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ABSTRACT: We generalize the Gao-Jafferis-Wall construction of traversable two-sided worm-
holes to multi-boundary wormholes. In our construction, we take the background spacetime
to be multi-boundary black holes in AdSs. We work in the hot limit where the dual CFT
state in certain regions locally resembles the thermofield double state. Furthermore, in these
regions, the hot limit makes the causal shadow exponentially small. Based on these two fea-
tures of the hot limit, and with the three-boundary wormhole as our main example, we show
that traversability between any two asymptotic regions in a multi-boundary wormhole can
be triggered using a double-trace deformation. In particular, the two boundary regions need
not have the same temperature and angular momentum. We discuss the non-trivial angular
dependence of traversability in our construction, as well as the effect of the causal shadow

region.
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1 Introduction
Wormbholes have long been of interest since the time of Einstein and Rosen [1]. Although

FEinstein-Rosen bridges connect different asymptotic regions of spacetime, topological censor-

ship [2, 3] forbids their traversability when only classical matter fields are present. The same

is of course true of their multi-boundary wormhole generalizations. However in some cases,

quantum matter fields can cause violations of the averaged null energy condition (ANEC).

In such cases the arguments of [2, 3] cannot be applied, so that such ANEC violations might



make the wormholes traversable. We remind the reader that the ANEC is satisfied when the
integral of stress tensor along any complete null geodesic is non-negative,

/Tabk“kb > (. (1.1)
i

In recent years, there have been many approaches to constructing traversable wormholes
from ANEC violations, see [4-11]. In particular, in the seminal paper by Gao, Jafferis and
Wall [4], the authors construct a traversable wormhole using a two-sided BTZ black hole as
the background, where the dual CFT state is the thermofield double (TFD) state. With
an appropriate sign of coupling, a double-trace deformation that directly couples the two
boundary CFTs can cause the violation of the ANEC. Adding the coupling shifts the horizons
so as to allow certain causal geodesics to travel from one asymptotic boundary to the other.
In [5], this construction was generalized to rotating BTZ black holes. It is also interesting to
recall that the transmission of such signals was interpreted in [9] from the dual field theory
perspective as being due to enacting a quantum teleportation protocol between entangled
quantum systems. This connection with quantum information has been of great interest (see
e.g. [12-17]) as a concrete realization of the ER=EPR idea [18].

In the current paper, we generalize this construction to any pair of asymptotic regions
in certain (non-rotating or rotating) multi-boundary black holes! in AdSs. For a general
multi-boundary black hole, a finite-sized causal shadow separates the horizons of different
asymptotic regions, making the wormhole hard to traverse. In our construction, we focus
on the hot limit considered in [19], where the temperatures related to all horizons are large.
In that limit, for any two horizons, there exists a region where the causal shadow between
them is exponentially small. A double-trace deformation can then easily render the wormhole
traversable. As we will see, the hot limit will also give us convenience in doing the calculations,
which otherwise would be difficult to perform.

Our construction has several interesting features that differ from those of [4] and [5].
The first is that the pair of boundaries in our traversable wormhole construction is quite
general, and the associated horizons can have different temperatures and angular momenta.
Furthermore, our spacetimes have non-trivial angular dependence, and this can be seen in
features related to traversability. In particular, signals from a given asymptotic region will
be able to reach a second asymptotic region only when fired from appropriate regions of the
first boundary. Signals launched from other parts of the first boundary may instead traverse
to a third asymptotic region, or they may be become stuck behind an event horizon. It is a
general feature of our construction that some such event horizon will remain even though our
wormholes are traversable. Again, this is associated with the lack of rotational symmetry in
our spacetimes.

!Note that, while there is some freedom in the use of such terms, our choice is to use “multi-boundary black
holes” when the context refers to the background spacetime, and use “multi-boundary wormholes” when the
context refers to traversable wormholes in particular.



In section 2, we review the construction of multi-boundary wormholes in AdSs and their
important properties that will be useful in later sections. The geometry of these wormholes
in the hot limit is also discussed, as well as the entanglement structure of the dual CFT
state. A general review of the Gao-Jafferis-Wall construction is then given in section 3, where
we emphasize a rather general form of the coupling between boundaries that can induce
traversability. Using these two ingredients, we proceed to construct the multi-boundary
traversable wormhole in section 4. We summarize our findings and discuss their implications
and connections with recent work in the literature in section 5. A number of technical details
and supporting calculations are left to the appendices.

2 Multi-boundary black holes in AdS;

In this section, we will first review how to construct multi-boundary black holes by quotienting
empty AdS3 with isometries, following an algebraic approach [20-25]2. Then we discuss fixed
points of those isometries, (renormalized) geodesic distances in different conformal frames,
and how they behave in the hot limit. Those results will be useful in our construction of
multi-boundary traversable wormholes. Finally, we briefly describe the CFT states that are
dual to these geometries.

2.1 Quotients of AdS3 space

In three-dimensional Einstein gravity, the Ricci tensor completely specifies the Riemann ten-
sor. The consequence of this is that all gravity solutions are locally isometric to AdSs,
which is the Lorentzian, maximally-symmetric spacetime with constant negative curvature
and isometry group SO(2,2) ~ SL(2,R) x SL(2,R). Besides pure AdSs, other solutions to
the equations of motion are locally AdSs but differ globally from it and can be obtained by
quotienting AdSs by a discrete subgroup I' of SO(2,2). Throughout the paper, we take the
AdS radius L 45 = 1. The spacetime AdSs can be defined as the submanifold of

e {p ) (gii 7UV—+)3/ ) } , ds® = — det(dp) = flupd"da’, (2.1)

given by the hyperboloid det(p) = 13, where we defined the 4-vector 2¢ = (U,V, X,Y) and
metric 7, = diag(—1,—1,1,1). In global coordinates, this hyperboloid is parametrized by
the intrinsic coordinates (t,r, ¢) defined by

X =rcos¢, Y =rsing, U=+1+r2cost, V =+/1+r2sint (2.2)

which gives the induced metric
2

1+ 72

ds®* = —(1 4+ r?)dt* + + r2d¢? (2.3)

2For construction of these geometries using explicit forms of the Killing vectors, see [26].
3dp is the matrix defined by taking the differential of every element of the matrix p.



where t ~ t + 27% and ¢ ~ ¢ + 27. The connected part of the group SO.(2,2) is SL(2,R) ®
SL(2,R)/Zs. The group elements (gr,,9r) € SO.(2,2) act on a point p according to

P — 9LpgR- (2.4)

From this, we see that the Zy symmetry correspond to the equivalence relation (gr,gr) ~
(—9r,—9Rr)- A convenient basis of generators {J1, Ja, J3} x {J1, Ja, J3} of the isometry group
SL(2,R) x SL(2,R) is

1 ~ 1

h=-5Uxv=Jyv), Ji=-50xv+Jvv)
1 ~ 1

Jo = 5 (Jyv +JIxv), J2= -3 (Jyv —Jxv) (2:5)
1 ~ 1

J3=—3 (Juv —JIxy), J3= 3 (Juv + JIxy)

where the Killing vectors Ju, = 2,0, — 750, obey the SO(2,2) algebra

[Jab, Jed] = Nacbd — NadJve — Nbedad + MbdJac (2.6)

In matrix representation, the generators are expressed as

1

1 1
- - __ S 2.
J1 = 2’71, J2 2’)’2, Jg 2’73 ( 7)

n=(05) == (08) == (%) 25)

To understand the action of the group elements (g1, gr), we will describe AdSs as the
group manifold of SL(2,R), with the Penrose diagram shown in figure 1. The action of group
elements g € SL(2,R) on the identity element e is shown there, according to which they are

where®

and similarly for J;5.

classified into conjugacy classes depending on where the point e — geg’ = gg' lies,

Hyperbolic Trg > 2 ggt €1

Hyperbolic Trg < -2 ggt € IT
Elliptic | Trg| < 2 g9t € II1, IV

Parabolic | Trg| =2 gg' € light cones

4Usually the universal cover of t is taken by unwrapping it, but as we will see, it is not necessary here since
the wormhole constructions will automatically remove closed timelike curves.

®Qur matrix representation of p is different from that defined in [24, 25], which causes the generators to be
slightly different.

5Tn matrix representation, jz takes the same matrix form as J; = —%’yi but the infinitesimal transformations
on p are different from those of J;’s, since J; : p — —%’wp while J; : p — —%p’yf.



Figure 1: The group manifold of SL(2,R), which is also the Penrose diagram of AdSs. The
dotted lines represent the action of the group elements of SL(2,R) on the identity element e
placed at the origin of AdSs in global coordinates. The isometries of SL(2,R) are classified
depending on which region the element e is mapped to. Dashed lines represent null rays.

We will focus on the action of subgroups I' C SO.(2,2) with Tr g > 2 hyperbolic elements,
whose fixed points are on the boundary of AdSs. This is because it ensures that AdSs/T is
free of conical singularities and closed timelike curves [20, 22]. Removing from the spacetime
the past and future of those fixed points yields the restricted spacetime m, where the action
of the quotient on the spacetime is free of pathologies and leads to a spacetime m; /T. We
will illustrate this process by reviewing the construction of A/d§3 /T in the case of BTZ black
holes [27, 28] and three-boundary black holes [20-22]. We also discuss generalizations to n-
boundary black holes with and without non-trivial topologies [20, 22, 24]. A Cauchy slice of
these geometries is a Riemannian manifold of genus g and boundary number n. So, we can
classify the black hole geometries by a 2-tuple (n,g). In the non-rotating case, the number
of parameters (or in other words, dimension of the moduli space) needed to specify the (n, g)
geometry is equal to 1 for (2,0) and is 6g — 6+ 3n otherwise. In the rotating case, this number
is doubled.

Before reviewing the construction of these geometries, we will give general formulas for
calculating the geodesic distance. The group manifold representation allow us to easily cal-
culate the geodesic distances d(p, q) between two arbitrary points, p and ¢ [23]. In particular,
if p and ¢ are connected by a spacelike geodesic, then

d(p,q) = cosh™ (Tr(];_1q)> . (2.9)



With a timelike geodesic connecting p and ¢, the geodesic distance is

d(p,q) = cos™? (Tr(];_lq)> . (2.10)

When Tr (p_lq) < —2, there is no geodesic connecting p and q.
We now discuss various cases in detail.

