
Eliminating Intermediate Measurements in Space-Bounded
Quantum Computation

Bill Fefferman

The University of Chicago

Chicago, Illinois, USA

wjf@uchicago.edu

Zachary Remscrim
∗

The University of Chicago

Chicago, Illinois, USA

remscrim@uchicago.edu

ABSTRACT
A foundational result in the theory of quantum computation, known

as the "principle of safe storage," shows that it is always possible

to take a quantum circuit and produce an equivalent circuit that

makes all measurements at the end of the computation. While

this procedure is time efficient, meaning that it does not introduce

a large overhead in the number of gates, it uses extra ancillary

qubits, and so is not generally space efficient. It is quite natural to

ask whether it is possible to eliminate intermediate measurements

without increasing the number of ancillary qubits.

We give an affirmative answer to this question by exhibiting a

procedure to eliminate all intermediate measurements that is simul-

taneously space efficient and time efficient. In particular, this shows

that the definition of a space-bounded quantum complexity class is

robust to allowing or forbidding intermediate measurements. A key

component of our approach, which may be of independent inter-

est, involves showing that the well-conditioned versions of many

standard linear-algebraic problems may be solved by a quantum

computer in less space than seems possible by a classical computer.

CCS CONCEPTS
• Theory of computation → Quantum complexity theory.

KEYWORDS
quantum computation, space complexity, approximation algorithms,

algorithms for linear algebra

ACM Reference Format:
Bill Fefferman and Zachary Remscrim. 2021. Eliminating Intermediate Mea-

surements in Space-Bounded Quantum Computation. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC
’21), June 21–25, 2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3406325.3451051

∗
Corresponding author; portions of this research were completed while a member of

the Department of Mathematics at MIT.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00

https://doi.org/10.1145/3406325.3451051

1 INTRODUCTION
Quantum computation has the potential to yield dramatic speedups

for important problems such as quantum simulation (see, e.g., [20,

30]) and integer factorization [44]. While fault-tolerant, fully scal-

able quantum computers may still be far from fruition, we have

now entered an exciting period in which impressive but resource

constrained quantum experiments are being implemented in many

academic and industrial labs. As the field transitions from "proof

of principle" demonstrations of provable quantum advantage to

solving useful problems on near-term experiments, it is particularly

critical to characterize the algorithmic power of feasible models of

quantum computations that have restrictive resources such as time
(i.e., the number of gates in the circuit) and space (i.e., the number

of qubits on which the circuit operates) and to understand how

these resources can be traded-off.

A foundational question in this area asks if it is possible to

space-efficiently eliminate intermediate measurements in a quan-

tum computation (see e.g., [18, 25, 33, 37, 46, 50–52]). While a classic

result known as the "principle of safe storage"
1
states that it is al-

ways possible to time-efficiently defer intermediate measurements

to the end of a computation [2, 35], this procedure uses extra ancilla

qubits, and so is not generally space efficient. More specifically, if

a quantum circuit 𝑄 acts on 𝑠 qubits and performs 𝑚 intermedi-

ate measurements, the circuit 𝑄 ′
constructed using this principle

operates on 𝑠 + 𝑝𝑜𝑙𝑦 (𝑚) qubits; if, for example, 𝑠 = 𝑂 (log 𝑡) and
𝑚 = Θ(𝑡), this entails an exponential blowup in the amount of

needed space.

Our first main result solves this problem. We show that every

problem solvable by a general quantum algorithm, which may make

arbitrary use of quantum measurements, can also be solved, us-

ing the same amount of space, by a unitary quantum algorithm,

which may not perform any intermediate measurements. As an

immediate corollary, this shows that, in the space-bounded setting,

unitary quantum algorithms are at least as powerful as probabilistic

algorithms, resolving a longstanding open problem [33, 51].

In the process of proving this result, we also obtain the follow-

ing result, which is likely of independent interest: approximating

the solution of the "well-conditioned" versions of various standard

linear-algebraic problems, such as the determinant problem, the ma-

trix inversion problem, or the matrix powering problem, is complete

for the class of bounded-error logspace quantum algorithms. These

are a new class of natural problems on which quantum computers

seem to outperform their classical counterparts.

1
The "principle of deferred measurement" is another common name for this result.

1343

https://doi.org/10.1145/3406325.3451051
https://doi.org/10.1145/3406325.3451051

STOC ’21, June 21–25, 2021, Virtual, Italy Bill Fefferman and Zachary Remscrim

1.1 Eliminating Intermediate Measurements
Before proceeding further, it is worthwhile to briefly discuss why

it is desirable to be able to eliminate intermediate measurements.

