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Abstract: We generalize the Gao-Jafferis-Wall construction of traversable two-sided worm-

holes to multi-boundary wormholes. In our construction, we take the background spacetime

to be multi-boundary black holes in AdS3. We work in the hot limit where the dual CFT

state in certain regions locally resembles the thermofield double state. Furthermore, in these

regions, the hot limit makes the causal shadow exponentially small. Based on these two fea-

tures of the hot limit, and with the three-boundary wormhole as our main example, we show

that traversability between any two asymptotic regions in a multi-boundary wormhole can

be triggered using a double-trace deformation. In particular, the two boundary regions need

not have the same temperature and angular momentum. We discuss the non-trivial angular

dependence of traversability in our construction, as well as the effect of the causal shadow

region.
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1 Introduction

Wormholes have long been of interest since the time of Einstein and Rosen [1]. Although

Einstein-Rosen bridges connect different asymptotic regions of spacetime, topological censor-

ship [2, 3] forbids their traversability when only classical matter fields are present. The same

is of course true of their multi-boundary wormhole generalizations. However in some cases,

quantum matter fields can cause violations of the averaged null energy condition (ANEC).

In such cases the arguments of [2, 3] cannot be applied, so that such ANEC violations might
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make the wormholes traversable. We remind the reader that the ANEC is satisfied when the

integral of stress tensor along any complete null geodesic is non-negative,∫
γ
Tabk

akb ≥ 0. (1.1)

In recent years, there have been many approaches to constructing traversable wormholes

from ANEC violations, see [4–11]. In particular, in the seminal paper by Gao, Jafferis and

Wall [4], the authors construct a traversable wormhole using a two-sided BTZ black hole as

the background, where the dual CFT state is the thermofield double (TFD) state. With

an appropriate sign of coupling, a double-trace deformation that directly couples the two

boundary CFTs can cause the violation of the ANEC. Adding the coupling shifts the horizons

so as to allow certain causal geodesics to travel from one asymptotic boundary to the other.

In [5], this construction was generalized to rotating BTZ black holes. It is also interesting to

recall that the transmission of such signals was interpreted in [9] from the dual field theory

perspective as being due to enacting a quantum teleportation protocol between entangled

quantum systems. This connection with quantum information has been of great interest (see

e.g. [12–17]) as a concrete realization of the ER=EPR idea [18].

In the current paper, we generalize this construction to any pair of asymptotic regions

in certain (non-rotating or rotating) multi-boundary black holes1 in AdS3. For a general

multi-boundary black hole, a finite-sized causal shadow separates the horizons of different

asymptotic regions, making the wormhole hard to traverse. In our construction, we focus

on the hot limit considered in [19], where the temperatures related to all horizons are large.

In that limit, for any two horizons, there exists a region where the causal shadow between

them is exponentially small. A double-trace deformation can then easily render the wormhole

traversable. As we will see, the hot limit will also give us convenience in doing the calculations,

which otherwise would be difficult to perform.

Our construction has several interesting features that differ from those of [4] and [5].

The first is that the pair of boundaries in our traversable wormhole construction is quite

general, and the associated horizons can have different temperatures and angular momenta.

Furthermore, our spacetimes have non-trivial angular dependence, and this can be seen in

features related to traversability. In particular, signals from a given asymptotic region will

be able to reach a second asymptotic region only when fired from appropriate regions of the

first boundary. Signals launched from other parts of the first boundary may instead traverse

to a third asymptotic region, or they may be become stuck behind an event horizon. It is a

general feature of our construction that some such event horizon will remain even though our

wormholes are traversable. Again, this is associated with the lack of rotational symmetry in

our spacetimes.

1Note that, while there is some freedom in the use of such terms, our choice is to use “multi-boundary black

holes” when the context refers to the background spacetime, and use “multi-boundary wormholes” when the

context refers to traversable wormholes in particular.
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In section 2, we review the construction of multi-boundary wormholes in AdS3 and their

important properties that will be useful in later sections. The geometry of these wormholes

in the hot limit is also discussed, as well as the entanglement structure of the dual CFT

state. A general review of the Gao-Jafferis-Wall construction is then given in section 3, where

we emphasize a rather general form of the coupling between boundaries that can induce

traversability. Using these two ingredients, we proceed to construct the multi-boundary

traversable wormhole in section 4. We summarize our findings and discuss their implications

and connections with recent work in the literature in section 5. A number of technical details

and supporting calculations are left to the appendices.

2 Multi-boundary black holes in AdS3

In this section, we will first review how to construct multi-boundary black holes by quotienting

empty AdS3 with isometries, following an algebraic approach [20–25]2. Then we discuss fixed

points of those isometries, (renormalized) geodesic distances in different conformal frames,

and how they behave in the hot limit. Those results will be useful in our construction of

multi-boundary traversable wormholes. Finally, we briefly describe the CFT states that are

dual to these geometries.

2.1 Quotients of AdS3 space

In three-dimensional Einstein gravity, the Ricci tensor completely specifies the Riemann ten-

sor. The consequence of this is that all gravity solutions are locally isometric to AdS3,

which is the Lorentzian, maximally-symmetric spacetime with constant negative curvature

and isometry group SO(2, 2) ' SL(2,R) × SL(2,R). Besides pure AdS3, other solutions to

the equations of motion are locally AdS3 but differ globally from it and can be obtained by

quotienting AdS3 by a discrete subgroup Γ of SO(2, 2). Throughout the paper, we take the

AdS radius LAdS = 1. The spacetime AdS3 can be defined as the submanifold of

R2,2 =

{
p =

(
U +X −V + Y

V + Y U −X

)}
, ds2 = − det(dp) ≡ η̄abdx̄adx̄b, (2.1)

given by the hyperboloid det(p) = 13, where we defined the 4-vector x̄a = (U, V,X, Y ) and

metric η̄ab = diag (−1,−1, 1, 1). In global coordinates, this hyperboloid is parametrized by

the intrinsic coordinates (t, r, φ) defined by

X = r cosφ, Y = r sinφ, U =
√

1 + r2 cos t, V =
√

1 + r2 sin t (2.2)

which gives the induced metric

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dφ2 (2.3)

2For construction of these geometries using explicit forms of the Killing vectors, see [26].
3dp is the matrix defined by taking the differential of every element of the matrix p.
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where t ∼ t+ 2π4 and φ ∼ φ+ 2π. The connected part of the group SOc(2, 2) is SL(2,R)⊗
SL(2,R)/Z2. The group elements (gL, gR) ∈ SOc(2, 2) act on a point p according to

p→ gLpg
t
R. (2.4)

From this, we see that the Z2 symmetry correspond to the equivalence relation (gL, gR) ∼
(−gL,−gR). A convenient basis of generators {J1, J2, J3}×{J̃1, J̃2, J̃3} of the isometry group

SL(2,R)× SL(2,R) is

J1 ≡ −
1

2
(JXU − JY V ) , J̃1 ≡ −

1

2
(JXU + JY V )

J2 ≡ −
1

2
(JY U + JXV ) , J̃2 ≡ −

1

2
(JY U − JXV )

J3 ≡ −
1

2
(JUV − JXY ) , J̃3 ≡

1

2
(JUV + JXY )

(2.5)

where the Killing vectors Jab = x̄a∂̄b − x̄b∂̄a obey the SO(2, 2) algebra

[Jab, Jcd] = η̄acJbd − η̄adJbc − η̄bcJad + η̄bdJac (2.6)

In matrix representation, the generators are expressed as

J1 = −1

2
γ1, J2 = −1

2
γ2, J3 = −1

2
γ3 (2.7)

where5

γ1 =

(
1 0

0 −1

)
, γ2 =

(
0 1

1 0

)
, γ3 =

(
0 1

−1 0

)
(2.8)

and similarly for J̃i
6.

To understand the action of the group elements (gL, gR), we will describe AdS3 as the

group manifold of SL(2,R), with the Penrose diagram shown in figure 1. The action of group

elements g ∈ SL(2,R) on the identity element e is shown there, according to which they are

classified into conjugacy classes depending on where the point e→ gegt = ggt lies,

Hyperbolic Tr g > 2 ggt ∈ I
Hyperbolic Tr g < −2 ggt ∈ II

Elliptic |Tr g| < 2 ggt ∈ III, IV
Parabolic |Tr g| = 2 ggt ∈ light cones

4Usually the universal cover of t is taken by unwrapping it, but as we will see, it is not necessary here since

the wormhole constructions will automatically remove closed timelike curves.
5Our matrix representation of p is different from that defined in [24, 25], which causes the generators to be

slightly different.
6In matrix representation, J̃i takes the same matrix form as Ji = − 1

2
γi but the infinitesimal transformations

on p are different from those of Ji’s, since Ji : p→ − 1
2
γip while J̃i : p→ − 1

2
pγti .

– 4 –



φ = πφ = −π

t = π

t = −π

I

II

III

IV

e

Figure 1: The group manifold of SL(2,R), which is also the Penrose diagram of AdS3. The

dotted lines represent the action of the group elements of SL(2,R) on the identity element e

placed at the origin of AdS3 in global coordinates. The isometries of SL(2,R) are classified

depending on which region the element e is mapped to. Dashed lines represent null rays.

We will focus on the action of subgroups Γ ⊆ SOc(2, 2) with Tr g > 2 hyperbolic elements,

whose fixed points are on the boundary of AdS3. This is because it ensures that AdS3/Γ is

free of conical singularities and closed timelike curves [20, 22]. Removing from the spacetime

the past and future of those fixed points yields the restricted spacetime ÂdS3 where the action

of the quotient on the spacetime is free of pathologies and leads to a spacetime ÂdS3/Γ. We

will illustrate this process by reviewing the construction of ÂdS3/Γ in the case of BTZ black

holes [27, 28] and three-boundary black holes [20–22]. We also discuss generalizations to n-

boundary black holes with and without non-trivial topologies [20, 22, 24]. A Cauchy slice of

these geometries is a Riemannian manifold of genus g and boundary number n. So, we can

classify the black hole geometries by a 2-tuple (n, g). In the non-rotating case, the number

of parameters (or in other words, dimension of the moduli space) needed to specify the (n, g)

geometry is equal to 1 for (2, 0) and is 6g−6+3n otherwise. In the rotating case, this number

is doubled.

Before reviewing the construction of these geometries, we will give general formulas for

calculating the geodesic distance. The group manifold representation allow us to easily cal-

culate the geodesic distances d(p, q) between two arbitrary points, p and q [23]. In particular,

if p and q are connected by a spacelike geodesic, then

d(p, q) = cosh−1

(
Tr
(
p−1q

)
2

)
. (2.9)
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With a timelike geodesic connecting p and q, the geodesic distance is

d(p, q) = cos−1

(
Tr
(
p−1q

)
2

)
. (2.10)

When Tr
(
p−1q

)
< −2, there is no geodesic connecting p and q.

We now discuss various cases in detail.

BTZ black hole

In this case, the subgroup Γ is generated by a single element

γBTZ = (gL,BTZ , gR,BTZ) =
(
e`ξL,BTZ , e

˜̀ξR,BTZ
)

(2.11)

and a convenient choice for ξL,BTZ and ξR,BTZ is

ξL,BTZ = −J2, ξR,BTZ = −J̃2 (2.12)

with ` = 2π(r+ + r−) and ˜̀ = 2π(r+ − r−) being two positive real parameters. In matrix

representation, this gives

gL,BTZ =

(
cosh

(
`
2

)
sinh

(
`
2

)
sinh

(
`
2

)
cosh

(
`
2

)) , gR,BTZ =

cosh
(

˜̀

2

)
sinh

(
˜̀

2

)
sinh

(
˜̀

2

)
cosh

(
˜̀

2

) . (2.13)

The isometry γ has two fixed points at the boundary given by t = 0, φ = π/2 and t = 0, φ =

3π/2. Removing the past and future regions of these fixed points gives the restricted space

ÂdS3. Any two geodesics that are related by the isometry γBTZ are identified, and we can

choose a region that is bounded by such a pair of geodesics as the fundamental domain of

ÂdS3/Γ, see figure 2. The minimal length between these two geodesics is uniquely determined

by r+ and r−, and is the intersection of the geodesic connecting the fixed points with the

fundamental domain. This defines the two-sided BTZ black hole, where each side is covered

by the usual BTZ coordinates

ds2 = −
(
r2
B − r2

+

) (
r2
B − r2

−
)

r2
B

dt2B+
r2
B(

r2
B − r2

+

) (
r2
B − r2

−
)dr2

B+r2
B

(
dφB −

r+r−
r2
B

dtB

)2

(2.14)

where the subscript B means that we are using BTZ coordinates. The thermodynamic quan-

tities related to the black hole are

M =
r2

+ + r2
−

8GN
=

`2 + ˜̀2

64π2GN
, J =

r+r−
4GN

=
`2 − ˜̀2

64π2GN

TH =
1

β
=
r2

+ − r2
−

2πr+
=

`˜̀

2π2(`+ ˜̀)
, ΩH =

r−
r+

=
`− ˜̀

`+ ˜̀
.