BTZ black hole

In this case, the subgroup I' is generated by a single element

vBrz = (91,BTZ,YR,BTZ) = <6’E£L’BTZ7 €Z£R’BTZ> (2.11)

and a convenient choice for &7, prz and &g prz is

§r.Brz = —J2, Erprz=—J2 (2.12)

with £ = 2n(ry +r_) and £ = 2n(r, — r_) being two positive real parameters. In matrix
representation, this gives

[ cosh (
JdL.BTZ = sinh (

) sinh
) cosh

) sinh(
) cosh(

)
)

The isometry ~ has two fixed points at the boundary given by t =0,¢ =7/2 and t = 0,¢ =

NN VIS

> cosh <
s 9rBTZ = |
sinh (

NN W
Nl Nl

)> . (2.13)

37/2. Removing the past and future regions of these fixed points gives the restricted space
A/d§3. Any two geodesics that are related by the isometry vprz are identified, and we can
choose a region that is bounded by such a pair of geodesics as the fundamental domain of
A/d§3 /T, see figure 2. The minimal length between these two geodesics is uniquely determined
by r4 and r_, and is the intersection of the geodesic connecting the fixed points with the
fundamental domain. This defines the two-sided BTZ black hole, where each side is covered
by the usual BTZ coordinates

2 2\ (,2 2 2 2
ry—ri)(rg—r -
as? = UB +)2( 5= e s Bt (d¢B - dtB> (2.14)
"B (rg —r1) (5 —r2) "B
where the subscript B means that we are using BTZ coordinates. The thermodynamic quan-
tities related to the black hole are

M_ri—kr%_ 2+ 02 ryre A —02
8GN 642G N’ 4GNn  6472GnN
. _ _ (2.15)
1 ri—=rz 124 r_ 0=/
TH = — = = = QH = — = =.
p 277y 2m2(0 + 0) R



Figure 2: A Cauchy slice of a BTZ black hole shown as a quotient of AdS3. The action of ~
identifies the two blue geodesics, and the region between them is the fundamental domain of
the quotient. The minimal geodesic H separating the two coincides with the event horizon
of the black hole. In the non-rotating case, this slice is at ¢ = 0. But in the case of rotation,
there is a relative boost between the two identified geodesics.

By writing the point p in (2.1) in terms of the BTZ coordinates using the transformation

r2 g2 r2 g2
U=,|-2—Fcosh(ry¢p+r_tg), X = /-2—Fcosh(ritp+r_¢p),
Ty —T- ri —r2
- * (2.16)
2 2 2 2
L : TH =T
V= T,QBﬁ sinh (T-‘r-tB + T_¢B) , Y= T?ﬁ sinh (T+¢B + T‘_tB)
+ 7= + 7=

one can show that the action of vprz on p is simply to map ¢p — ¢p + 2w. The length of
the bifurcation surface (horizon length) generated by  can be found from (2.9) to be [23]

T T
h = cosh™* <rgL23TZ> 4 cosh™! <TQIZ,BTZ) (2.17)

From (2.11), we see that this gives the expected horizon length of %‘7 = 27ry.

Three-boundary black hole

The subgroup I in this case is generated by two elements v; = (¢;, 9ir),? = 1,2. We choose
the first one to be the same as the isometry used to construct the BTZ black hole”

7 = (911, 91R) = (€£1£1L7621£1R) (2.18)

"Note that, here, the choice of generators ~; is not unique. Other choices could be used, as long as they

fall in certain conjugacy classes. Our choice here is convenient for calculation, but as we will see, it defines a
conformal frame in which the third boundary region becomes vanishingly small in the hot limit. In appendix
A, we give an example of another construction of the same geometry and discuss how it differs from the one
used here.
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Figure 3: A Cauchy slice of the three-boundary black hole shown as a quotient of AdSs.
The action of 7, identifies the two blue geodesics while 7, identifies the two red geodesics.
The event horizons of the three boundaries Hy, Ho, and Hs = H4 U HY are also shown, where
each of them coincide with the geodesic connecting the fixed points of the isometries 1, 2,
and 3, respectively. Note that 3 has four fixed points instead of two, because it defines the
third asymptotic region as the union of two separate regions in the Cauchy slice. In the case
of no rotation, this slice is that of ¢ = 0.

where &7, = —Js and &1 = —jg. The second element is given by
Y2 = (921, g2r) = (201, e202m) (2.19)
where 37, = —(J2 cosh a+ J3sinh ) and {5 = —(jg cosh & + Js sinh &). In matrix represen-

tation, this is

cosh (%) e® sinh (%) cosh (%) €% sinh <%) ( )
9oL = , 92R = - ~ > . 2.20
e “sinh (%) cosh (%) e~ %sinh (%) cosh (%2)

These two isometries define the first and second asymptotic regions, with the event horizons of
these regions lying along the geodesics connecting the fixed points of vy, and -9, respectively.

The isometries that define the third asymptotic region are not independent of the above
two. They are v4 = =%, " = (g4, 95r) = (—912951 > —91rGp) and 74 = =y 'y =
(95, 95R) = (—gl_nggL, —gl_}%ggR)g, corresponding to the two parts of the third boundary
region as seen from the covering space. The resulting spacetime is a black hole with three
asymptotic boundaries, as shown in figure 3. The spacetime in each asymptotic region is
isometric to the exterior region of a BTZ black hole. Hence, each asymptotic region can be

8 Although ~4 and ~4 are both isometries defining the third region, for simplicity of notation, later we will
refer to them collectively as 3.



covered by the same metric (2.14) for rg > r4. The lengths of the horizons generated by
these isometries can be found from (2.17) to be

b+ o+ £ 3+ 0
hp= it Bt h o d R =B E8 (2.21)
2 2 2
where we have defined
T ~ T
(3 =2cosh™! (1“293L> , and f3=2cosh™? (r293R> . (2.22)
The parameter « can in turn be expressed using ¢;,i = 1,2, 3:
cosh & + cosh & cosh 2
cosha = 2 2 2z (2.23)

ioh A ainh &2
S11r1h281nh2

and similarly for &. Each asymptotic region can be associated with independent thermo-
dynamic parameters (2.15). The angular velocity associated to a horizon generated by an
isometry «; can be given in terms of the isometry elements as [25]

cosh™! (—Trg“) — cosh™! (Lrgm)

Q= , (2.24)
cosh™! (Lg“) + cosh™! (Lrgm)
which gives B B B
4 by — ¢ 3 — ¢
Ql = ! ~1, QQ = 2 ~2, and Qg = 3 ~3 (225)
b+ 4 by + 0o U3+ 13

for the three boundaries. From this and the fact that the horizon lengths h; are given by
2mr4 ;, we can relate the geometric parameters ¢; and ¢; for each boundary to the inner and
outer horizon lengths of the corresponding black hole. The resulting relation is

0+ 0
47

T4 = (2.26)
for i = 1,2,3. We see that setting ¢; = 0 corresponds to the extremal case?, while setting
¢; = 0; corresponds to the non-rotating case. The unique feature of (3,0) geometry (and any
geometry (n, g) other than BTZ) is the existence of a region between the horizons Hy, Hs, and
Hj that does not intersect the causal past and future of any asymptotic region. This region
is called the causal shadow of the spacetime [29], and it will be important in our discussion of
traversability below. The causal shadow region is bounded by closed geodesics, which allow us
to calculate its area using the Gauss-Bonnet theorem, giving Acg = 2(n—2+2g)7 for general
(n,g) spacetimes [19]. This shows that the causal shadow region exists for all geometries
except (2,0).

9Here we have implicitly chosen a direction of spinning. For the other choice, £; = 0 would correspond to
an extremal black hole.
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Figure 4: Construction of the (4,0) and (1,1) geometries using two and one pairs of pants,
respectively. The dashed lines represent horizons of asymptotic regions. Note that each pair
of pants is constructed from the process shown in figure 3, but here the shape of the Riemann
surface is shown explicitly.

General (n, g) black holes

More general black hole geometries can be constructed following the same method as discussed
above. For the case without rotations, general (n, g) geometries could be constructed using a
cut-and-paste procedure [20, 22], and this could be easily generalized to cases with rotations,
as we review below.

The simplest way to see this is to note that any (n,g) black hole can be constructed
from 2g + n — 2 copies of the (3,0) geometry (so-called “pair-of-pants” geometry) through a
process of cutting, twisting, and gluing. Since the (3,0) geometry is everywhere locally AdSs,
the geometry that results from a process of cutting, twisting, and gluing different copies of
it is also locally AdS3 and, therefore, is a solution of Einstein gravity. We will illustrate this
process in the case of n asymptotic regions and in case of genus g.

For instance, to construct the rotating (4,0) geometry, we need two pairs of pants, each
having 6 parameters (i.e. the mass and angular momentum of each asymptotic region). We
consider the Cauchy slices where both pairs are of the form shown in figure 3. As shown
in figure 4a, if we cut only one asymptotic region in each of the pair of pants and glue the

,10,



horizons together, this forces the lengths and orientations of the glued horizons to be equal
(the ¢’s and 0’s of the two glued regions) and introduces two new twist parameters. So, the
total number of parameters is 12, which is the correct dimension of the moduli space of the
rotating (4,0) geometry. From the resulting Cauchy slice, we can time evolve and obtain the
whole required geometry. Similarly, to construct general rotating (n,0) geometries, we need
n — 2 pairs of pants. By cutting 2n — 6 asymptotic regions and gluing them together, we can
construct a Cauchy slice of the rotating (n,0) spacetime from which the whole geometry can
be obtained by time evolution. One can easily check that the number of parameters in the
resulting geometry is the correct dimension of the moduli space, which is 2 (3n — 6).

In the case of non-zero genus, we consider the simple case of rotating (1, 1) spacetime,
which was first constructed in [24]. Using a Cauchy slice of a single rotating (3,0) geometry,
we can cut two asymptotic regions and then glue their horizons together. The remaining
asymptotic region is now the exterior of a rotating BTZ black hole with the topology of a
torus behind the horizon, as shown in figure 4b. One can easily check that this process gives
the correct number of dimensions of the moduli space, which is 6 in the case of rotating (1,1)
spacetime.

2.2 Fixed points and the conformal boundary

We now discuss the action of isometries «v € I" on the conformal boundary of AdSs, following
the method discussed in [24]. Here we will be using the conformal frame

ds?global = —dt2 + d¢2 (227)

which is naturally related to the global coordinates.
Taking r — oo for a bulk point p (2.1) gives a boundary point py. Up to a diverging
factor, it is

cos ¢+ cost sin¢ —sint 5 [ €O 5COS 5 —Cos g sin 5
po o< | . . = L2z T2l
sin ¢ + sint —cos ¢ + cost sin 5 cos 5 —sin g sin 5

v u
7= (Cf)sg) = < o 2u> (2.29)
S1n§ —Sln§

and v =t + ¢ and u = t — ¢ are the null coordinates at the boundary. The isometries of

) = 20’ (2.28)

where

interest v = (gr,gr) € I' are hyperbolic elements with their fixed points at the boundary of
AdSs3. Being a fixed point amounts to

po = grpagr = Vi’ = grU(gra)", (2.30)

where the equality holds up to an overall factor, since we are on the conformal boundary.
This means that we could find fixed points by finding eigenvectors of g; and gr. In
general, g7, and gr each have two eigenvectors, and combinations of them give “corners” of

— 11 —
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Figure 5: Boundary diamonds for the BTZ black hole, where ¢ ~ ¢ + 27. As we can
see, there are two diamonds, each containing one asymptotic boundary of the fundamental
domain.

the “boundary diamond” of v where the action of v takes place. Next, we will illustrate these
notions for the BTZ black hole and the three-boundary black hole. Analysis of fixed points
for general (n,g) geometries could be performed in a similar manner.

