a fixed background should consult appendix A, the original work [40], or
pedagogical introductions such as [41] or [38].

2.1 Hawking’s Heisenberg picture calculation

The original argument of [40] considered a black hole with a single asymptotic region
that forms from collapse of matter in an asymptotically flat space. For simplicity we
consider a spherically symmetric collapse of uncharged matter so that the final black
hole is Schwarzschild. A conformal diagram for such a spacetime is shown in figure
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(a) The conformal diagram of a classical space- (b) An illustration of the backwards-
time describing collapse of matter (a ‘star’) to propagation of a mode localized at
form an asymptotically flat black hole with a late retarded-time on .# .

single asymptotic region.

Figure 2: The final event horizon H* is shown as a dashed line, and the singularity as a
jagged line. Future and past null infinity are labelled by .#*. The vertical line marked
r = 0 is a regular origin of spherical polar coordinates. The state is chosen as the
vacuum of quantum fields in the flat asymptotic region ., thus |¢)) = |0) »-. In the
shaded region of (b) near £, our spacetime is nearly stationary. There, the backwards-
propagation reduces to scattering in a fixed potential and results in a transmitted part
T and a reflected part R. For modes localized at late (retarded) times on .#*, the
reflected part R will remain in the nearly stationary region and transmitted part 7" will
be localized very close to H*. In particular, the wavelength of 7" becomes very short
in the reference frame shown. This allows us to complete the backwards-propagation
of T' from the near-horizon region to .#~ using geometric optics.

2a below. And for further simplicity, we follow [40] in taking the quantum fields to
be massless so that their initial data is specified at past null infinity .#~. There the
spacetime is completely flat, and the state [¢) of the quantum fields is taken to coincide
with the Minkowski vacuum on ..

We are interested in the predictions of observations made at future null infinity
# . In particular, we would like to compute the expectation values (¢|O(#1)|¢) of



operators O(# ) defined at #*. Following [40], we work in the Heisenberg picture.
We thus evolve the operators O(.# ") backwards in time to write them in terms of op-
erators at .# . Since the Hilbert space at . can be described as a Fock space of ‘out’
scattering states, we can build all operators at . from creation and annihilation oper-
ators al (S 1), a,,(#1), labelled by some complete orthonormal set of modes indexed
by m. Using the Heisenberg evolution back to .#~, we can write a,,(# ") in terms of
corresponding operators al (#7), a,(.# ) acting on the Fock space of ‘in’ states, and
similarly for al (7). Since we took the initial state at .#~ to be the vacuum |0) -
annihilated by all a,(-# ), this rewriting allows us to compute all observables at & .

For a free quantum field theory, the relationship between creation and annihilation
operators at .# " and those at .#~ is linear. The Heisenberg evolution is thus given by
a Bogoliubov transformation

@m(f+) = Z (amn an(j_) + Bran aiz(j_)) ) (2'1)

n

for some coefficients ay,,,, Bmn. For example, if we compute the expectation value of an
occupation number N,,(#1) = al (S )a,,(FF) of a mode at £, we find

(G| N (L)) = Z B (2.2)

Black holes radiate as a simple consequence of the fact that f,,, is nonzero, so the
outgoing occupation numbers are positive despite choosing an ingoing vacuum.

At least for operators associated with field modes m that are localized at late
retarded times (large affine parameter u along #71), it is straightforward to compute
the Bogoliubov transformation (2.1) using two facts. The first is that, in the region
close to # T, the spacetime is well-approximated by that of a stationary black hole.
Mode propagation in this region thus reduces to solving a Schrédinger-type problem.
The second important fact is that, once the mode is propagated backward into the
near-horizon region, it becomes localized very close to the horizon. In particular, as a
result of the second property we may use the WKB approximation to justify either the
use of geometric optics in further propagating the mode back to .#~ [40], or the use
of the adiabatic approximation to evaluate correlators without explicitly completing
the backwards propagation to .#~ [41-44]. These features are illustrated in figure
2b. When combined, they establish the familiar result that the occupation numbers
Npu(F7T) of such late-time modes are thermally distributed, with grey-body factors
appropriate to the black hole. Interactions do not change this qualitative picture. The
details of this argument are not relevant to our presentation below, but we include
a brief summary in appendix A for readers wishing to review them. Readers seeking



a more thorough discussion should consult the original paper [40] or reviews such as
38, 41].

In the above discussion we formulated Hawking’s calculation as the computation
of expectation values of all possible operators on .#*. This is equivalent to describing
the state of quantum fields on .#*. Indeed, one way to define the density matrix of a
region is as the linear functional that maps operators on that region to their expectation
values. Connecting to the usual Hilbert space language, there is a unique p such that
this functional acts as O — Tr(pO). We can recover matrix elements p;; of p explicitly
from expectation values by choosing O = |j)(i|, where the states |i), |j) are chosen
from a complete basis of pure states on .#+.

Famously, despite choosing a pure state on .#~, the state p on . is not pure;
that is, it cannot be written as |¢)(¢| for any [¢)). This impurity arises for the simple
reason that .#* is not a Cauchy surface, as Cauchy surfaces must reach the regular
origin shown as a vertical black line in figures 2a, 2b. Equivalently, while we can
perform Heisenberg evolution of operators from .#* back to .#~, we cannot do the
reverse, since the operator resulting from forward evolution will have support on the
black hole interior.

2.2 Path integral version

We now recall how the computation outlined in section 2.1 can be formulated as a path
integral over quantum fields?. In this description, the actual computation of the effect
is somewhat more cumbersome. However, as we will see in the remaining sections
below, the path integral framework allows us to straightforwardly incorporate both
perturbative back-reaction and certain non-perturbative quantum gravity effects.

In our experience, most textbook treatments of path integrals work in the Schrodinger
picture and emphasize the co-called ‘in-out’ formulation. In particular, the latter is
naturally associated with computations of transition amplitudes. However, since our
discussion will continue to emphasize expectation values, we will instead focus on the
‘in-in” formulation of path integrals below. We will also continue to use the Heisenberg
picture as in section 2.1 above. Both choices will simplify the discussion of various is-
sues in the sections that follow. But the departure from standard textbook treatments
suggests that we proceed slowly for the moment. We will thus first review various gen-
eral features of in-in Heisenberg-picture path integrals in section 2.2.1 before returning
to Hawking emission in section 2.2.2.

2This differs from the Hartle-Hawking derivation of Hawking radiation [45], which considered the
worldline path integral over trajectories of a particle.



2.2.1 Path integral preliminaries

Before turning to expectation values, we begin by considering the path integral between
initial and final Cauchy surfaces ¥>.. We use ¢ to denote the set of local bulk fields
over which we integrate. The corresponding Heisenberg-picture operators gZ; are defined
by insertions of the field ¢ (or more general functionals of ¢) into the path integral.
We first consider a path integral with boundary conditions specifying that the fields
on Y4 take definite values ¢.. These boundary conditions correspond to eigenstates
of the field operators on ¥ with eigenvalues ¢, and this path integral computes the
inner product 4 (¢ |p_)_:

ROUSES I (2.3
Pls, =0+

There is of course a choice of phases to be made in defining such eigenstates, and this
choice is associated with the choice of possible boundary terms in the path integral
action I[¢] (and with the fact that such boundary terms can change under canonical
transformations). In addition, it can be difficult to keep track of normalisations in the
path integral, so we should ultimately consider normalization-independent ratios.

Since |¢p4)+ are defined as eigenstates of different sets of field operators, on ¥, or
on Y _, they give different bases for the Hilbert space. The inner products {(¢|od_)_
give the change of basis matrix. These may be thought of as the matrix elements of the
time-evolution operator U = P exp (—z' [ dtH (t)) with a time-dependent Hamiltonian
H(t), so we will loosely use U to indicate the path integral (2.3).

Given an operator @+ defined in terms of fields on ¥, we can describe its Heisen-
berg evolution back to ¥_ by computing its matrix elements _<qz$(_2) ](’5+l¢(_1))_ between
the pair of field eigenstates |¢(_1’2)>_ on Y_. To do this, we can insert a complete sets
of states |¢, ), on which O, takes definite values O (¢, ). This leaves us to compute
the two overlaps (¢+]¢(_1)) and (¢(_2) |4 ) before integrating over ¢.. Since there are two
such overlaps to compute, we have a doubled set of fields ¢ in the path integral,
though these sets must be identified at 3

A iITdM—iI1(2)
@006 = [ DeIDe I 00 (24)
¢(1,2)| :¢(172)
, =0
¢O42+:¢@w2+:¢+

We may equivalently think of doubling not the fields on a given spacetime, but the
spacetime itself. The doubled spacetime then has two branches which are glued to
each other on X, ; see figure 3. This perspective becomes particularly natural once we



incorporate quantum gravity effects, since the geometry can fluctuate independently on
each branch of the spacetime. The first branch (which provides a home for the field ¢())
begins at the initial ‘ket’ state ]cﬁ(_l)> and describes a forward time-evolution computing
U. We then insert the operator (’5+ before passing to the second branch of the spacetime.
The field ¢ lives on this second branch, and the associated path integral computes
the backward evolution Uf. The combination of these gives the familiar Heisenberg
evolution of the operator. The distinction between forward and backward evolution is
implemented in the path integral by the relative sign between I[¢(V)] and I[¢p®] — or,
more generally, by CPT conjugation which may also act nontrivially on fields.

r Identity ﬂ O J\z

: E+ Z+ :

ne) e

6@ — 16D

Figure 3: A path integral that computes the matrix elements ((;5(_2)|(9+|¢(_1)>. The
right copy of the spacetime contains fields ¢V and is weighted by e/®"] while the
left copy contains fields ¢(® and is weighted by e~ (6] (or more generally by the CPT
conjugate of the action on the left copy). This conjugation is associated with the fact
that the initial conditions for the right copy (fixing the field on 3 _) are defined by the
ket-state |¢7)) while those for the left copy are defined by the bra-state (¢®|.

Because our quantum field theory is unitary, if we happen to consider a trivial
operator for which O, (¢, ) is independent of ¢, then the backwards and forwards
evolutions will cancel. In that case the result is clearly independent of the choice of
slice 24 on which the two spacetime branches are joined. More generally, so long as
we interpret O, (¢, ) as being evaluated on one of the two branches, we may choose
the two spacetime branches to be glued along an arbitrary Cauchy surface X, as long
as the support of @+ lies in the past of . This slicing-independence will prove useful
in our discussions below.

The eigenstates |¢_)_ of field configurations on the initial slice ¥_ are typically
not of direct physical interest. But other boundary conditions can be described by
integrating over field configurations on >_ with some choice of weighting. This corre-
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sponds to allowing a general state, written as a superposition of eigenstates |¢_)_ as
defined by its wavefunction. Now, since it is usually inconvenient to specify states of
interest through their explicit wavefunction, we may instead choose to describe them
by introducing further path integrals. For example, in our Hawking effect problem, we
might specify the initial Minkowski vacuum state |0) ,- by inserting a path integral
over semi-infinite flat Euclidean space and connecting it to the real Lorentz-signature
path integral computing U.

We can now assemble these ingredients: an initial ‘ket’ state prepared (perhaps)
by a Euclidean path integral, a Lorentzian path integral performing forward time evo-
lution, insertion of the operator of interest, backward time evolution, and finally the
preparation of the initial ‘bra’ state. The resulting spacetime on which we perform the
path integral (see figure 4) is the ‘in-in’ or Schwinger-Keldysh contour, and encodes the
natural formulation of dynamics when we do not wish to specify a final state [46-48].

Euclidean time

Oy

J/

Vi
A)
o Lorentzian time

Figure 4: An in-in (or Schwinger-Keldysh) contour in the complex time-plane that
computes the expectation value of Oy at Lorentzian time ¢ in the vacuum state |0).
The contour begins at negative infinite Euclidean time and follows the Euclidean axis
to the origin. This part of the contour computes |0) in terms of fields at ¢ = 0. The
contour then proceeds along the Lorentzian axis (this part of the contour corresponding
to the right spacetime of figure 3) until O, is inserted at ¢, whence it returns to the
origin (the left spacetime of figure 3). Finally, it proceeds from the origin to positive
infinite Euclidean time to compute (0|. For clarity, the various parts of the contour
have been slightly displaced from the axes in the figure.

- 11 -



2.2.2 The in-in formulation of Hawking emission

Let us now apply the above general description of quantum fields in curved spacetime
to the problem at hand. The resulting path integral is shown in figure 5a. We are
interested in the expectation values of an operator O, located on £, so we should
take our future boundary ¥, to lie in the far future and to coincide with % in
the region where O, is supported. Away from our operator insertion, we our free
to extend Y, to a complete Cauchy surface in any way we please. Furthermore, the
slicing independence described above guarantees the final result to be independent of
such choices. The path integral is then performed on two copies of the spacetime, but
only in the region to the past of the Cauchy surface 3 ,. These two copies are identified
along >, , where we also insert a weighting corresponding to our operator O, . Since
these insertions are restricted to ., the identification effectively performs a partial
trace over the interior part of > .

— Identify ——— Identify

(a) The path integral which computes the
expectation value of an operator O4 on
#+. The right and left copies of the space-
time perform forward and backward time-
evolution respectively. They are glued to-
gether along a Cauchy surface X, which
must coincide with £ in the region where
O is supported (denoted by the black blob)
but which is otherwise arbitrary. The region
to the future of X4 is not part of the space-
time on which our path integral is performed.

(b) The path integral which computes matrix
elements of the density matrix on #+. Along
the two copies of £+, we impose bound-
ary conditions which weight field configura-
tions according to the wavefunctions of states
1) st |g) srt. If FT were a Cauchy surface,
this would cause the path integral to fall into
two disconnected pieces, indicating that the
state is pure. Here, this does not happen
since the two branches remain joined along
Yint, which is a Cauchy surface for the black
hole interior.

Figure 5: Path integrals computing (a) the expectation value of an operator at .
and (b) components of the density matrix on 7.

- 12 —



As discussed at the end of section 2.1, computing expectation values of all operators
on # 7 is equivalent to describing the state there. In particular, we can compute com-
ponents p;; of the density matrix on .#* by choosing our operator O to be |7) s+ .7+ (i
for pure states [i) s+, |j) s+ on Z+. We depict this in figure 5b. This operator in-
sertion corresponds to a boundary condition that weights field configurations on the
two branches of the Schwinger-Keldysh contour independently, so the branches are no
longer meaningfully joined along .#*; in operator terms, this says that our O, has rank
one. If #T were a Cauchy surface, then this boundary condition would cause the path
integral to split into two disconnected pieces. Our p;; would then become a product of
(conjugate) functions of i and j alone, and hence a rank one matrix describing a pure
state. However, this does not occur because any Cauchy surface ¥, must include a
piece X, covering the interior of the black hole as well as a piece running along .
The two branches of the contour remain connected through X, and the state on .#*
is mixed. This joining of the two branches is the path integral implementation of what
is often called ‘tracing out’ the interior state living on ;.

In practice the simplest way to evaluate the above path integrals may well be to
relate it to the Heisenberg-picture computation of section 2.1 and to use the results
computed there. Nevertheless, the formulation in terms of the path integrals of figure
5 will prove useful in our quantum gravity discussions below.

2.3 Entropies from the Hawking path integral

We now conclude our review of the Hawking effect on a fixed background with a dis-
cussion of entropies. The main point will be to review how path integrals may be used
to study the Rényi entropies of subsets of the Hawking radiation at .# %, quantifying
the tension between the original Hawking calculation and BH unitarity via the Page
curve in figure 1.

First, we must slightly generalize the above discussion to compute the density
matrix p, associated not with the entirety of ., but only with the Hawking radiation
that reaches the subset .%, C .#% of points at retarded times v’ < u. To compute
matrix elements of p,, we simply modify the discussion above as depicted in figure
6. On .#,, we fix boundary conditions according to the desired matrix elements. We
then join the two branches of the path integral along a partial Cauchy surface ¥, that
reaches .#* at u (rather than joining them on some Y, that reaches #* only at its
future endpoint i™).

Next recall that we are interested in Rényi entropies. The nth Rényi entropy of a
density matrix p is defined by

Snlp) = — L log (%), (2.5)

— 13 —



Identify

Figure 6: The path integral on this geometry computes matrix elements ,{(j|pu|?).
of the density matrix p, describing Hawking radiation in the piece .#, of .#* before
retarded time u. Two copies of the original black hole spacetime have been glued
together along a surface ¥,,, which defines a Cauchy surface when joined to .#,. We
impose boundary conditions on .#, corresponding to the states i), |7)u.-

where we have allowed for the possibility that p has not yet been normalised (i.e., that it
may not have unit trace). As noted above, in path integral constructions it is typically
simpler to work with unnormalized states than to keep track of all normalizations.

To compute Tr(p(u)™) from the path integral, we start with n copies of the space-
time depicted in figure 6 to construct n replicas of p(u). We then sew these replicas
together as instructed by the matrix products and trace in Tr(p™). Specifically, the
‘ket” boundary labelled by the state |j,), on the rth replica becomes identified with
the ‘bra’ boundary labelled by ,(i,41| on the (r 4+ 1)th replica since the insertion of
complete sets of states amounts to setting 7,1 = 7, and then summing over a complete
set of such wavefunctions. The trace completes this pattern cyclically. The result is
shown in figure 7 for the case n = 2. It is often of interest to compute (or to imagine
computing) the Rényi entropies for all integers n > 2, studying an appropriate analytic
continuation®, and taking the limit n — 1 which defines the von Neumann entropy
S(p)-

For any n, the resulting Rényi entropy will be infinite due to high-frequency modes
at the ‘entangling surface’ where X, meets .1 at retarded time w. This divergence
is local at the entangling surface and is state-independent, so it is not related to the

3Carlson’s theorem from complex analysis states that any analytic function f(z) that agrees with
given values on the positive integers and satisfies the bounds |f(z)| < Ce™l*| for some real C,7 (for
all complex 2) and |f(iy)| < Ce?| for real y and some ¢ < 7. For systems with finite-dimensional
Hilbert spaces, the Rényis always satisfy such conditions. In practice, the same seems to hold for
physically-interesting states on infinite-dimensional Hilbert spaces.
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Figure 7: To compute Tr(p(u)?), we perform the path integral on the geometry built
from two replicas of figure 6, identified as shown.

physics of interest (in particular, it is independent of u). We will subsequently assume
that some regulator has been chosen, for example subtraction of the Minkowski vacuum
result, and implicitly discuss the resulting finite quantity throughout.

Since Hawking radiation rapidly becomes thermal at .# ", after some brief transient
behavior any correlation functions on . decay rapidly when clusters of points are
separated by more than a thermal retarded time. As a result, over large stretches of
time the density matrix on ' may be thought of as a tensor product of thermal
density matrices (with appropriate grey-body factors) associated with smaller pieces of
Z . As a result, all Rényi entropies S,, and the von Neumann entropy S will increase
linearly with u at large u. As noted in the introduction, this behavior is inconsistent
with BH unitarity which would require S to be bounded by the Bekenstein-Hawking
entropy Spy defined by the Bondi mass at each retarded time wu.

3 Semiclassical path integrals and back-reaction

For our review of Hawking’s calculation in section 2, we treated spacetime as a back-
ground field with a fixed nondynamical metric, and we integrated only over matter
fields. We now wish to incorporate gravitational dynamics by integrating over metrics.
Of course, outside of simple toy models it will be difficult to perform (or even define)
the gravitational path integral exactly. Instead, we will treat the path integral as a
weak-coupling expansion in a nonlinear effective theory. In practice, this means that we
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look for saddle-point configurations for which the classical (or, perhaps, the quantum-
corrected) effective action is stationary under variations of the metric and other fields,
and we then integrate over fluctuations around these saddles.

We will thus need to specify boundary conditions for the metric. It is natural to
impose boundary conditions in asymptotic regions of spacetime where gravity becomes
weak, in analogy with scattering problems in quantum field theory. We will integrate
over asymptotically flat metrics, and choose in-states and out-states for gravitons (along
with matter fields) on #*. Alternatively, following the review of section 2, we may use
boundary conditions that do not completely specify a final state, and we may instead
compute an asymptotic observable using an in-in formalism. In either case, we specify
the metric and states only in the asymptotic region. We will place no restrictions on
the metric deep in the spacetime interior. We will thus include contributions from
any saddle-point metric matching the specified asymptotics. In particular, we allow all
spacetime topologies.