Firstly, quantum measurements are a natural resource, much as

time and space are. In addition to the general desirability of using

as few resources as possible in any sort of computational task, it is

especially desirable to avoid intermediate measurements, due to the

technical challenges involved in implementing such measurements

and resetting qubits to their initial states (for a discussion of these

issues from an experimental perspective see, e.g., [14]). Secondly,

unitary computations are reversible, whereas quantum measure-

ment is an inherently irreversible process. The ability to "undo" a

unitary subroutine, by running it in reverse, is routinely used in the

design and analysis of quantum algorithms [5, 17, 18, 32, 34, 45, 54].

Moreover, reversible computations may be performed without gen-

erating heat [28]. Thirdly, by demonstrating that unitary quantum

space and general quantum space are equivalent in power, we show

that the definition of quantum space is quite robust. Allowing inter-
mediate measurements, or even general quantum operations, does

not provide any additional power in the space-bounded setting.

LetBQUSPACE(𝑠) (resp.BQSPACE(𝑠)) denote the set of promise

problems recognizable with two-sided bounded-error by a uniform

family of unitary (resp. general) quantum circuits, where, for each

input of length 𝑛, there is a corresponding circuit that operates

on 𝑂 (𝑠 (𝑛)) qubits and has 2
𝑂 (𝑠 (𝑛))

gates. Note that it is standard

to require that the running time of a computation is at most ex-

ponential in its space bound; see, for instance, [33, 41, 50, 52] for

the importance of this restriction in quantum and/or probabilis-

tic space-bounded computation. Furthermore, let QUMASPACE(𝑠)
(resp. QMASPACE(𝑠)) denote those promise problems recognized

by a unitary (resp. general) quantum Merlin-Arthur protocol that

operates in space 𝑂 (𝑠 (𝑛)) and time 2
𝑂 (𝑠 (𝑛))

. An equivalent defi-

nition of these complexity classes may be given using quantum

Turing machines; see Section 2.2 for further details.

Our main result is:

Theorem 1. For any space-constructible function 𝑠 : N→ N, where
𝑠 (𝑛) = Ω(log𝑛), we have

BQUSPACE(𝑠) = BQSPACE(𝑠)

= QUMASPACE(𝑠) = QMASPACE(𝑠).

Remark. Note that BPSPACE(𝑠) ⊆ BQUSPACE(𝑠) was not pre-
viously known to hold, where BPSPACE(𝑠) denotes the analo-

gously defined class of language recognizable by a probabilistic
algorithm in space 𝑂 (𝑠) (and time 2

𝑂 (𝑠)
); see, for instance, [33, 51]

for discussion of this question. As one would expect quantum

computation to generalize probabilistic computation, the lack of

a proof of this containment was unfortunate. Since it is clear that

BPSPACE(𝑠) ⊆ BQSPACE(𝑠), we have, as a corollary of Theorem

1, that BPSPACE(𝑠) ⊆ BQUSPACE(𝑠), resolving this question.

Remark. To further clarify the parameters of our result, given a

general quantum algorithm that operates in space 𝑠 and time 𝑡 ,

we produce a unitary quantum algorithm that operates in space

𝑂 (𝑠+ log 𝑡) and time 𝑝𝑜𝑙𝑦 (𝑡2𝑠). Note that these parameters coincide

with that of the space-efficient simulation of a deterministic algo-

rithm by a (classical) reversible algorithm [29]. Further note that

in the extreme (but natural) setting in which 𝑡 = 2
𝑂 (𝑠)

(e.g. quan-

tum logspace), this procedure is simultaneously space-efficient and

time-efficient. On the other hand, in the opposite extreme setting

in which 𝑡 = 𝑝𝑜𝑙𝑦 (𝑠), this procedure is no longer time-efficient; of

course, in this setting, the standard "principle of deferred measure-

ment" is simultaneously space-efficient and time-efficient. Between

these two extremes, one has time-space tradeoffs analogous to

those of the simulation of deterministic algorithms by reversible

algorithms [10].

We also study the one-sided (bounded-error and unbounded-

error) analogues of the aforementioned two-sided bounded-error

space-bounded quantum complexity classes. We establish analo-

gous results concerning the relationship between the unitary and

general versions of these classes; see Section 5 for a formal state-

ment of these results.