For the BTZ black hole, all elements of I' are integer powers of ygrz. Both g, prz and
gr,BTz have two eigenvectors

+e/

. 25 - +0/2 -
9. Brz0s = %0, gpprois = ey (2.31)

R 1 [+£1 . 1 [+£1
vi:ﬂ(:l)’ ui:ﬁ<1>. (2.32)

As shown in figure 5, there only two boundary diamonds for the BTZ black hole, with their
left and right corners at (t = 0,¢ = 7/2) and (¢t = 0,¢ = 37/2). Inside each diamond, there
are infinitely many copies of the fundamental domain, or in other words, the fundamental

where

domain and its images.

For the three-boundary black hole, we could find the fixed points and boundary diamonds
in a similar manner. But in this case, we have infinitely many fixed points (and diamonds)
since the group I' not only contains elements like ~;",7 = 1,2 but also more general “words”
like fy{”’ygfyf... etc. For 7,7 = 1,2 we have

+£0,/2

- - +0,/2 -
gin Ui = 20, gipiie; = e 2, (2.33)

with ¢4 1 and @+ 1 the same as those of the BTZ black hole, and

, 1 +e . 1 +ed (2.34)
v = — u = . .
U Viren \ 1) T e | 1

For the three-boundary black hole, the three asymptotic boundaries of the fundamental
domain are contained in the diamonds which we call “fundamental diamonds” generated by

- 12 —
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Figure 6: The fundamental diamonds of (3,0) geometry at the boundary of AdSs in global
coordinates. The fixed points p4 4 ;, p——;, p—+, and py_; correspond to the corners of the
diamonds. The diamonds of regions 1, 2, and 3 are bounded by black, red, and blue lines
respectively. In (a), the parameters are ¢; = (; = 3 for the non-rotating case, and in (b) the

parameters are ¢; = 3(; = 3 for the rotating case.

i, = 1,2,3. Other diamonds will be dubbed “image diamonds”. In figure 6, we show the
fundamental diamonds of the three-boundary black hole. The corners of the fundamental

diamonds can be found from
L= ‘—»t L= ‘—»t L= .—»t = '—»t (235)
Pt = V45U 5 Pr—yi = V45U 5 P-4 = V—yUy; 5 P——yi = V—U_ ;. .
where again 1 = 1,2, 3.

For any point py on the i*® asymptotic region of the fundamental domain, there are two

types of image points under the group action:

1. Points that are in the same fundamental diamond as py: these points are generated by
acting on pg with isometries that only involve integer powers of ~;;

2. Points that are in the image diamonds: these points are generated by acting with other

kinds of isometries on py.

Although it is hard to find the explicit locations of all of the image diamonds, they
must all lie between diamonds 1 and 2, and topological censorship guarantees that any pair
of diamonds must be spacelike separated. The boundary distance from the left corner of
diamond 1 (p44.1) to the right corner of diamond 2 (p44 2) is

dvdy (D4+,1,P++2) = \/| (Ugg1 — Upg2) (Vi1 — vy 2)|

p- p- - (2.36)
= <— — 2tan! ef"‘) (— — 2tan! ef"‘).
2 2
When « and & are small (i.e. ¢; and 0; are large), to leading order, the distance is
1 3
dody (P++,1,P++,2) = (ad)2 + O((ad)?). (2.37)

,13,



Given a choice of the boundary conformal frame, we can also define the regularized
geodesic distance through the bulk between boundary points. First, note that for any 2 x 2
matrix p with det p = 1 we have

p ' =R, p'R,, where R, = (cl) _01> (2.38)

Also, the elements of a matrix p of any bulk point scales linearly with r. So, in the limit
r — oo we find

dpuik(p1,p2) = cosh™ ( >

- ()
2

= log (r?) + log (Tr (R p R pa2)) + O (r7?)
—log (1?) +log (47Tx (RL (1) ' R.. (72) ) ) + O (r2) (2.39)

To find the renormalized boundary geodesic distance, we subtract log (7,2) then take the
r — oo limit, giving

dE™ (1o, pao) = log (4 (it ) (vit i) ) (2.40)

where
it =Ry@ and Ut =R, (2.41)

Similarly, the renormalized geodesic distance between a bulk point p and a boundary point
g = 2 T is given by

5o (p, qo) = log (Tr (p™'qa)) = log (2T (p~'5d")) . (2.42)

An important question is finding the corresponding expressions to the renormalized geodesic
distances (2.40)-(2.42) for the boundary of an asymptotic region that is in the BTZ conformal
frame dsQBTZ = —dtQB + dqﬁZB. This question is resolved in subsection 2.3.

2.3 Geodesic distances in the BTZ conformal frame

In this subsection, we calculate the renormalized geodesic distance from a bulk point p to a
boundary point gy that is in the BTZ conformal frame. We assume that gy is on the boundary
of the fundamental domain, so it is in one of those fundamental diamonds defined in section
2.2. In that diamond, we choose the BTZ conformal frame, and the renormalized distance
we calculate here is compatible with that frame. We also assume that p and gy are spacelike
separated so that we use (2.9) rather than (2.10) to calculate the distance.

First let us work out the conformal transformation between the AdS global conformal
frame and the BTZ frame. For simplicity, we first study a boundary diamond of the BTZ
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black hole, as shown in figure 5. Then we convert our results to smaller diamonds using
isometries.

Recall that global AdS3 and the BTZ coordinates are related to the embedding coordi-
nates via (2.2) and (2.16). On the boundary where both radial coordinates go to infinity one

finds _
h —blup+~lvp
47 _ _
ST V/U = tant =
U v
cosh %

sinh %ﬂ
T

—guB-i-E’UB ’
cosh — =k

sin
Y/X =tan¢ = (2.43)
where up =tp — ¢p, vg = tp + ¢p. Then, using null coordinates u =t — ¢ and v =t + ¢ on
the global AdSs boundary, the above equations simplify to

fu 1%
u=tan 'sinh —2, v =tan 'sinh—2. (2.44)
2 27

These observations allow us to compute the conformal transformation between the two con-

formal frames,

dsopa = —dudv = Q*(—dupdvg) = Q505 (—dupdvg) = Qo0 dspry (2.45)
where the conformal factor Q2 factorizes into the “left-moving” and “right-moving” conformal
factors - -

14 14 l 14
P =— = —cosu, = = — cosv. (2.46)

/. = Y43}
27 cosh Eg—f 2 2m cosh H2 2m

As we can see, when v = £5 or v = £ either ug or vg will diverge and the conformal
factors vanish. This marks the boundary of the “boundary diamond” being considered. Note
also that the conformal factors reach their maximal value at the “center”of the diamond
where v = 0 and v = 0.

For any wormhole, each asymptotic region is isometric to the exterior of some BTZ
solution. So up to conformal transformations each boundary of any wormhole is identical to
the boundary diamonds just described. While this always yields another diamond, the ranges
Awu and Av for general boundary diamonds can differ from 7. But we can use the appropriate
conformal transformations to generalize the analysis above.

Indeed, for the construction described in section 2, the relevant conformal transformations
are those induced by isometries of AdS3. Recall that the generators of AdSs isometries act
on the boundary as

2J1 = — (Jxu — Jyv) =sinvd, = 0;, 2J1 = — (Jxv + Jyv) =sinud, = 9,,  (2.47)

where we have defined
z = log tan %, y = log tan g (2.48)

These actions, written here as translations in x and y, change the size of the boundary dia-
mond. We analyze this in detail for v direction below, from which corresponding expressions
for the u direction follow from the symmetry u < v.
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We first note that translating = by zo = log tan 5 changes the diamond boundaries from
v = +7 to v = tvg. Denoting the left-moving coordinate in the new diamond by v’ we have
v v Vg

tan — = tan — tan —. 2.49

an an o tan - (2.49)

Here we assume vy < 5 and v =ty = i% are the boundaries of the new diamond given
by the images of v = +7. This relation implies

, 1 —cosv' cosuvg
dv' = dv. (2.50)

sin vg

The left-moving conformal factor then becomes

02 — icosv 1 —coisv'cosvo _ ﬁcosv"—cosvo (251)
27 sin vg 27 sin vg

Inside a diamond, it is bounded by

/ 0 V4 Av

02 < —tan — = — tan — 2.52
v=gn MY T g MR T (2:52)
where the equality holds at v = 0. When a diamond has a small size, this bound is approxi-
mately
lvog  LAw
02 < 22— . 2.53
v An 81 (2.53)

Also inside a diamond, when the point is close to one edge of the diamond (i.e. when v’ is
close to vpqy = vo or —vyp), 02 has the expansion

14
Q2 = ('~ vhay ) + O((v' — ). (2.54)

Similar relations hold for the u direction. Diamonds that are not centred at v = 0,u =0
can of course be translated to this standard position using the boundary isometries 9, and
0y so that corresponding bounds and expressions apply.

As discussed in section 2.2, if we regulate a boundary point gy by moving it to a finite
global AdS3 radial coordinate r, the geodesic distance between a bulk point p and a boundary

T —1
(9, @) = cosh™! < dlat )

point gy is

(2.55)
= log(r) +log (Tr (pq0)) + O (r™?).

To renormalize the distance in the BTZ conformal frame associated with a given asymp-
totic region of our wormhole, we should take the limit » — oo after subtracting log rp from
the above expression for a properly chosen radial coordinate rp associated to the boundary
diamond containing gg.

In Fefferman-Graham coordinates, when we transform between the global and BTZ con-
formal frames, to leading order in z, we have zp = z/|{2|. Also, to leading order, z ~ 1/r
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and zp ~ 1/rp, so we have rg ~ r|Q| = r|Q,8,|. A properly defined renormalized geodesic
distance is thus given by

At (p, gp) = log (Tr (pq)) — log || = a8 (p, qp) — log [Q2uQ]. (2.56)

2.4 The hot limit of multi-boundary wormholes

In order to construct multi-boundary traversable wormholes in section 4, we will need to
take a limit that produces the following features: 1) two horizons are separated only by an
exponentially thin causal shadow over a sufficiently large region of those horizons, and 2)
we can find a point gy on the boundary of the fundamental domain such that the conformal
factors Q% = Q202 associated with its non-trivial images under the group I' are exponentially
small. For reasons that will be clear below, we use the term “hot limit” to describe this limit
for any (n, g).

For multi-boundary wormholes with trivial topologies, we choose to take a limit where
all ¢; and ¢; are large, with El/lz fixed (i.e. M;/J; fixed)'?. In the case without rotation, this
is exactly the “hot limit” considered in [19]. In the case with rotation, this is also a limit
where the temperatures in all asymptotic regions are large. It also implies that all horizon
lengths are large compared to the AdS scale (although the converse is not necessarily true).
We explain the two advertised features below, using the three-boundary wormhole as our
main example.