(2.15)
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H

/

/

Figure 2: A Cauchy slice of a BTZ black hole shown as a quotient of AdS3. The action of γ

identifies the two blue geodesics, and the region between them is the fundamental domain of

the quotient. The minimal geodesic H separating the two coincides with the event horizon

of the black hole. In the non-rotating case, this slice is at t = 0. But in the case of rotation,

there is a relative boost between the two identified geodesics.

By writing the point p in (2.1) in terms of the BTZ coordinates using the transformation

U =

√
r2
B − r2

−
r2

+ − r2
−

cosh (r+φB + r−tB) , X =

√
r2
B − r2

+

r2
+ − r2

−
cosh (r+tB + r−φB) ,

V =

√
r2
B − r2

+

r2
+ − r2

−
sinh (r+tB + r−φB) , Y =

√
r2
B − r2

−
r2

+ − r2
−

sinh (r+φB + r−tB)

(2.16)

one can show that the action of γBTZ on p is simply to map φB → φB + 2π. The length of

the bifurcation surface (horizon length) generated by γ can be found from (2.9) to be [23]

h = cosh−1

(
Tr gL,BTZ

2

)
+ cosh−1

(
Tr gR,BTZ

2

)
(2.17)

From (2.11), we see that this gives the expected horizon length of `+˜̀

2 = 2πr+.

Three-boundary black hole

The subgroup Γ in this case is generated by two elements γi = (giL, giR), i = 1, 2. We choose

the first one to be the same as the isometry used to construct the BTZ black hole7

γ1 = (g1L, g1R) = (e`1ξ1L , e
˜̀
1ξ1R) (2.18)

7Note that, here, the choice of generators γi is not unique. Other choices could be used, as long as they

fall in certain conjugacy classes. Our choice here is convenient for calculation, but as we will see, it defines a

conformal frame in which the third boundary region becomes vanishingly small in the hot limit. In appendix

A, we give an example of another construction of the same geometry and discuss how it differs from the one

used here.
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H1

/

/

//

//

H2

H ′3

H ′′3

Figure 3: A Cauchy slice of the three-boundary black hole shown as a quotient of AdS3.

The action of γ1 identifies the two blue geodesics while γ2 identifies the two red geodesics.

The event horizons of the three boundaries H1, H2, and H3 = H ′3∪H ′′3 are also shown, where

each of them coincide with the geodesic connecting the fixed points of the isometries γ1, γ2,

and γ3, respectively. Note that γ3 has four fixed points instead of two, because it defines the

third asymptotic region as the union of two separate regions in the Cauchy slice. In the case

of no rotation, this slice is that of t = 0.

where ξ1L = −J2 and ξ1R = −J̃2. The second element is given by

γ2 = (g2L, g2R) = (e`2ξ2L , e
˜̀
2ξ2R) (2.19)

where ξ2L = −(J2 coshα+ J3 sinhα) and ξ2R = −(J̃2 cosh α̃+ J̃3 sinh α̃). In matrix represen-

tation, this is

g2L =

 cosh
(
`2
2

)
eα sinh

(
`2
2

)
e−α sinh

(
`2
2

)
cosh

(
`2
2

)  , g2R =

 cosh
(

˜̀
2
2

)
eα̃ sinh

(
˜̀
2
2

)
e−α̃ sinh

(
˜̀
2
2

)
cosh

(
˜̀
2
2

)  . (2.20)

These two isometries define the first and second asymptotic regions, with the event horizons of

these regions lying along the geodesics connecting the fixed points of γ1 and γ2, respectively.

The isometries that define the third asymptotic region are not independent of the above

two. They are γ′3 = −γ1γ
−1
2 ⇒ (g′3L, g

′
3R) = (−g1Lg

−1
2L ,−g1Rg

−1
2R) and γ′′3 = −γ−1

1 γ2 ⇒
(g′′3L, g

′′
3R) = (−g−1

1L g2L,−g−1
1Rg2R)8, corresponding to the two parts of the third boundary

region as seen from the covering space. The resulting spacetime is a black hole with three

asymptotic boundaries, as shown in figure 3. The spacetime in each asymptotic region is

isometric to the exterior region of a BTZ black hole. Hence, each asymptotic region can be

8Although γ′3 and γ′′3 are both isometries defining the third region, for simplicity of notation, later we will

refer to them collectively as γ3.
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covered by the same metric (2.14) for rB > r+. The lengths of the horizons generated by

these isometries can be found from (2.17) to be

h1 =
`1 + ˜̀

1

2
, h2 =

`2 + ˜̀
2

2
, and h3 =

`3 + ˜̀
3

2
, (2.21)

where we have defined

`3 ≡ 2 cosh−1

(
Tr g3L

2

)
, and ˜̀

3 ≡ 2 cosh−1

(
Tr g3R

2

)
. (2.22)

The parameter α can in turn be expressed using `i, i = 1, 2, 3:

coshα =
cosh `3

2 + cosh `1
2 cosh `2

2

sinh `1
2 sinh `2

2

, (2.23)

and similarly for α̃. Each asymptotic region can be associated with independent thermo-

dynamic parameters (2.15). The angular velocity associated to a horizon generated by an

isometry γi can be given in terms of the isometry elements as [25]

Ωi =
cosh−1

(
Tr giL

2

)
− cosh−1

(
Tr giR

2

)
cosh−1

(
Tr giL

2

)
+ cosh−1

(
Tr giR

2

) , (2.24)

which gives

Ω1 =
`1 − ˜̀

1

`1 + ˜̀
1

, Ω2 =
`2 − ˜̀

2

`2 + ˜̀
2

, and Ω3 =
`3 − ˜̀

3

`3 + ˜̀
3

(2.25)

for the three boundaries. From this and the fact that the horizon lengths hi are given by

2πr+,i, we can relate the geometric parameters `i and ˜̀
i for each boundary to the inner and

outer horizon lengths of the corresponding black hole. The resulting relation is

r±,i =
`i ± ˜̀

i

4π
(2.26)

for i = 1, 2, 3. We see that setting ˜̀
i = 0 corresponds to the extremal case9, while setting

`i = ˜̀
i corresponds to the non-rotating case. The unique feature of (3, 0) geometry (and any

geometry (n, g) other than BTZ) is the existence of a region between the horizons H1, H2, and

H3 that does not intersect the causal past and future of any asymptotic region. This region

is called the causal shadow of the spacetime [29], and it will be important in our discussion of

traversability below. The causal shadow region is bounded by closed geodesics, which allow us

to calculate its area using the Gauss-Bonnet theorem, giving ACS = 2(n−2+2g)π for general

(n, g) spacetimes [19]. This shows that the causal shadow region exists for all geometries

except (2, 0).

9Here we have implicitly chosen a direction of spinning. For the other choice, `i = 0 would correspond to

an extremal black hole.
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(a)

(b)

Figure 4: Construction of the (4, 0) and (1, 1) geometries using two and one pairs of pants,

respectively. The dashed lines represent horizons of asymptotic regions. Note that each pair

of pants is constructed from the process shown in figure 3, but here the shape of the Riemann

surface is shown explicitly.

General (n, g) black holes

More general black hole geometries can be constructed following the same method as discussed

above. For the case without rotations, general (n, g) geometries could be constructed using a

cut-and-paste procedure [20, 22], and this could be easily generalized to cases with rotations,

as we review below.

The simplest way to see this is to note that any (n, g) black hole can be constructed

from 2g + n− 2 copies of the (3, 0) geometry (so-called “pair-of-pants” geometry) through a

process of cutting, twisting, and gluing. Since the (3, 0) geometry is everywhere locally AdS3,

the geometry that results from a process of cutting, twisting, and gluing different copies of

it is also locally AdS3 and, therefore, is a solution of Einstein gravity. We will illustrate this

process in the case of n asymptotic regions and in case of genus g.

For instance, to construct the rotating (4, 0) geometry, we need two pairs of pants, each

having 6 parameters (i.e. the mass and angular momentum of each asymptotic region). We

consider the Cauchy slices where both pairs are of the form shown in figure 3. As shown

in figure 4a, if we cut only one asymptotic region in each of the pair of pants and glue the
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horizons together, this forces the lengths and orientations of the glued horizons to be equal

(the `’s and ˜̀’s of the two glued regions) and introduces two new twist parameters. So, the

total number of parameters is 12, which is the correct dimension of the moduli space of the

rotating (4, 0) geometry. From the resulting Cauchy slice, we can time evolve and obtain the

whole required geometry. Similarly, to construct general rotating (n, 0) geometries, we need

n− 2 pairs of pants. By cutting 2n− 6 asymptotic regions and gluing them together, we can

construct a Cauchy slice of the rotating (n, 0) spacetime from which the whole geometry can

be obtained by time evolution. One can easily check that the number of parameters in the

resulting geometry is the correct dimension of the moduli space, which is 2 (3n − 6).

In the case of non-zero genus, we consider the simple case of rotating (1, 1) spacetime,

which was first constructed in [24]. Using a Cauchy slice of a single rotating (3, 0) geometry,

we can cut two asymptotic regions and then glue their horizons together. The remaining

asymptotic region is now the exterior of a rotating BTZ black hole with the topology of a

torus behind the horizon, as shown in figure 4b. One can easily check that this process gives

the correct number of dimensions of the moduli space, which is 6 in the case of rotating (1, 1)

spacetime.

2.2 Fixed points and the conformal boundary

We now discuss the action of isometries γ ∈ Γ on the conformal boundary of AdS3, following

the method discussed in [24]. Here we will be using the conformal frame

ds2
global = −dt2 + dφ2 (2.27)

which is naturally related to the global coordinates.

Taking r → ∞ for a bulk point p (2.1) gives a boundary point p∂ . Up to a diverging

factor, it is

p∂ ∝

(
cosφ+ cos t sinφ− sin t

sinφ+ sin t − cosφ+ cos t

)
= 2

(
cos v2 cos u2 − cos v2 sin u

2

sin v
2 cos u2 − sin v

2 sin u
2

)
= 2~v~ut (2.28)

where

~v =

(
cos v2
sin v

2

)
, ~u =

(
cos u2
− sin u

2

)
(2.29)

and v = t + φ and u = t − φ are the null coordinates at the boundary. The isometries of

interest γ = (gL, gR) ∈ Γ are hyperbolic elements with their fixed points at the boundary of

AdS3. Being a fixed point amounts to

p∂ = gLp∂g
t
R ⇒ ~v~ut = gL~v(gR~u)t, (2.30)

where the equality holds up to an overall factor, since we are on the conformal boundary.

This means that we could find fixed points by finding eigenvectors of gL and gR. In

general, gL and gR each have two eigenvectors, and combinations of them give “corners” of
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Figure 5: Boundary diamonds for the BTZ black hole, where φ ∼ φ + 2π. As we can

see, there are two diamonds, each containing one asymptotic boundary of the fundamental

domain.

the “boundary diamond” of γ where the action of γ takes place. Next, we will illustrate these

notions for the BTZ black hole and the three-boundary black hole. Analysis of fixed points

for general (n, g) geometries could be performed in a similar manner.

For the BTZ black hole, all elements of Γ are integer powers of γBTZ . Both gL,BTZ and

gR,BTZ have two eigenvectors

gL,BTZ~v± = e±`/2~v±, gR,BTZ~u± = e±
˜̀/2~u± (2.31)

where

~v± =
1√
2

(
±1

1

)
, ~u± =

1√
2

(
±1

1

)
. (2.32)

As shown in figure 5, there only two boundary diamonds for the BTZ black hole, with their

left and right corners at (t = 0, φ = π/2) and (t = 0, φ = 3π/2). Inside each diamond, there

are infinitely many copies of the fundamental domain, or in other words, the fundamental

domain and its images.