1.2 Exact and Approximate Linear Algebra
Let intDET denote the problem of computing the determinant of

an 𝑛 × 𝑛 integer-valued matrix, and, following its original defi-

nition by Cook [12], let DET∗ denote the class of problems NC1

(Turing) reducible to intDET. Let BQUL = BQUSPACE(log(𝑛)),
BQL = BQSPACE(log(𝑛)), and BPL = BPSPACE(log(𝑛)) denote
the bounded-error quantum and probabilistic logspace classes. Be-

fore our work, the following relationships were known [50, 52]:

BQUL ⊆ BQL ⊆ DET∗ and BPL ⊆ BQL. Many natural linear-

algebraic problems areDET∗-complete, such as intDET, intMATINV
(the problem of computing a single entry of the inverse of a matrix),

and intITMATPROD (the problem of computing a single entry of

the product of polynomially-many matrices). It seems rather un-

likely that any such DET∗-complete problem is in the class BQL, as
this would imply BQL = DET∗, and, therefore, NL ⊆ BQL.

We next consider the problem of approximating the answer to

such linear-algebraic problems. Let 𝑝𝑜𝑙𝑦-conditioned-MATINV de-

note the promise problem of approximating, to additive 1/𝑝𝑜𝑙𝑦 (𝑛)
precision, a single entry of the inverse of an 𝑛 × 𝑛 matrix 𝐴 with

condition number 𝜅 (𝐴) = 𝑝𝑜𝑙𝑦 (𝑛) (see Section 3 for a precise defini-

tion). Ta-Shma [46], building on the landmark result of Harrow, Has-

sidim, and Lloyd [22], showed 𝑝𝑜𝑙𝑦-conditioned-MATINV ∈ BQL.
Fefferman and Lin [18] improved upon this result by presenting

a unitary quantum logspace algorithm and proving a matching

BQUL-hardness result, thereby exhibiting the first known natural

BQUL-complete (promise) problem. We further extend this line of

research by proving the following theorem, which demonstrates

an intriguing relationship between BQUL and DET∗:

Theorem 2. All of the 𝑝𝑜𝑙𝑦-conditioned versions of the "standard"
DET∗-complete problems, given in Definitions 9 and 10 are BQUL-
complete.

This shows that several natural linear-algebraic problems are in

BQUL, and, moreover, are not in BPL (unless BQUL = BPL). In par-

ticular, the above theorem shows 𝑝𝑜𝑙𝑦-conditioned-ITMATPROD ∈
BQUL. We also show that this problem is BQL-hard, which implies

BQL = BQUL; Theorem 1, which states the more general equiv-

alence for any larger space bound, then follows from a standard

padding argument.

1344

Eliminating Intermediate Measurements in Space-Bounded Quantum Computation STOC ’21, June 21–25, 2021, Virtual, Italy

We next exhibit several other applications of this theorem. Firstly,

in Section 4, we consider fully logarithmic approximation schemes,
whose study was initiated by Doron and Ta-Shma [16]. Using

the preceding theorem, we show that the BQL vs. BPL question

is equivalent to several distinct questions involving the relative

power of quantum and probabilistic fully logarithmic approxi-

mation schemes. Secondly, consider 𝜅-conditioned-DET, the prob-
lem of approximating ln(|det(𝐴) |), to 1/𝑝𝑜𝑙𝑦 (𝑛) precision, for an
𝑛 × 𝑛 matrix 𝐴 with condition number 𝜅 (𝑛). Boix-Adserà, Eldar,
and Mehraban [8] have recently shown that 𝜅-conditioned-DET ∈
DSPACE(log(𝑛) log(𝜅 (𝑛))𝑝𝑜𝑙𝑦 (log log𝑛)). They also raised the fol-
lowing question: is 𝑝𝑜𝑙𝑦-conditioned-DET BQL-complete? As an

immediate consequence of Theorem 2, we answer their question in

the affirmative.

Corollary 3. 𝑝𝑜𝑙𝑦-conditioned-DET is BQL(= BQUL)-complete.