First, we study the minimal distance between two neighbouring horizons. For non-
rotating (3,0) geometries, this has been computed in [19] by focusing on the half-plane of the
t = 0 slice. The minimal distance d;; between horizons H; and H; depends on the horizon
lengths, and is given by

cosh (h;/2) cosh (h;/2) 4 cosh (hy/2)

hd;; = 2.
cosh dij sinh (/2) sinh (i, /2) (2.57)
Applying (2.57) to horizons H; and Hj in our construction, we have from (2.23) that

d12 =a=aqa. (2.58)

In appendix B, we generalize (2.57) to the case with rotations, where the minimal distance
between horizons H; and Hy was shown to be given simply by
o+ a

diy =~ —. (2.59)

Other minimal horizon distances can be found from this expression by simple permutations.

It can be easily shown that o and & are exponentially small in the hot limit, and that d;; is as

—0/4 —0/4

well. As a special case, when all ¢, = ¢ and ¢; = ¢ are large, we have a ~ 2e , Qo ~ 2e

0For wormholes with internal parameters (i.e. non-trivial topologies or with n > 3), the proper limit will
also involve taking certain internal parameters to be large, in addition to having ¢; and ¢; large, with ¢;/¢;
fixed. We will discuss this briefly in section 5.
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Figure 7: A schematic diagram of the ¢ = 0 slice of a three-boundary black hole in the
hot limit. For any pair of horizons (dashed lines), there is a large region which we call Dy
(highlighted in green) where the horizons are exponentially close to each other. The causal
shadow is the region bounded by the three horizons.

and d;; ~ ety et/4, Furthermore, in this limit, it was found [19] that the distance between
the horizons is exponentially small over a large subset D, of the angular domain, for which
the lateral extent along each horizon is large compared with the AdS scale. In appendix B,
we show that this feature also applies in the rotating case. In addition, we show there that
this is no longer the case when only one of ¢; or {; are taken to be large. The latter limit
makes the horizons large but the horizon temperatures remain bounded'.

Similar results also hold in the case of a general n-boundary black hole. As discussed in
section 2.1, a general (n,0) spacetime with n > 3 can be constructed from n — 2 copies of
(3,0) geometry. Here we compute the minimal distance d;; between any two horizons H; and
H; that live in a single copy of (3, 0) geometry, though we comment on the more general case
below. For n > 3 the third horizon Hy in this copy will become part of the causal shadow of
the new (n,0) geometry and its length hj will be one of the parameters of the moduli space
associated with the casual shadow region. Therefore, the same minimal distance d;; between
horizons H; and H; as in the (3,0) geometry will hold. Choosing hj, < h; + h; as in the hot
limit above, d;; will again be exponentially small. In the more general case'? g # 0, or for
two horizons in the (n, 0) geometry which are separated by an intervening extremal surface!®
and thus which lie in distinct copies of the (3,0) geometry, taking the hot limit for each copy
of the (3,0) geometry allows us to write the separation between H; and H; as the union of a
fixed finite number of exponentially small separations. Thus we find the separation between

" This has some interesting consequences for the extremal limit that we briefly discuss in section 5.

12We have not yet discussed the case g > 0 in detail, but see section 5 for comments.

131n the case without time-symmetry, this means that the intervening extremal surface lies in the domain
of dependence of any partial (connected) Cauchy slice X for which 0% = H; U H;.
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H; and H; to be exponentially small in the hot limit for all n, g.

The other important feature of the geometry in the hot limit is that we can find points
go on the boundary for which the non-trivial image points qgnage all have conformal factors
that are exponentially small. This property will be established below, but its important
consequence follows from equation (2.56) governing the renormalized distance between p and

qiamage in BTZ frame. From this it follows that

AT (p, 457%%) = log (Tr (p™1g5™%) ) — log 90| = dESP™ (p, g5""°) — log |22 (2.60)
Here ©, and €, are the conformal factors associated with qiamage. So when we have a bulk
point p that is in the same asymptotic region as gy, in the BTZ frame, the exponentially

dBTZ( image) > dBTZ

small conformal factors associated with the images require dp,”(p, ¢, ren” (P, o) with

their difference being linear in ¢; and ENZ

To show for appropriate gy that the conformal factor associated with non-trivial images is
exponentially small in the hot limit, recall from section 2.2 that the image points are classified
into two types. We will take gy to lie in the fundamental domain (for which the boundary
diamond is not small). We first treat image points that lie in other boundary diamonds (i.e.
image diamonds). Recall from section 2.3 that the associated conformal factors satisfy

gAuimage
8T

IA Uimage

02 < and Q2 < - (2.61)

where Au'™28¢ and Av'™28¢ determine the size of the diamond to which qém) belongs. Note
that since dpay (P e, p®®) = VAumageAyimage equation (2.61) implies that 2,0, <

P g

image

@dbdy(pi-?fgeap—— ).

Let us take the (3,0) geometry as our example. There all the image diamonds lie between
diamonds 1 and 2 and are spacelike separated from them. Then, using (2.37), we have in the
hot limit

didy (P50, pI28) < dipay (P4+,1, P+4,2) ~ Vadu. (2.62)
Therefore _
24
2 _ 0202 ~
0 =000 < 612 %0 (2.63)

In the hot limit, 02 is exponentially small. As a special case, when ¢; = ¢ and 0; = 0 we have
02 < e~ (H0/4 and since d&9"™ = O(1) we also have dB1Z > ¢ 4 7.

The remaining case to consider occurs when qgnage belongs to the same boundary diamond
as gg. Let us take gy to lie at some fixed boundary location independent of ;,0;. Then in
the hot limit the analysis of section 2.3 requires qgnage to be exponentially close to one of the
fixed points associated with the corners of the fundamental diamond. Recall from (2.54) that

when this is the case the conformal factors can be approximated as

l 0
02 ~ by (lu = upay|) and/or QF ~ by (Jv — vpayl) » (2.64)
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where upgy, Uhgy are the coordinates of the relevant corner.

We will show that these conformal factors will be exponentially small and that the renor-
malized distance to qgnage will be large. In the (3,0) geometry we may derive an explicit
expression by recalling the action of the quotient construction on boundary diamonds. In
particular, the quotient of any such diamond is a cylinder. We may thus discuss a ‘funda-
mental domain’ within the boundary diamond which we take to be an open set that covers the
cylinder precisely once (or, at least, up to a set of measure zero associated with the boundary
of the fundamental domain). We will also choose this domain to be centered at the origin
u,v = 0 and to have a simple form.

The details of such a fundamental domain were computed in [30] for the case where the
bulk is a non-rotating BTZ black hole. On the ¢t = 0 slice, a corresponding fundamental

domain in the bulk may be taken to lie between the codimension-1 surfaces
¢ = m+sin~! (tanh (77,)) . (2.65)

As a result, the maximal boundary distance dy between the boundary limit of (2.65) and the
left /right corner of the diamond is

dy = cos™! (tanh (77)). (2.66)

In the case of rotation, one can show that this expression generalizes to'*

0 l
dy = (cos_1 tanh 2) (cos_1 tanh 2) (2.67)

Note that this equation reduces to (2.66) when ¢ = {, using (2.17). In the hot limit we find
dy ~ 2e~(H+0/4 Since every domain of outer communication (i.e., every region outside the

black hole) is isometric to the domain of outer communication for some BTZ black hole, the
corresponding expressions will also hold for our multi-boundary wormholes.

Without loss of generality, we assume that ¢ < lo, 05 and ¢; < l5,05. So, from (2.67),
the largest dy will occur for diamond 1, where it is given by (2.67) with ¢ and 0 replaced by
¢1 and /1, respectively. In particular, if € is the distance between q(am) and the fixed point of
the fundamental diamond, then € < dy. Furthermore, from (2.64), we have Q% ~ €. This

provides a lower bound on d2L%(p, ¢**¢°) that in the hot limit yields

drn”(p, qgmage) > —logQ? ~ —loge? > —logd? > ¢, + 1, (2.68)

ren

This verifies explicitly that the conformal factors associated with qiamage are exponentially

small in the hot limit , whether qgnage is in an image diamond or in the fundamental diamond.

As a consequence, d21%(p, qgnage) > (40

ren

MThe idea is to realize that, since yprz defined in (2.11) maps the two boundaries of the fundamental domain
to each other, then %13/73 » will map the boundary centre of the fundamental domain to one of the boundary
corners of the fundamental domain. This centre point, in global coordinates, is (¢ = 0,¢ = 7). Acting on this
point with 'y;/q%  gives the coordinates of the corner of the fundamental domain at the boundary, from which
we calculate ds.
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2.5 The CFT dual of (n,g) geometries

The bulk (n,g) spacetime is dual to a CFT state |, 4) € H1 ® --- ® Hy,, where H; is the
Hilbert space of a CF'T state on a circle. In the energy eigenbasis, this state can be expressed

aSl5

Sng) = Y Aiin i)y - lin), (2.69)

74'17""1'71

where the coefficient A;, is a function of the 2(6g — 6 4+ 3n) moduli of rotating (n,g)

B
geometry. A Cauchy slice of (n, g) spacetime is a Riemann surface ¥,, ; with n boundaries and
genus g. Suppose that the state of the CE'Ts at the n boundaries is |¢; ... ¢n) € H1®- - QH,y.
In the large temperature limit, the gravitational path integral over the Euclidean Riemann
surface with boundary conditions fixed by |¢1...¢,) is dominated by the fully-connected
bulk geometry, which by Wick rotation gives a Cauchy slice ¥, , that can give the full
(n,g) spacetime by Lorentzian time-evolution - see [19, 30, 31] for details. Varying the
moduli changes the dominant bulk geometry in the gravitational path integral, which induces
first-order phase transitions that generalize the Hawking-Page transition [32] in the (2,0)
spacetime. For example, for sufficiently large temperatures, the CFT state dual to the BTZ
black hole is a thermofield-double state and (2.69) becomes [33]

[Sa0) = Y e P2 i), i), (2.70)

i
In general, determining the coefficients A4;, . ;. from the path integral over an arbitrary ¥, 4 is

difficult. However, the CFT dual of ¥,, o in the puncture limit where h; < 1 was investigated
in [30]. It was found that in this case (2.69) becomes [30]

Sag) = 3 Chpse Bl e PBunl2)i) i), (2.71)

ilv'”vin

where C},..., depend on the n-point function of the CFTs and the moduli parameters,
B; = B; — logry — 2log 3, (2.72)

B; is the inverse temperature of the BTZ geometry in the exterior of the i asymptotic region,
and rg is an undetermined constant that is independent from the moduli parameters for (3,0)
geometry but in general depends on the internal moduli for n > 3 (see [30]).

In the hot limit, the entanglement structure of |¥, o) was investigated in [19]. In par-
ticular, it was found that the bipartite entanglement between any two CFTs at different
boundaries, up to exponentially small corrections, is that of the thermofield-double state over
a large region of AdS scale size!S. Thus, the CFT state dual to the local geometry in this

15Note that, for simplicity of notation, we are ignoring rotation for a moment. However, these equations
can easily be generalized to the case of rotation.

16This is the same region denoted by Dy in section 2.4 where the distance d;; between the two horizons H;
and H; is exponentially small.
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particular region (extending between the i*" and j* asymptotic regions through the causal
shadow) is well approximated by [X20),; = |TFD),;. This result will be important below in
making hot multi-boundary wormholes traversable.