For the three-boundary black hole, we could find the fixed points and boundary diamonds

in a similar manner. But in this case, we have infinitely many fixed points (and diamonds)

since the group Γ not only contains elements like γmi , i = 1, 2 but also more general “words”

like γm1 γ
n
2 γ

k
1 ... etc. For γi, i = 1, 2 we have

giL.~v±,i = e±`i/2~v±,i, giR.~u±,i = e±
˜̀
i/2~u±,i (2.33)

with ~v±,1 and ~u±,1 the same as those of the BTZ black hole, and

~v±,2 =
1√

1 + e2α

(
±eα

1

)
, ~u±,2 =

1√
1 + e2α̃

(
±eα̃

1

)
. (2.34)

For the three-boundary black hole, the three asymptotic boundaries of the fundamental

domain are contained in the diamonds which we call “fundamental diamonds” generated by
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Figure 6: The fundamental diamonds of (3, 0) geometry at the boundary of AdS3 in global

coordinates. The fixed points p++,i, p−−,i, p−+,i, and p+−,i correspond to the corners of the

diamonds. The diamonds of regions 1, 2, and 3 are bounded by black, red, and blue lines

respectively. In (a), the parameters are `i = ˜̀
i = 3 for the non-rotating case, and in (b) the

parameters are `i = 3˜̀
i = 3 for the rotating case.

γi, i = 1, 2, 3. Other diamonds will be dubbed “image diamonds”. In figure 6, we show the

fundamental diamonds of the three-boundary black hole. The corners of the fundamental

diamonds can be found from

p++,i = ~v+,i~u
t
+,i , p+−,i = ~v+,i~u

t
−,i , p−+,i = ~v−,i~u

t
+,i , p−−,i = ~v−,i~u

t
−,i. (2.35)

where again i = 1, 2, 3.

For any point p∂ on the ith asymptotic region of the fundamental domain, there are two

types of image points under the group action:

1. Points that are in the same fundamental diamond as p∂ : these points are generated by

acting on p∂ with isometries that only involve integer powers of γi;

2. Points that are in the image diamonds: these points are generated by acting with other

kinds of isometries on p∂ .

Although it is hard to find the explicit locations of all of the image diamonds, they

must all lie between diamonds 1 and 2, and topological censorship guarantees that any pair

of diamonds must be spacelike separated. The boundary distance from the left corner of

diamond 1 (p++,1) to the right corner of diamond 2 (p++,2) is

dbdy(p++,1, p++,2) =
√
|(u++,1 − u++,2)(v++,1 − v++,2)|

=

√(π
2
− 2 tan−1 e−α

)(π
2
− 2 tan−1 e−α̃

)
.

(2.36)

When α and α̃ are small (i.e. `i and ˜̀
i are large), to leading order, the distance is

dbdy(p++,1, p++,2) = (αα̃)
1
2 +O((αα̃)

3
2 ). (2.37)
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Given a choice of the boundary conformal frame, we can also define the regularized

geodesic distance through the bulk between boundary points. First, note that for any 2 × 2

matrix p with det p = 1 we have

p−1 = R⊥p
tRt⊥, where R⊥ =

(
0 −1

1 0

)
(2.38)

Also, the elements of a matrix p of any bulk point scales linearly with r. So, in the limit

r →∞ we find

dbulk(p1, p2) = cosh−1

(
Tr
(
p−1

1 p2

)
2

)

= cosh−1

(
Tr
(
R⊥p

t
1R

t
⊥p2

)
2

)
= log

(
r2
)

+ log
(
Tr
(
R⊥p

t
∂1R

t
⊥p∂2

))
+O

(
r−2
)

= log
(
r2
)

+ log
(

4 Tr
(
R⊥
(
~v1~u

t
1

)t
Rt⊥
(
~v2~u

t
2

)))
+O

(
r−2
)

(2.39)

To find the renormalized boundary geodesic distance, we subtract log
(
r2
)

then take the

r →∞ limit, giving

dglobal
ren (p1∂ , p2∂) = log

(
4
(
~u1
⊥. ~u2

)(
~v1
⊥. ~v2

))
, (2.40)

where

~u⊥ = R⊥~u and ~v⊥ = R⊥~v. (2.41)

Similarly, the renormalized geodesic distance between a bulk point p and a boundary point

q∂ = 2 ~v~ut is given by

dglobal
ren (p, q∂) = log

(
Tr
(
p−1q∂

))
= log

(
2 Tr

(
p−1~v~ut

))
. (2.42)

An important question is finding the corresponding expressions to the renormalized geodesic

distances (2.40)-(2.42) for the boundary of an asymptotic region that is in the BTZ conformal

frame ds2
BTZ = −dt2B + dφ2

B. This question is resolved in subsection 2.3.

2.3 Geodesic distances in the BTZ conformal frame

In this subsection, we calculate the renormalized geodesic distance from a bulk point p to a

boundary point q∂ that is in the BTZ conformal frame. We assume that q∂ is on the boundary

of the fundamental domain, so it is in one of those fundamental diamonds defined in section

2.2. In that diamond, we choose the BTZ conformal frame, and the renormalized distance

we calculate here is compatible with that frame. We also assume that p and q∂ are spacelike

separated so that we use (2.9) rather than (2.10) to calculate the distance.

First let us work out the conformal transformation between the AdS global conformal

frame and the BTZ frame. For simplicity, we first study a boundary diamond of the BTZ
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black hole, as shown in figure 5. Then we convert our results to smaller diamonds using

isometries.

Recall that global AdS3 and the BTZ coordinates are related to the embedding coordi-

nates via (2.2) and (2.16). On the boundary where both radial coordinates go to infinity one

finds

Y/X = tanφ =
sinh −

˜̀uB+`vB
4π

cosh
˜̀uB+`vB

4π

, V/U = tan t =
sinh

˜̀uB+`vB
4π

cosh −
˜̀uB+`vB

4π

, (2.43)

where uB = tB − φB, vB = tB + φB. Then, using null coordinates u = t− φ and v = t+ φ on

the global AdS3 boundary, the above equations simplify to

u = tan−1 sinh
˜̀uB
2π

, v = tan−1 sinh
`vB
2π

. (2.44)

These observations allow us to compute the conformal transformation between the two con-

formal frames,

ds2
global = −dudv = Ω2(−duBdvB) = Ω2

uΩ2
v(−duBdvB) = Ω2

uΩ2
vds

2
BTZ (2.45)

where the conformal factor Ω2 factorizes into the “left-moving” and “right-moving” conformal

factors

Ω2
u =

˜̀

2π cosh
˜̀uB
2π

=
˜̀

2π
cosu, Ω2

v =
`

2π cosh `vB
2π

=
`

2π
cos v. (2.46)

As we can see, when u = ±π
2 or v = ±π

2 either uB or vB will diverge and the conformal

factors vanish. This marks the boundary of the “boundary diamond” being considered. Note

also that the conformal factors reach their maximal value at the “center”of the diamond

where u = 0 and v = 0.

For any wormhole, each asymptotic region is isometric to the exterior of some BTZ

solution. So up to conformal transformations each boundary of any wormhole is identical to

the boundary diamonds just described. While this always yields another diamond, the ranges

∆u and ∆v for general boundary diamonds can differ from π. But we can use the appropriate

conformal transformations to generalize the analysis above.

Indeed, for the construction described in section 2, the relevant conformal transformations

are those induced by isometries of AdS3. Recall that the generators of AdS3 isometries act

on the boundary as

2J1 = − (JXU − JY V ) = sin v∂v ≡ ∂x, 2J̃1 = − (JXU + JY V ) = sinu∂u ≡ ∂y, (2.47)

where we have defined

x = log tan
v

2
, y = log tan

u

2
. (2.48)

These actions, written here as translations in x and y, change the size of the boundary dia-

mond. We analyze this in detail for v direction below, from which corresponding expressions

for the u direction follow from the symmetry u↔ v.
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We first note that translating x by x0 = log tan v0
2 changes the diamond boundaries from

v = ±π
2 to v = ±v0. Denoting the left-moving coordinate in the new diamond by v′ we have

tan
v′

2
= tan

v

2
tan

v0

2
. (2.49)

Here we assume v0 <
π
2 and v′ = ±v0 = ±∆v

2 are the boundaries of the new diamond given

by the images of v = ±π
2 . This relation implies

dv′ =
1− cos v′ cos v0

sin v0
dv. (2.50)

The left-moving conformal factor then becomes

Ω2
v =

(
`

2π
cos v

)(
1− cos v′ cos v0

sin v0

)
=

`

2π

cos v′ − cos v0

sin v0
(2.51)

Inside a diamond, it is bounded by

Ω2
v ≤

`

2π
tan

v0

2
=

`

2π
tan

∆v

4
, (2.52)

where the equality holds at v′ = 0. When a diamond has a small size, this bound is approxi-

mately

Ω2
v .

`v0

4π
=
`∆v

8π
. (2.53)

Also inside a diamond, when the point is close to one edge of the diamond (i.e. when v′ is

close to vbdy = v0 or −v0), Ω2
v has the expansion

Ω2
v =

`

2π
(|v′ − vbdy|) +O((v′ − vbdy)2). (2.54)

Similar relations hold for the u direction. Diamonds that are not centred at v = 0, u = 0

can of course be translated to this standard position using the boundary isometries ∂v and

∂u so that corresponding bounds and expressions apply.

As discussed in section 2.2, if we regulate a boundary point q∂ by moving it to a finite

global AdS3 radial coordinate r, the geodesic distance between a bulk point p and a boundary

point q∂ is

dbulk(p, q) = cosh−1

(
Tr
(
p−1q

)
2

)
= log(r) + log

(
Tr
(
p−1q∂

))
+O

(
r−2
)
.

(2.55)

To renormalize the distance in the BTZ conformal frame associated with a given asymp-

totic region of our wormhole, we should take the limit r → ∞ after subtracting log rB from

the above expression for a properly chosen radial coordinate rB associated to the boundary

diamond containing q∂ .

In Fefferman-Graham coordinates, when we transform between the global and BTZ con-

formal frames, to leading order in z, we have zB = z/|Ω|. Also, to leading order, z ∼ 1/r
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and zB ∼ 1/rB, so we have rB ∼ r|Ω| = r|ΩuΩv|. A properly defined renormalized geodesic

distance is thus given by

dBTZ
ren (p, q∂) = log

(
Tr
(
p−1q∂

))
− log |ΩuΩv| = dglobal

ren (p, q∂)− log |ΩuΩv|. (2.56)

2.4 The hot limit of multi-boundary wormholes

In order to construct multi-boundary traversable wormholes in section 4, we will need to

take a limit that produces the following features: 1) two horizons are separated only by an

exponentially thin causal shadow over a sufficiently large region of those horizons, and 2)

we can find a point q∂ on the boundary of the fundamental domain such that the conformal

factors Ω2 = Ω2
uΩ2

v associated with its non-trivial images under the group Γ are exponentially

small. For reasons that will be clear below, we use the term “hot limit” to describe this limit

for any (n, g).

For multi-boundary wormholes with trivial topologies, we choose to take a limit where

all `i and ˜̀
i are large, with `i/˜̀

i fixed (i.e. Mi/Ji fixed)10. In the case without rotation, this

is exactly the “hot limit” considered in [19]. In the case with rotation, this is also a limit

where the temperatures in all asymptotic regions are large. It also implies that all horizon

lengths are large compared to the AdS scale (although the converse is not necessarily true).

We explain the two advertised features below, using the three-boundary wormhole as our

main example.

First, we study the minimal distance between two neighbouring horizons. For non-

rotating (3, 0) geometries, this has been computed in [19] by focusing on the half-plane of the

t = 0 slice. The minimal distance dij between horizons Hi and Hj depends on the horizon

lengths, and is given by

cosh dij =
cosh (hi/2) cosh (hj/2) + cosh (hk/2)

sinh (hi/2) sinh (hj/2)
. (2.57)

Applying (2.57) to horizons H1 and H2 in our construction, we have from (2.23) that

d12 = α = α̃. (2.58)

In appendix B, we generalize (2.57) to the case with rotations, where the minimal distance

between horizons H1 and H2 was shown to be given simply by

d12 =
α+ α̃

2
. (2.59)

Other minimal horizon distances can be found from this expression by simple permutations.