To describe perturbative quantum effects, it will be convenient for us to treat the
metric separately from matter fields, and begin by ‘integrating out’ the matter. For
a given spacetime with metric g, we can use ideas reviewed in section 2 to perform
the matter path integral as a QFT on the fixed background, which we can write as a
quantum effective action:

eifeg[g] = /D¢ eifmatter[¢79] . (31)

To incorporate perturbative effects from the fluctuations of the metric itself, such as
black hole evaporation by emission of gravitons, this ‘matter’ effective action should
also incorporate a one-loop effective action from integrating out linearised metric per-
turbations; see e.g. [49, 50]. A saddle-point in the integral over metrics g is then a
stationary point of the combined gravitational (Einstein-Hilbert) action and matter
effective action Igulg] + Leslg]-

3.1 Incorporating back-reaction

We now have everything we need to begin making predictions using semiclassical grav-
ity. We first adapt the calculations of section 2.2 to incorporate a dynamical metric,
preparing an initial state of matter at .#~ to form a black hole, and asking for the
expectation value of some observable at .#*. The relevant boundary conditions are
similar to the situation pictured in figure 5a, with the two branches of the in-in contour
joined at a future boundary. But thus far the metric has been specified only asymp-
totically at .#*, and in the interior we sum over allowed possible metrics. As already
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noted above, in practice this means that we will proceed by studying saddle points,
where here we explicitly mean saddle points of Ign|g] + Isg]-

Finding saddles can be construed as solving the associated equations of motion.
However, one should realize that this is not a standard Cauchy evolution problem for
two reasons. The first is that the quantum-corrected effective action is generally non-
local. The second is that we impose boundary conditions at both copies of .#~ and
also at both copies of | rather than imposing two conditions (on fields and on their
derivatives) on a single Cauchy slice. As a result, there can be multiple saddles that
contribute to a given path integral, and it can be challenging to determine whether one
has in fact found all of the relevant ones. One is thus often left with simply searching
for saddles and seeing what physics they entail. If one later finds additional saddles,
one will need to correct the original calculation to take the new saddles into account.

It is natural to begin by assuming quantum effects to be small and treating I.4 as
a small correction to Igg[g]. In particular, the latter includes a factor of the inverse
Newton constant 1/G, and is thus very large in the semiclassical gravity limit G — 0.
The most obvious saddle for our path integrals is thus given by starting with the
classical collapsing black hole solution that was used as a fixed background in section
2.1 and including perturbative corrections from I.gz. Note that the variation of I
with respect to the metric is precisely the expectation value of the stress tensor of the
quantum matter fields* over which we have already integrated in the initial state |0) -,
up to effects associated with post-selection when the state is also (partially) specified at
#7*. So this indeed incorporates back-reaction from the Hawking radiation described
earlier. We shall focus on this saddle below, turning to other possible saddles only in
sections 4 and 5.

Let us begin by ignoring post-selection at #*, so that back-reaction is precisely
given by the expected stress-energy tensor in the state |0) ,-. As is well known, this
tensor carries a flux of positive energy to infinity and a flux of negative energy into the
black hole. The flux is small, so significant changes to the background occur only when
they can build up over long times, or over large affine parameters.

Now, in the original classical solution of figure 2a, the only null geodesics that
extend to infinite affine parameters toward the future are those that lie entirely outside
the event horizon. As a result, any additional null geodesic that extends to large affine
parameter must be confined to the region close to the original event horizon. We thus
conclude that there is a large region inside the black hole where perturbative corrections
give little change in the physics, and where the spacetime continues to collapse at least
until such time as the curvatures become large (which presumeably means Plank scale).

4And analogous corrections to the equations of motion built from linearized gravitons.
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For simplicity, we will continue to call this large-curvature a singularity and to indicate
it by a jagged line on spacetime diagrams. This is consistent with our current ignorance
and lack of control over Planck-scale physics, though we do not rule out the possibility
that a better description may become available in the future.

On the other hand, back-reaction can be significant when one follows a null geodesic
that lies just inside the event horizon of the original background. Congruences of
such geodesics can be studied using the Raychaudhuri equation (see e.g. [51]). In
particular, while they begin with a slight negative expansion, if this initial negative
value is sufficiently small (i.e., for congruences close enough to the event horizon of
the original background) the incoming flux of negative energy causes the expansion
to evolve through zero and to eventually become positive. This indicates that such
congruences in fact escape to .# . Taking a one-parameter family of such congruences
and using the cuts on which the expansions vanish to define an apparent horizon,
the fact that each successive congruence must begin with a more and more negative
expansion means that this apparent horizon must shrink. And again, this description
must continue to hold until the curvature becomes Planck scale, at which point the
apparent horizon is also correspondingly small. We denote this locus & and refer to it
as the ‘endpoint’ of Hawking evaporation in the expectation that little more of interest
can happen after this point®. We will idealize & as a codimension-2 surface, though it
reality it describes a region of small but finite size. We define the ‘evaporation time’ us
to be the retarded time of the past boundary of &’; that is, the time at which Planckian
curvatures are first visible asymptotically.

Without a better understanding of Planck scale physics, it is impossible to say
whether and how the singularity and & influence other parts of the spacetime. But
there is a unique perturbatively-semicalssical evolution in regions of spacetime from
which they are causally separated, and of course also in the region to the past of the
singularity and &. This region of semiclassical control is shown figure 8. It is not
geodesically complete, and does not contain a complete £ . Instead, it has a future
boundary defined by the singularity, &, and (using our spherical symmetry to rule out
caustics and the like) the outgoing null congruence Ng from & (dotted line in figure 8)
at retarded time ug. However, it can be used to study black hole evaporation so long
as we do not ask about what occurs beyond Neg.

In particular, let us now use the spacetime of figure 8 to construct back-reacted
saddles for the density matrix p(u) on a region %, C #* that is expected to be under

5This expectation will become an explicit assumption for the purposes of section 4. However, our
goal in this work is to avoid sensitivity to effects that are not under semiclassical control. A critical
point is thus that no such assumptions are needed for the replica wormhole derivation of the Page
curve that will be reviewed in section 5.
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Figure 8: The region under semiclassical control in an evaporating black hole space-
time. In the far past, the diagram coincides with 2a and the black hole forms from
collapse of matter. This region is bounded by the jagged line (called the ‘singularity’),
its endpoint &, and the outgoing null congruence Ng (dotted line). Planck scale physics
becomes important at the singularity and &, and may influence further evolution of the
spacetime. The event horizon H™' (dashed line) is defined to be the boundary of the
past domain of dependence of the singularity and &, and we refer to this past domain
of dependence as the black hole interior.

semiclassical control. We thus wish to find a back-reacted analogue of figure 6. The
one issue we must consider is post-selection at .#,, as this can modify the stress-energy
fluxes to £ and across H*. However, as typical states at . have stress-energy
fluxed close to the mean, such effects are typically small. And even when they are
large, they make little impact on qualitative features of figure 8.

We may thus construct a saddle for p(u) in direct analogy with figure 6, and
in particular by sewing two copies of figure 8 to each other along a partial Cauchy
surface ¥, that runs from the regular origin at the center of the collapsing matter to
retarded time w at . as shown in figure 9. The only difference from working on
a fixed background is that gravity dynamically determines the spacetime away from
the boundaries. The contribution of this saddle to the path integral is independent of
the choice of ¥, since the phases in the classical action from the two branches of the
contour cancel, and the matter evolves unitarily on a fixed background. We see that
the entire calculation is under semiclassical control and makes no reference to strong
curvature regions.
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Figure 9: The saddle-point spacetime for computing the density matrix of an evap-
orating black hole. The future of the blue slice 3, where the identification occurs is
not part of the configuration, so the spacetime is weakly curved everywhere, and in
particular excludes the singularity.

For future reference, and because it involves essentially the same physics as Hawk-
ing’s original calculation [40], we refer to the density matrix defined by saddles of the
form shown in figure 9 as the Hawking density matrix:

P(1) A Pravting 1) (3.2)

Because back-reaction is small, ppawking(%) is essentially a thermal state with a tem-
perature that varies slowly with retarded time w.

Since the predictions for any experiment are encoded in the density matrix, we
see that perturbatively-semiclassical gravity suffices to make probabilistic predictions
for any measurement of the Hawking radiation that avoids particularly late retarded
times (at which the black hole has become Planck scale). Since these predictions
are encoded in the highly mixed and quasi-thermal density matrix prawking(w), they
violate BH unitarity and indicate the black hole density of states to be unrelated to
the Bekenstein-Hawking entropy. Indeed, by the usual argument that starting with
an arbitrarily large black hole leads to arbitrarily large entropy on .#, even when the
Bondi mass at u is held fixed, it suggests the actual black hole density of states to be
infinite.

However, with access only to the Hawking radiation produced in a single black hole
evaporation, we cannot operationally verify that the state is mixed. It turns out that
this critical fact provides interesting room for further physics. The remainder of this
paper is largely devoted to this point. In order to describe such possibilities without yet
delving into the technical complications of replica wormholes, and to make connections
with the historical literature, section 4 will use the crutch of making assumptions about
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physics that is beyond semiclassical control. But we will see in sections 5 and 6 that
this crutch can be discarded, and that semiclassical gravitational physics does predict
physics consistent with BH unitarity.

4 Entropy measurements and potential new saddles

Our calculation in the previous section has led us to suspect that the Hawking radiation
is in a highly mixed state on .%,, which in particular violates BH unitarity. Continuing
with our philosophy of concentrating on the predictions for asymptotic observers, we
might like to imagine performing an experiment to directly verify such violations. But
this is impossible without access to several copies of the state. Indeed, as an immediate
consequence of the familiar fact that a mixed state is equivalent to an ensemble of pure
states, no measurement on a single copy can help us to distinguish a mixed state from
an unknown pure state.

We must therefore form several black holes, taking care to prepare them in identical
initial states, and collect their decay products. We end up with n sets of Hawking
radiation, presumably in n identical copies of the same state since they were all prepared
in the same way. With n identical copies in hand, it is a straightforward task to test
whether a state is pure or highly mixed. For example, one may use the swap test of
[52, 53] which we will describe below.

Now, what does semiclassical gravity predict for the state p™(u) of our n sets of
radiation on .#,7 At first sight, this may appear to be a frivolous question; surely it is
trivially n copies of the result already obtained in (3.2),

P (1) = [ prasing (u)] " 7 (4.1)

However, as observed by Polchinski and Strominger [14], this conclusion is too hasty.
While it is true that our saddle-point computation of p(l) R PHawking immediately leads
to a saddle that would give (4.1), considering n copies of the state together turns out
to allow potential new saddle points.®

The purpose of this section to describe path integrals that predict experimental
measurements of entropy and to connect them with the potential new saddles discussed
in [14]. Before doing so, we will admit to the reader that the potential new saddles
advocated in [14] involve physics that is not under semiclassical control. It is thus
important that they will not form the basis of any analyses in section 5 or 6, or for

6In this section and the next, we simply observe this phenomenon and study its implications.
Interpretations of the new saddles and discussions of the underlying physics they represent will be
deferred to section 6.
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the final conclusions of this work. We nevertheless review this proposal here for three
other reasons. The first is that it serves as a pedagogical tool to explain the idea of
new saddles without yet delving into the technical complications of replica wormholes.
The second is that this helps to place recent developments in an appropriate historical
context, as proposal of [14] turns out to have many similarities to the replica wormholes
of section 5. And the third is that it suggests some of the physics that may in fact lie
behind the semiclassical replica wormholes of section 5.

We thus dedicate section 4.1 to reviewing the proposal of [14], recasting the dis-
cussion in terms of experimental measurements at infinity. This is followed by a short
aside in section 4.2, which describes how the black hole information problem is related
to the lack of factorization of quantum gravity amplitudes. Experiments that involve
only some ., C #* are introduced in section 4.3, and section 4.4 then describes short-
comings of the Polchinski-Strominger proposal, all of which will be resolved by replica
wormholes in section 5.

Before diving in, we should remark that the Polchinski-Strominger work [14] was
largely described in terms of two-dimensional models of gravity inspired by analogy
with the string worldsheet. We interpret their proposal more broadly, applying it to
more general theories of gravity in any dimension. In particular, much of [14] was
concerned with the physics of the endpoint of evaporation &, the details of which will
be unimportant for our considerations.

4.1 Polchinki and Strominger’s proposal

To understand how considering n > 1 black holes can lead to new saddles, let us first
construct the boundary conditions appropriate for such multi-black-hole experiments.
For the purposes of the current section, we take our experimenter to collect all of the
Hawking radiation emitted to .#* for all times, deferring discussion of subsets .#, to
section 4.3. This will necessarily involve making assumptions about physics that is not
under semiclassical control.”

We will treat each black hole as if it is formed and decays in its own separate
asymptotic region. As a result, our boundary conditions will be precisely n copies of
the boundary conditions of figure 9 in the limit u — oo or, equivalently, extended from
Z, to all of #*. Placing each black hole in its own asymptotic region is a convenient
abstraction, though the conclusions should be equally valid for n black holes in a
single asymptotic region, so long as we prepare black holes which are sufficiently well-
separated in time or space.® The boundary conditions for computing the components

7As described in section 4.3, in the Polchinski-Strominger context this issue will not be resolved
just by considering the subsets .%,. But replica wormholes will offer a resolution in section 5.
8This can be thought of as a version of the cluster decomposition principle.
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of the n-evaporation density matrix (i1, ...,4,|p"™|j1,. .., j,) thus involve 2n separate
asymptotic boundaries, n with boundary conditions at .#* specifying a ‘ket’ state |7,.),
and n conjugate copies specifying a ‘bra’ state (i,|.

For n = 1, we expect a saddle given by extending figure 9 to u = co. As noted
above, this extension must involve assumptions about effects in the strong curvature
region. Roughly speaking, our interpretation of the assumption of [14] is that the black
hole evaporates completely, but that information in the black hole interior does not
emerge at #*. Indeed, Polchinski and Strominger describe information reaching the
singularity as being transferred to a ‘baby universe’ that branches off from the parent
universe and does not return, a perspective which we will explore further in section 6.
For our purposes, we can cleanly state the required assumption as follows:’

PS assumption: The extension of any evaporating black hole spacetime be-
yond the region of semiclassical control shown in figure 8 is such that (1) the
spacetime is empty near future timelike infinity ¢*, so that this region resembles
that of Minkowski space; and (2) for any Cauchy surface ¥, of the black hole
interior, we may treat &1 UX;, as a (disconnected) Cauchy surface for the full
spacetime.

We depict the evaporating black hole spacetime under this assumption in figure 10.
We note that the PS assumption requires that the physics of & is appropriately local:
in particular, the state of any radiation emitted to .#* after the black hole becomes
Planckian will be independent of the history of the black hole, such as the state on X,
away from the strongly curved region &.

The PS assumption immediately allows us to sew together two copies of figure
10 to define a back-reacted saddle for the density matrix p = lim, , p(u) on all of
T see either top or bottom of figure 20a below. The result satisfies the definition
of a spacetime wormhole given in the introduction, since the boundary consists of two
complete and disconnected copies of .. For this reason, and because spacetimes like
that of figure 10 were often championed by Hawking, we refer to this spacetime as the
Hawking wormbhole.

For n > 1 replicas, the spacetime which gives rise to the naive result (4.1) for the n-
evaporation density matrix p(™ is then simply n copies of the Hawking wormhole with
boundary conditions |j,) and (i,| for r = 1,2, ...n; see figure 20a for n = 2. But since the
boundary conditions are invariant under independent permutations of bras and kets, it
is clear that we can then build further wormholes with identical boundary conditions
by simply pairing ‘bra’ and ‘ket’ boundaries in different ways. This construction defines

9See e.g. [33, 54-57] for other scenarios for late-time quantum gravity effects.
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Figure 10: An extension of the spacetime of figure 8 to larger v under the PS assump-
tion. We have a complete .#* with Minkowski-like future timelike infinity ¢, and may
treat £ U Y, as a Cauchy surface whenever ¥, is Cauchy in the black hole interior.

n! distinct wormholes over which our path integral must sum, one for each permutation
of the n kets relative to the n bras. We refer to the doubled-spacetimes defined by the
n!— 1 non-trivial pairings as PS wormholes. The single PS wormhole for the n = 2 case
is shown in figure 20b. Note that, although each wormhole involves & and its future
(and thus leaves the domain of semiclassical control), since all n! — 1 PS wormholes
are diffeomorphic to n-copies of the Hawking wormhole of figure 20a, they also have
precisely the same validity as the Hawking wormhole to be interpreted potential saddles.

Indeed, the fact that all n! saddles are diffeomorphic also requires them to con-
tribute precisely the same weight to the path integral. We therefore find the compo-
nents of our density matrix to be given by a sum over all permutations 7 € Sym(n),
where Sym(n) denotes the symmetric group on n indices:

<Z.17 s ainlp(N)Uh s a]n> = Z <i1|pHawking|j’n‘(1)> e <in|pHawking|j7r(n)> + (42)

TE€Sym(n)

and where we have not normalised the state. The ellipsis (+---) in (4.2) indicates
various potential corrections, including any that from possible further saddles that
have not yet been identified. We will assume such corrections to be negligible for the
rest of section 4.
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(a) Extending figure 9 as in figure 10 gives  (b) Another contribution to p(®) with the

a Hawking wormhole. Two copies of this same boundary conditions, for which the

wormbhole are shown. identifications between black hole interiors
have been swapped.

Figure 11: The Hawking (a) and Polchinski-Strominger (b) wormholes contributing to
the density matrix p® describing the decay products at .#, of two identically-prepared
black holes.

As a result of (4.2), the rules for our semiclassical path integral, while treating PS
wormholes as saddles, imply that the state p(™ of the n-evaporation Hawking radiation
collected by our experimenter differs significantly from the state p;?;gwkmg that would
describe n identical independent copies of the mixed state prawking that she would
collect from a single evaporation.

Since this may at first seem surprising, it is useful to note that (4.2) admits a
natural Hilbert space interpretation. After we collapse n black holes and allow them
to evaporate, we must trace out the n interiors. But once evaporation has proceeded
to completion, we see from figure 20b that the interiors are no longer attached to a
corresponding external spacetime. As a result, there is no longer anything to distinguish
them. The sum in (4.2) treats the n interiors as indistinguishable objects obeying Bose
statistics. We could say that each black hole interior is like a Bosonic particle, carrying
many internal degrees of freedom to describe the state of the matter that formed the
black hole and the ingoing Hawking partners. When we trace these out, having several
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interiors in the same quantum state means that we must include a symmetrisation as
is familiar from Bosonic Fock spaces. This then leads to (4.2). We will explore the
Hilbert space interpretation in more detail in section 6.

To understand the implications of (4.2), it is useful to introduce a unitary operator
U, for each permutation 7 in the symmetric group Sym(n), where the U, act to permute
states among the n collections of Hawking radiation:

Ur ([i) @ -+ - @ |in)) = [ix(1) © -+ @ |im(n))- (4.3)

We can equivalently think of U, as a geometric symmetry operator acting on n copies
of T by the diffeomorphism which permutes them. Momentarily dropping the - - - in
(4.2), we find

p(n) = Z Ux pﬁgwking X Pgym pg:wkiny (4.4)

mESym(n)

where Poym = % Y one s, Ur is a projection onto the completely symmetric subspace that
is invariant under all permutations.

We can now ask what our experimentalist should expect when she tries to verify
that the radiation is mixed. For a simple concrete example, we take the case of n = 2
copies and perform the swap test [52, 53]. This means that we simply measure the
swap operator §, which acts to exchange the two copies of the radiation. In terms of
our previous notation, this operator is § = U, where 7 is the nontrivial permutation
in Sym(2). Such measurements have two possible outcomes +1 corresponding to the
eigenvalues of §. For swap measurements performed on two uncorrelated copies of a
single (normalised) density matrix p, the expectation value of such outcomes is

Tr(Sp @ p) = Tr(p?) = e 520, (4.5)

The quantity (4.5) is known as the ‘purity’ of p, and the last equality relates it to
the second Rényi entropy Sa(p) as defined in (2.5). For a highly mixed state such as
PHawking (Which has Sy of order G&l) the expectation value is very close to zero. It
is thus essentially equally likely that the measurement gives +1 as —1. On the other
hand, for pure p it is guaranteed to obtain +1. We can therefore perform only a handful
of measurements and distinguish reliably between the two cases.

Now, from (4.4) it is manifest that p(?) is invariant under the action of S. We thus
find Tr(Sp®?) = Tr(p®?) = 1, and we predict that our experimenter will always obtain
the result +1 from measurement of S. In other words, if we are inspired by (4.5) to
summarize her observations by defining the ‘swap (Rényi) entropy’

S5 = —log Tr (Sp?) (4.6)
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(a) A swap test saddle with naive connections  (b) A saddle in which the swap on the bound-
in the bulk. ary is effectively cancelled by an additional
dynamical swap in the bulk.

Figure 12
then this swap entropy vanishes. This can be generalised to an nth swap Rényi entropy,

defined through the the expectation value of a permutation operator acting on n copies
of the radiation as

swap .__
e

—— logTr (Up™), (4.7)

where 7 is a cyclic permutation of the n copies,'”

7=(12---n) € Sym(n). (4.8)

We leave the n in the definition of 7 implicit, since it will be clear from context. Once
again, from (4.4) it is manifest that p™ is invariant under U,, so the outcome of such
a measurement will always be unity, and S;"*P = 0.

More generally, any measurement (of more complicated permutations for exam-
ple, or even complete tomography to obtain the density matrix) will reproduce the
expectations from a pure state, as will be made more manifest in section 6.