3 Traversability in BTZ black holes

In this section, we give a general review of the construction of traversable wormholes in
BTZ black holes via double trace deformations [4], including the case with rotation [5] and
nontrivial dependence on the transverse coordinate (following [6]).

In general, the perturbative construction of traversable wormholes is associated with
violations of the averaged null energy condition (ANEC) along generators of Killing horizon
in some classical background spacetime. We review the relation between such a violation and
its perturbative backreaction on the BTZ metric below. We will then review how a double
trace deformation can cause such a violation.

3.1 Metric perturbation

The metric of a rotating BTZ black hole in the co-rotating coordinates is obtained by substi-
tuting for the co-rotating transverse coordinate x = ¢ — :—;t into (2.14) to find!'”

2,2 (p2 _ 2 2
o (M=r)(?=r2) r 2,2 2
ds® = — - dt* + " =2) _T%)dr + r*(N(r)dt + dz) (3.1)
where
Ny == (3.2)
= E :

We can pass to Kruskal coordinates by defining the right- and left-moving null coordinates.
In the right exterior region, they are defined as

U=¢e™ V=—e" (3.3)
where k = (r2 —r2)/ry is the surface gravity, u,v =t & r, are the outgoing/ingoing coordi-
nates, and the tortoise coordinate r, is

1 \/7"2—7"%—\/7"3—?”3 5.4)

re = — log .
\/7‘2—7“34— ri—rz

2K
This gives the metric

ds? = 1)2{4&MV+4L@MV—VHUMx+Vﬂl—UVf+Mﬂﬁﬂdf}

(1+UV
(3.5)

1"Tn sections 3 and 4, for simplicity, of notation we use coordinates without subscripts for the BTZ coordi-
nates. Such coordinates should not be confused with the global AdSs coordinates of section 2.
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Note that the asymptotic boundary in Kruskal coordinates is located at UV = —1.
To linear order, the geodesic equation implies that a null ray starting from the left
boundary in the far past (where V =0 and U = —o00) satisfies

U U
_ 1
V) == oV =) [ aUhg = [ aUhy, (36)
—00 4 —o0
where hyy, is the norm of k% = (9/0U)* after first-order backreaction from the quantum stress
tensor. To get hyy from the stress tensor, we use the linearized Einstein equations:

1
81G N <Tkk> = — —5 7’2_ — 7‘2 hie + QT,axhkk + 8§hkk
37 L= 73) (3.7)
+ (7“% — ’I"_Qi_) Ov (Uhgk) — 20y 0zhie + 8(2]h;m«] ,

where Ty, = Tpk®kP. To find the shift AV at U = +oco, one merely needs to integrate this
equation over all U. This yields

+o0 1 +00
87TGN/ (Tir) AU = —— [(rQ_ - ri) +2r_0, + 833] / hydU, (3.8)
—oo 2ri —oo
where asymptotic AdS boundary conditions have been used.
In [4, 5], the authors consider boundary couplings that are independent of the transverse
coordinate for simplicity. In that case, hyj is independent of z, and equation (3.8) can be
simplified to take the form

P2 g2
8tG N / (Tpr) dU = —=—— / hydU, (3.9)
27“+
and the shift of V coordinate at U = +o00 is
1 [t 4G N1
AV (+00) = / AU gy, = % / (Tip,) AU (3.10)
—0 + - —

More generally, we could consider a boundary coupling that has nontrivial dependence
on the transverse coordinate. Then we could solve (3.8) using a Green’s function H [6]

( / dUhkk> (2) = 87Cly / A H (- o) / AU (Tu) (') (3.11)

with , ,
—(ryp—r_)(@'—2) (r_+r )@ —2)
r4e rTye€ /
T e e B 3.12)
r—Tr)= T+e(r,+r+)(2w—x+x’) r+e—(r+—r,)(2w—x+x’) > ( .
627r(r_+7‘+)_1 1_6727T(r+7'r_) r >
in position space where z, 2’ € [0,27). In Fourier space, H takes the form
H(z—2a') = Z ey H, = L 2 (3.13)
- T 22 — 2 = 2igr_ + ¢?
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If we are working with planar BTZ black holes, H takes the following form,

r+6_(“+r+)(fc,_z) x>z

y —
H ($ - ) - { T+e—(r+—r7)(:c—x’) z < z, (314)

where z and 2’ can take value on the whole real axis, and in Fourier space one should just
adapt the sum in the compact case to an integral.

Note that, in particular, the zero-mode Green’s function diverges in the extremal limit.
This means that our perturbation theory breaks down in that limit, although this still suggests
that the wormhole will be open for quite a long time, as will be shown below.

In contrast, the non-zero modes of H, remains finite at extremality. So in the extremal
limit, it suffices to study only the zero mode. Recalling that the BTZ temperature is given

P2 _p2
by Ty = ;Tu_’ we have

Ty

" /hkkdde:&TGN/(Tkk}dde, (3.15)
Jr

so that (3.6) gives the average shift AV(U) =V (U) — V(—o0) as

U 21
T AViyerage (U) = 2Gn74 / / (Tie) AU dz. (3.16)
—o0 J0

But in any case, we could use (3.6) and (3.11) to calculate the shift AV(U). In particular,
the shift at U = +o0 is given by

1 oo o0
AV(—I—OO) = 4/ dUhkk = QWGN/dm'/H (.%' - x’) / dU <Tkk> (.%") . (3.17)
By choosing the boundary conformal frame to be ds%BTZ = —dt? + d¢?® = —dt* +

2
(d:c + %dt) , we can relate the boundary time with the V' coordinate via

r
4 -re

Here the sign is + for the left boundary and is — for the right boundary. The shortest transit

time ¢, from left to right boundary is realized by the geodesic that leaves the left boundary

at V = —|AV|/2 and arrives at the right boundary at |[AV|/2 so that

2’]”+ |AV|
te = — 1 — . 1
r%r —r? ©8 < 2 (3.19)

We can also calculate the shift of the boundary angular coordinate between one end of the
null geodesic and the other. Since on the horizon of the unperturbed geometry we simply
follow a particular generator where x is constant, on the boundary the change in ¢ is

bo = — o= log (‘Aw) . (3.20)

2
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3.2 Violation of ANEC from a double trace deformation
In AdS/CFT, the eternal BTZ black hole is dual to the thermofield double (TFD) state

W) = En, Jn) | Eny In) g - (3.21)

1
efﬂ(En*QHJn)/2 |
V Z(Ba QH) Zn:

Traversability is achieved by coupling the two boundaries using a double-trace deformation
08 = /dtd:n h(t,x)Og (t,z) O (—t,x) /dt 0H, (3.22)

where Op,/p is a scalar operator living in the left/right CFT, and we choose its scaling

dimension to be A = % — 1/ (%)2 +m? in order to have a relevant deformation [4]. The
boundary operator Op g is dual to a bulk scalar field @7,z with mass m. To make the
wormhole traversable, h(t, z) needs to be of some definite sign for a period of time, which we
denote as [to, tf].

We now show how such a boundary coupling leads to a violation of the ANEC. The
starting point is to evaluate the bulk two-point function along the horizon V = 0:

G(UU) =(or(U,z)0g (U, z)). (3.23)

In a perturbative expansion in powers of the boundary coupling, the one-loop contribution
to the two-point function is [4]

t
Gj, = 2sin(wA) / dtidxy h(t1,21) K (T’,t/,x'; —t1 + iﬁ/Q,xl) Kret (1, t,x3t1,21) + (t > t/)

to
(3.24)
where K is the bulk-to-boundary propagator, and IC,e is the retarded bulk-to-boundary prop-
agator. Since the BTZ black hole is just quotiented AdSs, the propagators take the same
form as those in AdSs but with a sum over images. The bulk-to-boundary propagator in the
right exterior region in rotating BTZ metric is [4, 5]

r2—r2)? & —A
K (z,t,x;ty,21) = (+2A+17T) Z [—Vz — 1cosh (kbt — r_dzy) + v/z cosh (ry6zy)]

n=—oo
(3.25)
where
P2 _ 2
2= —5—>5, O0l=t—t;, O0x,=x—x1+271N (3.26)
r —
+ —
We may convert this to Kruskal coordinates in the right exterior region using the relations
1 U 1-UV\?
2/@0g< v)’ : <1+UV) (3:27)
Evaluated along V' = 0, K becomes
A
r2 —r2)z X U _ -A
KU, 0,; Uy, 1) = (EAHW) > [—Ule "0 4 cosh (uéxn)] . (3.28)
n=—oo
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The other ingredient in G}, is the retarded bulk-to-boundary propagator

Kret (2,8, @3 t1,21) = |K (2,8, 251, 21)| 0(6t)0 (V2 — 1 cosh (kdt — r_6z) — \/z cosh (r40z)) .
(3.29)
Now we are ready to write down Gp,(U,U’):

2 dUy . (log(Uy)
GL(U,U") COZ/ dxn/UoﬁUl < xn>

n=—oo

-A
— cosh (7‘+51‘n)>] 0+ (U U
(3.30)

é = 0 (e7"=%U — Uy cosh (r4dz)), and we have used the fact that
og(U)

K
For planar BTZ black holes we would discard the image sum and extend the range of the

U
[(e_T5$” ULU' + cosh (r+5mn)) (e_r‘h”
Ur

rJAr K2 sin(rA)
22572
on the right boundary ¢t =

where Cy =

x1 integral to the whole real axis [4]. But one should not forget the constraint imposed by
the #-function in the retarded propagator, which requires

e~ "% — U, cosh (rydz) > 0. (3.31)

With the Green’s function at hand, the bulk stress tensor associated with the scalar field is

1gm,gp"(?p(%G (x,x") —

(T,,) = lim ((%(%G (x,x’) ~3

x—x’

1
§gwm2G (X,X/)> . (3.32)
When evaluated along the horizon at V' = 0, the gyy component of the unperturbed metric

vanishes, so to leading order we have
T; = 1 ’ ! . .
(Tki) Jim Oy O G, (U, U ) (3.33)

Finally one can compute the opening of the traversable wormhole by inserting (3.30) and
(3.33) into (3.17). As shown in [4], the result is generally non-zero. So for the right sign of
the coupling function A it will give a time-advance that makes the wormhole traversable.

4 Traversability of multi-boundary wormholes in AdS;

As shown in [19], for non-rotating multi-boundary wormbholes in the hot limit, the boundary
state locally resembles the thermofield double state in region Dy discussed in section 2.4. This
could be easily generalized to rotating wormholes by adding an angular potential. In regions
that we call D, (since x is a more well-defined coordinate on the horizon in the rotating
case), the horizons are exponentially close to each other, and corresponding local state is
exponentially close to a piece of the TFD

1
\/Z (Brrp, QrFD) 5

W) = e Brrp(En—QrrpJn)/2 B, Jn) | B, Jn>R_ (4.1)
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Since our state is only locally TFD, the parameters Srpp and Qrpp can take any value de-
pending on the conformal frame. They thus should not be confused with the actual black hole
inverse temperature and angular velocity. In the hot limit, one expects that such wormholes
can be made traversable by the approach described in section 3. We will show this below
focussing on the three-boundary wormhole, and in particular on the process of traversing
from boundary 1 to boundary 2.