It can be easily shown that α and α̃ are exponentially small in the hot limit, and that dij is as

well. As a special case, when all `i = ` and ˜̀
i = ˜̀ are large, we have α ∼ 2e−`/4, α̃ ∼ 2e−

˜̀/4

10For wormholes with internal parameters (i.e. non-trivial topologies or with n > 3), the proper limit will

also involve taking certain internal parameters to be large, in addition to having `i and ˜̀
i large, with `i/˜̀

i

fixed. We will discuss this briefly in section 5.
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Figure 7: A schematic diagram of the t = 0 slice of a three-boundary black hole in the

hot limit. For any pair of horizons (dashed lines), there is a large region which we call Dφ

(highlighted in green) where the horizons are exponentially close to each other. The causal

shadow is the region bounded by the three horizons.

and dij ∼ e−`/4+e−
˜̀/4. Furthermore, in this limit, it was found [19] that the distance between

the horizons is exponentially small over a large subset Dφ of the angular domain, for which

the lateral extent along each horizon is large compared with the AdS scale. In appendix B,

we show that this feature also applies in the rotating case. In addition, we show there that

this is no longer the case when only one of `i or ˜̀
i are taken to be large. The latter limit

makes the horizons large but the horizon temperatures remain bounded11.

Similar results also hold in the case of a general n-boundary black hole. As discussed in

section 2.1, a general (n, 0) spacetime with n ≥ 3 can be constructed from n − 2 copies of

(3, 0) geometry. Here we compute the minimal distance dij between any two horizons Hi and

Hj that live in a single copy of (3, 0) geometry, though we comment on the more general case

below. For n > 3 the third horizon Hk in this copy will become part of the causal shadow of

the new (n, 0) geometry and its length hk will be one of the parameters of the moduli space

associated with the casual shadow region. Therefore, the same minimal distance dij between

horizons Hi and Hj as in the (3, 0) geometry will hold. Choosing hk � hi + hj as in the hot

limit above, dij will again be exponentially small. In the more general case12 g 6= 0, or for

two horizons in the (n, 0) geometry which are separated by an intervening extremal surface13

and thus which lie in distinct copies of the (3, 0) geometry, taking the hot limit for each copy

of the (3, 0) geometry allows us to write the separation between Hi and Hj as the union of a

fixed finite number of exponentially small separations. Thus we find the separation between

11This has some interesting consequences for the extremal limit that we briefly discuss in section 5.
12We have not yet discussed the case g > 0 in detail, but see section 5 for comments.
13In the case without time-symmetry, this means that the intervening extremal surface lies in the domain

of dependence of any partial (connected) Cauchy slice Σ for which ∂Σ = Hi ∪Hj .
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Hi and Hj to be exponentially small in the hot limit for all n, g.

The other important feature of the geometry in the hot limit is that we can find points

q∂ on the boundary for which the non-trivial image points qimage
∂ all have conformal factors

that are exponentially small. This property will be established below, but its important

consequence follows from equation (2.56) governing the renormalized distance between p and

qimage
∂ in BTZ frame. From this it follows that

dBTZ
ren (p, qimage

∂ ) = log
(

Tr
(
p−1qimage

∂

))
− log |ΩuΩv| = dglobal

ren (p, qimage
∂ )− log |ΩuΩv|. (2.60)

Here Ωu and Ωv are the conformal factors associated with qimage
∂ . So when we have a bulk

point p that is in the same asymptotic region as q∂ , in the BTZ frame, the exponentially

small conformal factors associated with the images require dBTZ
ren (p, qimage

∂ ) > dBTZ
ren (p, q∂) with

their difference being linear in `i and ˜̀
i.

To show for appropriate q∂ that the conformal factor associated with non-trivial images is

exponentially small in the hot limit, recall from section 2.2 that the image points are classified

into two types. We will take q∂ to lie in the fundamental domain (for which the boundary

diamond is not small). We first treat image points that lie in other boundary diamonds (i.e.

image diamonds). Recall from section 2.3 that the associated conformal factors satisfy

Ω2
u ≤

˜̀∆uimage

8π
and Ω2

v ≤
`∆vimage

8π
(2.61)

where ∆uimage and ∆vimage determine the size of the diamond to which q
(m)
∂ belongs. Note

that since dbdy(pimage
++ , pimage

−− ) =
√

∆uimage∆vimage, equation (2.61) implies that ΩuΩv ≤√
˜̀̀

8π dbdy(pimage
++ , pimage

−− ).

Let us take the (3, 0) geometry as our example. There all the image diamonds lie between

diamonds 1 and 2 and are spacelike separated from them. Then, using (2.37), we have in the

hot limit

dbdy(pimage
++ , pimage

−− ) < dbdy(p++,1, p++,2) ∼
√
αα̃. (2.62)

Therefore

Ω2 = Ω2
uΩ2

v .
˜̀̀

64π2
αα̃. (2.63)

In the hot limit, Ω2 is exponentially small. As a special case, when `i = ` and ˜̀
i = ˜̀ we have

Ω2 . e−(`+˜̀)/4, and since dglobal
ren = O(1) we also have dBTZ

ren & `+ ˜̀.

The remaining case to consider occurs when qimage
∂ belongs to the same boundary diamond

as q∂ . Let us take q∂ to lie at some fixed boundary location independent of `i, ˜̀
i. Then in

the hot limit the analysis of section 2.3 requires qimage
∂ to be exponentially close to one of the

fixed points associated with the corners of the fundamental diamond. Recall from (2.54) that

when this is the case the conformal factors can be approximated as

Ω2
u '

˜̀

2π
(|u− ubdy|) and/or Ω2

v '
`

2π
(|v − vbdy|) , (2.64)
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where ubdy, vbdy are the coordinates of the relevant corner.

We will show that these conformal factors will be exponentially small and that the renor-

malized distance to qimage
∂ will be large. In the (3, 0) geometry we may derive an explicit

expression by recalling the action of the quotient construction on boundary diamonds. In

particular, the quotient of any such diamond is a cylinder. We may thus discuss a ‘funda-

mental domain’ within the boundary diamond which we take to be an open set that covers the

cylinder precisely once (or, at least, up to a set of measure zero associated with the boundary

of the fundamental domain). We will also choose this domain to be centered at the origin

u, v = 0 and to have a simple form.

The details of such a fundamental domain were computed in [30] for the case where the

bulk is a non-rotating BTZ black hole. On the t = 0 slice, a corresponding fundamental

domain in the bulk may be taken to lie between the codimension-1 surfaces

φ = π ± sin−1 (tanh (πr+)) . (2.65)

As a result, the maximal boundary distance d∂ between the boundary limit of (2.65) and the

left/right corner of the diamond is

d∂ = cos−1 (tanh (πr+)) . (2.66)

In the case of rotation, one can show that this expression generalizes to14

d∂ =

√√√√(cos−1 tanh
`

2

)(
cos−1 tanh

˜̀

2

)
(2.67)

Note that this equation reduces to (2.66) when ` = ˜̀, using (2.17). In the hot limit we find

d∂ ∼ 2e−(`+˜̀)/4. Since every domain of outer communication (i.e., every region outside the

black hole) is isometric to the domain of outer communication for some BTZ black hole, the

corresponding expressions will also hold for our multi-boundary wormholes.

Without loss of generality, we assume that `1 ≤ `2, `3 and ˜̀
1 ≤ ˜̀

2, ˜̀
3. So, from (2.67),

the largest d∂ will occur for diamond 1, where it is given by (2.67) with ` and ˜̀ replaced by

`1 and ˜̀
1, respectively. In particular, if ε is the distance between q

(m)
∂ and the fixed point of

the fundamental diamond, then ε < d∂ . Furthermore, from (2.64), we have Ω2 ∼ ε2. This

provides a lower bound on dBTZ
ren (p, qimage

∂ ) that in the hot limit yields

dBTZ
ren (p, qimage

∂ ) ≥ − log Ω2 ∼ − log ε2 ≥ − log d2
∂ & `1 + ˜̀

1 (2.68)

This verifies explicitly that the conformal factors associated with qimage
∂ are exponentially

small in the hot limit , whether qimage
∂ is in an image diamond or in the fundamental diamond.

As a consequence, dBTZ
ren (p, qimage

∂ ) & `+ ˜̀.

14The idea is to realize that, since γBTZ defined in (2.11) maps the two boundaries of the fundamental domain

to each other, then γ
1/2
BTZ will map the boundary centre of the fundamental domain to one of the boundary

corners of the fundamental domain. This centre point, in global coordinates, is (t = 0, φ = π). Acting on this

point with γ
1/2
BTZ gives the coordinates of the corner of the fundamental domain at the boundary, from which

we calculate d∂ .
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2.5 The CFT dual of (n, g) geometries

The bulk (n, g) spacetime is dual to a CFT state |Σn,g〉 ∈ H1 ⊗ · · · ⊗ Hn, where Hi is the

Hilbert space of a CFT state on a circle. In the energy eigenbasis, this state can be expressed

as15

|Σn,g〉 =
∑
i1,...,in

Ai1,...,in |i1〉1 . . . |in〉n (2.69)

where the coefficient Ai1,...,in is a function of the 2(6g − 6 + 3n) moduli of rotating (n, g)

geometry. A Cauchy slice of (n, g) spacetime is a Riemann surface Σn,g with n boundaries and

genus g. Suppose that the state of the CFTs at the n boundaries is |φ1 . . . φn〉 ∈ H1⊗· · ·⊗Hn.

In the large temperature limit, the gravitational path integral over the Euclidean Riemann

surface with boundary conditions fixed by |φ1 . . . φn〉 is dominated by the fully-connected

bulk geometry, which by Wick rotation gives a Cauchy slice Σn,g that can give the full

(n, g) spacetime by Lorentzian time-evolution - see [19, 30, 31] for details. Varying the

moduli changes the dominant bulk geometry in the gravitational path integral, which induces

first-order phase transitions that generalize the Hawking-Page transition [32] in the (2, 0)

spacetime. For example, for sufficiently large temperatures, the CFT state dual to the BTZ

black hole is a thermofield-double state and (2.69) becomes [33]

|Σ2,0〉 =
∑
i

e−βEi/2 |i〉1 |i〉2 . (2.70)

In general, determining the coefficients Ai1,...,in from the path integral over an arbitrary Σn,g is

difficult. However, the CFT dual of Σn,0 in the puncture limit where hi � 1 was investigated

in [30]. It was found that in this case (2.69) becomes [30]

|Σn,0〉 =
∑
i1,...,in

Ci1...ine
−β̃1Ei1/2 . . . e−β̃nEin/2 |i1〉1 . . . |in〉n , (2.71)

where Ci1···n depend on the n-point function of the CFTs and the moduli parameters,

β̃i = βi − log rd − 2 log 3, (2.72)

βi is the inverse temperature of the BTZ geometry in the exterior of the ith asymptotic region,

and rd is an undetermined constant that is independent from the moduli parameters for (3, 0)

geometry but in general depends on the internal moduli for n > 3 (see [30]).

In the hot limit, the entanglement structure of |Σn,0〉 was investigated in [19]. In par-

ticular, it was found that the bipartite entanglement between any two CFTs at different

boundaries, up to exponentially small corrections, is that of the thermofield-double state over

a large region of AdS scale size16. Thus, the CFT state dual to the local geometry in this

15Note that, for simplicity of notation, we are ignoring rotation for a moment. However, these equations

can easily be generalized to the case of rotation.
16This is the same region denoted by Dφ in section 2.4 where the distance dij between the two horizons Hi

and Hj is exponentially small.
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particular region (extending between the ith and jth asymptotic regions through the causal

shadow) is well approximated by |Σ2,0〉ij = |TFD〉ij . This result will be important below in

making hot multi-boundary wormholes traversable.

3 Traversability in BTZ black holes

In this section, we give a general review of the construction of traversable wormholes in

BTZ black holes via double trace deformations [4], including the case with rotation [5] and

nontrivial dependence on the transverse coordinate (following [6]).

In general, the perturbative construction of traversable wormholes is associated with

violations of the averaged null energy condition (ANEC) along generators of Killing horizon

in some classical background spacetime. We review the relation between such a violation and

its perturbative backreaction on the BTZ metric below. We will then review how a double

trace deformation can cause such a violation.