YFor n # 2, U, is not Hermitian, but it can still be measured since it is normal (commutes with
its adjoint). This is equivalent to measuring both its Hermitian and anti-Hermitian parts, which are
commuting Hermitian operators.
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For future reference, we note that the expectation value of § for radiation collected
from two identically-prepared evaporating black holes can be directly formulated as a
gravitational path integral. Two saddle points satisfying these boundary conditions are
shown in figure 12. These are essentially the same saddles pictured in figure 11, where
the identification of the black hole interiors can be either ‘unswapped’ or ‘swapped’,
but now with boundary conditions appropriate to our swap test expectation value. The
point is that summing these saddles gives precisely the same result as taking the trace of
the saddles in figure 11 since 12a is diffeomorphic to the spacetime defined by taking the
trace of 20b and 12b is diffeomorphic to that for the trace of 20a . We have attempted
to swap the radiation to check whether the state is mixed, but the gravitational path
integral has dynamically hidden this from us by performing a matching swap of black
hole interiors.

4.2 Wormbholes and factorization

As noted above, the path integral boundary conditions required to compute the density
matrix on £ involves two disconnected copies of .#TU.#~, and thus two disconnected
boundaries. So despite the fact that it involves only one density matrix, we may
characterize this argument as a ‘two-replica’ calculation. Furthermore, as discussed
above, the Hawking result prawking is obtained from a spacetime wormhole, in the sense
that disconnected boundaries become connected through the dynamical bulk. In the
Hawking wormhole this happens due the two copies of figure 10 being joined along the
slice ¥;,¢, which does not reach the asymptotic boundary. Both features are closely
associated with the failure of BH unitarity due to the large entropy of prawking 00 & .

If one believes in BH unitarity, it might thus seem natural to seek a one-replica
calculation that describes black hole evaporation. Rather than concentrating on ob-
servables, we might try to compute components of the S-matrix directly, or equivalently
the wavefunction of the Hawking radiation at .# % for a given initial state at .#~. For
this, we would like to compute the path integral with boundary conditions on a single
copy of T U ¥

However, there is no clear way to compute this path integral semiclassically, even
after making assumptions about the endpoint of evaporation &. We might attempt
to proceed by using a single copy of the evaporating black hole geometry of figure 10,
and then perform the path integral of the quantum fields on this background with
appropriate initial and final boundary conditions. But we run into difficulty due to the
presence of the future singularity (the jagged line in figure 10). First, we do not expect
that our low-energy effective theory will be valid in the high-curvature regions near
the singularity. Second, there is no obvious prescription for the boundary conditions or
measure that we should apply when we integrate over quantum fields at the singularity,
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and the spacetime we have chosen may not be a stationary point of the action depending
on what variations are allowed by the boundary conditions. This is a more severe
problem than the one encountered at the endpoint of evaporation & when studying the
path integral of figure 11, since the current problem affects all of the interior Hawking
partners and scales with a positive power of the black hole’s initial size. Resolving
this by choosing a prescription to replace the singularity with a boundary condition is
equivalent to the black hole final state proposal of [58]. We will instead take the more
conservative point of view that semiclassical gravity simply does not offer an answer to
this question.

On the other hand, we have seen above that the Polchinski-Strominger proposal
gives operationally-defined entropies indicating the final state to be pure. As a result, it
is natural to expect whatever physics lies behind this operational purity to also enable
calculations of the above S-matrix components. At least in some sense, it should
then cause the ‘two-replica’ Hawking wormhole calculation of p to factorize into a
product of ‘one-replica’ S-matrices. Aficionados of the AdS/CFT correspondence will
thus recognize that the black hole information problem is a special case of the so-
called ‘factorization problem’ of AdS/CFT [59-61]. We shall return to this issue in the
discussion of section 7.3.

4.3 Experiments on part of the radiation

Section 4.1 discussed predictions for the swap test as applied to the entirety of radiation
on 1, and found that they are consistent with a pure state. Here, we will generalise
this to ask for the predictions of the PS proposal when we measure only the radiation
on the part .#, of £ to the past of some retarded time u. We postpone interpretation
of the results to section 4.4.2, where (along with other difficulties) we will discover them
to be inconsistent with BH unitarity. Nevertheless, this calculation will be a helpful
warm-up for the replica wormholes introduced in section 5.

From the PS proposal (4.4), the expectation value of an operator O™ acting on n
sets of Hawking radiation is given by

awking

Tr (O"p) = > T (O UL(I ) pitiing) (4.9)

wESym(n)

where we have here used the more explicit notation U,(.#7) to include the region
T on which the permutation operator acts. Strictly speaking we should divide by
a normalisation factor determined by setting O™ = 1. However, except for the term
defined by the identity permutation 7 = 1, all terms in this normalization factor are
exponentially small. Thus the resulting corrections are negligible.
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We will ask for predictions when we measure a swap operator S(.#,) (or more
generally U,(.#,) for the cyclic permutation 7 from equation (4.8)), but now acting
only on .%,, capturing the Hawking radiation that emerges before the retarded time w.
As before, we encode the result in a ‘swap Rényi entropy’

1
SPVP () 1= — . log Tr (UT(fu)p(”)) (4.10)
n JR—
generalising (5.1).
We begin with the case n = 2, where there are two terms:

Tr (S(ﬂu)p(z)) =Tr (S(ju)pgzwking) + Tr (S(ju)s(j—i_)p%zwking) . (411)

The first term is the expectation value of the swap operator S(.#,) in the tensor product
state PHawking ® PHawking. From (4.5), this yields e=52 akag(“), where Sg aWking(u) is the
second Rényi entropy of the part (.#,) that is swapped. To understand the contribution
of the second term, note that the product of two swap operators is again a swap
operator: S(.£,)S(F+) = S(A,), where .#, is the complement of .#, in #*. As a
result, the contribution of the second term to Tr (S (A) p(2)) is of precisely the same
form as the first, but with S5*""¢(¢;) replaced with the Rényi entropy Si*""&(v) of

the radiation on .#, associated with the Hawking state. Thus we find

Hawking

S5 () ~ —log €750 4 =S|

. o (4.12)

~ min { S5 (), S5 E(w) |
where we may approximate the function as a minimum of the two terms because
Syravking (y,) - SEAVKINE (1)) are both very large. The two geometries of the path inte-
gral corresponding to the computation (4.12) are shown in 13. The minimum in (4.12)
comes from choosing only the dominant saddle.

Generalising this to cyclic permutation on n sets of radiation, there are n! terms,
but only two terms are important, the identity permutation 1 and the inverse 7!
of the cyclic permutation we are measuring. Other PS wormholes are exponentially
suppressed relative to at least one of the two included terms.!* In analogy with (4.12),

the two terms give
Szwap(u) ~ min {S};Iawking(u)’ gql;lawking(u)} , (4.13)

with the second coming from the relation U, (7,)U,-1(I ) = U,-1(.4,).

UThere is an exception when both terms are comparable SHawking(y) ~ GHawking(y)) in which case
additional permutations give further interesting corrections: see footnote 21.
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(a) The geometry giving rise to the first term  (b) The geometry with swapped interiors
in (4.11) and (4.12). gives the second term in (4.11) and (4.12).

Figure 13: The two PS wormholes contributing to the computation of Tr (S (A) p(2)),
the expectation value of a swap operator acting on .#, for two sets of radiation.

4.4 Challenges for the Polchinski-Strominger proposal

The observations of section 4.1 may suggest that the semiclassical gravity predictions for
an asymptotic observer always conspire to produce results consistent with BH unitarity.
However, if the only relevant contributions from the path integral are those discussed
above, with further consideration one still finds serious problems.

These problems are described below. Using arguments related to the problem
that will be described in 4.4.2, [14] concluded in their context that black holes in
fact violate BH unitarity and instead described black holes as ‘long-lived remnants’.'?
These difficulties will all be resolved in section 5 by appealing to the recently-discovered
replica wormholes of [18, 19]. Nonetheless, we will first discuss the issues in more detail

so we can better appreciate this resolution.

12Here the term ‘remnant’ means an object with unbounded entropy (that is, infinitely many internal
states) below a fixed mass.
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4.4.1 What happens at the endpoint of evaporation &7

As observed above, we lose semiclassical control near the endpoint of evaporation &
once the black hole is of Planckian size. We have thus far followed [14] in making the
PS assumption, but it would be a great improvement if we were able to arrive at the
same conclusions without such assumptions, and with the semiclassical approximation
justified throughout the calculation.

4.4.2 Violations of BH Unitarity

We now discuss the result of section 4.3, where we computed the expectation value of
a cyclic permutation acting on the radiation arriving at #* before retarded time wu.
Since von Neumann entropies are more familiar and more physical than Rényis, we will
phrase the calculation in terms of the ‘swap von Neumann entropy’ S*V*P(u) obtained
by formally taking the n — 1 limit of (4.13),

Gswap (U) ~ min {SHawking(u)’ gHawking(u>} ) (414>

However, the same considerations apply directly to Rényi entropies as well. We inter-
pret S5V (u) as a prediction for the von Neumann entropy that an asymptotic observer
would deduce by performing measurements on many copies of the Hawking radiation
emitted before time w.

To understand these quantities, we must simply note that Hawking’s state does
not contain significant long-range correlations, so can be regarded as a product of
uncorrelated thermal states emitted at different times. This means that SH*Wking(y)
and ST*king (7)) are well-approximated by the thermal entropy of Hawking radiation
emitted before and after the time u respectively. In particular, the sum SHawking(y) 4
SHawking (7)) oives the total entropy ST*"kine(00) of all radiation at #7 in the Hawking
saddle, up to order one corrections from the vicinity of the boundary between .#, and
#,. In particular, STki"g(y;) monotonically increases from zero to SHaVking(o0) while
SHawking () monotonically decreases between the same values.

At early times we have SHavking(y) < GHawking(y)) g0 (4.14) is dominated by the
first term, corresponding to the saddle-point in figure 13a. The swap entropy S*P(u)
thus increases until SHawking(y) = GHawking(y)) = at which point there is a first order
phase transition, the second saddle-point in figure 13b becomes dominant, and S®*P(u)
decreases back to zero. While this is qualitatively very much like the Page curve in
figure 1, it disagrees quantitatively and we find a result which is incompatible with BH
unitarity. The key point is that the entropy SH*"kine(00) on .#* in the Hawking saddle
exceeds the Bekenstein-Hawking entropy Sgy of the initial black hole by a factor of order
one. This discrepancy occurs because black hole evaporation is thermodynamically
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UPage T u

Figure 14: The u-dependent swap entropy computed from PS saddles (solid black
curve) rapidly transitions from agreement at small u with SHavking(y) (increasing black
curve) to agreement at large u with SHawking(y) (decreasing black curve). The tran-
sition occurs at the ug for which SHawking(y,) = GHawking(y ) However, because
SHawking (o) > Spu(0), we have SHawking(() > Spy(0) and in fact also at all u. In
particular, SHewking(y,,) = SHawking (3, )y exceeds Spp(uo), violating BH unitarity.

irreversible and hence produces thermal entropy; the generalized second law is not
saturated by evaporation in the Hawking saddle.

We can be very explicit for Schwarzschild black holes evaporating by production of
massless particles, since the various entropies are determined as a function of time by
dimensional analysis. In particular, the production of Hawking radiation is determined
by the geometry, which provides the only length scale R. The emitted power (energy
per unit time) is therefore proportional to R~2, and thermal entropy is produced at
a rate per unit time proportional to R~!. Meanwhile, in D spacetime dimensions the
black hole mass M is proportional to G~'RP~3 and Spy is proportional to G~'RP~2.
From this, we can solve everything up to a few unknown dimensionless constants to
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find!3

SBH(U) = SBH<O) (1 — %) ) s
SHawking(u) — SHawking(Oo> [1 B (1 B i) D1] 7

Ug

SHawking(u) — SHawking(Oo) (1 _ i) - ,

where D is the spacetime dimension and ue is the time taken for complete evaporation.
The only undetermined parameter relevant for us is the (constant) ratio

. SfHawking B dsHawking/ dSBH B SHawking<oo)

which depends in detail on the dynamics through greybody factors. However, the only

> 1, (4.15)

point that is important for us is that it is greater than one. Indeed, as shown in figure 14
one finds a violation of BH unitarity by a factor of r. For four-dimensional black holes,
Page has computed the corresponding ratio for von Neumann entropies in various cases
(62, 63]; for example, for Schwarzschild black holes radiating by emission of gravitons
and photons he computed r ~ 1.48.1

The above paragraphs describe a problematic violation of entropy bounds, but only
by an order one ratio. However, as is familiar from other discussions, we can magnify
the problem by refusing to let the black hole evaporate freely and instead feeding
it with matter so that it remains at a given size for as long as we desire (perhaps
even eternally as in [64]). If this time is very long, then in the middle of this period
S51KINE () and S5 ™K& (1,) will both become very large, so S5V (u) is also very large.
But the Bekenstein-Hawking entropy Sy is fixed by the current mass of the black hole.
So from this analysis it would appear that black holes have an unbounded number of
internal states below any given mass, a serious failure of BH unitarity.

4.4.3 Violations of causality

Perhaps an even greater problem than the failure of BH unitarity is the observation
that (4.12) entails a possible violation of causality. In particular, since it involves the

13We can define Spp(u) as the Bekenstein-Hawking of a black hole with mass given by the Bondi
mass at time u. Equivalently, this is entropy of the black hole when the radiation arriving at .# ™ at
time u was emitted, where the precise definition of emission time is not important since the evaporation
timescale ug is a positive power of Gj\,l.

4The total entropy of Hawking radiation SH2Vking(o0) depends on details of the endpoint of evapo-
ration beyond semiclassical physics. We can safely ignore these details, since the effect on the entropy
does not (by our PS assumption) scale with the original size of the black hole.
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entropy S§ aWking(u) on .Z,, it predicts the swap entropy measured by our experimenter

at a finite time u to depend on the entire future of the black hole! This is particularly
sharp if we imagine first performing this measurement at a finite distance from the
black hole (or at an AdS boundary), whence we can subsequently throw matter into
the black hole depending on the swap entropy obtained. Such violations of causality
appear large enough to even throw the consistency of above calculations into doubt.
We take this to suggest that a consistent framework will require additional corrections
to the swap entropy at finite u; such further corrections will be explored in the next
section.

5 Replica wormbholes

It is natural to ask if the above challenges might be resolved by finding further new
saddles. Similar ideas have been investigated in various forms for many years; see e.g.
[4, 5, 10, 16, 17]. We are now able to make this more concrete, since in the past year a
new class of saddles have been argued to exist. These are known as replica wormholes
for reasons that will shortly become clear. They were discovered as contributions
to path integrals of the form studied in section 4.3 above, in our context giving the
expectation value of the cyclic permutation operators U.(.#,) acting on n copies of a
subset of Hawking radiation. As we review below, the replica wormholes reproduce the
expectations from the Page curve quantitatively, via a path integral over spacetimes
where the semiclassical approximation can be trusted everywhere. This implies that the
replica wormhole geometries must also contribute to other observables, and in general

(n

to the components of the n-evaporation density matrix p™, which we explore in section

5.4.

5.1 Replica wormhole spacetimes

In a sense, replica wormholes are a generalisation of PS wormholes studied in section
4, so we first revisit these in a way that is suggestive of the required generalisation.
Specifically, we will reconsider the swap entropies of the Hawking radiation that emerges
before some finite retarded time wu, as discussed in section 4.3. Recall that this is an
expression for the expectation value of the cyclic permutation U,(.#,) applied to n
copies of Hawking radiation on .#,.

The PS wormbholes for this amplitude (pictured in figure 13b for n = 2) are built
from 2n pieces, consisting of n ‘ket’ replicas M,. of the evaporating black hole spacetime
and n conjugate ‘bra’ replicas M., labelled by a replica index r = 1,...,n. These
spacetimes terminate at a future Cauchy surface ¥ where they are sewn together. The
surface X is divided into three pieces, with a different rule for sewing replicas along
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each piece. First, we have a region .#, on .#, where the boundary conditions require
us to join spacetimes with the cyclic permutation 7, so M, joins to /\;lT(r). Next, we
have an exterior piece Y.y stretching from retarded time v on # 7 to the regular origin
r = 0 that is expected to emerge after the final evaporation of the black hole (we can
take Yoy = T if we like). In this region, we sew without permutation, so M, joins
to M,; this is also fixed by the boundary conditions on .#*, which require such an
identification in a neighborhood to the future of retarded time w, where ¥, begins.
Finally, we have a Cauchy surface for the black hole interior ¥, reaching from the
original regular origin (before the black hole evaporates) to the evaporation endpoint
&. Here, the boundary conditions do not uniquely specify any sewing rule, and we
can join M, to M, along #, with any choice of permutation we desire. The path
integral includes a sum over all possibilities, and the dominant permutation for a given
calculation is dynamically determined. In particular, the interesting new contribution
to the swap entropies (4.13) arose from choosing the permutation on ¥, to match the
permutation 7 on ., imposed by the boundary conditions.

This description also applies to replica wormholes, but generalised to allow a more
general choice of Cauchy surface X where we sew the replicas, and to also allow a more
general splitting of this surface into pieces. The region .#, is fixed by the boundary
conditions, so must remain unchanged, but we are free to choose how the remainder
¥, of the Cauchy surface is split into two pieces: a partial Cauchy surface Z (the
‘island’) generalising Y, in the discussion above, and its complement in ¥, which we
continue to call X.. The exterior surface Yey extends to meet £ at retarded time wu,
where the boundary conditions specify that bra and ket spacetimes are connected in the
trivial way, but we sew along the interior island pieces Z with a nontrivial permutation.
For the boundary conditions computing the expectation value of U,(.%,), the most
interesting possibility again arises when we take the sewing permutation on Z to match
the cyclic permutation 7 which acts on .#,. The novelty of the replica wormholes is
that we take the Cauchy surface >, to be connected, so that Z and Y. meet at a
common codimension-2 boundary v = 9Z. Indeed, for Lorentz-signature spacetimes of
this form, the causal structure must have an interesting singularity: points on ~ will
have several past light cones, one for each bra spacetime that meets at v (and also
one for each ket spacetime). This is an important feature, but we will treat it only
briefly below, referring the reader to [15], [65], and [66] for further details and deferring
discussion of further implications to section 7.3.4. The resulting spacetime is depicted
in figure 15 for n = 2.

We can already see why such spacetimes might avoid the PS-wormhole’s depen-
dence on physics near & and the resulting loss of semiclassical control discussed in
section 4.4.1. By joining replicas along a Cauchy slice >, which stays far from regions
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(a) The ‘trivial’ geometry with the boundary (b) A replica wormhole geometry with the
conditions appropriate for the swap operator same boundary conditions, obtained from (a)
acting on .#,. This arises from two copies of by changing the identifications along the ‘is-
the Hawking wormhole in figure 9. land’ 7.

Figure 15: Two geometries in the path integral contributing to the expectation value of
the swap operator acting on ., for two sets of Hawking radiation. The right spacetime
is an n = 2 replica wormhole. To obtain this, we divide the partial Cauchy surface >,
into two pieces Z and Y.y along the codimension-2 surface «. The connections along
Yext are the same as in (a), but are swapped along the island Z. The configuration
shown is not a saddle as it does not incorporate back-reaction from the structure near
the special surface v, and incorporating such back-reaction will make the spacetime
metric complex. That is, passing the contour of integration through the desired saddle
requires deforming it away from real Lorentzian metrics. However, the replica wormhole
saddle will coincide with the (real) Hawking saddle in the formal limit n — 1 of the
replica number n.

of strong curvature, the entire singularity — and in particular the endpoint & — is
excluded from the spacetime under consideration, just as for the Hawking wormhole in
figure 9. We will see that such replica wormholes exist for all times u < ug lying to
the past of the future lightcone of & (after the black hole forms), and thus remove the
dependence on UV physics until the black hole reaches Planckian dimensions.

The matter path integral in this replica wormhole spacetime is a Schwinger-Keldysh
path integral on an n-sheeted spacetime which includes the insertion of a permutation
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operator U,(Z) acting on the island Z, as well as the operator U,(.#,) imposed by
the boundary conditions. In principle, we should compute this for every such replica
wormhole spacetime, in particular for all choices of Z, and then perform the integral
over metrics. Different choices of v in a given single-sheeted spacetime result in different
geometries for the n-sheeted whole, so our gravitational path integral integrates over
all inequivalent choices of ¥, (and we might also sum over nontrivial permutations 7
acting on the island). If saddle-points exist, the location of v in the resulting geometry
will be determined dynamically by extremizing an appropriate action.

5.2 Quantum extremal surfaces

The interesting question now is whether this replica wormhole topology can yield a
new semiclassical saddle for given boundary conditions at some replica number n. The
general case for integer replica number n > 1 is still under exploration.!> However,
we are able to make more progress by considering a formal analytic continuation of
the calculation to non-integer n, studying the problem for n — 1 — 07 to first order
in (n — 1). This will not only be convenient, but also physically interesting, since the
corresponding limit of Rényi entropies gives the von Neumann entropy. Specifically,
we will first compute the same observables as section 4.3, studying the path integrals
with boundary conditions appropriate for computing the expectation value of a cyclic
permutation 7 acting on n copies of the radiation emitted before retarded time u,
encoded in the ‘swap entropy’

S (u) =~ log Tr (U(S)p™) (5.1)
Continuing this to non-integer n and taking the n — 1 limit defines the ‘swap (von
Neumann) entropy’ S*V*P(u) := lim,,_,; S5V (u).