We will first set the stage by describing and justifying the planar BTZ coordinates to be
used below. In these coordinates, our calculations will be very similar to those of [4]. We will
then show that, in the hot limit, the image sum in the Green’s function is well approximated
by the leading term. This greatly simplifies our calculation. Finally, we calculate the worm-
hole opening with a double-trace deformation, which we require to be larger than the local
thickness of the causal shadow.

4.1 Planar BTZ coordinates and the boundary coupling

Any BTZ black hole is locally isometric to AdSs, and thus also to planar BTZ. As a result,
in any contractible region D,, we may use planar BTZ coordinates to describe the spacetime.
Here, we use the following planar coordinates to describe both sides of the wormhole:

2 (22 22\ 72 di? -2 -2
ds® = —(7 — 79 )dt” + + rdz”. (4.2)

=2 =2

R
We think of & as ranging over the entire real axis, though we are most interest in some domain
that corresponds to D,. The choice of 7 is arbitrary. The corresponding Kruskal metric is

1 ST~ M e
mQZ(1+UVP<—ammv+rﬂ1—va¢£). (4.3)

Although there is a causal shadow between the two horizons in the hot limit, it is expo-
nentially small in ¢ and ¢ over large stretches of the horizons. So if we put the origin of the
Kruskal coordinates at the bifurcation surface of horizon 1 or 2 (or any place between them)
in the region where this separation is small, we make only an exponentially small error if we
then identify the above coordinates with natural BTZ coordinates in either exterior. This
justifies using the metric (4.3) for D,. We will come back to this in section 4.3.

Note that, in the planar BTZ metric, the horizon size parameters can be scaled arbitrarily
so long as long as we change the definition of coordinates accordingly. To be more concrete,
there are two kinds of coordinate transformations that we can make (they are expressed in
the ordinary angular coordinate ¢ for now and we will come back to the co-rotating x later):

1. “Adjusting the temperature” (rescaling r4 and r_ by the same amount):

>

F=Mr, 1= b=~. (4.4)

¢
)\7

with the new horizon parameters 74+ = Ary;
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2. “Changing the angular velocity” (changing the relative size of 1 and r_):

(t,6) = (tcoshy + ¢sinh~y, tsinhy + ¢ cosh ) (4.5)
772:7“2%—773—7“3. .
with the new horizon parameters 7, = r;coshy + r_sinhy and #_— = risinhy +
r_ coshy. As a special case, we could set 7_ = 0 by choosing 7 = — tanh ! :—J‘r In this
case we have
f,~ =(ret —r_@, 7y —r_t r2 —r2
2 =r2—r2.

with Fi = ri —7r2.

Note that we are not changing the actual temperature and angular momentum associated
with any particular global BTZ horizon (which are uniquely determined by the bulk geome-
try). The point is that the above description is valid only in a contractible domain where the
full global structure is not apparent. In that domain we have described the system to good
approximation as a planar BTZ black hole, for which the temperature and angular velocity
depend on the choice of the boundary conformal frame and are not fixed by the bulk metric.

For simplicity, we would like to choose 7— = 0 and 7. be some fixed O(1) number
when the 74 ;’s become large. To clarify our notation, from here on, we use tildes to mark
quantities associated with the bulk planar BTZ coordinates (for which 7— = 0), and we use
symbols without tildes to refer to quantities associated with the BTZ conformal frame in
some asymptotic region — perhaps with additional labels to denote the asymptotic region of
interest.

Combining (4.4) and (4.6), the coordinate transformations we will use on boundaries 1

and 2 are s
(t, @) = (roits — 17— iGis T4 50 — r—ity) [T+
f2 T',Lz - r%ﬂ' (47)
=2 — 3 _ .2
Thi TR 7"7,1"

where ¢ = 1, 2 indicate different asymptotic regions. The above should be understood as two
different coordinate transformations, one for each value of i. As a result, the two boundaries
will naturally define distinct notions of ‘time advance’ AV;y # AV, (and also for similar
quantities).

It will sometimes also be useful to consider the inverse transformation:

T ~ ~ - ~
(tiy i) = ﬁ(?‘.ﬁit +r_ip,r_it+ T+7Z¢). (4.8)
T+7Z o T_vi

In terms of the co-rotating coordinates, the transformations and inverse transformations for

(t,z) and (,%) are

~  Rit; —r_w; Ty ~
A R e S J s w (Y W (4.9)
T+ T4+
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Ty [~ T T

t;=— (t + x) . T = —F. (4.10)
Kj T4+ T+,

In particular, it will be convenient to take points on the horizons with x = 0,2; = 0 to lie

deep inside the domain D, where the separation between horizons is exponentially small. The

associated Kruskal null coordinates are related by
U=e ™i%y;, V=i, (4.11)

so that at £ = 0 (where z; = 0) we have U = U;,V = V;. One may interpret this as saying
that we have chosen all three sets of coordinates to be associated with the same reference
frame at = 0.

From the planar coordinates we use, it is tempting to conclude that our setup can be
directly reduced to that of [4], reviewed in section 3. But, here, the subtlety is that the
boundary coupling is not naturally defined in the conformal frame related to our bulk metric.
To perform calculations, we need to first look at the conformal transformations and how
they act on boundary operators. To this end, we recall that the boundary metric in the "
asymptotic region is

~9 B
ds? = —df} +d} = = (~dP* + dd*) (4.12)

+a7: _77:

A general bi-local double-trace deformation coupling boundaries 1 and 2 will take the
form!®

0S = /dtldt2dﬂf1d$2 f(t1,t2, 21, 02)O1(t1, 21)O2(t2, 72). (4.13)

Local couplings, analogous to those used in [4] are obtained by taking f proportional to a
delta-function. But as opposed to the TFD case studied in [4], there is no preferred natural
way to identify points on boundary 1 with points on boundary 2. We must therefore choose
some diffeomorphism 7 from boundary 1 to boundary 2 and write

Ftr,ta, 21, 22) = h(ty, 1) 63 (x2 — n(x1)), (4.14)

where x; = (t;,x;), i = 1, 2. Integrating out the delta function then expresses the coupling in
terms of a single set of boundary coordinates. For computational convenience, we will choose
the the functions h and 7 such that the double-trace deformation takes a simple form when
expressed in the conformal frame associated with the tilded bulk coordinates. In particular,

we take

2 2 = a5t
55 = / didz W, 7) (”“ﬁ) (742_27”‘2) 01(7,7)0s (7, &) (4.15)

T T

'8Tn contrast with section 3 (e.g. in (3.22)) we will take the boundary times to increase toward the future
on all boundaries.
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where O /2 is the quantity O/, conformally transformed to the above frame. Note that the
expression (4.15) includes conformal factors from (4.12) to account for the transformations of
boundary operators with conformal dimension A as well as for the Jacobian associated with
the change of integration variables.

We can also choose a simple explicit form of ﬁ(f, #) that turns on at some time fo and
turns off at some later time ¢ ¢- For example, for every t in between we could either choose a
constant (and in particular Z-independent) coupling,

h(i, &) = ha2~2A (4.16)
or a Gaussian in & to make it localize near some angular position Zg; i.e., for t; <t <t 1> We
may take

=2 (= = \2
- 75 (T — &
h(T, &) = hA> 2 exp (—+(12°)) : (4.17)
o

where ) is some fixed quantity with dimension of temperature and h is a small and dimension-
less parameter. Note that [4, 5] both set A equal to the temperature of their BTZ background.
But there is no unique temperature associated with a general multi-boundary black hole, as
the temperatures of the three horizons can differ. This is not a problem. We are free to
choose A in any way we like, including to choose it independent of the background, so long
as long as it has the correct dimensions.

4.2 Image sum in the hot limit

We now show that the image sum in G, can be well approximated by keeping only the leading
term. Since Gy, is built from two bulk-to-boundary propagators, it will be useful to study
them first.
The extrapolate dictionary tells us that the bulk-to-boundary propagator in the global
AdS3 conformal frame can be obtained from the bulk two-point function via
K(p.gs) = lim "2G(p,q) = lim rAG(r,t, xy ! 1), (4.18)
r’'—0o0 "' —00
Here p and ¢ are two points in the AdSsg bulk. The coordinates of ¢ are those marked with
primes, and the unprimed coordinates are those of p.
In AdSs3, the two-point function for a free scalar field is given by

G (p,q) = Gaas,(Z) = i (z2—1)"" (Z + (22— 1)1/2)17A : (4.19)

where Z = 1 + U(g’q) and o(p,q) is the (squared) distance between p and ¢ in the four
dimensional embedding space (sometimes called “chordal distance” [34]), and with all frac-
tional powers of positive real numbers defined by using the positive real branch. The chordal
distance is related to the geodesic distance d(p,q) in AdS space by

o(p,q) = 4sinh? (d(g"z)) . (4.20)
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When 7 is large, the two-point function has the expansion

-A
Gadss (p:q) = 247 <21—A - 12;;? Z724+0 (Z—3)> : (4.21)
In AdSs, the (unrenormalized) distance between a bulk point p and a boundary point gy
has the divergent part logr’, so Gags, (z,2') decays as (r')~®. But this decay is precisely
cancelled by the (r')? in the extrapolate dictionary (4.18). As a result, the bulk-to-boundary
propagator can also be obtained from the bulk-to-bulk propagator by inserting into (4.19)
an appropriately-renormalized (and thus finite) distance between p and gy. According to the
analysis of section 2.2, in the conformal frame associated with the global coordinates, this
renormalized distance is defined by subtracting log r’ from the unrenormalized distance.

In a general conformal frame the extrapolate dictionary becomes

K = lim FAG(rt a2 (4.22)
' —00
where 7 = 1/|Q2| and Q2 is the conformal factor such that the boundary metric ds? satisfies
ds®> = —dt® + d¢® = di.s%z. Equivalently, we could obtain the correct bulk-to-boundary
propagator by inserting into (4.19) an appropriately renormalized bulk-to-boundary distance
associated with our conformal frame.

Since the three-boundary wormholes of section 2 are quotients of AdSs, their bulk-to-
boundary propagators are given by sums of AdS3 propagators over image points. In particular,
for points p and gy, we need to include AdS3 propagators for the point pairs (p, g.959%), where
gr and ggr are any “words” formed from the left and right generators of the quotient group
I" used to construct the wormhole.

We would like to locate the image points gr¢sgl and find how they contribute to the
bulk-to-boundary propagator in the hot limit. Recall from section 2.2 that there are two
types of image points: 1) points inside the same boundary diamond as gy and 2) points in
other diamonds (i.e. outside the boundary diamond that gy is in). As shown in section 2.4,
when gy is taken to lie at a fixed location in the largest diamond non-trivial image points in
the same diamond must be exponentially close to one of the fixed points at the left or right
corners of the diamond. For those in other diamonds it suffices to note that such non-trivial
image diamonds are exponentially small in the hot limit.