3.1 Metric perturbation

The metric of a rotating BTZ black hole in the co-rotating coordinates is obtained by substi-

tuting for the co-rotating transverse coordinate x = φ− r−
r+
t into (2.14) to find17

ds2 = −
(
r2 − r2

+

) (
r2 − r2

−
)

r2
dt2 +

r2(
r2 − r2

+

) (
r2 − r2

−
)dr2 + r2(N (r)dt+ dx)2 (3.1)

where

N (r) =
r−
r+

r2 − r2
+

r2
. (3.2)

We can pass to Kruskal coordinates by defining the right- and left-moving null coordinates.

In the right exterior region, they are defined as

U = eκu, V = −e−κv, (3.3)

where κ = (r2
+ − r2

−)/r+ is the surface gravity, u, v = t± r∗ are the outgoing/ingoing coordi-

nates, and the tortoise coordinate r∗ is

r∗ =
1

2κ
log

√
r2 − r2

− −
√
r2

+ − r2
−√

r2 − r2
− +

√
r2

+ − r2
−

. (3.4)

This gives the metric

ds2 =
1

(1 + UV )2

{
−4dUdV + 4r−(UdV − V dU)dx+

[
r2

+(1− UV )2 + 4UV r2
−
]

dx2
}
.

(3.5)

17In sections 3 and 4, for simplicity, of notation we use coordinates without subscripts for the BTZ coordi-

nates. Such coordinates should not be confused with the global AdS3 coordinates of section 2.
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Note that the asymptotic boundary in Kruskal coordinates is located at UV = −1.

To linear order, the geodesic equation implies that a null ray starting from the left

boundary in the far past (where V = 0 and U = −∞) satisfies

V (U) = − (2gUV (V = 0))−1
∫ U

−∞
dUhkk =

1

4

∫ U

−∞
dUhkk, (3.6)

where hkk is the norm of ka = (∂/∂U)a after first-order backreaction from the quantum stress

tensor. To get hkk from the stress tensor, we use the linearized Einstein equations:

8πGN 〈Tkk〉 =− 1

2r2
+

[(
r2
− − r2

+

)
hkk + 2r−∂xhkk + ∂2

xhkk

+
(
r2
− − r2

+

)
∂U (Uhkk)− 2∂U∂xhkx + ∂2

Uhxx
]
,

(3.7)

where Tkk = Tabk
akb. To find the shift ∆V at U = +∞, one merely needs to integrate this

equation over all U . This yields

8πGN

∫ +∞

−∞
〈Tkk〉 dU = − 1

2r2
+

[(
r2
− − r2

+

)
+ 2r−∂x + ∂2

x

] ∫ +∞

−∞
hkkdU, (3.8)

where asymptotic AdS boundary conditions have been used.

In [4, 5], the authors consider boundary couplings that are independent of the transverse

coordinate for simplicity. In that case, hkk is independent of x, and equation (3.8) can be

simplified to take the form

8πGN

∫
〈Tkk〉 dU =

r2
+ − r2

−
2r2

+

∫
hkkdU, (3.9)

and the shift of V coordinate at U = +∞ is

∆V (+∞) =
1

4

∫ +∞

−∞
dUhkk =

4πGNr
2
+

r2
+ − r2

−

∫
〈Tkk〉 dU. (3.10)

More generally, we could consider a boundary coupling that has nontrivial dependence

on the transverse coordinate. Then we could solve (3.8) using a Green’s function H [6](∫
dUhkk

)
(x) = 8πGN

∫
dx′H

(
x− x′

) ∫
dU 〈Tkk〉

(
x′
)

(3.11)

with

H
(
x− x′

)
=


r+e
−(r+−r−)(x′−x)

1−e−2π(r+−r−) + r+e
(r−+r+)(x′−x)

e2π(r−+r+)−1
x′ ≥ x

r+e
(r−+r+)(2π−x+x′)

e2π(r−+r+)−1
+ r+e

−(r+−r−)(2π−x+x′)

1−e−2π(r+−r−) x′ ≤ x
(3.12)

in position space where x, x′ ∈ [0, 2π). In Fourier space, H takes the form

H
(
x− x′

)
=
∑
q

eiq(x−x
′)Hq, Hq =

1

2π

2r2
+

r2
+ − r2

− − 2iqr− + q2
. (3.13)
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If we are working with planar BTZ black holes, H takes the following form,

H
(
x− x′

)
=

{
r+e

−(r−+r+)(x′−x) x′ ≥ x
r+e

−(r+−r−)(x−x′) x′ ≤ x,
(3.14)

where x and x′ can take value on the whole real axis, and in Fourier space one should just

adapt the sum in the compact case to an integral.

Note that, in particular, the zero-mode Green’s function diverges in the extremal limit.

This means that our perturbation theory breaks down in that limit, although this still suggests

that the wormhole will be open for quite a long time, as will be shown below.

In contrast, the non-zero modes of Hq remains finite at extremality. So in the extremal

limit, it suffices to study only the zero mode. Recalling that the BTZ temperature is given

by TH =
r2
+−r2

−
2πr+

, we have

πTH
r+

∫
hkkdUdx = 8πGN

∫
〈Tkk〉 dUdx, (3.15)

so that (3.6) gives the average shift ∆V (U) ≡ V (U)− V (−∞) as

TH∆Vaverage (U) = 2GNr+

∫ U

−∞

∫ 2π

0
〈Tkk〉 dUdx. (3.16)

But in any case, we could use (3.6) and (3.11) to calculate the shift ∆V (U). In particular,

the shift at U = +∞ is given by

∆V (+∞) =
1

4

∫ ∞
−∞

dUhkk = 2πGN

∫
dx′H

(
x− x′

) ∫ ∞
−∞

dU 〈Tkk〉
(
x′
)
. (3.17)

By choosing the boundary conformal frame to be ds2
∂BTZ = −dt2 + dφ2 = −dt2 +(

dx+ r−
r+
dt
)2

, we can relate the boundary time with the V coordinate via

t = − r+

r2
+ − r2

−
log (±V ) . (3.18)

Here the sign is + for the left boundary and is − for the right boundary. The shortest transit

time t∗ from left to right boundary is realized by the geodesic that leaves the left boundary

at V = −|∆V |/2 and arrives at the right boundary at |∆V |/2 so that

t∗ = − 2r+

r2
+ − r2

−
log

(
|∆V |

2

)
. (3.19)

We can also calculate the shift of the boundary angular coordinate between one end of the

null geodesic and the other. Since on the horizon of the unperturbed geometry we simply

follow a particular generator where x is constant, on the boundary the change in φ is

φ∗ = − 2r−
r2

+ − r2
−

log

(
|∆V |

2

)
. (3.20)
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3.2 Violation of ANEC from a double trace deformation

In AdS/CFT, the eternal BTZ black hole is dual to the thermofield double (TFD) state

|Ψ〉 =
1√

Z (β,ΩH)

∑
n

e−β(En−ΩHJn)/2 |En, Jn〉L |En, Jn〉R . (3.21)

Traversability is achieved by coupling the two boundaries using a double-trace deformation

δS =

∫
dtdx h(t, x)OR (t, x)OL (−t, x) = −

∫
dt δH, (3.22)

where OL/R is a scalar operator living in the left/right CFT, and we choose its scaling

dimension to be ∆ = d
2 −

√(
d
2

)2
+m2 in order to have a relevant deformation [4]. The

boundary operator OL/R is dual to a bulk scalar field ΦL/R with mass m. To make the

wormhole traversable, h(t, x) needs to be of some definite sign for a period of time, which we

denote as [t0, tf ].

We now show how such a boundary coupling leads to a violation of the ANEC. The

starting point is to evaluate the bulk two-point function along the horizon V = 0:

G
(
U,U ′

)
≡
〈
ΦR(U, x)ΦR

(
U ′, x

)〉
. (3.23)

In a perturbative expansion in powers of the boundary coupling, the one-loop contribution

to the two-point function is [4]

Gh = 2 sin(π∆)

∫ t

t0

dt1dx1 h (t1, x1)K
(
r′, t′, x′;−t1 + iβ/2, x1

)
Kret (r, t, x; t1, x1) +

(
t↔ t′

)
(3.24)

where K is the bulk-to-boundary propagator, and Kret is the retarded bulk-to-boundary prop-

agator. Since the BTZ black hole is just quotiented AdS3, the propagators take the same

form as those in AdS3 but with a sum over images. The bulk-to-boundary propagator in the

right exterior region in rotating BTZ metric is [4, 5]

K (z, t, x; t1, x1) =

(
r2

+ − r2
−
)∆

2

2∆+1π

∞∑
n=−∞

[
−
√
z − 1 cosh (κδt− r−δxn) +

√
z cosh (r+δxn)

]−∆

(3.25)

where

z =
r2 − r2

−
r2

+ − r2
−
, δt = t− t1, δxn = x− x1 + 2πn. (3.26)

We may convert this to Kruskal coordinates in the right exterior region using the relations

t =
1

2κ
log

(
−U
V

)
, z =

(
1− UV
1 + UV

)2

. (3.27)

Evaluated along V = 0, K becomes

K(U, 0, x;U1, x1) =

(
r2

+ − r2
−
)∆

2

2∆+1π

∞∑
n=−∞

[
− U
U1
e−r−δxn + cosh (r+δxn)

]−∆

. (3.28)
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The other ingredient in Gh is the retarded bulk-to-boundary propagator

Kret (z, t, x; t1, x1) = |K (z, t, x; t1, x1)| θ(δt)θ
(√
z − 1 cosh (κδt− r−δx)−

√
z cosh (r+δx)

)
.

(3.29)

Now we are ready to write down Gh(U,U ′):

Gh(U,U ′) =C0

∞∑
n=−∞

∫ 2π

0
dxn

∫ U

U0

dU1

κU1
h

(
log(U1)

κ
, xn

)
[(
e−r−δxnU1U

′ + cosh (r+δxn)
)(

e−r−δxn
U

U1
− cosh (r+δxn)

)]−∆

θ̃ +
(
U ↔ U ′

)
(3.30)

where C0 =
r∆
+κ

∆ sin(π∆)

2(2∆π)2 , θ̃ = θ
(
e−r−δxU − U1 cosh (r+δx)

)
, and we have used the fact that

on the right boundary t = log(U)
κ .

For planar BTZ black holes we would discard the image sum and extend the range of the

x1 integral to the whole real axis [4]. But one should not forget the constraint imposed by

the θ-function in the retarded propagator, which requires

e−r−δxU − U1 cosh (r+δx) ≥ 0. (3.31)

With the Green’s function at hand, the bulk stress tensor associated with the scalar field is

〈Tµν〉 = lim
x→x′

(
∂µ∂νG

(
x,x′

)
− 1

2
gµνg

ρσ∂ρ∂σG
(
x,x′

)
− 1

2
gµνm

2G
(
x,x′

))
. (3.32)

When evaluated along the horizon at V = 0, the gUU component of the unperturbed metric

vanishes, so to leading order we have

〈Tkk〉 = lim
U ′→U

∂U∂U ′Gh
(
U,U ′

)
. (3.33)

Finally one can compute the opening of the traversable wormhole by inserting (3.30) and

(3.33) into (3.17). As shown in [4], the result is generally non-zero. So for the right sign of

the coupling function h it will give a time-advance that makes the wormhole traversable.

4 Traversability of multi-boundary wormholes in AdS3

As shown in [19], for non-rotating multi-boundary wormholes in the hot limit, the boundary

state locally resembles the thermofield double state in region Dφ discussed in section 2.4. This

could be easily generalized to rotating wormholes by adding an angular potential. In regions

that we call Dx (since x is a more well-defined coordinate on the horizon in the rotating

case), the horizons are exponentially close to each other, and corresponding local state is

exponentially close to a piece of the TFD

|Ψ〉 =
1√

Z (βTFD,ΩTFD)

∑
n

e−βTFD(En−ΩTFDJn)/2 |En, Jn〉L |En, Jn〉R . (4.1)

– 26 –



Since our state is only locally TFD, the parameters βTFD and ΩTFD can take any value de-

pending on the conformal frame. They thus should not be confused with the actual black hole

inverse temperature and angular velocity. In the hot limit, one expects that such wormholes

can be made traversable by the approach described in section 3. We will show this below

focussing on the three-boundary wormhole, and in particular on the process of traversing

from boundary 1 to boundary 2.