In section 4.3, we found a new interesting contribution to this path integral arising
when we chose to join the replicas along the black hole interiors X, by the same
permutation 7 as we apply on .%,. Our strategy will be to emulate this for replica
wormholes as described above, replacing >;,; by a general partial Cauchy surface Z.
We will reformulate the calculation of the path integral on such geometries in such a way
that n need not be an integer. For n = 1 exactly the permutation group Sym(n = 1) is
trivial and there is only the original saddle for Tr p(u) that computes the normalization
of the state. Nonetheless, by continuing the problem to study a neighbourhood of
n = 1 we introduce nontrivial dependence on the choice of Z, but can still state the
calculation in terms of the n = 1 geometry and associated matter state. As pointed

15Gee [18, 67-70] for related constructions in Euclidean signature and [66] for saddles with Lorentz-
signature boundary conditions analogous to those considered here.

— 38 —



out in [18, 19], the condition for a saddle to exist at order (n — 1) was found some time
ago: see [71], building on [65, 72]. The condition is that the splitting surface v = 0Z
is a quantum extremal surface (QES) [73]. See also [66] for discussion of saddles for
real-time path integrals when n — 1 is not infinitesimal.

Before reviewing the argument, we recall the definition of a QES. This is a ‘quantum
version’ of an extremal surface, which is a stationary point of the area functional Al~y].
To go from ‘classical’ to ‘quantum’ extremal surface, we simply replace the area function
with a quantum corrected version, the generalised entropy:'°

A[9T]
AGy

Since the matter fields are pure on a full Cauchy surface, the second term is also the

Sgen(:z’-; U) = + Smatter(z U ju) (52)

matter entropy on the partial Cauchy surface Y., bounded by v and by .# " at retarded
time w. This is the more standard way of describing a generalized entropy. The final
argument u in Sge, reminds the reader that this matter entropy term depends on where
we choose this partial Cauchy surface to meet .# .

The definition of a QES v = 0Z is that Sge, is stationary to first order variations of
7. In the definition (5.2), Spatter(Z U -#,) is the von Neumann entropy of matter fields
on ZU.Z, in the state under consideration. For a matter QF T, this entropy is divergent
and depends on the choice of UV cutoff. Nevertheless, there is strong evidence [74-76]
(see also the appendix of [77]) that the combination Sge, is finite and not UV sensitive,
since matter fields give an equal and opposite infinite renormalisation to G]_Vl (using
the ‘bare’ value of Gy at the EFT cutoff in (5.2)). Relatedly, if the theory has higher
derivative terms or non-minimal couplings to gravity (perhaps induced by quantum
effects) then the % term should be replaced by the corresponding notion of geometric
entropy [78-80]. These features are not special to replica wormholes, but are familiar
from quantum corrections to black hole thermodynamics, for example. Operationally,
it suffices to evaluate (5.2) using the finite IR value of Gy and a finite subtracted
expression for Spatter Using some convenient regulator which is local at ~.

We now sketch how the generalised entropy functional and the QES prescription
arise from the path integral, by looking for replica wormhole saddle-points with bound-
ary conditions for computing Tr (UT(fu) p(”)) A7 These spacetimes are replica symmet-
ric: that is, the geometry respects the n-fold cyclic symmetry possessed by the bound-
ary conditions, as well as the two-fold symmetry swapping ‘bra’ and ‘ket’ branches of

16We have written Sgen as a functional of the partial Cauchy surface Z (up to equivalence under
changes that leave the domain of dependence invariant), rather than its bounding surface 7. These
data are equivalent unless our spacetime includes a closed universe component (that is, a partial
Cauchy slice with empty boundary).

ITHere we depart from the historical presentation of the arguments in order to simplify the discussion.
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the Schwinger-Keldysh contour. We are thus considering metrics that are obtained by
taking 2n replicas of a single spacetime (n of them after CPT conjugation) to the past
of a Cauchy surface Z U ¥eyy U &7, and gluing them along that Cauchy surface, though
on the Z and .#, portions of this Cauchy surface we perform this gluing using a cyclic
permutation 7 between replicas. It suffices to check that we have a saddle-point vary-
ing only amongst such replica symmetric configurations, since the symmetry ensures
stationarity to variations which break this symmetry. This will enable us to describe
the problem in terms of a single copy.

First, we compute the matter path integral on such a geometry. As noted above,
the replica wormhole geometry is the Schwinger-Keldysh contour giving the expectation
value of U, (., UZ) for the matter state on the final Cauchy surface ¥ = ZU X U .7,
produced by unitary evolution from the initial conditions on .#~. We can express this
in terms of the Rényi entropy of the matter reduced density matrix pry»,. This is
much the same as the discussion in section 2.3, except we now are computing the Rényi
entropy on ZU.#,, not just on .%,. We can thus write the n-replica matter path integral
as .

Zx(x?a)tter =Tr(p70s,) = (Zlgll;tter> e (NS EUS), (5.3)

n
matter | = Tr(pzus,)™ gives the normalisation of the state on the unrepli-

The factor <Z(1)

cated geometry, and is independent of v. The matter effective action is thus given by
n times the n = 1 effective action, plus a term from the Rényi entropy on ZU .#+:

matter

10g Zihier = 1108 Zi e — (0 = 1)Su(TU 4. (5.4)

This extra term will become the matter von Neumann entropy Spagter(ZU-# ") appear-
ing in the generalised entropy (5.2) when we continue this close to n = 1. In particular,
since the Rényi entropy is defined for any n > 1, we have succeeded in describing the
matter integral in such a way that n is not restricted to be an integer. We now do the
same for the integral over replica-symmetric metrics.'®

Since the Einstein-Hilbert action is local, it is tempting to say that the action
on our n replicas is simply n times the action on a single copy. This is almost true,
but as described in [65] (following similar Euclidean observations in [69]) there is an
additional local contribution at the surface 7. To understand this, it is helpful to
imagine deforming the Schwinger-Keldysh contour to pass through our final Cauchy

surface in an imaginary time direction, so that we can think of the geometry as being

18What we have called the matter path integral should include linearised metric fluctuations as
explained after equation 3.1, here computing the entropy of gravitons. In particular, the path integral
thus incorporates small deviations from replica-symmetric metrics. In practice, this is rather subtle,
but the subtleties are local at 7 and so do not accumulate to become significant.
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Figure 16: A sketch of the n = 2 replica wormhole geometry near the splitting surface
v, which lies at the tip of the cones. Comparing to 15b, one cone corresponds to
the top two spacetimes (one ‘ket’ and one ‘bra’) and the other to the bottom two,
identified along Y., leaving a cut in the cone along Z. The two cones are joined along
7 with a swap (or more generally, a cyclic permutation) as indicated by the colours and
arrows. The conical defect in each replica is required for the resulting replica wormhole
spacetime to be smooth at ~.

Euclidean (at least locally, very close to 7). In this vicinity, the n-sheeted geometry
(sketched in figure 16 for n = 2) is obtained from the metric on a single copy by slicing
the n replicas along the surface Z emanating from v, and joining them back together
with cyclic identifications. Our n-copy geometry must be smooth at v so that we
satisfy the equations of motion there, but this implies that each single geometry is not
smooth: it has a conical defect at v with opening angle %’T In particular, this requires
back-reaction that will modify the geometry on each replica in some n-dependent way.
However, we can find a saddle-point by solving the equations of motion from varying
the metric on a single copy while imposing the 27" defect boundary condition at v, which
is a problem which can be continued in n, and in the n — 1 limit we return to the

original smooth geometry. Now, if we were simply to evaluate the gravitational action

Al
4Gy

from curvature with delta-function support at ~.!? But this contribution should not be

on this single-copy singular configuration, we would find a contribution (1 —n~1!)

9For one way to see this, we can split the action ﬁ J R into an integral in the directions
parallel to v, which gives the area, and a transverse two-dimensional integral. We can evaluate the
latter integral on a small circle centred on v using the Gauss-Bonnet theorem. See [15] and [66] for
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there, since we are really evaluating the action on the n-copy metric, which is smooth
and so has no such singular piece. To make up for this difference between the correct
n-replica action and the singular Einstein-Hilbert action, we must subtract this ‘by
hand’. The gravitational action on the replica manifold is therefore given [65, 69] by?°

Al

(5.5)
In the n — 1 limit, the area term above gives the geometric term in the generalised
entropy (5.2). Note that this is a real contribution when the action is evaluated in
Euclidean signature, so despite the Lorentzian setting it weights the path integral by

1— —1y\ AlY] .
(1=n )4GN, and not by a phase. The same basic phenomenon was

the exponential e
observed long ago in [15].

We now have a description for the path integral over replica symmetric configu-
rations that we can nicely continue in n, and which we can study for small values of
(n—1). There are two types of term appearing in the action which weights this integral.
First, we have terms which are independent of v, namely the local gravitational action

S](Elli in (5.5) and the normalising factor <Z(1)

matter>n from (5.3). Together, these just give
n times what we will call the single-copy action (that is, the gravitational action —
including a contribution from the singularity for n # 1 — plus matter effective action).
Secondly, we have the two terms making up the generalised entropy, namely the area
term in (5.5) and the matter entropy in (5.3). For n — 1 < 1, the second class of
terms give a small correction so we can ignore them at first, obtaining simply the path
integral that computes the norm of the state. Since we will also need to divide by this
result to get our final expectation value, such contributions cancel completely in the
final expression.

The above considerations fix a saddle-point geometry on a single replica. However,
there remains a residual integral over codimension two surfaces v within that geometry.
Note that we require a saddle point for this integral as well if we are to specify a saddle

for the full n-fold replicated geometry.

details of this procedure in Lorentz signature near singularities in the causal structure of the form
associated with .

20Tt is also true that (5.5) defines a good variational principle on the singular single copy defined
by taking the n-fold quotient of the n-replica manifold. See [81] for a full discussion of the Euclidean
case. The Lorentz signature case follows by analytic continuation; see also [66].
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For the integral over v, the weighting is provided by the second set of terms:

Tr (Uﬂ(,ﬂu)p(")) — /D’y e~ (1 DSgen(Tiv) n-—1<1) (5.6)
~ Z e_(n_l)sge“(z;u)’ (57)
v=0T QES

where the last step indicates a saddle-point evaluation of the integral over surfaces.
Now, in principle we should also realize that for n > 1 the singularity at v will back-
react on the single-replica metric and thus change the value of the single-replica action
SSI){ But since at n = 1 we work at are at stationary point for Sﬁ;}{, this effect is
quadratic in (n — 1) and can thus be ignored for the purpose of computing our swap
von Neumann entropy; see [66] for further discussion discussion of back-reaction at
finite n — 1 in saddles for real-time path integrals.

The saddle-points of (5.6) are precisely the quantum extremal surfaces, since these
are the points at which Sge, is stationary. We may attempt to approximate this by
including only the dominant saddle-point and noting that for n near 1 the dominant
saddle is given by the term in which Sy, takes the smallest value.”’ Expressing this
in terms of the swap entropy (5.1), we can summarise the resulting replica wormhole
contribution by the simple formula

SEVEP (1) ~ V:g%igES Sgen(Z; w). (5.8)
That is, we evaluate Sge, for island bounded by surfaces v such that it is stationary
to first order variations, and if there are multiple such surfaces we choose the smallest
result.

The result (5.8) is a version of the Ryu-Takayanagi formula [87, 88] first stated
by Engelhardt and Wall [73], following generalisations to time-dependent situations
[89] and inclusions of quantum corrections [72]. In this context where the quantum
extremal surface v is compact and hence bounds an island Z, it has become known as
the ‘island formula’ [90]. These were all originally stated in the context of holographic
duality, with the result interpreted as a von Neumann entropy of a dual quantum
system. Here, we do not assume any such dual description so our interpretation is
rather different, instead predicting the outcome of ‘swap’ experiments performed on
multiple sets of Hawking radiation.

2IThis is not always sufficient. As described in [18, 82, 83], other saddles can sometimes play
important roles — especially when two QESs has similar values of Sgen. But their inclusion appears to
only strengthen the arguments presented here. See also [84-86] for related comments on corrections
near transitions in which saddles exchange dominance.
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Incidentally, the argument reveals why we should expect that Sy, is finite and not
UV sensitive. We obtain Sg, as a limit of partition functions over replica manifolds
which are smooth, with no singular features at the surface 7. These features of Sgen
are ensured if we have a sensible effective theory.

The first term in Sgen(7;u) = %g,] + Sext (Zins U &) is naturally of order G'y', while
the second matter entropy term will typically be a small correction of order one. This
means that in most circumstances, a QES will be close to a classical extremal surface.
However, this in not always the case. In particular, for evaporating black holes there
may be no nontrivial classical extremal surface but, as we will see presently, due to the
parametrically long times involved there is nonetheless a QES.

5.3 Contributions from replica wormholes

The discussion of section 5.2 reduced the study of replica wormholes near n = 1 to the
study of quantum extremal surfaces in the original semiclassical n = 1 saddle. Recall
that for us this is the ‘Hawking wormhole’ in figure 9. A trivial case is when the island
7 and hence the QES ~v = 97 are empty, in which case we obtain the original Hawking
result SHawking(y) — G i (F,) for the swap entropy. It remains to ask whether there
might also be a nontrivial QES in this spacetime.

This is precisely the question that was studied in references [20, 21]. Those works
showed that a non-trivial QES 7 exists soon after the black hole forms (after roughly
a scrambling time, which is logarithmic in Gy). To locate the QES, we first define the
function v,,,(u) so that for a given outgoing time u, the apparent horizon of the black
hole lies at ingoing time v = v,,,(u). Given our spherical symmetry, we may define the
apparent horizon as the (spherical) surface on which the area of the transverse sphere
is stationary under variations in the outgoing null direction. This surface is slightly
outside the event horizon since the black hole is evaporating, so the function vap,(u) is
well-defined for times u soon after formation of the black hole, up until the evaporation
time ug. The works [20, 21] showed that a QES computing S*P(u) exists very close
to the event horizon at advanced time close to v,,,(u), with the corrections to this
advanced time being of order the inverse black hole temperature 8. This is sketched in
figure 17.

The generalised entropy of v is dominated by the area term, so Sgen(Z;u) is close
to the Bekenstein-Hawking entropy Spu(u). This QES thus becomes dominant after
the Page time and causes S®"*P(u) to follow the Page curve:

S~ min { STV (), Sp(u)} (5.9)

The physics that allows such a QES to exist is rather generic, and in particular
is independent of the dimension or asymptotics of the spacetime. Using spherical
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Figure 17: A sketch of the location of the nontrivial QES in an evaporating black hole.
The red curve is the location of the apparent horizon, where the area is stationary to
variations in the outward null direction. The function v,,,(u) is defined as the ingoing
time which intersects the apparent horizon at outgoing time u, as shown by the dashed
blue null lines. The QES ~ for S*¥P(u) lies at ingoing time wv,p,(u), just behind the
event horizon.

symmetry, it is sufficient to argue that S, is stationary to variations in ingoing and
outgoing null directions. The outgoing variation of the area vanishes on the apparent
horizon, so it is unsurprising that the outgoing variation of Sge, can vanish on a nearby
surface . The ingoing variation is more subtle, requiring a balance between quantum
entropy and classical area terms. This is possible due to the exponential divergence
of outgoing geodesics near to the event horizon, producing a logarithmically growing
contribution to the entropy. For detailed arguments, we refer the reader to the original
references [20, 21] with AdS asymptotics (though for similar calculations with flat
asymptotics see [24-28]). We emphasise that there is no classical extremal surface
close to v at which the %g]
thus critically important for the extremisation, with large gradients in entropy arising

term would be stationary on its own. The entropy term is
from the large relative boost between the near-horizon and asymptotic region. As a

result, the corresponding replica wormholes are not related to any saddle of the classical
action, but only exist as saddles of the quantum-corrected effective action as discussed
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above.

To make contact with the discussion of section 4, we can think of the PS wormholes
as spacetimes of the above form in which we simply take the island to be the entire
black hole interior, Z = ¥, so that v = &. If we choose the area term from & to
be zero, the corresponding generalised entropy is Sgen(Xing; u) = SHAVKNg(y) oiving a
third term over which we should minimise in (5.9). Since this term arises from saddle-
points which are not under semiclassical control, it is unclear whether or not it should
really be allowed. But in the presence of the new QES and the accompanying replica
wormholes, we see that it is in any case irrelevant. For any time u < ug, the replica
wormhole generalized entropy Sgen(Z;u) ~ Spm(u) is smaller than STavking(y) by at
least a factor of order one. Since these quantities are both large, the difference is also
large. At follows that PS wormholes never dominate, and in fact can only provide at
most an exponentially small correction that we ignore.

We thus no longer require any input beyond semiclassical physics or assumptions
about &, resolving the problem of section 4.4.1. Furthermore, since = is located near the
past light cone of the relevant cut of .# ", we also avoid the causality issues described in
section 4.4.3 for the PS proposal. However, we can think of the PS wormholes as a limit
of saddle-points which are under semiclassical control, where we take v to approach
& . Indeed, this is what will happen to the QES ~ in the limit v — ue. This provides
some justification for using the PS wormholes after evaporation (i.e., for u > ug) as a
reasonable extrapolation of controlled calculations at earlier times.

In summary, we have considered a context where an asymptotically flat black hole
radiates to .# 1, with a focus on the region .%, C .#* before retarded time u. We have
then studied the expectation value of cyclic permutation operators 7 on n copies of
the radiation in .#,. This models the actual results of measurements made by a so-
phisticated experimentalist?? who allows n identically-prepared black holes in the same
universe to evaporate, captures the radiation emitted up to corresponding retarded
times, and then measures the action of the corresponding permutation. The experi-
mentalist might then use her measurements to deduce the von Neumann entropy of the
radiation on .#,; we interpret the n — 1 limit of the swap calculation as a prediction
for the result. With the new QES, following from the replica wormholes, the result

22For a black hole above the Planck scale, the experimentalist must be very sophisticated indeed,
since the relevant expectation values are exponentially small. As a result, distinguishing between
the two branches requires exponentially many copies of the n-replica system. Indeed, distinguishing
between two possible values of (Rényi) entropy for an unknown state generally requires a number of
copies which is exponential in the smaller candidate entropy. More sophisticated methods improve the
coeflicient of the exponential over that associated with the simple swap test, but the best algorithm
still requires exponentially many copies; see e.g. [91].
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reproduces the Page curve, affirming the predictions of BH unitarity.

The expectation is that the replica wormholes exist also for integer n > 1, and give
similar results for the expectation value of permutation operators. This would allow the
above experimentalist to avoid the awkward step of taking the n — 1 limit. It remains
to establish this in full, though see [70] for analogous numerical n = 2 constructions
in Euclidean signature, and see [66] for discussions and explicit examples of classical
real-time integer n replica saddles (without back-reaction from quantum fields).

5.4 Replica wormholes for other observables

So far, we have considered the contribution of replica wormholes to the expectation
values of permutation operators U, (.%,) and thus swap entropies (4.7). It is now natural
to ask whether such topologies can also contribute to other observables. This question
was also discussed in [92], which inspired many of the considerations in this section.
From one perspective, such contributions seem inevitable. We can write the ex-
pectation value of U.(.#,) as a sum over matrix elements of the density matrix p™ (u)
that describes radiation on n copies of . from n evaporating black holes. This gives

T (UA(S)p™) = D linsivs .oy incalp™ (W)lin i, . dn), (5.10)

U15eyin

where 7 labels a complete set of boundary conditions on .#,. The result (5.10) is simply
a reorganisation of the path integral studied above in which we first perform the path
integral with fixed matter fields on .#, to compute matrix elements of p™ (u), and only
then integrate over all possible such boundary values of matter fields with appropriate
identifications to perform the sum shown on the right-hand-side. Since the left-hand-
side receives replica wormhole contributions, this must be true of the right-hand-side as
well, and thus of the n-evaporation radiation density matrix p™ (u). One should thus
expect generic observables involving n copies of .Z, to be modified by replica wormholes
as well.

However, this argument leaves open whether the required contributions to matrix
elements or other observables are large enough to appear at the semiclassical level, and
thus also whether replica wormholes need to make an explicit appearance as saddles
in their semiclassical computation. Since the right hand side of (5.10) has a sum
over exponentially many terms, a semiclassical description of the sum need not tell us
anything about the individual terms. Nonetheless, we argue below that the conclusion
is plausible, and that replica wormholes may well give saddle-points for matrix elements
or for the expectation values of simple operators. Our arguments will be rather heuristic
and suggestive, so a more detailed study is required to establish this carefully; [92] goes
a long way towards this aim.
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To illustrate the point, we first consider a very simple observable, namely the
product of expectation values of simple operators inserted on different copies of .#:

Tr(O (v) Oy (u)p@). (5.11)

Here O,(u) is a simple local operator such as the value of particular field mode on
Z T at retarded time u, and r denotes which ‘replica’ of the Hawking radiation on
which it acts. In contrast to our studies of the swap operator above (which mixes
boundaries associated with different values of 7), since we now compute the expectation
value of a product of operators that each act on a single boundary the corresponding
boundary conditions for the path integral do not include any connections between the
two asymptotic regions. Nevertheless, as explained below we anticipate saddle-points
in the gravitational path integral which dynamically connect the boundaries via replica
wormbholes.