To see the significance of the previous corollary, recall the well-

known "dequantumization" result given by Watrous [52]: BQL ⊆
DSPACE(log2 𝑛). It is natural to ask if a stronger upper bound on

BQL can be established.We note that the strongest currently known

"derandomization" result of this type, given by Saks and Zhou [42],

states BPL ⊆ DSPACE(log
3

2 𝑛). Note that the statement BQL ⊆
DSPACE(log2−𝜖 𝑛) would follow from either a small improvement

in the result of Boix-Adserà, Eldar, and Mehraban (i.e., proving a

stronger upper bound on the needed amount of deterministic space

in terms of 𝜅 (𝑛)) or from a small improvement in our result (i.e.,

proving 𝜅-conditioned-DET remains BQL-hard for subpolynomial
𝜅 (𝑛)). Therefore, if BQL ⊈ DSPACE(log2−𝜖 𝑛), ∀𝜖 > 0, then both

our result and their result are essentially optimal (in terms of the

dependence on 𝜅 (𝑛)).
In Section 5, we studywell-conditioned versions of the "standard"

C=L-complete problems.We establish a result, verymuch analogous

to Theorem 2, which shows that these problems are complete for

the one-sided error versions of space-bounded quantum complexity

classes. This enables us to prove results, analogous to Theorem 1,

concerning the relative power of unitary and general quantum

space in the one-sided error cases. We conclude by stating several

open problems related to our work in Section 6.

1.3 Techniques
We briefly discuss the techniques used to prove Theorem 2, which

states that the 𝑝𝑜𝑙𝑦-conditioned versions of the "standard" DET∗-
complete problems are BQUL-complete. As discussed earlier, Feffer-

man and Lin [18] showed that 𝑝𝑜𝑙𝑦-conditioned-MATINV is BQUL-
complete. In order to establish the BQUL-completeness of the other

𝑝𝑜𝑙𝑦-conditioned problems, we exhibit a long cycle of reductions

through these problems. Note that reductions between the standard

versions of these problems (i.e., where there is no assumption of

being well-conditioned) are well-known [4, 6, 12, 13, 31, 47–49].

However, these reductions, generally, do not preserve the property
of being 𝑝𝑜𝑙𝑦-conditioned. Therefore, we must exhibit reductions

that are rather different from the "standard" reductions.

As a motivating example, consider 𝑝𝑜𝑙𝑦-conditioned-DET+ and

𝑝𝑜𝑙𝑦-conditioned-SUMITMATPROD. While Berkowitz’s algorithm

[6] provides a reduction from DET+ to SUMITMATPROD, this re-
duction does not preserve the property of being 𝑝𝑜𝑙𝑦-conditioned.

We now provide a brief sketch of a reduction which does pre-

serve this property; see Lemma 19 for a formal proof. Consider

a positive definite 𝑛 × 𝑛 matrix 𝐻 , with 𝜎1 (𝐻) ≤ 1 and 𝜅 (𝐻) =

𝑝𝑜𝑙𝑦 (𝑛). We wish to obtain an additive 1/𝑝𝑜𝑙𝑦 (𝑛) approximation

of ln(det(𝐻)). By Jacobi’s formula, ln(det(𝐻)) = tr(ln(𝐻)), where
ln(𝐻) denotes the matrix logarithm. We have 𝜎1 (𝐼 − 𝐻) ≤ 1 −
1/𝑝𝑜𝑙𝑦 (𝑛) < 1, which implies that the series −

∞∑
𝑘=1

(𝐼−𝐻)𝑘
𝑘

con-

verges to ln(𝐻). Therefore, ln(det(𝐻)) = −
∞∑
𝑘=1

tr((𝐼−𝐻)𝑘)
𝑘

. More-

over, as 𝜎1 (𝐼 − 𝐻) ≤ 1 − 1/𝑝𝑜𝑙𝑦 (𝑛), the aforementioned series

converges "quickly," which implies that, for some𝑚 = 𝑝𝑜𝑙𝑦 (𝑛), the
quantity −

𝑚∑
𝑘=1

tr((𝐼−𝐻)𝑘)
𝑘

is a sufficiently good approximation of

ln(det(𝐻)). Estimating this quantity corresponds to an instance of

𝑝𝑜𝑙𝑦-conditioned-SUMITMATPROD.
In Section 3.2, we exhibit a collection of reductions between

these various linear-algebraic problems, which use a variety of

techniques to preserve the property of being 𝑝𝑜𝑙𝑦-conditioned.