We will first set the stage by describing and justifying the planar BTZ coordinates to be

used below. In these coordinates, our calculations will be very similar to those of [4]. We will

then show that, in the hot limit, the image sum in the Green’s function is well approximated

by the leading term. This greatly simplifies our calculation. Finally, we calculate the worm-

hole opening with a double-trace deformation, which we require to be larger than the local

thickness of the causal shadow.

4.1 Planar BTZ coordinates and the boundary coupling

Any BTZ black hole is locally isometric to AdS3, and thus also to planar BTZ. As a result,

in any contractible region Dx, we may use planar BTZ coordinates to describe the spacetime.

Here, we use the following planar coordinates to describe both sides of the wormhole:

ds2 = −(r̃2 − r̃2
+)dt̃2 +

dr̃2

r̃2 − r̃2
+

+ r̃2dx̃2. (4.2)

We think of x̃ as ranging over the entire real axis, though we are most interest in some domain

that corresponds to Dx. The choice of r̃+ is arbitrary. The corresponding Kruskal metric is

ds2 =
1

(1 + Ũ Ṽ )2

(
−4dŨdṼ + r̃2

+(1− Ũ Ṽ )2dx̃2
)
. (4.3)

Although there is a causal shadow between the two horizons in the hot limit, it is expo-

nentially small in ` and ˜̀ over large stretches of the horizons. So if we put the origin of the

Kruskal coordinates at the bifurcation surface of horizon 1 or 2 (or any place between them)

in the region where this separation is small, we make only an exponentially small error if we

then identify the above coordinates with natural BTZ coordinates in either exterior. This

justifies using the metric (4.3) for Dx. We will come back to this in section 4.3.

Note that, in the planar BTZ metric, the horizon size parameters can be scaled arbitrarily

so long as long as we change the definition of coordinates accordingly. To be more concrete,

there are two kinds of coordinate transformations that we can make (they are expressed in

the ordinary angular coordinate φ for now and we will come back to the co-rotating x later):

1. “Adjusting the temperature” (rescaling r+ and r− by the same amount):

r̃ = λr, t̃ =
t

λ
, φ̃ =

φ

λ
. (4.4)

with the new horizon parameters r̃± = λr±;
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2. “Changing the angular velocity” (changing the relative size of r+ and r−):

(t̃, φ̃) = (t cosh γ + φ sinh γ, t sinh γ + φ cosh γ)

r̃2 = r2 + r̃2
+ − r2

−.
(4.5)

with the new horizon parameters r̃+ = r+ cosh γ + r− sinh γ and r̃− = r+ sinh γ +

r− cosh γ. As a special case, we could set r̃− = 0 by choosing γ = − tanh−1 r−
r+

. In this

case we have

(t̃, φ̃) = (r+t− r−φ, r+φ− r−t) /
√
r2

+ − r2
−

r̃2 = r2 − r2
−.

(4.6)

with r̃2
+ = r2

+ − r2
−.

Note that we are not changing the actual temperature and angular momentum associated

with any particular global BTZ horizon (which are uniquely determined by the bulk geome-

try). The point is that the above description is valid only in a contractible domain where the

full global structure is not apparent. In that domain we have described the system to good

approximation as a planar BTZ black hole, for which the temperature and angular velocity

depend on the choice of the boundary conformal frame and are not fixed by the bulk metric.

For simplicity, we would like to choose r̃− = 0 and r̃+ be some fixed O(1) number

when the r+,i’s become large. To clarify our notation, from here on, we use tildes to mark

quantities associated with the bulk planar BTZ coordinates (for which r̃− = 0), and we use

symbols without tildes to refer to quantities associated with the BTZ conformal frame in

some asymptotic region – perhaps with additional labels to denote the asymptotic region of

interest.

Combining (4.4) and (4.6), the coordinate transformations we will use on boundaries 1

and 2 are
(t̃, φ̃) = (r+,iti − r−,iφi, r+,iφi − r−,iti) /r̃+

r̃2

r̃2
+,i

=
r2
i − r2

−,i
r2

+,i − r2
−,i
,

(4.7)

where i = 1, 2 indicate different asymptotic regions. The above should be understood as two

different coordinate transformations, one for each value of i. As a result, the two boundaries

will naturally define distinct notions of ‘time advance’ ∆V1 6= ∆V2 (and also for similar

quantities).

It will sometimes also be useful to consider the inverse transformation:

(ti, φi) =
r̃+

r2
+,i − r2

−,i
(r+,it̃+ r−,iφ̃, r−,it̃+ r+,iφ̃). (4.8)

In terms of the co-rotating coordinates, the transformations and inverse transformations for

(t, x) and (t̃, x̃) are

t̃ =
κiti − r−xi

r̃+
, x̃ =

r+,i

r̃+
xi = φ̃ (4.9)
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ti =
r̃+

κi

(
t̃+

r−
r+
x̃

)
, xi =

r̃+

r+i

x̃. (4.10)

In particular, it will be convenient to take points on the horizons with x = 0, xi = 0 to lie

deep inside the domain Dx where the separation between horizons is exponentially small. The

associated Kruskal null coordinates are related by

Ũ = e−r−,ixiUi, Ṽ = er−,ixiVi, (4.11)

so that at x̃ = 0 (where xi = 0) we have Ũ = Ui, Ṽ = Vi. One may interpret this as saying

that we have chosen all three sets of coordinates to be associated with the same reference

frame at x̃ = 0.

From the planar coordinates we use, it is tempting to conclude that our setup can be

directly reduced to that of [4], reviewed in section 3. But, here, the subtlety is that the

boundary coupling is not naturally defined in the conformal frame related to our bulk metric.

To perform calculations, we need to first look at the conformal transformations and how

they act on boundary operators. To this end, we recall that the boundary metric in the ith

asymptotic region is

ds2
i = −dt2i + dφ2

i =
r̃2

+

r2
+,i − r2

−,i

(
−dt̃2 + dφ̃2

)
. (4.12)

A general bi-local double-trace deformation coupling boundaries 1 and 2 will take the

form18

δS =

∫
dt1dt2dx1dx2 f(t1, t2, x1, x2)O1(t1, x1)O2(t2, x2). (4.13)

Local couplings, analogous to those used in [4] are obtained by taking f proportional to a

delta-function. But as opposed to the TFD case studied in [4], there is no preferred natural

way to identify points on boundary 1 with points on boundary 2. We must therefore choose

some diffeomorphism η from boundary 1 to boundary 2 and write

f(t1, t2, x1, x2) = h(t1, x1) δ(2)(x2 − η(x1)), (4.14)

where xi = (ti, xi), i = 1, 2. Integrating out the delta function then expresses the coupling in

terms of a single set of boundary coordinates. For computational convenience, we will choose

the the functions h and η such that the double-trace deformation takes a simple form when

expressed in the conformal frame associated with the tilded bulk coordinates. In particular,

we take

δS =

∫
dt̃dx̃ h̃(t̃, x̃)

(
r2

+,1 − r2
−,1

r̃2
+

)∆−1
2
(
r2

+,2 − r2
−,2

r̃2
+

)∆−1
2

Õ1(t̃, x̃)Õ2(t̃, x̃) (4.15)

18In contrast with section 3 (e.g. in (3.22)) we will take the boundary times to increase toward the future

on all boundaries.
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where Õ1/2 is the quantity O1/2 conformally transformed to the above frame. Note that the

expression (4.15) includes conformal factors from (4.12) to account for the transformations of

boundary operators with conformal dimension ∆ as well as for the Jacobian associated with

the change of integration variables.

We can also choose a simple explicit form of h̃(t̃, x̃) that turns on at some time t̃0 and

turns off at some later time t̃f . For example, for every t̃ in between we could either choose a

constant (and in particular x̃-independent) coupling,

h̃(t̃, x̃) = hλ2−2∆ (4.16)

or a Gaussian in x̃ to make it localize near some angular position x̃0; i.e., for t̃i < t̃ < t̃f , we

may take

h̃(t̃, x̃) = hλ2−2∆ exp

(
−
r̃2

+(x̃1 − x̃0)2

σ2

)
, (4.17)

where λ is some fixed quantity with dimension of temperature and h is a small and dimension-

less parameter. Note that [4, 5] both set λ equal to the temperature of their BTZ background.

But there is no unique temperature associated with a general multi-boundary black hole, as

the temperatures of the three horizons can differ. This is not a problem. We are free to

choose λ in any way we like, including to choose it independent of the background, so long

as long as it has the correct dimensions.

4.2 Image sum in the hot limit

We now show that the image sum in Gh can be well approximated by keeping only the leading

term. Since Gh is built from two bulk-to-boundary propagators, it will be useful to study

them first.

The extrapolate dictionary tells us that the bulk-to-boundary propagator in the global

AdS3 conformal frame can be obtained from the bulk two-point function via

K(p, q∂) = lim
r′→∞

r′∆G(p, q) = lim
r′→∞

r′∆G(r, t, x; r′, t′, x′). (4.18)

Here p and q are two points in the AdS3 bulk. The coordinates of q are those marked with

primes, and the unprimed coordinates are those of p.

In AdS3, the two-point function for a free scalar field is given by

G (p, q) = GAdS3(Z) =
1

4π

(
Z2 − 1

)−1/2
(
Z +

(
Z2 − 1

)1/2)1−∆
, (4.19)

where Z = 1 + σ(p,q)
2 and σ(p, q) is the (squared) distance between p and q in the four

dimensional embedding space (sometimes called “chordal distance” [34]), and with all frac-

tional powers of positive real numbers defined by using the positive real branch. The chordal

distance is related to the geodesic distance d(p, q) in AdS space by

σ(p, q) = 4 sinh2

(
d (p, q)

2

)
. (4.20)
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When Z is large, the two-point function has the expansion

GAdS3 (p, q) =
Z−∆

4π

(
21−∆ +

1 + ∆

21+∆
Z−2 +O

(
Z−3

))
. (4.21)

In AdS3, the (unrenormalized) distance between a bulk point p and a boundary point q∂
has the divergent part log r′, so GAdS3 (x, x′) decays as (r′)−∆. But this decay is precisely

cancelled by the (r′)∆ in the extrapolate dictionary (4.18). As a result, the bulk-to-boundary

propagator can also be obtained from the bulk-to-bulk propagator by inserting into (4.19)

an appropriately-renormalized (and thus finite) distance between p and q∂ . According to the

analysis of section 2.2, in the conformal frame associated with the global coordinates, this

renormalized distance is defined by subtracting log r′ from the unrenormalized distance.

In a general conformal frame the extrapolate dictionary becomes

K = lim
r̄′→∞

r̄′∆G(r, t, x; r′, t′, x′) (4.22)

where r̄′ = r′|Ω| and Ω2 is the conformal factor such that the boundary metric ds2
Ω satisfies

ds2 = −dt2 + dφ2 = Ω2ds2
Ω. Equivalently, we could obtain the correct bulk-to-boundary

propagator by inserting into (4.19) an appropriately renormalized bulk-to-boundary distance

associated with our conformal frame.

Since the three-boundary wormholes of section 2 are quotients of AdS3, their bulk-to-

boundary propagators are given by sums of AdS3 propagators over image points. In particular,

for points p and q∂ , we need to include AdS3 propagators for the point pairs (p, gLq∂g
t
R), where

gL and gR are any “words” formed from the left and right generators of the quotient group

Γ used to construct the wormhole.

We would like to locate the image points gLq∂g
t
R and find how they contribute to the

bulk-to-boundary propagator in the hot limit. Recall from section 2.2 that there are two

types of image points: 1) points inside the same boundary diamond as q∂ and 2) points in

other diamonds (i.e. outside the boundary diamond that q∂ is in). As shown in section 2.4,

when q∂ is taken to lie at a fixed location in the largest diamond non-trivial image points in

the same diamond must be exponentially close to one of the fixed points at the left or right

corners of the diamond. For those in other diamonds it suffices to note that such non-trivial

image diamonds are exponentially small in the hot limit.