The reason for this is in fact much the same as for expectation values of the swap
operator. There, the existence of a replica wormhole saddle relied on an interplay
between the gravitational action (through contributions associated with the area of
the surface ) and the matter effective action, in that case the matter Rényi entropy.
In computing (5.11), the role of the matter effective action is played instead by the
logarithm of the two-point function (O;05) evaluated in the replica wormhole geometry.
But at the qualitative level this behaves much the same as the matter Rényi entropy. In
particular, it has a logarithmic singularity as the surface v approaches null separation
from the retarded time u on £, as occurs near the apparent horizon of the black
hole sufficiently far in the past. The interplay between the classical area and such a
logarithmic singularity was precisely what allowed for the existence of a nontrivial QES
above. It is therefore reasonable to expect that there may similarly exist a semiclassical
replica wormhole saddle for (5.11).

However, the effect of this saddle should be much smaller for (5.11) than for expec-
tation values of the swap operator. In the latter case, replica wormholes dominate the
late-time answer because the matter entropy in the Hawking saddle is naturally ‘exten-
sive’ in the sense that it grows linearly with time. As a result, for expectation values of
the swap operator the one-loop-corrected action of the Hawking saddle becomes larger
than the action (associated with the area of «) for the replica wormhole. But there is
no such extensive effect for (5.11), and no corresponding late-time suppression of con-
tributions from the Hawking saddle. So one expects replica wormholes to contribute as
subdominant saddles, and thus to give corrections which are suppressed exponentially
in Spy.?* The suppression by exponential factors agrees with our heuristic argument

23 An exception to this would occur if the Hawking saddle gives an extremely small answer (or exactly
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from (5.10), as the sums on the right-hand-side of (5.10) should run over exponentially
many terms so that small corrections of this order in each off-diagonal matrix element
lead to the desired leading-order corrections on the left-hand-side of (5.10).

In practice it may be rather challenging to check for a replica wormhole saddle-point
for quantities like (5.11), since it would seem to require finding a back-reacted (and
presumably complex) solution to the gravitational equations sourced by the quantum
effective action, just as for integer Rényi entropies. It may be directly tractable in simple
models of gravity (as in [92]), or by studying some appropriate family of quantities with
an n — 1 limit analogous to the von Neumann entropy, to evade the complications of
back-reaction.

6 The Hilbert space of baby universes

The result reviewed above, showing that replica wormholes suffice to make the swap
entropy of Hawking radiation follow a Page curve, is satisfying in many ways. In
particular, it gives a completely semiclassical computation that supports Bekenstein-
Hawking unitarity. Moreover, it does so by computing a quantity that is experimentally
accessible, at least in principle.

However, it also raises many questions. While we now have a path-integral deriva-
tion of the Page curve, our new ingredients do not affect the computation of expectation
values of observables for the Hawking radiation from a single black hole. The density
matrix of radiation is still prawking (1) as computed as in section 3, and which still comes
just from the saddle-point pictured in figure 9. In particular, the swap entropies ob-
tained in 5 are not equal to the Rényi entropies of ppawking(#). How are these results
to be reconciled?

The simple answer is that the density matrix p™ (u) on n copies of radiation is not
simply equal to the tensor product pHaWking(u)‘X’". But this means that the results of
independent and widely separated experiments are correlated, and thus give rise to a
violation of cluster decomposition. How are we to interpret predictions of the theory
in such a situation? What form can these correlations between experiments take? And
what is the Hilbert space interpretation of these results?

In this section we answer these questions by cutting open the path integrals de-
scribed so far, to obtain a Hilbert space interpretation of the correlations between
boundaries from a sum over intermediate states. Before diving in we briefly preview
the central ideas, which are much the same as in [11, 12, 14]. The intermediate states in

zero) for some other reason. For example, (5.11) may receive its leading contributions from replica
wormbholes if the one-point function Tr(O(u)p"2Vking) vanishes due to a symmetry.
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question are states of closed ‘baby’ universes which propagate between distinct asymp-
totic boundaries. But the resulting correlations are restricted to be purely classical, so
that we may regard expectation values of asymptotic observables as random variables
selected from some probability distribution. The reason is that such asymptotic observ-
ables can be regarded as a mutually commuting set of operators acting on the Hilbert
space of baby universes, which can be simultaneously diagonalised into superselection
sectors. It therefore appears that semiclassical gravity predicts results for asymptotic
observers which are consistent with BH unitarity, though the precise dynamics is not
uniquely determined but chosen from an ensemble. That ensemble depends on a choice
of the initial state of closed (baby) universes.

6.1 From path integrals to Hilbert spaces

To set the stage, we begin by briefly reviewing the relationship between the path integral
computations of quantum amplitudes and their Hilbert space formulation, emphasizing
features relevant to gravitational theories.

A Hilbert space appears when we cut a path integral into pieces, writing the integral
over the cut as a sum over intermediate states. Before incorporating dynamical gravity,
let us discuss this for a QF'T path integral on a fixed background spacetime M, and cut
the geometry along a Cauchy surface X of our choice. This cut manifold has two new
boundaries > and ¥, the past and future sides of X respectively. We can now perform
the path integral on this manifold with boundary, imposing boundary conditions that
the fields ¢ approach ¢4 on the boundaries X1 (for example), and integrating over ¢
elsewhere. To obtain the original path integral on M, we ensure continuity of the fields
at 2 by setting ¢, = ¢_ = ¢y, and then integrate over all field values ¢y on X.

This cutting and gluing has a Hilbert space interpretation as the insertion of a
resolution of the identity, 1 = [ D¢y |¢s)(ds|. We have a Hilbert space Hy, formally
spanned by field eigenstates |¢yx) labelled by field configurations on ¥, where the inner
product (¢4 |¢_) is given by a functional delta-function setting ¢y = ¢_. In a semi-
classical approximation, where the path integral is computed by fluctuations around a
saddle-point with approximately Gaussian weighting, this Hilbert space Hy becomes a
Fock space for linearised fluctuations about the saddle.

This is somewhat complicated by the inclusion of dynamical gravity, when we also
sum over the topology and geometry of spacetime. As in QFT we can cut the path
integral along some Cauchy surface X, and include the geometry of ¥ in the sum over
intermediate states. But diffeomorphism invariance makes this more subtle. We have
many choices of slice ¥ that all lead to the same Hilbert space as long as they agree
asymptotically (where the geometry is fixed by boundary conditions). These different
choices are related by the Hamiltonian constraint or Wheeler-DeWitt equation. We
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will not need the technical details here, but we do note that this modifies the inner
product on the Hilbert space associated with the cut. Due to gauge invariance, it is
natural that distinct field configurations on ¥ (now including the induced metric) need
not define orthogonal states. But something stronger is true here, as the inner product
is determined by the dynamics. Indeed, we will see below that the effect of replica
wormholes can be described as a dynamical modification of the inner product on the
Hilbert space at the cut.

In the context of evaporating black holes, we saw that the semiclassical path integral
was helpful for computing observables on .#* before some retarded time us at which
the black hole becomes Planckian and the semiclassical treatment is no longer valid.
For this situation we are most naturally led to describe a gravitational Hilbert space
describing the states on a partial Cauchy slice ¥, which, as part of the boundary
conditions, is required to meet .#* at time u. This would describe a system with a
boundary. However, it will be conceptually simpler and cleaner to consider instead a
Hilbert space of closed universes without boundary. As will be described in section 6.2
below, the simplest way to pass from the former to the latter is by making complete
measurements on . *. However, as in section 4 this comes at the cost of requiring some
assumptions about the evaporation. We will thus at first revive the ‘PS assumption’
of section 4 in order to explain the main ideas involving in passing to a description
in terms of closed universes. We will use this assumption for the next few sections,
though in section 6.5 we will describe the modifications required to avoid it, and in fact
to avoid using any assumption outside the domain of semiclassical physics.

6.2 Hilbert spaces for Hawking and Polchinski-Strominger

Rather than going directly to the replica wormholes of most interest, we will warm up by
discussing the Hilbert space interpretation of the Hawking and Polchinski-Strominger
calculations of sections 3 and 4. In particular, for now we will make use of the ‘PS
assumption’ introduced in section 4 to simplify the discussion.

We begin with Hawking’s calculation using a single black hole and computing the
expectation value of some operator O on .#*. The Hawking wormhole computing this
expectation value consists of bra and ket copies of the black hole spacetime joined along
some final Cauchy slice. Using The PS assumption, we may choose this joining Cauchy
slice to consist of .+ and X, a Cauchy surface for the black hole interior. To obtain a
Hilbert space interpretation, we can first cut this geometry along £, where we obtain
the Hilbert space of ‘out states” H s+. We choose an orthonormal basis {|i) s+}, for
this space. However, cutting only along .#* is not sufficient to write the expectation
value as a sum over states, since the geometry is still connected through the black hole
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Figure 18: Cutting the Hawking wormhole computing the expectation value of an
operator O defined on £t (with matrix elements O;; = ,+(i|O|j).»+) to obtain a
Hilbert space interpretation. The path integral on the right spacetime, with boundary
conditions on #* set by the state |i) s+ and on X, by the state |a), computes the
wavefunction ¢,; of a pure state in H s+ ® Hiy. The left spacetime computes the con-
jugate wavefunction, and to obtain the expectation value we sum over all intermediate

states, (O) =>_, ., YajVaiOij

interior. We must thus also slice the geometry along ¥;,¢, obtaining a Hilbert space
Hine with orthonormal basis {|a)int},,.-

Once we have cut along both . and Y, we have decomposed the geometry into
disconnected bra and ket copies of the Hawking spacetime as shown in figure 18. The
path integral on the ket spacetime with boundary conditions imposed on .+ and X,
computes the wavefunction v,; of a state in H s+ ® Hin:

) =) Caili) ot @ @)t € Hore @ Hing (6.1)
The path integral on the conjugate bra spacetime gives the complex conjugate of this
wavefunction, which is a state in the dual space H’,, ® Hj,.

To glue these spacetimes back together along ¥, we sum over all states of the
interior and take the inner product, obtaining the Hawking density matrix for the state
on #+:

Piavking = Vngthar (Bl (1)) (6.2)
i,j,a,b

An orthonormal basis on Y;,; gives (b|a)ins = dap, and we have
(i] prawking|7) = Z&ajqﬁai- (6.3)

This is a mixed state because we have traced out the black hole interior, with which
the matter on .#7 is entangled. The Hilbert space on .#7 is thus insufficient to give
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a complete description of the original state of the system on .#~. We must also in-
clude information about the state on ¥, which we may think of as a closed?* ‘baby’
universe, born from the black hole formed in the ‘parent’ universe. In introducing this
terminology, we warn the reader that there are two slightly different notions of baby
universe in the literature. When required for clarity (mostly in section 6.5), we will
use the term ‘PS baby universe’ to distinguish the above notion from others that may
arise.

So far, this is a fairly conventional description of information loss. But we will
go beyond this by considering the computations of section 4 that involve n copies of
the black hole. The Polchinski-Strominger wormholes consist of multiple copies of the
Hawking wormhole, so to obtain a Hilbert space interpretation we can again slice them
along n copies of £, where we have n copies of the asymptotic Hilbert space H?}Z, and
along n copies of Y. After cutting them open in this way, for each term in (4.9) the
resulting n ‘ket’ spacetimes are identical. In particular, they compute the wavefunction
of the state

) = 3" iy Vaninlin) g @ - @ [in) gt @ s, -+, an)py (6.4)

ilv---vin

Qal,...,an
in HY! ® Hpy, where Hpy is the Hilbert space of closed (baby) universes. We obtain
the density matrix on ’H?’i by tracing out the baby universes,

(i, il p™ i dn) = Y Yarin g+ Yanin g (b1 - balas, - an)pu.
b b
(6.5)
Since we have obtained Hgy by cutting along n copies of Yy, it is tempting to
identify Hgy with the n-fold tensor product of H;,;. In that case its inner product would
factorize into n copies of the inner product on H;,,. But if we made this identification,
the state (6.4) would be simply the n-fold tensor product [¢))®", and the density matrix
p™ in (6.5) would be the tensor product (p(l))®n. In particular, we would not find
the sum over permutations in (4.4). We will resolve this tension below by not making
assumptions about the inner product on Hpy, but instead by computing the inner
product induced by PS wormholes. Replica wormholes lead to similar modifications to
the inner product that we will discuss in section 6.4.
Specifically, the correct inner product on Hpy must be obtained by comparing (6.5)
with (4.9). Since the PS wormbholes involve pairing the n ‘ket’ copies of ¥, with the

24We say that the baby universe is closed as the boundary of X, at & involves a sphere of zero
size. We will comment further on this in section 7.
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n ‘bra’ copies in any of the n! possible ways, this inner product involves a sum over
permutations:

<bl, . ,bn\al, Ce 7an>BU = Z 5(11577(1) cee 6anbﬁ(n) (66)

wESym(n)

Note that this is the inner product on the n-fold symmetric product Sym™ H;,;. As a
result, in the Polchinski-Strominger proposal, the baby universe Hilbert space contains
a Bosonic Fock space built on the ‘one-universe states” Hiy:

Polchinski-Strominger: Hgy D @ Sym” Hiput . (6.7)

n=0

We have written ‘contains’ (D) here, since this is not in fact quite the full baby universe
Hilbert space. As we will see below, it is natural to extend Hgy to be a Fock space built
on Hin, @ Hi,, with both baby universes and time-reversed ‘anti baby universes’. The
second summand H

*

*¢ (the dual space of Hin) gives the states of a single anti-universe.

6.3 Baby universes and ensembles

The physical predictions that follow from the state (6.5) defined by the inner product
(6.6) may not immediately be clear. We will describe this in some detail below, taking
advantage of the fact that the Polchinski-Strominger proposal is simple enough to allow
explicit results. The result will remain useful when we later move beyond the Polchinski-
Strominger proposal (and leave behind its challenges), as many of the lessons learned
here will remain true for replica wormholes, and also for gravitational path integrals
more generally (under certain weak assumptions).

6.3.1 The PS Fock space of baby universes

The predictions of the Polchinski-Strominger proposal can be made manifest by using
the familiar representation of the Bose inner product (6.6) as a Gaussian integral:

<b1, Ce ,bn|a1, R ,an>BU = <Oéa1 B 'Oéano_ébl cee dbn> (68)

BU’
1 _
where <F[a, @]>BU = g/HdaadO_‘a e~ Laade Py a). (6.9)

The normalisation 3 is chosen so that <1> = 1. The integration variables are com-

BU
plex? ‘baby universe fields’ a, labelled by an orthonormal basis of states |a) on Xiy. In

25We use complex fields so that we only count contractions between ‘kets’ and ‘bras’, not between
two kets, for example. This distinguishes baby universes from ‘anti’ baby universes.
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place of the labels a we could instead use field configurations ¢ for matter fields on >,
so that « is a functional of these fields. Then the Gaussian weighting can be written
as an exponential of [ D¢ a[¢]a*(¢], where we integrate over all field configurations ¢.

We then compute amplitudes < by integrating over all functionals «a[¢] with this

: ' >BU
weighting.?0
With this representation, we can write the components of the n-evaporation density

matrix (6.5) on n copies of £ as

(iry eyl 01, G = <\I/j1 LT T ..\Ijin>BU, (6.10)

where W, = Z g Wgi- (6.11)

If we for now ignore the integral over « associated with < . >BU and instead simply fix
each a4, to some specific value, then the expression completely factorises between the
n copies, and also between ‘bra’ and ‘ket’ indices:

. . n)| - . fix o a Ta a Ta
(in, .. inlp™ |1 - o s o) ——— Uawy - U W (6.12)

Here we have included a superscript a to emphasise that ¥¢ is now to be regarded as
a fixed complex number depending on our choice for each «,. This factorisation means
that, for a given value of «,, the Hawking radiation can be described by a pure state
W) € Hy+:

p (e, () = U = > gt - (6.13)

Now, the above potential factorisation property is spoiled by the fact that we must
still integrate over o with some weighting. In other words, the parameters o, are not
fixed, but instead selected from a probability distribution. Note, however, that the
same choice of o parameter pertains to all asymptotic observers at all boundaries. In
particular, for n black holes the state at # T is obtained by a single integral over a,

o = / dyu(ar) ([0 (W2 ])°", (6.14)

26Passing from the gravitational path integral to this integral over functionals « is mathematically
analogous to the passage from particle dynamics to a description of quantum field theory as a path
integral over Eucliden field configurations. In this analogy, ¢ would label points in spacetime, a would
be a quantum field (a function of spacetime), and the Gaussian weighting (for a free QFT) is given
by the action. The kinetic term in the QFT action can then be understood as arising due to the
Hamiltonian constraint on particle worldlines, which we have implemented rather implicitly in (6.9)
by diagonalising the physical ‘single-universe’ inner product. However, the reader should see [93] for
comments and warnings about using this analogy to interpret the physics.

— 5h5 —



for some measure du(a) (which in the PS paradigm is given by the Gaussian (6.9)).

As a result, any given set of actual measurements®” of the Hawking radiation states
on #* from multiple black holes are correlated in such a way that they are always
compatible with n copies of some pure state |¥*). But the theory does not give a
specific prediction for |[¥®). Instead, it gives a probabilistic one. For an asymptotic
observer, the black hole formation and evaporation can thus be described in terms of
an S-matrix taking pure states to pure states, but with an unknown S-matrix selected
from an ensemble.

This should be contrasted with the result obtained in the absence of PS wormholes
for which the n copies are uncorrelated. Since the inner product on H;, can also be
written as an integral with respect to the same Gaussian measure®® du(a), we may
write this result using independent integrals over « for each evaporation:

Xn
P i = ( / du<a>|\1ﬂ><wa|> e (6.15)

We dub this the Hawking result for the n-fold experiment, as the predictions of (6.15)
for experiments at T are given by a Hawking $-matrix [31]. But with PS wormholes
we find instead (6.14), which is a classical mixture of n copies of a pure state as described
above.

Note that the measure du(«) arising from the Polchinski-Strominger proposal gives
a complex multivariate Gaussian probability distribution for the components ¥; = (| V)
of the Hawking radiation wavefunction. The mean is zero, and the covariance matrix
is given by the Hawking density matrix pHaWking.29

To understand this from the perspective of the baby universe Hilbert space, we can
instead represent the Bose inner product (6.6) in terms of a Fock space generated by

2"We remind the reader that quantum mechanics measurements are associated with projection
operators and that, while expectation values can be inferred from the relative frequencies of the
outcomes associated with projections, a direct measurement of quantum mechanical expectation values
would violate the linearity of quantum mechanics.

28Since Hin gives the n = 1 term in (6.7), we may regard Hin; as a subspace of Hgy and use the
same inner product.

29This gives non-normalised wavefunctions. While the normalisations can be absorbed into the
measure, doing so appears to introduce a mild n-dependence for du(a). One might also consider the
possibility of additional involving wormholes connecting the path integral for p("™) to the normalising
denominator Tr p™, which should be expected to remove this n dependence. It would be worthwhile
to understand this issue in detail, but such a treatment is beyond the scope of this work.
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baby universe creation and annihilation operators,

@ty @, by, b)) = Al - AL BY - B)|HH), (6.16)
[Ag, Al] = [Ba, Bj] = 0apy  [Aa, Ay) = [Ba, Bs] = [Aa, By] = [Al, By = 0 (6.17)
A,|HH) = B,|HH) = 0. (6.18)

Here, A, and Al annihilate and create a baby universe in the state a. Similarly B,
and B;r annihilate and create a time-reversed object that may be called an ‘anti’ baby
universe (an anti-BU)?*’. Although anti-BUs did not appear in our discussion above,
they naturally form the intermediate states if we considered the time-reverse of our
boundary conditions (associated with a white hole that explodes to form a smooth .#*
with classical matter and quantum fields in the vacuum state but with time-reversed
Hawking radiation at .#7). In (6.16), we have used |[HH) to denote the oscillator
vacuum in order to think of it as a Hartle-Hawking state for reasons that we will
explain momentarily.

Now, the Gaussian integral (6.9) is nothing but the expectation value of (complex)
‘position operators’ &, in the oscillator vacuum |HH):

<Pﬂa4ﬂ>BU::<Eﬂﬂfﬂ&,@ﬂﬂiH>, (6.19)

where
Gy = Al + B,. (6.20)

All the operators &, and &) mutually commute, so we can write the Hilbert space in
terms of the position eigenbasis |a)py labelled by a set of complex eigenvalues ay:

da‘Oé>BU = Oéa’CY>BU. (621)

We obtain the Gaussian integral (6.9) by inserting the completeness relation

n:/mm@m\ (6.22)

into the right hand side of (6.19), and using the Gaussian wavefunction of the oscillator
vacuum
1 2
(a|HH) o ™2 2aloal”, (6.23)

30These are much the same as the baby universe creation/annihilation operators of [11-13], though

those references worked in a real basis. There may also be minor differences associated with subtleties
discussed in [93].
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6.3.2 Lessons and comments

Having completed our derivation of (6.19) from this Hilbert space point of view, let
us now pause to extract some useful lessons. The first lesson is that the appearance
of only a single integral over « in the n-evaporation state (6.14) follows from the fact
that the states (6.21) simultaneously diagonalize the operators &, and @&!. The latter
statement is a consequence of a more primitive fact that will remain true when we go
beyond the PS proposal, in that the boundary conditions for computing expectation
values of asymptotic observables will continue to define simultaneously-diagonalizable
operators acting on the Hilbert space Hpy of closed universes.