Since all (AdS-)Cauchy slices of the wormhole spacetime lift to surfaces that run through
the left and right corners of each boundary diamond, and since any bulk point p can be taken
to lie on a spacelike (AdS-)Cauchy surface, p will have spacelike separation from points close
enough to these corners. This will in particular be true of the non-trivial images of g5 in the
hot limit. This means that we use (2.9) rather than (2.10) to calculate the geodesic length
between p and those image points.

In section 2.3, we calculated the geodesic distance between spacelike separated bulk and
boundary points in the BTZ frame. Applying that result to our image points, we found in
section 2.4 that the geodesic distance is at least linearly large in (¢; +ZZ) in the hot limit. From
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Figure 8: The Penrose diagram of a black hole spacetime with causal shadow. In particular,
this could represent the causal structure of a section that contains two asymptotic regions in
the three-boundary wormhole geometry. In the figure, we mark the two bifurcation surfaces
H, and H,, and AVgg caused by the causal shadow. In the hot limit that we consider in the
text, AVgg is exponentially small in £ and / in region D,.

(4.19) and (4.20) we then see that the contributions to the bulk-to-boundary propagator from
the image points are exponentially suppressed, and thus that they can be ignored in the hot
limit.

4.3 Traversing the causal shadow

We now show in the hot limit that the |[AV| induced by a fixed boundary coupling becomes
larger than the gap |AVeg| between horizons associated with the existence of the causal
shadow region (see figure 8). Thus AVipq = |AV| — |AVeg| becomes positive and therefore
the wormbhole is traversable.

From the above two subsections, the one-loop contribution to the Green’s function is

-1
G Co/d:xl/ dUlh &Ula
0o T+Up T+

(U« U, (4.23)

- —A
(010' + cosh (17+5:f)) (g — cosh (77+555)>]

1

where Uy = €™, 62 = — %1 and

A-l Al A1 A1
- P8sin(rA) — 7"%,1 2 Ti,g -5\ 7“_2,,_( T1—r2)7z (M, —r?y) 7T sin(rA)
Co = — = 5 :
2 (287)? 2(2%)
(4.24)

The limits of the z integral above are set by the theta function 6 (% — cosh (f+5:i)).

— 32 —



We can use the above result to calculate the stress tensor:

<Tkk> = lim_ 80,6Uéh(0, [7/) (4.25)
U'—=U

If the background was exactly planar BTZ, then the shift of V coordinate at U = +oco would
be

AV (%) = 2rGy / o d7'H (7 — %) < /_ Z dU(T}@) (@), (4.26)

—0o0
where H (% — #') is the Green’s function (3.14) for non-compact # and ' when 7_ = 0,
H(i—7) =rpe ™2, (4.27)

From our arguments above, using this result with (4.7) also gives the correct result in
our three-boundary wormhole up to two sorts of corrections. The first are due to errors
n (4.7) associated with the finite-but-small thickness of the causal shadow, and the second
comes from neglecting the sum over non-trivial images of gs. But both sorts of corrections
are exponentially small in the hot limit as discussed above. Thus to good approximation in
the coordinates related to the i*® boundary we find the shift AV; to be

AVj(x;) = e T AV (2). (4.28)

To put this all together, recall that we are most interested in the region near & = 0
where the separation between the bifurcation surfaces is exponentially small. There V; ~ V,
and the three coordinate systems are all associated with the same frame of reference. In
particular, both bifurcation surfaces will have U1+ V7 = constant and also Us+ Vs = constant.
Thus the exponentially small separation is also associated with exponentially small sized
Affcg ~ AVi,cs = AV, cg of the causal shadow in this region.

On the other hand, near x; = 0 the time advance AVj is not exponentially suppressed at
large ¢; and l;. Instead, it has at most a polynomial suppression. Thus at large ?;,0; we find
AV; > AV; cs near £ = 0 and the wormhole becomes traversable in this region.

As a consistency check, we now show that the physical quantity AV; does not depend on
the fictitious parameter 7, that we have been using to simplify the calculations. Our starting
point is (4.23). We write G = F + F’ where F is the term explicitly shown in (4.23)

dU; - (logU
Co/dm/ Ul O%Ul,fﬁ
Uo 7”—f—Ul T+

. —A
(€10 + cosh (7467) ) (5 — cosh <f+<5:f:>>]

1

(4.29)
and F’ is the term with U and U’ exchanged. Using this symmetry we may write (Tj;) in
the form

<Tkk> =2 lim 8ﬁ,8UF(U, U/) (4.30)
U'—U
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Next, we change the integration variables to make the dependence on 7 clear. First we
define a new integration variable y = cosh(7+0%) = cosh[r{(Z — Z1)] to write F' as

~ 2C0 U/ dy - (logl, - U -
FO,0") = / N i <U1U’+y> ~ _y ,
Ug U1 \/y2 -1 T+ U
(4.31)

where the limits of the y integral are determined by the theta function 8 (U% — cosh (7%45:2‘)),

and the argument Z; in the function h should be implicitly treated as a function of y.

As we can see, all the 7 dependence in the prefactor 250 cancels out. Recall also the
+

relations (4.9)

7:+i' = T4,iTs, f.:,.f = Kiti — T—i%y, (4.32)

so that on the horizon V = 0 we have

U = el = eriti=r—izi, (4.33)
Similar relations hold for U, U’ and Uy in the integration limits, and they can be expressed
in terms of purely boundary quantities. Furthermore, we should avoid introducing any 7
dependence in h by hand. This means that, when choosing the form of h, the argument £,
and Z; in h should both come with a factor of 7, , since the combination 7, #; and 7, Z; can
be converted by (4.32) to something that only involves parameters and coordinates related to
some boundary. In terms of the new variable ¥, this means that we must have the combination
(7 & — cosh™! ) independent of 7. Therefore, F is also independent of 7.
The physical observable AV; on one boundary is

/7y e+ =) ( / Z Ao <Tkk>> (&) . (4.34)

No dependence on 7 is introduced in passing from F to [ dU (T kk) and, from our previous

+oo
AVZ(.%) =g it QTFGN/

—0o0

argument, [ dU <T kk) as a function of Z’ should only depend on the combination 717’. As we
can see, all other parts involving tilded coordinates in (4.34) all come with a factor of 7, so
the physical quantity AV; will not have any 7 dependence.

4.4 Numerical results

We now present some numerical results in order to illustrate our construction. Here we will
take the boundary coupling to be turned on at fy = 0 and never shut off. We will consider
two types of boundary coupling: 1) for every ¢ > 0 the coupling is constant, as in (4.16) and
2) for every £ > 0 we take the coupling to be a Gaussian centered at some point, as in (4.17).

We also take h = 1 and A = 1 in the boundary coupling, and Gy = 1 for simplicity.
Furthermore, without loss of generality, we only consider a subspace of the wormhole param-
eter space defined by 72 = 100 , 7_ 2 = 20 and r4 ; = 100. We then study the dependence
of various quantities on the remaining parameters r_; (or equivalently the ratio between
angular momentum and mass J;/M; on boundary 1) and the scaling dimension A.
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Figure 9: For the case of constant coupling, the averaged null energy f Ty dU (left) and
the horizon shift AV; at 1 = 0 (right). In both panels, we choose h = 1, A = 1, Gy = 1,
ryo =100, r_ o =20 and r4 1 = 100.
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Figure 10: For the case of Gaussian coupling, the averaged null energy [ TedU at z1 =0
(left) and its profile for general x; (right). In both panels, we choose h =1, A=1, Gy =1
r42=100,7r_2=20and r4 1 =100, 0 = 0.2 and xg = 0. In the right panel we also choose
A =0.6.

0.0000 |- —0.00008
—0.0001 —0.00010
—0.0002 b —
— A=04 0.00012 — /My =0
AV, . AV,
—0.0003 A=05 —0.00014 /My =02
A=06 — L/M; =05
—0.0004 —0.00016
— A=0T — L/M; =08
—o.ooos—ﬁ— -0.00018
0.0 0.2 0.4 0.6 0.8 1.0 -100 —~50 0 50 100
Ji/My T

Figure 11: For the case of Gaussian coupling, the shift of horizon AV} at z; = 0 (left) and
its profile for general z; (right). In both panels, we choose h =1, A =1, Gy =1 ry 2 = 100
,7—2=20and r4; =100, 0 = 0.2 and Zg = 0. In the right panel we also choose A = 0.6.

The quantities studied below are the averaged null energy [ TikdU and the shift of the
horizon AV; as measured on boundary 1. Note that here [ Tw:dU is not a physical quantity
since we could choose any kind of “tilded coordinates”, but we show it here because its
negativity is important for traversability. For convenience we choose 7 = 1.
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Results for the case of constant coupling are shown in figure 9. There we show [ TredU
and AV; at 1 = 0 (or equivalently £ = 0) for different A and J;/M;. As we can see, both
quantities are negative and diverge near extremality.

For Gaussian coupling, we choose o = 0.2 and Zo = 0. In figure 10 we show ffkkdﬁ at
x1 = 0 (or equivalently & = 0) and its angular dependence for some choices of parameters,
while results about AV; are shown in figure 11.

5 Discussion

The above work extends the Gao-Jafferis-Wall traversability protocol [4] to multi-boundary
wormbholes. The main physical difficulty in achieving traversability in this case is the existence
of the causal shadow region between the horizons, and the main technical complication in
the analysis involves calculating the image sum in the Green’s function. Our main result is
that, in the hot limit, both of these difficulties can be circumvented and traverseability can
be demonstrated for appropriate couplings. As shown in section 2, this is because for any
pair of horizons there is a region whose extent along the horizons is large in comparison with
the AdS length where the horizons are exponentially close to each other. The analysis in
such regions thus reduces to that of [4]. In particular, in this limit the distance between the
global AdS3 images of appropriate bulk points bceomes large, which exponentially suppresses
all but one of the corresponding contributions to the Green’s function relative to the largest
such contribution. This greatly simplifies the calculation of the Green’s function required to
calculate the average null energy along the horizon. In a dual field theory description, the
essential point is that the CFT state in this region is approximately given by the TFD state
[19].

Although we presented explicit calculations only for the three-boundary wormhole geom-
etry, our work can be generalized to general n-boundary genus g wormholes (i.e. to (n,g)
geometries). The one subtlety in doing so is that, in addition to taking a hot limit for the
horizons, one must also take similar limits of certain internal moduli in order to make the
causal shadow become thin. See figure 12 for the case n = 2, ¢ = 1, but similar issues arise
even for ¢ = 0 when n > 3. Indeed, one can view this as a result of the fact that a general
(n,g) geometry can be made by sewing together copies of (3,0) “pair of pants” geometries,
but that in doing so some of the minimal circles that would have defined horizons in some
given (3,0) geometry become cycles inside the causal shadow of the final (n,g) geometry.
Thus, the desired hot limit involves not only taking limits of the parameters that define the
final (n,g) horizons, but also requires us to take limits of the parameters associated with
the would-be (3,0) horizons that are now inside the causal shadow. That this is possible in
general was shown in [19] for the static case, but those arguments can be generalized to allow
rotation just as in section 2 above. Thus the traversability analysis reduces to exactly the
same one we used for the case without genus, and once again the CFT dual to the bulk region
where the horizons are exponentially close together is well-approximated by the TFD state.
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Figure 12: A Cauchy slice of the (2,1) geometry showing the horizons (dashed lines) and
the two extremal surfaces (dotted lines) in the causal shadow region. In the hot limit, the
length of both types of surfaces have to be taken to be large so that, by the Gauss-Bonnet
theorem, there will be a large region where they are arbitrarily close to each other.