Since all (AdS-)Cauchy slices of the wormhole spacetime lift to surfaces that run through

the left and right corners of each boundary diamond, and since any bulk point p can be taken

to lie on a spacelike (AdS-)Cauchy surface, p will have spacelike separation from points close

enough to these corners. This will in particular be true of the non-trivial images of q∂ in the

hot limit. This means that we use (2.9) rather than (2.10) to calculate the geodesic length

between p and those image points.

In section 2.3, we calculated the geodesic distance between spacelike separated bulk and

boundary points in the BTZ frame. Applying that result to our image points, we found in

section 2.4 that the geodesic distance is at least linearly large in (`i+ ˜̀
i) in the hot limit. From
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• •H1 H2

∆VCS

Figure 8: The Penrose diagram of a black hole spacetime with causal shadow. In particular,

this could represent the causal structure of a section that contains two asymptotic regions in

the three-boundary wormhole geometry. In the figure, we mark the two bifurcation surfaces

H1 and H2, and ∆VCS caused by the causal shadow. In the hot limit that we consider in the

text, ∆VCS is exponentially small in ` and ˜̀ in region Dx.

(4.19) and (4.20) we then see that the contributions to the bulk-to-boundary propagator from

the image points are exponentially suppressed, and thus that they can be ignored in the hot

limit.

4.3 Traversing the causal shadow

We now show in the hot limit that the |∆V | induced by a fixed boundary coupling becomes

larger than the gap |∆VCS | between horizons associated with the existence of the causal

shadow region (see figure 8). Thus ∆Vtotal ≡ |∆V | − |∆VCS | becomes positive and therefore

the wormhole is traversable.

From the above two subsections, the one-loop contribution to the Green’s function is

G̃h(Ũ , Ũ ′) = C̃0

∫
dx̃1

∫ Ũ

Ũ0

dŨ1

r̃+Ũ1

h̃

(
log Ũ1

r̃+
, x̃1

)[(
Ũ1Ũ

′ + cosh (r̃+δx̃)
)( Ũ

Ũ1

− cosh (r̃+δx̃)

)]−∆

+ (Ũ ↔ Ũ ′), (4.23)

where Ũ0 = er̃+ t̃0 , δx̃ = x̃− x̃1 and

C̃0 =
r̃2∆

+ sin(π∆)

2 (2∆π)2

(
r2

+,1 − r2
−,1

r̃2
+

)∆−1
2
(
r2

+,2 − r2
−,2

r̃2
+

)∆−1
2

=
r̃2

+(r2
+,1 − r2

−,1)
∆−1

2 (r2
+,2 − r2

−,2)
∆−1

2 sin(π∆)

2 (2∆π)2 .

(4.24)

The limits of the x̃ integral above are set by the theta function θ
(
Ũ
Ũ1
− cosh (r̃+δx̃)

)
.
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We can use the above result to calculate the stress tensor:

〈T̃kk〉 = lim
Ũ ′→Ũ

∂Ũ ′∂Ũ G̃h(Ũ , Ũ ′). (4.25)

If the background was exactly planar BTZ, then the shift of Ṽ coordinate at Ũ = +∞ would

be

∆Ṽ (x̃) = 2πGN

∫ +∞

−∞
dx̃′H̃

(
x̃− x̃′

)(∫ ∞
−∞

dŨ〈T̃kk〉
)

(x̃′), (4.26)

where H̃(x̃− x̃′) is the Green’s function (3.14) for non-compact x̃ and x̃′ when r̃− = 0,

H
(
x̃− x̃′

)
= r̃+e

−r̃+|x̃′−x̃|. (4.27)

From our arguments above, using this result with (4.7) also gives the correct result in

our three-boundary wormhole up to two sorts of corrections. The first are due to errors

in (4.7) associated with the finite-but-small thickness of the causal shadow, and the second

comes from neglecting the sum over non-trivial images of q∂ . But both sorts of corrections

are exponentially small in the hot limit as discussed above. Thus to good approximation in

the coordinates related to the ith boundary we find the shift ∆Vi to be

∆Vi(xi) = e−r−,ixi∆Ṽ (x̃). (4.28)

To put this all together, recall that we are most interested in the region near x̃ = 0

where the separation between the bifurcation surfaces is exponentially small. There Vi ≈ Ṽ ,

and the three coordinate systems are all associated with the same frame of reference. In

particular, both bifurcation surfaces will have U1+V1 ≈ constant and also U2+V2 ≈ constant.
Thus the exponentially small separation is also associated with exponentially small sized

∆ṼCS ≈ ∆V1,CS ≈ ∆V2,CS of the causal shadow in this region.

On the other hand, near xi = 0 the time advance ∆Vi is not exponentially suppressed at

large `i and ˜̀
i. Instead, it has at most a polynomial suppression. Thus at large `i, ˜̀

i we find

∆Vi � ∆Vi,CS near x̃ = 0 and the wormhole becomes traversable in this region.

As a consistency check, we now show that the physical quantity ∆Vi does not depend on

the fictitious parameter r̃+ that we have been using to simplify the calculations. Our starting

point is (4.23). We write G̃h ≡ F + F ′ where F is the term explicitly shown in (4.23)

F (Ũ , Ũ ′) = C̃0

∫
dx̃1

∫ Ũ

Ũ0

dŨ1

r̃+Ũ1

h̃

(
log Ũ1

r̃+
, x̃1

)[(
Ũ1Ũ

′ + cosh (r̃+δx̃)
)( Ũ

Ũ1

− cosh (r̃+δx̃)

)]−∆

(4.29)

and F ′ is the term with Ũ and Ũ ′ exchanged. Using this symmetry we may write 〈T̃kk〉 in

the form

〈T̃kk〉 = 2 lim
Ũ ′→Ũ

∂Ũ ′∂ŨF (Ũ , Ũ ′). (4.30)
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Next, we change the integration variables to make the dependence on r̃+ clear. First we

define a new integration variable y ≡ cosh(r̃+δx̃) = cosh[r̃+(x̃− x̃1)] to write F as

F (Ũ , Ũ ′) =
2C̃0

r̃2
+

∫ Ũ

Ũ0

dŨ1

Ũ1

∫ Ũ/Ũ1

1

dy√
y2 − 1

h̃

(
log Ũ1

r̃+
, x̃1

)[(
Ũ1Ũ

′ + y
)( Ũ

Ũ1

− y

)]−∆

,

(4.31)

where the limits of the y integral are determined by the theta function θ
(
Ũ
Ũ1
− cosh (r̃+δx̃)

)
,

and the argument x̃1 in the function h̃ should be implicitly treated as a function of y.

As we can see, all the r̃+ dependence in the prefactor 2C̃0

r̃2
+

cancels out. Recall also the

relations (4.9)

r̃+x̃ = r+,ixi, r̃+t̃ = κiti − r−,ixi, (4.32)

so that on the horizon V = 0 we have

Ũ = er̃+ t̃ = eκiti−r−,ixi . (4.33)

Similar relations hold for Ũ , Ũ ′ and Ũ0 in the integration limits, and they can be expressed

in terms of purely boundary quantities. Furthermore, we should avoid introducing any r̃+

dependence in h̃ by hand. This means that, when choosing the form of h̃, the argument t̃1
and x̃1 in h̃ should both come with a factor of r̃+, since the combination r̃+t̃1 and r̃+x̃1 can

be converted by (4.32) to something that only involves parameters and coordinates related to

some boundary. In terms of the new variable y, this means that we must have the combination

(r̃+x̃− cosh−1 y) independent of r̃+. Therefore, F is also independent of r̃+.

The physical observable ∆Vi on one boundary is

∆Vi(xi) = e−r−,ixi 2πGN

∫ +∞

−∞
dx̃′r̃+e

−r̃+|x̃′−x̃|
(∫ ∞
−∞

dŨ
〈
T̃kk

〉)(
x̃′
)
. (4.34)

No dependence on r̃+ is introduced in passing from F to
∫

dŨ〈T̃kk〉 and, from our previous

argument,
∫

dŨ〈T̃kk〉 as a function of x̃′ should only depend on the combination r̃+x̃
′. As we

can see, all other parts involving tilded coordinates in (4.34) all come with a factor of r̃+, so

the physical quantity ∆Vi will not have any r̃+ dependence.

4.4 Numerical results

We now present some numerical results in order to illustrate our construction. Here we will

take the boundary coupling to be turned on at t̃0 = 0 and never shut off. We will consider

two types of boundary coupling: 1) for every t̃ > 0 the coupling is constant, as in (4.16) and

2) for every t̃ > 0 we take the coupling to be a Gaussian centered at some point, as in (4.17).

We also take h = 1 and λ = 1 in the boundary coupling, and GN = 1 for simplicity.

Furthermore, without loss of generality, we only consider a subspace of the wormhole param-

eter space defined by r+,2 = 100 , r−,2 = 20 and r+,1 = 100. We then study the dependence

of various quantities on the remaining parameters r−,1 (or equivalently the ratio between

angular momentum and mass J1/M1 on boundary 1) and the scaling dimension ∆.
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Figure 9: For the case of constant coupling, the averaged null energy
∫
T̃kkdŨ (left) and

the horizon shift ∆V1 at x1 = 0 (right). In both panels, we choose h = 1, λ = 1, GN = 1,

r+,2 = 100 , r−,2 = 20 and r+,1 = 100.

��� ��� ��� ��� ��� ���

-������

-������

-������

������

-��� -�� � �� ���

-������

-������

-������

-������

-������

������

Figure 10: For the case of Gaussian coupling, the averaged null energy
∫
T̃kkdŨ at x1 = 0

(left) and its profile for general x1 (right). In both panels, we choose h = 1, λ = 1, GN = 1

r+,2 = 100 , r−,2 = 20 and r+,1 = 100, σ = 0.2 and x0 = 0. In the right panel we also choose

∆ = 0.6.
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Figure 11: For the case of Gaussian coupling, the shift of horizon ∆V1 at x1 = 0 (left) and

its profile for general x1 (right). In both panels, we choose h = 1, λ = 1, GN = 1 r+,2 = 100

, r−,2 = 20 and r+,1 = 100, σ = 0.2 and x̃0 = 0. In the right panel we also choose ∆ = 0.6.

The quantities studied below are the averaged null energy
∫
T̃kkdŨ and the shift of the

horizon ∆V1 as measured on boundary 1. Note that here
∫
T̃kkdŨ is not a physical quantity

since we could choose any kind of “tilded coordinates”, but we show it here because its

negativity is important for traversability. For convenience we choose r̃+ = 1.
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Results for the case of constant coupling are shown in figure 9. There we show
∫
T̃kkdŨ

and ∆V1 at x1 = 0 (or equivalently x̃ = 0) for different ∆ and J1/M1. As we can see, both

quantities are negative and diverge near extremality.

For Gaussian coupling, we choose σ = 0.2 and x̃0 = 0. In figure 10 we show
∫
T̃kkdŨ at

x1 = 0 (or equivalently x̃ = 0) and its angular dependence for some choices of parameters,

while results about ∆V1 are shown in figure 11.

5 Discussion

The above work extends the Gao-Jafferis-Wall traversability protocol [4] to multi-boundary

wormholes. The main physical difficulty in achieving traversability in this case is the existence

of the causal shadow region between the horizons, and the main technical complication in

the analysis involves calculating the image sum in the Green’s function. Our main result is

that, in the hot limit, both of these difficulties can be circumvented and traverseability can

be demonstrated for appropriate couplings. As shown in section 2, this is because for any

pair of horizons there is a region whose extent along the horizons is large in comparison with

the AdS length where the horizons are exponentially close to each other. The analysis in

such regions thus reduces to that of [4]. In particular, in this limit the distance between the

global AdS3 images of appropriate bulk points bceomes large, which exponentially suppresses

all but one of the corresponding contributions to the Green’s function relative to the largest

such contribution. This greatly simplifies the calculation of the Green’s function required to

calculate the average null energy along the horizon. In a dual field theory description, the

essential point is that the CFT state in this region is approximately given by the TFD state

[19].

Although we presented explicit calculations only for the three-boundary wormhole geom-

etry, our work can be generalized to general n-boundary genus g wormholes (i.e. to (n, g)

geometries). The one subtlety in doing so is that, in addition to taking a hot limit for the

horizons, one must also take similar limits of certain internal moduli in order to make the

causal shadow become thin. See figure 12 for the case n = 2, g = 1, but similar issues arise

even for g = 0 when n > 3. Indeed, one can view this as a result of the fact that a general

(n, g) geometry can be made by sewing together copies of (3, 0) “pair of pants” geometries,

but that in doing so some of the minimal circles that would have defined horizons in some

given (3, 0) geometry become cycles inside the causal shadow of the final (n, g) geometry.