Let us first illustrate this rather abstract-sounding statement by recalling that,
in the present case, we have boundary conditions ¥; specifying both an initial state
of matter on .#~ which will collapse to a black hole as well as a final state [i) s+ of
Hawking radiation on .#*. The corresponding operator

\iji = Z d/awai (624)

on Hpy either creates a baby universe in some internal state or annihilates a time-
reversed baby universe. The path integral computes an expectation value of a product
of such operators, one for each separate boundary.®" Tt is manifest from (6.24) that
the operators are all built from the (complex) ‘position’” operators a,, and in particular
that creation operators Al never appear alone. Similarly, the time-reversed boundary
conditions v); would define operators involving af, which thus also commute with (6.24).
Although we used explicit results for the Hgy inner product to derive this result,
as argued in [22] it in fact follows from fundamental properties of the gravitational path
integral. The point is simply that we may regard (6.10) as an amplitude computed by
the quantum gravity path integral with the specified boundary conditions built from
v, \Ifj. Since the path integral sums over all bulk spacetimes compatible with the stated
boundary conditions, the result is independent of how the boundary conditions might
have been ordered. As a consequence, the associated operators \i’i, ‘ifj commute.*?

310ne may thus refer to U asa ‘boundary-inserting operator’. Indeed, it is tempting to refer to these
as ‘boundary-creating’ operators. But one should realize that both U and its adjoint U, = Y alibai
create boundaries in this sense. These are thus not standard creation-annihilation operators, and in
particular differ from the baby universe creation and annihilation operators A, B, AT, Bf.

32Equation (6.10) describes the inner product of two states that involve only baby universes and
not anti-BUs, or in other words states created from |HH) by acting with the ¥; and not that U j- Had
we used the latter in the ket-state as well, there would have been additional entries of the \i/j on the
right-hand-side. But if we had used the latter in the bra-state, we would instead find additional copies
of the ¥; on the right. In general, the rule is that the amplitude contains both the bra boundary
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Another lesson that becomes clear from the perspective of the baby universe Hilbert
space is a sense in which our predictions depend what we may call the ‘initial state
of baby universes’ given by (6.23). Indeed, the correlations between different copies of
Hawking radiation are mediated by the exchange of baby universes, and we have seen
that each set of asymptotic boundary conditions modifies the state of Hpy through the
action of U; or U, = \if; In the previous sections we thus have implicitly chosen some
initial state for closed universes. But recall that our amplitudes were entirely speci-
fied by boundary conditions with the experiments to be performed by our asymptotic
observer, and that nothing more was added to adjust the baby universe state. As a
result, our choice of baby universe state must have been specified by the absence of
additional asymptotic boundaries. It is for this reason that we call it a Hartle-Hawking
no boundary state |HH). Note that we do not use this term for a state of a single
connected closed universe, but a state that can include any number of universes (con-
nected components of space) including zero; indeed, the universe number is not even
diffeomorphism invariant if universes can split, join, or appear from nothing. Instead,
it is defined according to the spirit of [94] by the absence of boundaries in the path
integral which determines the wavefunction.

Had we instead chosen the baby universe initial state to be e.g. 0, |[HH), expectation
values in this state would be adding additional boundaries with boundary conditions
U, (from the ket) and ¥, (from the bra). Since we can again expand ¥;|HH) in terms
of the same basis of a-states, we would again find the n-evaporation density matrix p(™
to be a classical mixture of the same pure states |U®) described above. However, we
will find a different mixture in which the probability distribution for «,, &, is defined
by the new wavefunction (a|¥;|HH), which will generally differ from (6.23).

Finally, before proceeding to replica wormholes, we pause to note that the Hilbert
space interpretation on which we have concentrated thus far is not unique. It arises from
one particular way of cutting the path integral, regarding n sets of boundary conditions
as forming a ‘ket’ state, and taking an overlap with the n conjugate boundary conditions
forming the ‘bra’ state. The same path integral can also be cut in several different ways,
giving rise to different Hilbert space interpretations — though always involving the same
baby universe Hilbert space Hgy. Any such cut splits asymptotic boundaries into two
sets, depending on which side of the cut they lie. One set defines a ‘ket’ state and the
other defines the ‘bra’, with the overlap between the two being obtained by a sum over
intermediate baby universe states joining the two sets.

conditions and the the CPT-conjugates of the ket boundary conditions. This requires the ¥, to be the
adjoint of U;, so that the above mutual-commutativity means that the operators can be simultaneously
diagonalized as claimed; see further discussion in [22] and [93].
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The different interpretations are readily be described in the operator language by
writing an amplitude as the expectation values of products of G4, &l in the Hartle-
Hawking state |HH) (or in another state). Since these operators all commute, we can
move any subset of them to the right where they act on the ‘ket’ state and move the
remainder to the left to act on the ‘bra.” And we can finally insert a complete set of
baby universe states between them.

We illustrate this with a simple example computing the n = 2 amplitude,

(iv,ialp@|j1, jo) = (HH|W! T ¥, by, [HH). (6.25)

We interpreted this earlier as the overlap between the states \ifil \i/iz ‘HH> and ¥ i \iij |HH>,
so that the intermediate states consisted of two baby universes. Alternatively, we could
reorder the boundary-inserting operators U, Ut to write the amplitude as the over-
lap between states \if“\imeH> and @b\if; HH> The intermediate states are then
|[HH) (corresponding to the trivial contribution where the black hole interiors are not

swapped) and states |a, b) of one baby universe and one anti-universe (corresponding
to the nontrivial PS wormhole):

U [HH) = thaithy; (0 [HH) + [a,b)). (6.26)
a,b

This interpretation (6.26) is not the most natural one if we wish to describe an
intermediate state in real time. Indeed, it is somewhat analogous to describing in-
termediate states exchanged in the T-channel of some QFT scattering process, which
would naively be associated with a Hilbert space for the QFT associated to a timelike
surface that splits space into two parts (as opposed to the usual Hilbert spaces associ-
ated with spacelike Cauchy surfaces). However, in the operator description above the
intermediate states continue to lie in the same baby universe Hilbert space Hgy. This
Hilbert space description will prove useful in the context of replica wormholes. In par-
ticular, it will be straightforward to adapt this description to incomplete measurements
at T by taking a partial sum over the indices ¢, j to trace out the unobserved piece
of the state.

6.4 Replica wormholes as baby universe interactions

We now incorporate the replica wormholes introduced in section 5 into our discussion
of baby universes. We can think of the Polchinski-Strominger proposal discussed above
as a theory of ‘free’ baby universes, in the sense that Hgy is a Bosonic Fock space. The
replica wormholes then modify the inner product on Hgy by incorporating ‘interactions’
between baby universes.
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For now, we will continue to make the PS assumption that allows us to treat
the union of £ and Y, as a Cauchy surface for an evaporating black hole, where we
remind the reader that Y, runs from the regular origin below the black hole singularity
out to the endpoint of evaporation &. This is a useful crutch to simplify the exposition
but, as we will explain later, we will be able to upgrade the argument so as to remove
this assumption. In addition, for simplicity here we will only consider replica wormholes
such that the island Z on which we join the replicas lies inside the event horizon. This
is well-motivated, since a QES is guaranteed to lie behind the event horizon under the
assumption of the quantum focussing conjecture [77] (though this does not directly
apply to replica wormholes for n > 1). In such a case, we can choose our Cauchy
surface Y, for the black hole interior to pass through v = 90Z.

Now, just as the Polchinski-Strominger wormholes induced extra terms in the in-
ner product (6.6) by pairing baby universes with permutations, the replica wormholes
introduce new terms with a permutation acting only on the associated island. We thus
write

<b1, e ,bn|a1, . ,an>BU D) (<b1| XX <bn|)Uﬂ<I)(|a1> S |6Ln>), (627)

where the notation D means ‘contains terms of the following form’. The states and
inner products on the right hand side of this equation are taken in the tensor product
of n copies of the black hole interior Hilbert space, H{i'. The operator U,(Z) acts as
the permutation 7 on those parts of the n copies of H;,; associated with the island Z.
If we take Z = Xy, we recover the terms in (6.6). We can be a little more explicit by
choosing a basis of states |a) = |a’, a") for H;,, which factorises between an orthonormal

basis of states |a) for the island Z and a corresponding basis |a”) for its complement:
(b1; -5 bplar, - an)BU D Oy a1y Obrar * * * Oblam (n) Oblar - (6.28)

Note that adding analogous terms to the inner product in a continuum quantum
field theory would naturally given a vanishing contribution. Indeed, in direct parallel
with our discussions on ., for n copies of a given state they would compute oS 1]
where, S?T[T] is the Rényi entropy of Z. Such contributions are then exponentially
suppressed by the area of 7 in units of the cutoff.>> However, as we discovered by
computing amplitudes with the path integral in section 5.2, making gravity dynamical
naturally leads to finite contributions from the terms on the right-hand-side of (6.27)

or (6.28). Thus we should think of the states |a) as encoding not only the matter state,

33This fact is deeply related to the fact that the Hilbert space of quantum field theory does not
factorize into a tensor product of a Hilbert space for Z and another Hilbert space for its complement.
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but also geometrical degrees of freedom (perhaps including the location of 7 in the split
', a")).

Note that if we interpret the sum over states |a) in a natural way as a sum over
real Lorentzian geometries, the saddle-point replica wormholes discussed in section 5
do not appear directly since they are complex. The direct sum over states |a) will be a
sum of highly oscillatory phases, which (as is familiar from steepest descent integrals)
can be evaluated by deforming the contour. For further discussion see [66].

Using language analogous to that of the Feynman diagrams of perturbative QFT,
we can think of the contribution (6.27) to the baby universe inner product as an in-
teraction, giving a ‘vertex’ for n — n ‘scattering’ of baby universes. Indeed, we can
borrow standard techniques from perturbative QFT to compute the associated effect
on the expression in (6.9) for the inner product in terms of integrals over a. To include
a replica wormhole, we insert a product of n « fields and n @ fields, summing over
indices to induce the required connections. For example, for n = 2 we insert a term

! 1 Y ! 1 ! 1" Y ! 1
Z a“17“1 aazval Oéaz,% a“17a2 (629>

/ i "
aq,07,049,09

into the integrand on the right-hand-side of (6.9). Summing over all possible combi-
nations of replica wormholes exponentiates this factor (and similar terms for all n) so
that it modifies the original measure du(a) from e~ 2 ®% to a rather complicated
non-Gaussian measure.

On the other hand, aside from this modification of the inner product (and the
corresponding changes to the wavefunction of the Hartle-Hawking state and the algebra
of universe creation and annihilation operators), there are no further changes to either
the arguments or the conclusions of section 6.3. In particular, the expression

o = / dpu(r) () ()" (6.30)

for the n-evaporation density matrix given in equation (6.14) remains true, with the
modified measure dp(«) described above. The details of this measure are not of primary
importance for us, except that the modified measure is dominated by states |U®) of
radiation which follow the Page curve (see section 7.1 for justification).

6.5 Baby universes with semiclassical control: dropping the PS assumption

The above sections developed the notion of PS baby universes and the associated Hgy
using the PS assumption. This allowed us to give a very explicit treatment of the
‘saddle-point geometries’, the associated amplitudes, and the resulting inner product
on Hgy. However, it turns out that the most important lessons from the Hilbert space
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interpretation do not rely on the PS assumption. These lessons include i) the existence
of a baby universe Hilbert space Hpy, ii) that the inner product on Hpgy is determined
by the path integral, and iii) the fact that asymptotic quantities define simultaneously
diagonalizable operators on Hpy and the associated existence of superselection sectors.

As we now show, all of these results can be derived using physics that remains fully
under semiclassical control. However, the arguments are necessarily more abstract
than those using the PS assumption above. Some readers may thus choose to skip this
section on a first reading of this paper.

To proceed, we follow the same basic strategy as in our study of Rényi entropies in
section 5. Indeed, we will obtain a Hilbert space interpretation by slicing open the path
integrals and the associated replica wormhole saddles discussed in section 5.1. We thus
specify the state on .# T only on the subset .%,, choosing u < wue so that ., does not
intersect the future light cone of &. We will then sum over all boundary condition on
the rest of .#7. We may then expect the relevant saddles to remain under semiclassical
control as desired.

In particular, since we impose boundary conditions only on .#,, we may cut the
path integral along Cauchy surfaces ¥, which extend to meet the asymptotic boundary
Z 7T at the associated retarded time u. We may then further choose ¥, to be well to
the past of both the singularity and &.

In a replica setting, we require several such cuts. The resulting Hilbert spaces H,
associated with such cuts are labelled by the number n of boundaries on which these
cuts end.?* Although in the Hawking saddle it arises from n copies of some given ,,,
we emphasize that H, is not just the product HP" due to contributions from replica
wormbholes. In particular, as we discuss below, the Hilbert space Hg without boundaries
is not the trivial Hilbert space, but should instead be the space Hgy of closed universes.

With this small change in boundary conditions, most of the considerations above
will continue to hold. We simply take |i) to label a basis of states on .#, rather than
on the entirety of .#*, and we take |a) to be a basis of states on a Cauchy surface ¥,
meeting the boundary at time w. If we consider the path integral for any single copy
of the spacetime, truncate it at X,, and impose boundary conditions for the quantum

34As described for the Euclidean context in [22], the Hilbert spaces are in fact labelled by the
asymptotic geometry of the slices ¥,. For simplicity we restrict to the case where the asymptotic
regions are defined by n spheres. We also mention that, in the current context, there is a notion of
‘anti-boundary’ or ‘conjugate boundary’ (associated with the anti-baby universes discussed below),
such that the most general Hilbert space H,, 5 for the case of sphere boundaries is associated with n
boundaries and 7 anti-boundaries. (There is a natural linear isomorphism from the dual space H;, ;
to Ha,n.) Finally, while one might at first expect the Hilbert space to also depend on the advanced
times u associated with the location of these spheres on #+, choosing a notion of time-translation on
# T allows one to canonically identify Hilbert spaces with different values of .
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fields on ., and ¥, the result computes a wavefunction »_; , ¥4i(u)la) ® i) on 3, U .7,
for a state in H; ® H, (with H, the Hilbert space on .#,).

Furthermore, we can write states on the n-boundary Hilbert space H,, as linear
combinations of a basis |ai,...,a,). The notation here is similar to that used above
for n baby universes, but there is a crucial difference. Because we treat asymptotic
boundaries as distinguishable, the order of the a; is important. The states |a1, as) and
|as, aq) are not the same, and H,, does not exhibit Bosonic statistics. This is associated
with the fact that we specify the asymptotic identifications between Cauchy slices 3,
as part of the boundary conditions, so there can be no terms in the inner product that
permute copies of ¥, in their entirety.

Nonetheless, we still find contributions to the inner product from replica wormholes.
Such contributions again permute island regions Z just as in equations (6.27), (6.28):

(bi,...,bplar, ..., a,) D ((01] ® -+ @ (bp])U(T)(Jar) @ - - - |an)) (6.31)
D Opan(1)Oal  * Obtar(n) Obtralt - (6.32)

In the second line we have split the index a in two, so the state |a) = |d’,a”) on 3,
is labelled by the state @’ on the island Z and a” on its complement 3, \ Z, where
¥, \ Z now extends to infinity. Translating the discussion above to this notation, the
boundary conditions require that the a” indices must be paired without permutation,
while replica wormholes give rise to the permutation 7 acting on the a’ indices.

Again we may use V; to denote the boundary condition that fixes both matter at
#~ that collapses to form the black hole and a state |i) on the Hilbert space of state
on .Z,. And again we may take W; to define an operator U; on the Hilbert spaces
‘H,,. But now this operator adds a boundary, increasing the value of n. Thus we write
\ilz(u) : H, — Hpe1. Using our bases, the action of this operator takes the form

U, (u)lay, ..., a,) = Zzﬁai(u)m, A1y ...y Qy) . (6.33)

Because boundaries are distinguishable, it is important that we added the extra label a
to the first slot (we could, if desired, define other versions of \ill(u) which choose a dif-
ferent ordering). In particular, it means that these operators no longer commute. And
in any case we cannot talk about diagonalizing them since they map between different
Hilbert spaces. Intuitively, this is because the Hilbert spaces H,, carry information not
just about the closed baby universes, but also about the state that escapes to #* after
time u. We would thus like to ‘trace out’ this extra information, leaving only the piece
of the state truly associated with baby universes and which mediates the correlations
on ., and gives rise to the Page curve.
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Figure 19: The boundary conditions corresponding to the operator p;;(u). We have
flat asymptotic regions as pictured, with matter boundary conditions at .#, specified
by the states |i),|7). The Cauchy slices meeting .#* at time u must be identified as
shown in the asymptotic region. We do not specify what happens to the spacetime
away from the asymptotic region, inside the dashed curved. In particular, this allows
the spacetime to connect with other boundaries, and the future Cauchy slices need
not be identified in the same way in their entirety. For example, the spacetimes in
figure 15 involve two copies of such boundary conditions, computing Tr(p® (u)?) =

2 (HH|pij () pji(u) [HH).

6.5.1 Replica Wormhole Baby Universes

A convenient but abstract method of avoiding the extra information involves using
the adjoint operators \il;r(u) By definition, the adjoint operators map between Hilbert
spaces in the opposite direction to T;, so we have \i/;r(u) : Hps1 — H,. The composi-
tions p;;(u) == \i/; (u)U;(u) are then operators that map M, to itself for any n, and for
n = 0 in particular act within the closed universe Hilbert space Ho = Hgu.

More concretely, the adjoint operator \il; (u) acts by inserting a conjugate boundary
(with boundary condition labelled by j) and gluing it to an asymptotic boundary
associated with the state on which it acts (the first such boundary, since in (6.33)
we defined U;(u) to add a boundary in the first slot). As in our discussion above,
this gluing of asymptotic boundaries requires a corresponding gluing of the respective
spacetimes on the asymptotic part of 3,,. But again we allow all possible gluings deeper
in the bulk, and in particular we allow nontrivial replica wormbholes.

The composition p;;(u) = \ifj(u)\ilz(u) thus acts by inserting a boundary condition
corresponding to a complete in-in contour, as shown in figure 19. This is the boundary
condition one would choose for computing the components of the density matrix of
Hawking radiation on .%,, which justifies the choice of notation.

Using the general argument from [22] reviewed in section 6.3.2 above, it follows
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that the operators p;;(u) mutually commute on Hpy. Furthermore, they can be si-
multaneously diagonalised by a basis of a-states, giving rise to superselection sectors
and ensembles as before. In a given superselection sector (an a-state), the eigenvalues
pf(u) of the py;(u) are interpreted as the components of the density matrix for the
Hawking radiation in that superselection sector that emerges before time wu.

As before, the superselection sectors mean that Hawking radiation emerging from
one black hole evaporation is correlated with that emerging from another. These are
classical correlations, described by a classical a probability distribution determined by
the decomposition into a-states of the specified baby universe state from Hgy (which
in the cases discussed above is the Hartle-Hawking no-boundary state [HH)).

In this language, the swap Rényi entropies computed in section 5 were amplitudes
of the form

S (HH i, (1) P () - i, () [HH). (6.34)
i1 yeenriin
That is, they were correlation functions in the Hartle-Hawking state of products of the
pij(u). The replica wormholes gave particular contributions to (6.34) and, as explained
in section 5.4, they should also contribute to more general amplitudes p;;(u).

If we insert intermediate states of Hpy between insertions of p in (6.34), the result-
ing Hilbert space interpretation generalises (6.26) above. We give some interpretation
of the intermediate states due to replica wormholes in a moment. But this is not the
most natural way to describing intermediate states of baby universes in a real-time
process, between consecutive experiments on different black holes. For a Hilbert space
description that achieves this aim, see appendix B.

6.5.2 What is a baby universe?

We now pause to more carefully explore the notion of baby universe associated with
this replica wormhole construction of H, and Hgy. We will refer to the result as a
replica wormhole baby universe (RWBU), to contrast it with the Polchinski-Strominger
notion of baby universe (PSBU) discussed in sections 6.2-6.4.