In the extremal limit, we showed in appendix B that the minimal distance d;; between
the horizons diverges logarithmically. However, from (4.23) and (4.26), we see that the time
advance AV induced by the double trace deformation diverges polynomially, which is also
illustrated in figures 9 and 11. For this reason, we expect that the wormhole is still traversable
in the extremal limit even though, as discussed in section 3, the perturbative analysis that
allowed us to calculate AV will no longer be valid'®.

Recall that, in the ER=EPR proposal [18], entanglement between two (non-interacting)
quantum systems is geometrically realized by a non-traversable wormhole (i.e. Einstein-
Rosen bridge) connecting them. When the two systems are allowed to dynamically interact
with each other via a quantum interaction like the double trace deformation, a quantum
teleportation protocol becomes possible and quantum information can be teleported between
them through the wormhole that now becomes traversable. As pointed out in [4], this is
distinct from the standard quantum teleportation protocol where only classical interactions
are allowed between the two entangled systems (though see [12] for connections with standard
quantum teleportation). On the one hand, this provided a concrete mechanism for recovery
of quantum information via the Hayden-Preskill protocol [36] from the Hawking radiation
of old black holes [9]. One the other hand, it inspired a number of experimental proposals
(e.g. [14, 17]) for quantum teleportation via quantum interactions between two entangled
systems?’. Looked at from this perspective, and although our construction holds in the limit
where the mulitpartite entanglement is ignored, our work is a first step toward a generalization
of the quantum teleportation protocol to quantum systems with multipartite entanglement.
Since the CFT state dual to a general (n,g) geometry is not known for general values of
the moduli parameters, one can focus on the hot limit where locally the entanglement is
mainly bipartite and is approximately a TFD state. It would be interesting to realize such a
quantum state in the lab and perform the quantum teleportation protocol on it. As discussed
in this work, the main new features in this case are the causal shadow region as well as the
non-trivial angular dependence. It would be interesting to understand how these features are

YFor further discussion on traversable wormholes in the extremal limit, see [35].
20The proposal [14] was experimentally realized in [37] using an ion trap quantum computer.
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realized in an experimental set-up of quantum teleportation in the case of quantum circuits
with multipartite entanglement. We expect that, in this case, the traversability protocol will
occur on a mixed TFD state and that the “size” of the causal shadow region will provide an
upper bound on the fidelity of the teleported state. See also [38] for a 3-mouth traversable
wormhole where multipartite entanglement may play a larger role.

As discussed in [9], the experience of an observer passing through a two-sided traversable
wormhole is that of a smooth free fall through a low-curvature spacetime. For an observer
entering a multi-boundary wormhole, the experience will be similarly pleasant only for partic-
ular angular domains. Entering the wormhole from other directions will require the observer
to become trapped inside the black hole and to reach the singularity. One should thus be
sure of the accuracy of one’s trajectory when entering such a wormhole.

There are several directions for future investigations. First, it would be interesting to
extend this work to higher dimensions, where gravity is more interesting than in three dimen-
sions. In addition, as discussed above, this work can be interpreted as a quantum teleportation
circuit with multipartite entanglement as a resource. Therefore, one can extend the analysis
of [14, 17] to this case and characterize how multipartite entanglement affects the properties
and conditions of teleportation.
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A An alternative construction of the three-boundary black hole

We constructed a three-boundary black hole in section 2.1 by choosing some AdS3 isometries
and taking a quotient by the group I' that they generate. Although the representation of
the generators used there is convenient for calculation, it makes the third asymptotic region
(whose horizon is generated by v, Lo and Y17y 1) appear to be on a different footing than the
other two. In particular, as described in the standard AdSs conformal frame the coordinate
size of this third region vanishes in the hot limit. To show that this is an artifact of our choice
of generators, we give an alternative representation below where the coordinate size of the
third boundary is non-vanishing in the hot limit. For simplicity, we focus on the non-rotating
case which is generated by a diagonal subgroup of isometries where v;, = vyg = . Dropping
this diagonal restriction will give a generalized to the rotating case.

We begin with the most general form of a SL(2,R) generator:

§=a1J1 + 222 + x3J3. (A1)
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This generator is hyperbolic when x? + x3 — x% > 0, which is equivalent to the requirement
Tref > 2. The length of horizon generated by v = ef is

¢ =2cosh™! % =/} + 23 — 23 (A.2)

It is thus natural to parametrize our generator as

=

& = {(coshasin 8J; + coshacos fJo — sinh aJ3) = 4(a - J) (A.3)

where the generator is written as an inner product taken with signature (+ + —), where
d = (cosh asin B, cosh v cos B, sinh o), and J = (Jy, Jo, J3).
To make a three-boundary wormhole, we choose two such generators

=

&1 = {1 (cosh aq sin B1J1 + cosh g cos B1Jo — sinh g J3) = 41 (dy - J) (A.4)

&9 = l3(cosh ag sin BaJ1 + cosh g cos BaJo — sinh agJ3) = lo(ds - j), (A.5)
so that the corresponding group elements are v; = €' and 7, = €%2. Then the group element
related to the third asymptotic region is y3 = —v; 1s. As a result, the horizon length of the
third region are related to our parameters by

cosh %3 = —cosh %1 cosh %2 + sinh %1 sinh %2(&’1 - ). (A.6)
Note that our geometry depends only on the three parameters {¢1, {3, d; - G2}, or equivalently
{€1,02,03}. This gives the expected three-dimensional moduli space for a non-rotating 3-
boundary wormbhole.

Our previous representation corresponds to the choice @ = (0,—1,0) and dy =
(0, — cosh av, — sinh «v). These choices reproduce our previous results. In particular, our pre-
vious representation does not involve Ji.

However, this choice is far from unique. The only real restriction on the form of the
generators is that the geometry not become the one-boundary torus wormhole described in
[24]. To make a (3,0) wormhole, the bulk geodesic connecting the fixed points of «; must not
cross that connecting the fixed points of v2, while they cross each other in the (1, 1) wormhole
construction.

To be definite, let us choose generators with

ap=—w=a, === % (A.7)
This ansatz still allows the freedom to vary the horizon lengths by tuning ¢1, fs, «. Then, as
we did in section 2.2, we could calculate the eigenvectors of the «;’s and analyze the fixed
points on the boundary in the hot limit, and those fixed points are also endpoints of the
horizons. For the non-rotating case, all the fixed points are on the ¢ = 0 slice, and here
we take ¢ € [0,27). As shown in figure 13, in the hot limit the endpoints of H; approach

¢ = 3m/2 and ¢ = 7, while the endpoints of Hy approach ¢ = 37/2 and ¢ = 0, and ethe
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Figure 13: The three-boundary wormhole in the hot limit under our alternative construction
with a1 = —ae =, 81 = =32 = B = 7, where Hy, Hy and Hj are the three horizons. The
fixed points of distinct generators become close to each other in this limit, but each asymptotic
region remains a finite size.

ndpoints of Hs approach ¢ = 0 and ¢ = w. Recalling that Hs is generally described by a
pair of geodesics in the AdS3 covering space, we see that one of these geodesics still shrinks
to zero coordinate size along the boundary in this limit, though the other part of H3 remains
of finite size.

B Minimal distance between horizons in the hot limit

We now generalize (2.57) to the case of the rotating (3,0) geometry. We focus on the distance
d12 between H; and Hs since it is the simplest in our representation of the geometry. Due
to the symmetry of the construction, the point on Hj that is closest to Hs sits at the origin
of global coordinates. Furthermore, if the point on Hs that is closest to H; has coordinates
(tm, "ms ®m), then t,, = 0 by left-right symmetry (see figure 6b) and we can set the angular
coordinate such that ¢,, = 0. Recall that any geodesic in AdS3 can be viewed as the in-
tersection of a plane in the embedding space (2.1) that passes through the origin with the
hyperboloid of AdS3. The idea here is to find the two vectors that span the plane defining
H,, then use them to find r,,. Using the geodesic distance equation (2.9), we can then find
dis.

Suppose that the left and right corners of the diamond of Hs have coordinates (—ty, —¢q)
and (o, ¢o), respectively, at the boundary. Using (2.35) and (2.34), it is straightforward to
show that

—

to=tan"le ™™ —tan"le @ (B.1)

¢o =tan "t e +tan"le % (B.2)
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Then, in embedding space, the vectors v; = (X;,Y;, U;, V;) that point from the origin to the
points (—tg, —¢o) and (tg, ¢o) at the boundary can be found using (2.2) to be

U, = (cos ¢g, — sin ¢y, costg, —sintg) and Tr = (cos ¢, sin ¢g, cos g, sin tg) (B.3)

The vector connecting the origin with (0, 7,,,0) is parallel to ¢ + Ur. From this, it is easy
to show that

Tm —_ COSQq (BA)

VIt costy

The matrix representation of (0,7,,,0) is

0 T '

So, using (2.9), the minimal distance between H; and Hj is the geodesic distance between

Pm

P and the origin and is given by

Trp, _
dyg = cosh™* ( r2p ) = cosh™! (vl —1-7“?,1) . (B.6)

Combining this with (B.4) gives

dis = tanh ! <COS ¢0> . (B?)

cos ty
After some algebra, this can be simplified to

a+a
5

diy = (B.8)

which implies that a;, & > 0. As a consistency check, note that in the non-rotating case where
l; = £;, we have
a=a&=djy= Q, (B.g)

which is precisely (2.58) as quoted in section 2.4. Other minimal geodesic distances (i.e. da3
and dj3) can be obtained from (B.8) by simple permutations. This completes our generaliza-
tion of the minimal geodesic distance equation to the rotating case. That the angular domain
Dy over which di3 is exponentially small is also large compared with the AdS length scale in
the rotating case follows from the same analysis as in [19] through an appropriate choice of
the Cauchy slice on which the distance is calculated.

B.1 The large horizon limit near extremality

This is the limit where

{i—+o00 and ¢ —-0 <& h;j—oo and Ty; — 0. (B.10)
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From (B.8), it is easy to see that the above requires
a—0 and & —o00 = d;jj — o0. (B.11)

This shows that the minimal geodesic distance between the horizons in the extremal limit will
diverge. In particular, one can show that the divergence is logarithmic d;; ~ log (2/7TH) +
@) (TEI) Note however that the hot limit studied in the current paper instead yields

;00 and ¢, =00 <& h; — oo and Ty, — 00, (B.12)
implying that

a—0 and a—0 = d;—0. (B.13)

Thus our hot limit implies large horizons, but near extremality large horizons do not imply
a hot limit. It also shows that the exponentially small local causal shadow region exists only
in the hot limit where a and & are both small.
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