Thus, the desired hot limit involves not only taking limits of the parameters that define the

final (n, g) horizons, but also requires us to take limits of the parameters associated with

the would-be (3, 0) horizons that are now inside the causal shadow. That this is possible in

general was shown in [19] for the static case, but those arguments can be generalized to allow

rotation just as in section 2 above. Thus the traversability analysis reduces to exactly the

same one we used for the case without genus, and once again the CFT dual to the bulk region

where the horizons are exponentially close together is well-approximated by the TFD state.
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Figure 12: A Cauchy slice of the (2, 1) geometry showing the horizons (dashed lines) and

the two extremal surfaces (dotted lines) in the causal shadow region. In the hot limit, the

length of both types of surfaces have to be taken to be large so that, by the Gauss-Bonnet

theorem, there will be a large region where they are arbitrarily close to each other.

In the extremal limit, we showed in appendix B that the minimal distance dij between

the horizons diverges logarithmically. However, from (4.23) and (4.26), we see that the time

advance ∆V induced by the double trace deformation diverges polynomially, which is also

illustrated in figures 9 and 11. For this reason, we expect that the wormhole is still traversable

in the extremal limit even though, as discussed in section 3, the perturbative analysis that

allowed us to calculate ∆V will no longer be valid19.

Recall that, in the ER=EPR proposal [18], entanglement between two (non-interacting)

quantum systems is geometrically realized by a non-traversable wormhole (i.e. Einstein-

Rosen bridge) connecting them. When the two systems are allowed to dynamically interact

with each other via a quantum interaction like the double trace deformation, a quantum

teleportation protocol becomes possible and quantum information can be teleported between

them through the wormhole that now becomes traversable. As pointed out in [4], this is

distinct from the standard quantum teleportation protocol where only classical interactions

are allowed between the two entangled systems (though see [12] for connections with standard

quantum teleportation). On the one hand, this provided a concrete mechanism for recovery

of quantum information via the Hayden-Preskill protocol [36] from the Hawking radiation

of old black holes [9]. One the other hand, it inspired a number of experimental proposals

(e.g. [14, 17]) for quantum teleportation via quantum interactions between two entangled

systems20. Looked at from this perspective, and although our construction holds in the limit

where the mulitpartite entanglement is ignored, our work is a first step toward a generalization

of the quantum teleportation protocol to quantum systems with multipartite entanglement.

Since the CFT state dual to a general (n, g) geometry is not known for general values of

the moduli parameters, one can focus on the hot limit where locally the entanglement is

mainly bipartite and is approximately a TFD state. It would be interesting to realize such a

quantum state in the lab and perform the quantum teleportation protocol on it. As discussed

in this work, the main new features in this case are the causal shadow region as well as the

non-trivial angular dependence. It would be interesting to understand how these features are

19For further discussion on traversable wormholes in the extremal limit, see [35].
20The proposal [14] was experimentally realized in [37] using an ion trap quantum computer.
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realized in an experimental set-up of quantum teleportation in the case of quantum circuits

with multipartite entanglement. We expect that, in this case, the traversability protocol will

occur on a mixed TFD state and that the “size” of the causal shadow region will provide an

upper bound on the fidelity of the teleported state. See also [38] for a 3-mouth traversable

wormhole where multipartite entanglement may play a larger role.

As discussed in [9], the experience of an observer passing through a two-sided traversable

wormhole is that of a smooth free fall through a low-curvature spacetime. For an observer

entering a multi-boundary wormhole, the experience will be similarly pleasant only for partic-

ular angular domains. Entering the wormhole from other directions will require the observer

to become trapped inside the black hole and to reach the singularity. One should thus be

sure of the accuracy of one’s trajectory when entering such a wormhole.

There are several directions for future investigations. First, it would be interesting to

extend this work to higher dimensions, where gravity is more interesting than in three dimen-

sions. In addition, as discussed above, this work can be interpreted as a quantum teleportation

circuit with multipartite entanglement as a resource. Therefore, one can extend the analysis

of [14, 17] to this case and characterize how multipartite entanglement affects the properties

and conditions of teleportation.
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A An alternative construction of the three-boundary black hole

We constructed a three-boundary black hole in section 2.1 by choosing some AdS3 isometries

and taking a quotient by the group Γ that they generate. Although the representation of

the generators used there is convenient for calculation, it makes the third asymptotic region

(whose horizon is generated by γ−1
1 γ2 and γ1γ

−1
2 ) appear to be on a different footing than the

other two. In particular, as described in the standard AdS3 conformal frame the coordinate

size of this third region vanishes in the hot limit. To show that this is an artifact of our choice

of generators, we give an alternative representation below where the coordinate size of the

third boundary is non-vanishing in the hot limit. For simplicity, we focus on the non-rotating

case which is generated by a diagonal subgroup of isometries where γL = γR ≡ γ. Dropping

this diagonal restriction will give a generalized to the rotating case.

We begin with the most general form of a SL(2,R) generator:

ξ = x1J1 + x2J2 + x3J3. (A.1)

– 38 –



This generator is hyperbolic when x2
1 + x2

2 − x2
3 > 0, which is equivalent to the requirement

Tr eξ > 2. The length of horizon generated by γ = eξ is

` = 2 cosh−1 Tr γ

2
=
√
x2

1 + x2
2 − x2

3. (A.2)

It is thus natural to parametrize our generator as

ξ = `(coshα sinβJ1 + coshα cosβJ2 − sinhαJ3) ≡ `(~a · ~J) (A.3)

where the generator is written as an inner product taken with signature (+ + −), where

~a = (coshα sinβ, coshα cosβ, sinhα), and ~J = (J1, J2, J3).

To make a three-boundary wormhole, we choose two such generators

ξ1 = `1(coshα1 sinβ1J1 + coshα1 cosβ1J2 − sinhα1J3) = `1(~a1 · ~J) (A.4)

ξ2 = `2(coshα2 sinβ2J1 + coshα2 cosβ2J2 − sinhα2J3) = `2(~a2 · ~J), (A.5)

so that the corresponding group elements are γ1 = eξ1 and γ2 = eξ2 . Then the group element

related to the third asymptotic region is γ3 = −γ−1
1 γ2. As a result, the horizon length of the

third region are related to our parameters by

cosh
`3
2

= − cosh
`1
2

cosh
`2
2

+ sinh
`1
2

sinh
`2
2

(~a1 · ~a2). (A.6)

Note that our geometry depends only on the three parameters {`1, `2,~a1 ·~a2}, or equivalently

{`1, `2, `3}. This gives the expected three-dimensional moduli space for a non-rotating 3-

boundary wormhole.

Our previous representation corresponds to the choice ~a1 = (0,−1, 0) and ~a2 =

(0,− coshα,− sinhα). These choices reproduce our previous results. In particular, our pre-

vious representation does not involve J1.

However, this choice is far from unique. The only real restriction on the form of the

generators is that the geometry not become the one-boundary torus wormhole described in

[24]. To make a (3, 0) wormhole, the bulk geodesic connecting the fixed points of γ1 must not

cross that connecting the fixed points of γ2, while they cross each other in the (1, 1) wormhole

construction.

To be definite, let us choose generators with

α1 = −α2 = α, β1 = −β2 = β =
π

4
. (A.7)

This ansatz still allows the freedom to vary the horizon lengths by tuning `1, `2, α. Then, as

we did in section 2.2, we could calculate the eigenvectors of the γi’s and analyze the fixed

points on the boundary in the hot limit, and those fixed points are also endpoints of the

horizons. For the non-rotating case, all the fixed points are on the t = 0 slice, and here

we take φ ∈ [0, 2π). As shown in figure 13, in the hot limit the endpoints of H1 approach

φ = 3π/2 and φ = π, while the endpoints of H2 approach φ = 3π/2 and φ = 0, and ethe
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Figure 13: The three-boundary wormhole in the hot limit under our alternative construction

with α1 = −α2 = α, β1 = −β2 = β = π
4 , where H1, H2 and H3 are the three horizons. The

fixed points of distinct generators become close to each other in this limit, but each asymptotic

region remains a finite size.

ndpoints of H3 approach φ = 0 and φ = π. Recalling that H3 is generally described by a

pair of geodesics in the AdS3 covering space, we see that one of these geodesics still shrinks

to zero coordinate size along the boundary in this limit, though the other part of H3 remains

of finite size.

B Minimal distance between horizons in the hot limit

We now generalize (2.57) to the case of the rotating (3, 0) geometry. We focus on the distance

d12 between H1 and H2 since it is the simplest in our representation of the geometry. Due

to the symmetry of the construction, the point on H1 that is closest to H2 sits at the origin

of global coordinates. Furthermore, if the point on H2 that is closest to H1 has coordinates

(tm, rm, φm), then tm = 0 by left-right symmetry (see figure 6b) and we can set the angular

coordinate such that φm = 0. Recall that any geodesic in AdS3 can be viewed as the in-

tersection of a plane in the embedding space (2.1) that passes through the origin with the

hyperboloid of AdS3. The idea here is to find the two vectors that span the plane defining

H2, then use them to find rm. Using the geodesic distance equation (2.9), we can then find

d12.

Suppose that the left and right corners of the diamond of H2 have coordinates (−t0,−φ0)

and (t0, φ0), respectively, at the boundary. Using (2.35) and (2.34), it is straightforward to

show that

t0 = tan−1 e−α − tan−1 e−α̃ (B.1)

φ0 = tan−1 e−α + tan−1 e−α̃. (B.2)
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Then, in embedding space, the vectors ~vi = (Xi, Yi, Ui, Vi) that point from the origin to the

points (−t0,−φ0) and (t0, φ0) at the boundary can be found using (2.2) to be

~vL = (cosφ0,− sinφ0, cos t0,− sin t0) and ~vR = (cosφ0, sinφ0, cos t0, sin t0) (B.3)

The vector connecting the origin with (0, rm, 0) is parallel to ~vL + ~vR. From this, it is easy

to show that
rm√

1 + r2
m

=
cosφ0

cos t0
(B.4)

The matrix representation of (0, rm, 0) is

pm =

(√
1 + r2

m + rm 0

0
√

1 + r2
m − rm,

)
(B.5)

So, using (2.9), the minimal distance between H1 and H2 is the geodesic distance between

pm and the origin and is given by

d12 = cosh−1

(
Tr pm

2

)
= cosh−1

(√
1 + r2

m

)
. (B.6)

Combining this with (B.4) gives

d12 = tanh−1

(
cosφ0

cos t0

)
. (B.7)

After some algebra, this can be simplified to

d12 =
α+ α̃

2
. (B.8)

which implies that α, α̃ ≥ 0. As a consistency check, note that in the non-rotating case where

`i = ˜̀
i, we have

α = α̃⇒ d12 = α, (B.9)

which is precisely (2.58) as quoted in section 2.4. Other minimal geodesic distances (i.e. d23

and d13) can be obtained from (B.8) by simple permutations. This completes our generaliza-

tion of the minimal geodesic distance equation to the rotating case. That the angular domain

Dφ over which d12 is exponentially small is also large compared with the AdS length scale in

the rotating case follows from the same analysis as in [19] through an appropriate choice of

the Cauchy slice on which the distance is calculated.

B.1 The large horizon limit near extremality

This is the limit where

`i →∞ and ˜̀
i → 0 ⇔ hi →∞ and TH,i → 0. (B.10)
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From (B.8), it is easy to see that the above requires

α→ 0 and α̃→∞ ⇒ dij →∞. (B.11)

This shows that the minimal geodesic distance between the horizons in the extremal limit will

diverge. In particular, one can show that the divergence is logarithmic dij ∼ log (2/πTH) +

O
(
T 2
H

)
. Note however that the hot limit studied in the current paper instead yields

`i →∞ and ˜̀
i →∞ ⇔ hi →∞ and TH,i →∞, (B.12)

implying that

α→ 0 and α̃→ 0 ⇒ dij → 0. (B.13)

Thus our hot limit implies large horizons, but near extremality large horizons do not imply

a hot limit. It also shows that the exponentially small local causal shadow region exists only

in the hot limit where α and α̃ are both small.
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