In particular, let us consider the intermediate states p;;(u)|HH) € Hpy that medi-
ate the correlations between boundaries in (6.34). Since this is the natural object in a
replica wormhole discussion, we will call it an RWBU. Similar states were considered
at the end of section 6.3.2, where using the PS assumption we interpreted them con-
taining both a PS baby universe and a PS anti-baby universe. This conclusion must be
slightly modified when we consider replica wormholes instead of PS wormholes, and in
particular when we wish to avoid universes with Planckian curvature such as those that
end at &. However, we can still think of our intermediate state as naturally containing
two parts. The first part may be called a ‘partial baby universe’, consisting of only the
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island region on some ,, while the second part is a partial anti-baby universe. The
two much match at the boundary of the island, and they are joined at v = 0Z. We
could thus perhaps refer to this RWBU as a ‘BU—anti-BU bound state’. See figure 20a
(left), where the RWBU consists of the red slice (labelled Z) and the teal slice (labelled

%), joined at .
z
I*

) Each of the n replicas (as shown on the left) making up a replica wormhole

has topology SP~1 times an interval, with the asymptotic boundary at one end
of the interval, and two conjugate copies of the island (Z and Z* from ‘ket’ and
‘bra’ spacetimes respectively) joined along their common S”~2 boundary 7 at the
other. A Euclidean continuation resembles the geometry on the right, which could
be described in terms of propagation of a RWBU with topology SP~!, of which Z
and Z* make up the Northern and Southern hemispheres respectively.

=0 § T

(b) To build a replica wormhole, we sew n of the constituents above together along
7 and Z*. We picture the resulting Euclidean spacetimes for n = 2,3, which we
can think of as propagation of a RWBU (n = 2, left), or an interaction of RWBUs
(n > 3, right).

Figure 20: We may describe the correlations between sets of Hawking radiation arising
from replica wormhole spacetimes as mediated by exchange of ‘replica wormhole baby
universes’ (RWBUs) appearing in intermediate states such as p;;(u)|HH) € Hpy. Such
a state is somewhat unusual in Lorentzian signature, but has a natural Euclidean
continuation.
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As described after (6.26), this notion of ‘intermediate state’ may seem unnatural in
Lorentz signature. Nevertheless, it is the correct Lorentzian continuation of a natural
Euclidean notion of intermediate state. To see this, note that a Euclidean version of
the boundary condition p;;(u) is a spacetime which asymptotes to a closed Euclidean
manifold B. For our case of a black hole formed from collapse B has the topology SP~!
(for a D-dimensional spacetime), with the two hemispheres of SP~! corresponding to
‘ket’ and ‘bra’ segments of the boundary, joined along an asymptotic spatial SP—2.
Figure 20a (right) shows the resulting Euclidean continuation of each replica. A replica
wormhole will join n such boundaries as shown in figure 20b for n = 2, 3.

For example, for n = 2 the topology of spacetime is B times an interval, with a
boundary lying at each end of the interval. It is then very natural to describe this
cylinder in terms of a baby universe with topology B propagating between the two
boundaries. For example, [19] constructed replica wormholes in a two-dimensional
spacetime for a two-sided black hole, with topology of a cylinder for n = 2, a pair of
pants for n = 3 and so forth (as in figure 20b). From the Euclidean perspective, it is
natural to think of such wormholes as describing interactions between closed universes.
And when we analytically continue to Lorentzian signature in the correct sense to
describe our density matrix boundary conditions, we arrive at precisely the situation
described above. The ‘island’ from any ket part of the Lorentzian replica wormhole
spacetime is then just half of B, with the other half being the island from a bra part
of the replica wormhole.

7 Discussion

7.1 Summary

This work has focussed on describing semiclassical expectations for experiments per-
formed on Hawking radiation collected at .#* in an asymptotically flat spacetime.
To formulate and perform the relevant computations, we used the Lorentz-signature
gravitational path-integral, which in the semiclassical limit involves a sum over saddle-
points. In gravity, as in field theory, classifying all possible saddles tends to be rather
difficult, so in practice one works to identify interesting saddles and hopes that they
dominate the amplitudes of interest. We thus began with the familiar Hawking saddle
described in the form of figure 9, which can be used to compute a density matrix p(u)
for the Hawking radiation arriving at .#+ before some retarded time u, and hence ex-
pectation values of operators acting on that radiation or associated (Rényi) entropies.
If u is sufficiently to the past of the future lightcone of the endpoint of evaporation &,
the geometry of the Hawking saddle is weakly curved, and all perturbative corrections
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are small. Of course, at late retarded times the resulting entropies of the Hawking radi-
ation far exceed the Bekenstein-Hawking entropy of the remaining black hole. We refer
to this phenomenon as a violation of Bekenstein-Hawking unitarity (BH unitarity).

No part of our later discussion caused any direct modification of the above conclu-
sions. However, we noted that observers who possess only a single copy of a system
cannot experimentally measure its entropy. We thus imagined experiments to verify
the above violation of BH unitarity that involved forming and evaporating n identical
black holes, collecting the decay products of each, and identifying the ‘early’ subset of
each collection that was emitted before some particular retarded time. We then asked
our experimenter to measure a swap operator that acts as a permutation among these
n early subsets, but which leaves the remaining late subsets fixed. Such observations
performed on many copies of identical-but-independent quantum states give a direct
way of measuring entropies, and we accordingly refer to the associated expectation
values as ‘swap entropies’.

In the limit where the n black holes are well separated, we may approximate each
black hole formation and evaporation as occurring in a separate asymptotically flat
region of spacetime. The boundary conditions on our gravitational path integral then
involve n separate asymptotic boundaries. But in performing the sum over all geome-
tries with such boundary conditions we allowed for so-called ‘spacetime wormbholes’,
which we define as geometries which connect distinct asymptotic boundaries. Such ge-
ometries introduce correlations between the n sets of early Hawking radiation, so that
the state p(™ (u) of these n sets is not in fact equal to the tensor product p(u)®". By
this mechanism, one might hope that observables such as the swap entropies will be
nevertheless be compatible with BH unitarity.

Such an approach was advocated by Polchinski and Strominger in [14]. They
considered including in the path integral a class of ‘PS wormhole’ spacetimes shown in
figure 11, where the various interior connections between copies of p(u) are ‘swapped’
in all possible ways relative to the Hawking saddle. We reviewed this proposal in
section 4 to introduce the idea without the technicalities of replica wormholes, finding
swap entropies that share certain features with BH-unitarity-compatible Page curves.
However, on closer inspection this model continues to violate BH unitarity (and perhaps
also causality), as well as requiring us to regard the PS wormholes, which contain a
singular and strongly-curved region &, as saddle-points.

Nevertheless, we saw in section 5 that there are other saddles which resolve these is-
sues. In particular, our swap experiments receive contributions from replica wormholes
analogous to those described in [18, 19], which are closely associated with the quantum
extremal surfaces studied in [20, 21]. We thus briefly reviewed results and arguments
from those references, translating them to our Lorentz-signature asymtptotically-flat
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setting. The result is then that our swap n-Rényi entropies — at least in the n — 1
limit where calculations are more tractable — perfectly reproduce the Page curve as-
sociated with BH unitary. This is powerful evidence in favor of the idea that there is
an operational sense in which the Bekenstein-Hawking entropy is indeed the black hole
density of states.

Finally, section 6 incorporated these ideas into a conceptual framework for the
gravitational path integral in the presence of spacetime wormbholes, building on the
insights of Coleman and Giddings and Strominger [11-13]. A particular goal was to
reconcile the operational verification of the Page curve described above with the ap-
parent failure of BH unitarity associated with Rényi entropies of the Hawking-saddle
Hawking radiaton. To do so, we sought a Hilbert space interpretation by cutting open
the relevant contributions to the path integral. This led us to slice open spacetime
wormbholes along surfaces which do not meet asymptotic boundaries, and which we as-
sociated with a Hilbert space of closed ‘baby’ universes Hgy. The correlations between
multiple sets of Hawking radiation can then be understood as arising from a sum over
intermediate states of these baby universes.

It is crucial that the correlations between sets of Hawking radiation can be described
are both strict and classical; i.e., any observer who forms and evaporates identical black
holes will find identical sets of Hawking radiation, but the particular radiation state
obtained may be thought as of as being chosen from a classical probability distribu-
tion. To explain this feature, we considered the expectation values or matrix elements
of asymptotic observables in particular states and other asymptotic quantities that one
might expect to be c-numbers. We found that such quantities in fact yield operators
acting on Hpy, defined by inserting the relevant boundary conditions in the gravi-
tational path integral. For example, there is an operator p;;(u) on Hpy for each ij
component of the density matrix of Hawking radiation before time u. But as argued
in [22], all such operators can be simultaneously diagonalized. In particular, it is easy
to show that they mutually commute. Since we defined the path integral to sum over
all topologies with the required boundary conditions, the output of the path integral
cannot depend on any ordering of the multiple disconnected boundaries. See also foot-
note 32 for the argument that these operators are normal, in the sense that they also
mutually commute with their adjoints. This means that Hpy splits into superselection
sectors for the algebra of asymptotic observables. In other words, there is a basis of
simultaneous eigenstates }a> of Hpy for all such operators. The correlations between
multiple sets of Hawking radiation can then be described as classical correlations from
a probability distribution of superselection sectors.

Explicitly, applying this to calculations of the density matrix of Hawking radiation
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we can write

o (u) = (HH

Piv . ingi.in

Pirgi (W) -+ P, (w) [HH) (7.1)
— [ duta) (w08, 0 (7.2
= (i (W) i3, () (7.3)

The first line writes our n-copy density matrix as an expectation value in the ‘no-
boundary’ state ‘HH> € Hgy of baby universes, which was an implicit choice in our
earlier calculations. By inserting a complete set of ’&> states, we write this as an average
over superselection sectors, with probability measure du(a) = |(a/HH)|*da (where
do is defined so that the completeness relation [ da|a)(a| = 1 holds). This defines
the notation of the final line, where we write this as an expectation value of random
variables p;;(u) selected from the ensemble defined by the measure dy. And while
the set of all possible a-values will be determined by state-independent considerations
involving the algebra of our operators on Hpy, the formulae above make manifest that
our results depend on the choice of state |[HH) € Hpy through the measure u(a). A
different choice of state results in a different measure, with an extreme example being
an a-state giving d-function measure.

This framework finally allows us to reconcile the entropy results described above.
So long as the initial baby universe state is |[HH), the state of Hawking radiation from
any given black hole is prawking (¢) = < p(u)> Its entropy grows with u and fails to follow
the Page curve due to entanglement with baby universes. But, as is always the case for
superselection sectors, this entanglement is unobservable. Evaporating additional black
holes induces further entanglement with the same baby universe states, correlating the
decay products so that measurements designed to deduce the entropy produce the
Page curve with the help of replica wormholes.?> In particular, the swap test provides
a measurement of ( Tr(p(u)")); it does not measure Tr (<p(u)>n) Thus as emphasized
in [29], replica wormholes do not compute the ‘true’ von Neumann entropy of the
state of the radiation; instead they give the entropy of the state projected to a typical
superselection sector [22].

It is important that the value of Tr(p(u)™) in almost any given a-sector will be
exponentially close to the average value <Tr(p(u)”)> computed by replica wormholes.
The Page curve is therefore a robust prediction, accurate up to exponentially small

35For much the same reason, the energy conservation critique [95] does not apply. There is no
experimentally-accessible ‘dollar matrix’. Indeed, as described long ago in [11-13], the situation is
more similar to that discussed in [96] as the baby universes which provide decoherence carry no energy
or momentum.
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corrections. We say that Tr(p(u)") (or the entropy) is ‘self-averaging,” meaning that
any given sample from the ensemble is parametrically likely to be parametrically close
to the mean. A given quantity X (which we take to be complex in general) is self-
averaging if its ensemble variance

Var(X) = (XX) — (X)(X) = (XX), (7.9

is much smaller than its mean squared, Var(X) < [(X >|2 Since the variance is the
connected two-point correlator, it is computed gravitationally from a path integral with
boundary conditions XX over spacetimes which connect the X boundaries to the X
boundaries. X is self-averaging if these connected contributions are dominated by the
disconnected spacetimes.

Now, without any obvious reason to exclude replica wormholes from the gravita-
tional path integral, and in the absence of as-yet-unknown additional contributions
(either semiclassical or invoking new physics), we are compelled to consider the follow-
ing scenario for semiclassical gravity. The scenario is that it predicts observations to
always be compatible with unitarity, and with the density of black hole states being
given by the Bekenstein-Hawking entropy. But it does not predict the detailed unitary
dynamics. Instead, semiclassical gravity gives definite predictions for coarse-grained
questions, such as simple observables acting on the Hawking radiation or entropies,
but it declines to provide a definite prediction for measurements of fine-grained quan-
tities such as the off-diagonal elements of the density matrix of Hawking radiation.

We have focussed here on black holes in asymptotically flat spacetimes. But anal-
ogous comments can be made in many other contexts as well. Indeed, the original
works [18-22] reviewed above (and on which much of this work was based) were per-
formed with asymptotically AdS boundary conditions. While it is common to study
AdS settings with reflecting boundary conditions, one can also couple the AdS system
to an auxiliary non-gravitational system that can absorb Hawking radiation and re-
move it from the asymptotically AdS spacetime. We may view this as an analogue of
the experimental processes described in the current paper, with the auxiliary system
playing the role of the ‘quantum memory’ into which our experimenter uploads the
Hawking radiation’s quantum state. Studying the action of various swap operators on
the non-gravitating auxiliary system then leads precisely to the replica wormholes and
associated entropies studied in [18, 19].

7.2 What have we gained?

We now we reflect on the position in which we are left after drawing such conclusions.
In particular, it is natural to ask for a complete description of the physics in a particular
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superselection sector. Even for a single evaporation event, such a description must yield
a density matrix that reproduces the Page curve, and for a single evaporation must do
so without the help of replica wormholes. We might then ask: what have we gained
from the above considerations??® To explore this question and the associated physics
of superselection sectors, we will introduce some ideas that are not directly apparent
from our considerations so far, but which were studied in more detail in [22].

First, however, we should briefly discuss the predictive status of a framework in-
volving superselection sectors. One issue is that, as pointed out by [97], the correlations
between successive experiments mean that we cannot use a strict frequentist interpre-
tation for the ‘probability’ of getting a particular state of the radiation. Any given
observer will decohere onto a branch of the wavefunction with a baby universe state
tightly concentrated around some particular superselection sector. But it is natural to
instead interpret ‘probabilities’ of a-states as minimal Bayesian priors, assigning cre-
dences to different possible superselection sectors and thus to particular states for the
Hawking radiation. Now, for general baby universe initial states this perspective allows
us to make definite predictions only when certain features are common to all allowed
superselection sectors, or when we consider self-averaging observables with parametri-
cally sharply peaked probability distributions. But this is also the only sense in which
frequentist probability makes definite predictions for standard systems, though in that
context one may use the number of experiments as a parameter controlling the width
of the distribution.

It is important to emphasize that measuring the actual state of Hawking radiation
is tantamount to experimentally determining, at least in part, the a-sector in which we
live. The situation is thus much the same as when working with a theory with unknown
free parameters (and indeed, we could identify these parameters with coefficients in the
effective action giving the S-matrix for black hole formation and evaporation). Alterna-
tively, we can view the a-state as determined by the initial conditions of baby universes
as described above. It thus has the same logical status as any other measurement of
initial conditions, a situation which has been much discussed in cosmology and to which
many of the same words will necessarily apply.

With the above as prologue, we now point out an important difference between
the wormholes studied here and those studied in the late 1980’s [11, 12, 98]. The
earlier works primarily studied the effect of microscopic wormholes, and in particular of
wormholes much smaller than any macroscopic scale of interest. In that case, they can
be ‘integrated out’, and the resulting ensemble of a-states is describable as providing a

36 As has often been stressed to us by Steve Giddings, no clear answer was provided by the discussions
of wormholes and baby universes from the 1980’s and early 1990’s.
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distribution of random couplings for terms (such as the cosmological constant term) in a
local effective action; see [99] for a recent review. Each member of the ensemble is thus
a local theory on the scale of interest. But since the typical scale of replica wormholes
is that of the event horizon of the black hole undergoing evaporation, integrating out
such wormholes will not provide such a local effective theory on black hole scales.?” So
in our context the effect of o states cannot be absorbed into a shift of local coupling
constants in a useful way. Indeed, this is just the sort of non-locality required for the
scenarios discussed in [100, 101].

It thus appears that we will not obtain a local semiclassical description of super-
selection sectors by integrating out topology changing processes. On the other hand,
we might still ask if one can find a local semiclassical description that retains such
processes, but which explicitly includes an initial a-state for the baby universes. The
answer to this question will hinge on whether a-states lie in the regime of semiclassical
validity.>8

This seems unlikely, and semiclassical physics seems similarly unlikely to determine
the precise spectrum of possible superselection sectors. The basic reason is that writing
a-states in the occupation number basis leads to large weights for terms involving very
large numbers of baby universes. But for exponentially large occupation numbers, the
‘interactions’ of baby universes (i.e., the topology changing processes which split and
join universes) become important at leading order because the exponential suppression
of any particular interaction is compensated by the number of possible such interactions.
In this regime, there is no guarantee that Hgy has any useful semiclassical description,
since it is no longer even approximately a Fock space of single universes, and we do
not obtain a good approximation by truncating the path integral to any finite number
of topologies. In particular, if we try to sum over the large number of semiclassical
terms involved, small corrections to the semiclassical approximation in each term may
accumulate to yield large corrections to the final answer.

This issue is exemplified by toy models of black holes which are so simple that we
may perform the path integral exactly, namely Jackiw-Teitelboim (JT) gravity [18, 102]
and the even simpler topological model introduced in [22]. In the exact solution of
these models, the superselection sectors have features expected of unitary quantum
systems, but which are remarkable when appearing from a gravitational path integral:
they have a discrete spectrum of black hole microstates,*? bounded in number by the

370ne could think of it as defining a local effective theory on scales larger than the black hole,
but then the black hole itself would simply be treated as a particle with a large but finite number of
internal states.

38Unless, perhaps, we introduce new objects to resum certain contributions: see section 7.3.2.

39While there are no propagating degrees of freedom in these theories, we may nonetheless model
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Bekenstein-Hawking entropy. But this is not manifest from the semiclassical approxi-
mation, where we expand in a small parameter of order e~°P# which suppresses more
complicated spacetime topologies. If we truncate that expansion at any finite order, we
see no restriction to superselection sectors with the above features. In fact, the precise
spectrum of a-states turns out to be sensitive to doubly nonperturbative effects. The
effects are not merely of order e#“8# as for subleading saddle-point geometries, but are
of order e#¢*® . This strong suppression is associated with their arising from an infi-
nite sum of exponentially-suppressed geometric saddles.*’ From these considerations it
would appear that a-states involve a regime where quantum fluctuations of spacetime
topology are untamed. See section 5 of [22] for a more detailed discussion.

It would thus appear that we can say little about individual superselection sectors
using only semiclassical physics, and that we can only access averaged or other simple
statistical properties.*’ Nonetheless, we can make much stronger statements by taking
an axiomatic approach and making use of consistency conditions. Specifically, let us
assume that the Hilbert spaces of intermediate states considered in section 6 are well-
defined, and that they each have a positive semidefinite inner product. For example,
while the replica wormholes discussed above showed that the entropy of Hawking radi-
ation is consistent with BH unitarity on average, general consistency arguments show
something much stronger, requiring consistency with BH unitarity for every supers-
election sector. More precisely, section 4 of [22] showed that the number of linearly
independent pure states below a given energy (say, prepared by forming and partially
evaporating a black hole and projecting the Hawking radiation onto various possible
states) is bounded in every superselection sector by the thermodynamic entropy (de-
fined by the inverse Laplace-transform of a Gibbons-Hawking type path integral [104]
with periodic Euclidean boundary conditions). Since old black holes have large in-
teriors and thus naively give rise to many more internal states than allowed by the

the black hole interior by ‘end-of-the-world branes’ with a large number of internal states, perhaps
much greater than e“BH.

40Moreover, these effects may not be determined uniquely from the semiclassical expansion since (as
is the case in JT gravity) the sum over topologies describes only an asymptotic expansion that does
not converge. For JT, there is an extremely natural completion of the sum over topologies defined by
Hamiltonians selected from an ensemble of random matrices, since the topological expansion precisely
fits the rigid structure required by such a completion. For more realistic models it is unlikely that we
will be so lucky as to identify an obvious completion.

41By focusing on clever averaged quantities, semiclassical calculations can nevertheless give more
indirect hints at the structure of « states. For example, [102, 103] show that a single topology produces
the ‘ramp’ in the spectral form factor that is characteristic of long-range eigenvalue repulsion and hence
indicative of a discrete spectrum with statistics resembling that of a random matrix. However, the
feature of the spectral form factor which more directly signifies a discrete spectrum (the ‘plateau’)
appears to require summation of all topologies or going beyond a geometric description.
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Bekenstein-Hawking entropy (see e.g. [35]), such a bound requires surprising linear re-
lations between such states (equivalently, some linear combinations of states must be
unexpectedly ‘null’, with vanishing inner product with every other state, and so must
be set equal to the zero state). This was seen very explicitly in the toy model of [22] and
generalisations [105]. These relations rely on the same doubly-nonperturbative physics
as discussed above in relation to a-states. In [22], following [106], we interpreted such
relations as novel nonperturbative manifestations of diffeomorphism invariance.

As aresult of these considerations, we have no reason to expect semiclassical physics
to be a good approximation in the interiors of old black holes for an individual super-
selection sector. While this has of course been suggested before the situation is now
much improved because the semiclassical approxiation itself suggests principled reasons
to doubt its validity. The approximation predicts its own break-down as it should.

However, the attentive reader will still want to be assured that we have not thrown
out the baby with the bathwater. If semiclassical physics is inadequate to describe
old black holes in a given superselection sector, what ensures that we may still trust
it in weakly gravitating regimes? In the language of [37], what is the ‘niceness condi-
tion” which ensures that we may neglect topology changing processes involving replica
wormholes or interactions with large baby universes in contexts where BH unitarity was
not in danger? The key observation in this regard is that replica wormholes become
important only when the matter entropy is so large that the sum over internal states
can compensate for the usual exponential suppression of topology change. We therefore
need to consider these effects only when we have a region with entropy exceeding the

area of its perimeter in Planck units; i.e., when S 2 %.

7.3 Further open questions

We now close with some open questions and further comments.

7.3.1 AdS/CFT and the factorisation problem

A potential concern with the above conclusions is the strong tension with the traditional
understanding of the AdS/CFT correspondence. The point is that this correspondence
provides us with examples of theories of quantum gravity with a nonperturbative, UV
complete description in terms of a dual conformal field theory, but in which there
is no sign of the superselection sectors that we inferred from the existence of replica
wormholes.

To be specific, in the asymptotically AdS context, our considerations point to
the idea that semiclassical gravity should be dual not to a single unitary CFT, but
should instead be dual to an ensemble of such theories, with a different theory for each
superselection sector. While examples of such dualities have been recently discovered for
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simple two-dimensional models of gravity [102, 107], the more well-established examples
of gauge/gravity duality (such as the paradigmatic duality between N = 4 super Yang
Mills and type IIb string theory in AdS; x S%) involve a unique dual theory.

This tension is not entirely new; rather, it brings to the fore an old puzzle, touched
upon in section 4.2, which has become known as the factorization problem [59-61]. The
AdS/CFT correspondence equates gravitational amplitudes with fixed asymptotically
AdS boundary conditions to the partition function of a CFT, with background geometry
determined by the conformal boundary of the gravitational ‘bulk’ spacetime. If that
boundary is disconnected, locality of the CFT immediately implies that the result
should factorize as the product of partition functions on each connected component.
But this result is surprising from the gravitational point of view: contributions from
bulk spacetimes that connect different boundary components appear to spoil the above
factorization property, but it seems arbitrary to exclude such spacetimes from the
gravitational path integral. From the point of view of the baby universe Hilbert space
discussed in section 6, factorization requires that Hgy is one-dimensional, so that all
states of baby universes are somehow equivalent [22, 108].

There has not been any entirely satisfactory resolution to this puzzle. It thus re-
mains to be seen whether e.g. type IIb string theory in AdSs5 x S° has a one-dimensional
Hgpy (perhaps due to the proper inclusion of various stringy objects and features that
go beyond semi-classical supergravity), or whether this bulk theory is in fact dual to an
ensemble of field theories with only one member of the ensemble being given by N = 4
super Yang Mills using the standard bulk-to-boundary dictionary.*?

In the light of replica wormholes, the factorisation problem is directly related to
the black hole information problem, since the entropy computations involved worm-
holes connecting multiple boundaries. We do not immediately require factorisation
for the entropies, since the boundary conditions for separate boundary components are
correlated in a way which explicitly spoils factorisation. But if we decompose the Rényi
entropies into quantities which do require factorization, it appears that the wormholes
remain and spoil factorization [92]. Somewhat less concretely, as pointed out in section
4.2 a mixed state of Hawking radiation represents a failure of factorization: compo-
nents of the density matrix are computed by a product of two ‘S-matrix’ boundary
conditions, and the state is pure exactly when the amplitude similarly factorizes.

Now, it may well be that physics similar to replica wormholes appears naturally for

42As described in [22], there is a possibility that A/ = 4 super Yang Mills is the unique dual, but
that different bulk superselection sectors map to this dual using distinct dictionaries. In effect, the
different dictionaries would then be related by (perhaps non-local) bulk field redefinitions. One might
also think of this as the a-sectors defining different quantum error correcting codes in the sense of
[109].
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theories with a single unitary dual after some appropriate coarse-graining which explic-
itly spoils factorization: see e.g. [110-112]. But the more pertinent question for us is
whether replica wormholes are relevant in a situation where we have performed no such
explicit coarse-graining. Paraphrasing [92], in a situation like the standard AdS/CFT
setting having factorization and without superselection sectors, can we nonetheless un-
derstand replica wormholes as the first term in a systematically improvable expansion?

7.3.2 Description of superselection sectors

In section 7.2, we were rather pessimistic about describing individual superselection
sectors directly in terms of standard semiclassical gravitational physics. Nonetheless,
there is still scope for a relatively simple description using a different language. One
such idea which has appeared recently in toy models is that of ‘spacetime D-branes’
or ‘eigenbranes’ [22, 102, 113, 114]. These are dynamical boundaries for spacetime
(analogous to D-branes providing boundaries on which the string worldsheet can end)
which have the effect of (perhaps partially) fixing an a-state. While these appear to
be new objects in the theory, they can also be thought of as an emergent, collective
description of a coherent state of baby universes (much like regarding D-branes as
a coherent state of closed strings, as opposed to new fundamental objects). Does
something similar apply going beyond these toy models, to theories which are rich
enough to include evaporating black holes?

In the context of evaporating black holes, the idea of providing boundary conditions
for spacetime in the black hole interior to produce a pure state of Hawking radiation
is not new: this is essentially the final state proposal [58]. Perhaps these ideas can
be revisited as an effective description of baby universe a-states. Certainly, it remains
an outstanding open problem to find a more complete, and perhaps more physical,
description of the transfer of information from a black hole to the outgoing Hawking
radiation in each superselection sector.

7.3.3 Contributions from UV physics

We have been careful to make use only of low-energy physics which is well-established
and tested, and in regimes where there is no reason to expect that it fails to be trust-
worthy. However, we cannot rule out the possibility that the quantities we have studied
are sensitive to more exotic physics from the UV completion of the theory. Indeed, this
may be required to solve the factorization problem in the AdS/CFT context.

One such set of ideas is the fuzzball proposal (reviewed in [115, 116]), which we
highlight due to some conceptual similarity with physics of an individual superselection
sector discussed above. Specifically, one piece of the fuzzball proposal is that gravita-
tional collapse does not lead to formation of a horizon, but instead there is a tunnelling
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event to a horizonless configuration. The amplitude to tunnel to any given configura-
tion is small, but this is compensated for by the large number of possible states. We
can compare this to the situation for superselection sectors described in 7.2, where in-
teractions with baby universes were similarly suppressed individually, but compensated
for by a large population of baby universes. One might speculate that the fuzzballs
replace the baby universes, effectively selecting a distinguished a-state. But since this
selection depends on fine details of the UV completion, with extra dimensions, strings,
branes and so forth, the low-energy gravity is ignorant of the details: it does the best
job it can in the face of its ignorance, which is to average over the possibilities. In the
hope of making such a connection, we conclude with one comment: while the fuzzball
literature suggests that the tunnelling event happens before the horizon forms, from our
considerations we see that this is in fact unnecessary to solve the information problem.
It suffices if this physics kicks in only after the Page time, when the parametrically large
interior can play a role, and when large corrections to the state of Hawking radiation
are required.

7.3.4 Spacetimes with singular causal structure

The fact that replica wormholes can provide gravitational saddles strongly suggests that
spacetimes with singular causal structures play an important role in the gravitational
path integral. As noted in section 5.1, the past light cone of any splitting surface
has multiple disconnected parts. In particular, it has one such part for each of the bra-
spacetimes that join at v (and similarly one such part for each of the ket-spacetimes).

This idea that such causal singularities should be included is not new (see e.g.
[15, 117, 118]), though its implications remain to be fully explored. One would like to
understand just how general such causal singularities can be, and in particular what
singularities arise in saddle-point geometries. For example, can one find saddles where
splitting surfaces for replica wormholes lie outside horizons (and thus in the past of
)7 If so, how are we to understand their effects on measurements performed by
asymptotic observers? Similarly, are there saddles with multiple splitting surfaces that
are causally related to each other? See [119] for an example of timelike separated islands
in a cosmological context. It may be possible to probe the physics of such settings using
time-folds, as may be familiar from the study of out-of-time-order correlation functions.
That is, instead of each replica being constructed from one branch of forward evolution
(‘ket’) and one of backward evolution (‘bra’), we add further forward and backward
branches, with the possibility of nontrivial replica-wormhole-like identifications. Such
time-folds might be used to connect .# with the past of a splitting surface (where the
physics is understood).
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Conversely, our work above took as a fundamental assumption that the low-energy
gravitational path integral sums over topologies. While this is a common discus-
sion in treatments of gravitational path integrals, and despite its utility in describing
the Hawking-Page transition in AdS space [120] and defining the Hartle-Hawking no-
boundary wavefunction [94], some readers will ask if there might be formulations of
quantum gravity in which it fails to hold. This important issue also deserves further
attention in the future.

7.3.5 Non-perturbative physics of of Baby Universes

There also remain certain questions about how non-perturbative corrections will af-
fect our discussion of baby universes. For example, as described in section 6.5.2, the
Polchinski-Strominger assumption led to a certain notion of PS baby universe, while
our analysis of replica wormholes led to a different notion of RW baby universe. In
particular, the latter can roughly be thought of as a bound state of a PS-baby and a
PS-anti-baby universe. The difference between the two was in part due to the fact that
the PS assumption allowed us to discuss the path integral associated with forming a
black hole and the performing a complete projective measurement at .#*. But did the
PS-assumption lead to the correct conclusion? We presume the full non-perturbative
theory to allow such boundary conditions, but what are the results? Do the result-
ing baby universes resemble the PS-babies, or does each PS-baby necessarily come
attached to an anti-baby so that the result is more like the RW baby universes? Or is
this question fundamentally ill-defined due to the presence of null states as described in
section 7.27 And on a similar note, does the non-perturbative theory have a meaningful
distinction between universes and anti-universes?

7.3.6 More details of unitarity

Our work above focussed on the Page curve. This is a prominent signature of BH
unitarity, but it is not it itself enough to guarantee unitarity for asymptotic observers.
Does semiclassical gravity make predictions that are in line with unitarity in other
ways, and in more detail?

As an illustration that challenges may lie ahead, we give an example in the context
of the Polchinski-Strominger proposal in section 4. In section 4.1, we found this proposal
to give predictions consistent with a pure state on .~ evolving to a pure state on #*
(for example, as probed by the swap test). But unitary evolution also requires that the
inner product is conserved, so two orthogonal states on .~ should evolve to orthogonal
states on £ . We can check this using a swap test, except that we now prepare two
black holes with orthogonal states at .#~, perhaps by throwing a particle with two
possible internal states into the black hole. Unitarity demands that the expectation
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value of the swap operator acting on #* for these two black holes is zero. But this
is not the case for the PS proposal: the expectation value is exponentially small, but
nonetheless positive.*> Thus the Polchinski-Strominger proposal does not result in a
unitary S-matrix.

If we remain within the semiclassical regime, considering only experiments on the
radiation before the black hole becomes too small, then we do not have such a sharp
contradiction with unitarity. Nonetheless, it provides a warning that more must be
checked, and motivates a careful study of the situation when we consider several dif-
ferent initial states.

7.3.7 Moving away from asymptotics

We studied black hole formation and collapse in an idealised setting, using states that
were prepared and measured at asymptotic boundaries, and using experiments with
multiple black holes placed in separate spacetimes. This allowed us to make very clean
statements (like commutativity of operators acting on the baby universe Hilbert space),
but it can only be an approximation to more realistic settings. Any actual experiment
will involve experimenters subject to gravitational physics, even if only weakly. While
it is natural to assume that such real-world experiments would be well-modeled by the
idealized ones described above (or involving an auxiliary system coupled to AdS, or
involving sharp boundary conditions imposed on finite ‘cutoff’ surfaces as in implicit
in e.g.
citeAnegawa:2020ezn, Hashimoto:2020cas, Gautason:2020tmk, Krishnan:2020oun), this re-
mains to be shown in detail. In particular, our concept of cluster decomposition, in
the sense that experiments on multiple black holes will approach our ‘separate uni-
verse’ idealisation as the separation between them is taken to infinity, is as yet only an
expectation.

It is clearly of interest to explore this further, not least in the context of cosmology.
Indeed, in analogy with Everett’s treatment of the quantum mechanical ‘measurement
problem’ [121], the most interesting question would appear to be what form of con-
ceptual framework (if any) would allow a sharp discussion of experiments whose final
records — and not just the intermediate steps — are subject to quantum gravity effects.

7.3.8 The experience of an infalling observer

Our main focus in this paper has been to compute observables defined far from the
black hole, in asymptotic regions. We have not directly commented upon the more

431f the particle’s internal state transmits perfectly into the black hole interior in the semiclassical
approximation, so that both initial states give rise to the same density matrix pgawking of Hawking
radiation at .#, then the swap expectation value is Tr p%awking.
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difficult question of predictions for the observers who enter the black hole. This is
more challenging, since it is far from obvious how to give a gauge invariant description
of such observers, who are inevitably part of the quantum system of the black hole (a
situation familiar from quantum cosmology). We will not say anything definitive on
this question, but we make a few comments below.

If the baby universe state is simple (as for the Hartle-Hawking state), our path
integrals describing any one black hole are dominated by the usual semiclassical black
hole spacetime, with a smooth interior until the singularity. This gives us no obvious
reason to doubt the conventional description that an infalling observer will experience
no drama at the horizon. The firewall paradox [122, 123] is evaded because, in a
technical sense, information is lost: the late radiation is not required to be entangled
with the early radiation.

However, the situation is less clear for multiple identically prepared black holes or
more complicated baby universe states. In particular, in the AdS context one could
make use of an auxiliary bath system as in [21] to effectively ‘measure’ the a-parameters,
thus decohering the different superselection sectors of the gravitating spacetime. Since
infalling observers have no access to the bath, one might expect their experiences to be
described by individual superselection sectors. The firewall problem then arises with
full force. In addition, we must deal with the vast number of null states required by the
discussion in section 7.2. What it means to discuss physics in this context, and how it
relates to previous proposed resolutions remains a fascinating topic for both discussion
and further investigation.
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A Further review of the Hawking effect in a fixed spacetime

This appendix completes our brief review of the derivation of the Hawking effect in
a fixed curved spacetime that was begun in section 2.1. The argument below follows
[40] and [41]. Recall that we consider a free massless quantum field on the classical
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spherically symmetric uncharged collapsing black hole spacetime of figure 2a (left). On
&, the state [¢)) of the quantum field coincides with the Minkowski vacuum on .&~.

We wish to characterize the state of the field on .#* using the number operators
N(w; 1) = a'(w, £)a(w, 1) associated with modes of definite positive frequency
w with respect to some affine parameter u along .#*. We follow [40] in working in the
Heisenberg picture, so we need to evolve the operators af(w, .#F), a(w, #T) backwards
in time to express them in terms of the corresponding operators a'(w, . ), a(w, .# ")
on .#~. This will give a Bogoliubov transformation that will allow us to compute the
distribution of occupation numbers at & .

Now, linearity of the quantum fields also means that the desired backwards evolu-
tion of the operators a(w, #1), a(w, #T) be can be found by studying the behavior
of the corresponding field modes. And the latter behavior is obtained by solving the
classical wave equation. For modes L localized at late retarded times (large affine pa-
rameter u along .# 1), the desired backwards propagation can then be broken into two
phases; see the right panel of figure 2a.

In the first phase (closest to # 1), the localization at large u means that the space-
time is very close to that of a stationary black hole as any transient effects associated
with the collapse will have either dispersed to distant parts of the asymptotic region
(where its gravitational effect is minimal) or will have fallen into the nascent black
hole. In the approximation that the region is exactly stationary, the evolution of a
mode of definite frequency w amounts to solving a Schrodinger-type scattering prob-
lem, resulting in a reflected mode R and a transmitted mode T'; see again figure 2a
(right).

The reflected mode R reaches .#~ at late advanced times (i.e., large affine parame-
ter v along .# ) without leaving the Phase I region where the spacetime remains nearly
stationary. As a result, R has the same positive frequency w along .#~ as does L along
#7*. This means that R contributes only to what are usually called the o Bogoliubov
parameters (which map annihilation operators to annihilation operators) as opposed to
the more interesting 5 Bogoliubov parameters associated with mixing between creation
and annihilation operators.

On the other hand, the transmitted mode T travels through the region where the
spacetime is dynamical. However, since L is localized at large u, the transmitted mode
T has high frequency with respect to natural freely-falling observers. As a result, the
WKB approximation may be used to justify the use of geometric optics in propagating
T back to £~ and completing the calculation. This is the 2nd phase of the backwards
evolution that was foreshadowed above. But rather than complete the full calculation,
the end result can be seen [41] by noting that in the overlap of the regions corresponding
to phases 1 and 2, the T mode is localized in a region close to the horizon that is well
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approximated by Rindler space. Furthermore, since the corresponding Rindler time-
translation coincides with the (approximate) time translation symmetry outside the
black hole, in this region T is purely positive-frequency with respect to Rindler time.
But any smooth state will locally approximate the Minkowski vacuum in this Rindler
region. Thus the occupation numbers of 7" modes are thermally distributed.

The Hawking effect is thus associated primarily with the transmitted mode T.
The fact that it corresponds only to the part of the original mode that was transmit-
ted through the potential barrier into the region near the horizon during the phase
1 evolution introduces the famous “grey-body” factors into the Hawking effect. Here
the name comes from the fact that when evolving modes toward the future the corre-
sponding transmitted part would fall into the black hole and be absorbed, and also to
the fact that absorption and emission coefficients must agree in thermal equilibrium.
Thus the (squared) fraction of the original mode that remains present in 7" is naturally
interpreted as the coefficient for emission of the original mode by a radiating black hole.

B Intermediate states of baby universes

In section 6.5, we discussed a Hilbert space interpretation of replica wormhole calcula-
tions, in particular allowing only measurements on a region .#, before the black hole
becomes too small. However, this description was not particularly natural from the
point of view of consecutive measurements on different sets of Hawking radiation, so
in this appendix we give an alternative Hilbert space interpretation.

Consider in particular a real-time process in which Hgy begins in some initial
state (perhaps |[HH)), and an asymptotic observer creates a black hole before making a
complete projective measurement for the Hawking radiation on .#,. It is then natural
to ask for the state of Hpy required for predicting subsequent similar measurements.
Since we are leaving the radiation which emerges after time w unobserved, we have
necessarily lost some information. The state of baby universes will thus become mixed
due to entanglement with the unobserved part of the asymptotic state. As a result,
this process is best described as a map from density matrices to density matrices (a
quantum channel) on Hgy.

More generally, we can write down the map from an initial density matrix on Hgy
to a final density matrix on Hgy®?H,, that describes the state of both the baby universes
and the state of the Hawking radiation to which we have access. We can write this
map explicitly as

pou = NS Ty (B3(w) pu () @ 1) 1, (B.1)

i?j
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where we have introduced the operation Tr, (to be defined below), which enacts the
partial trace over the unobserved radiation. The first term in the tensor product is an
operator on Hpy, the second factor |i)(j| on the radiation Hilbert space on .%,, and N’
is chosen to normalise the trace to unity.

To explain (B.1), recall that a density matrix pgy is an operator on Hy = Hpy. The
operator W, (u) maps Hpy — Hi, and so ;(u)f maps Hy — Hpy. Thus ¥, (u) pBU\i/;r-(u)
is a map from the one-boundary Hilbert space H; to itself. Its matrix elements are
computed by a path integral bounded by a pair of Cauchy surfaces X, meeting .#*,
one on the ‘ket’ branch and one on the ‘bra’. The operation Tr, identifies these two
branches along ¥, asymptotically, producing an operator on Hgy. It is not meaningful
to specify a priori how far this identification persists into the interior. The gravitational
path integral sums over all such choices; replica wormholes will lead to semiclassical
contributions where the identifications persist to the edge of the associated island.

As is the case for all our discussions, the formula (B.1) simplifies if pgy is built from
asymptotic boundary conditions (so that is part of the superselected algebra of asymp-
totic observables). In that case one finds Try(¥;(u) pBU\if; (u)) = \il;r(u)\if,(u) PBU =
pij(u)ppy. In particular, if the baby universes are in an a-state (so that pgy = |a)(«),
the map leaves the state of baby universes unchanged, while producing the state p®(u)
on .#, whose components are given by the a-eigenvalues of p;;(u).

We can also use this same simplification more generally if we only wish to use (B.1)
to compute expectation values of asymptotic observables (thought of as operators on
Hgpy). By essentially the same argument as above, tracing such observables against
(B.1) gives the same result as tracing the observables against p;;(u)ppy. The point
is simply that we can commute \il;r (u) past these obervables and then use the cyclic
property of the trace in order to use \ifj(u)\ifl(u) = p;j(u). However, it should be borne
in mind that other states and operators exist and may be of interest, for example to
describe the experience of an observer falling into a black hole.
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