Moreover, we note that our paper and that of Boix-Adserà, El-

dar, and Mehraban [8] use power series techniques to produce

space-efficient algorithms for 𝑝𝑜𝑙𝑦-conditioned-DET. However, our
quantum algorithm can make use of a power series with an expo-
nentially larger number of terms than seems possible for their (or

any other) classical algorithm. This suggests a possible mechanism

for explaining the supposed advantage of quantum computers over

classical computers in the space-bounded setting.

1.4 Related Work
Simultaneously and independently of our work, Girish, Raz, and

Zhan [21] proved the following weaker version of our Theorem 2:

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛-MATPOW ∈ BQUL, where 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛-MATPOW is

a special case of our 𝑝𝑜𝑙𝑦-conditioned-MATPOW. We note that the

techniques used in their proof differed substantially from ours. As

a consequence of this result, they then obtain the following weaker

version of our Theorem 1: BQUL = BQQL, where BQQL ⊆ BQL
is a version of quantum logspace that allows a special type of

intermediate measurements to be performed, but does not allow

using the (classical) result of earlier measurements to control (in a

general fashion) later steps of the computation.

2 PRELIMINARIES
2.1 General Notation and Definitions
LetMat(𝑛) = C𝑛×𝑛 denote the set of all 𝑛×𝑛 complex matrices and

let Herm(𝑛) = {𝐴 ∈ Mat(𝑛) : 𝐴 = 𝐴†} denote the set of all 𝑛 × 𝑛
Hermitian matrices. For 𝐴 ∈ Mat(𝑛), let 𝜎1 (𝐴) ≥ · · · ≥ 𝜎𝑛 (𝐴) ≥ 0

denote its singular values and let 𝜆1 (𝐴), . . . , 𝜆𝑛 (𝐴) ∈ C denote its

eigenvalues (with multiplicity); if𝐴 ∈ Herm(𝑛), then 𝜆 𝑗 (𝐴) ∈ R,∀𝑗 ,
and we order the eigenvalues such that 𝜆1 (𝐴) ≥ · · · ≥ 𝜆𝑛 (𝐴). Let 𝐼𝑛
denote the 𝑛×𝑛 identity matrix, Pos(𝑛) = {𝐴 ∈ Herm(𝑛) : 𝜆𝑛 (𝐴) ≥
0} denote the 𝑛 × 𝑛 positive semidefinite matrices, Proj(𝑛) = {𝐴 ∈
Pos(𝑛) : 𝐴2 = 𝐴} denote the 𝑛×𝑛 projection matrices, U(𝑛) = {𝐴 ∈
Mat(𝑛) : 𝐴𝐴† = 𝐼𝑛} denote the𝑛×𝑛 unitarymatrices, andDen(𝑛) =
{𝐴 ∈ Pos(𝑉) : tr(𝐴) = 1} denote the 𝑛 × 𝑛 density matrices. Let

Q[𝑖]𝑛 = { 𝑟+𝑐𝑖
𝑑

: 𝑟, 𝑐, 𝑑 ∈ Z, |𝑟 |, |𝑐 |, |𝑑 | ≤ 2
𝑂 (𝑛) } denote the set of all

𝑂 (𝑛)-bit Gaussian rationals and let M̂at(𝑛) (resp. �Herm(𝑛), P̂os(𝑛),

1345

STOC ’21, June 21–25, 2021, Virtual, Italy Bill Fefferman and Zachary Remscrim

etc.) denote the subset of Mat(𝑛) (resp. Herm(𝑛), Pos(𝑛), etc.) con-
sisting of those matrices whose entries are all in Q[𝑖]𝑛 . We de-

fine Mat(𝑛, 𝑐, 𝑑) = {𝐴 ∈ Mat(𝑛) : 𝑐 ≤ 𝜎𝑛 (𝐴) ≤ 𝜎1 (𝐴) ≤ 𝑑}
and we also analogously define M̂at(𝑛, 𝑐, 𝑑), Herm(𝑛, 𝑐, 𝑑), etc. Let
[𝑛] = {1, . . . , 𝑛}.

We assume that the reader has familiarity with quantum com-

putation and the theory of quantum information; see, for instance,

[26, 35, 55] for an introduction. A quantum system, on 𝑠 qubits,

that is in a pure state is described by a unit vector |𝜓 ⟩ in the 2
𝑠
-

dimensional Hilbert space C2
𝑠
. A mixed state of the same system is

described by some ensemble {(𝑝𝑖 , |𝜓𝑖 ⟩) : 𝑖 ∈ 𝐼 }, for some index set

𝐼 , where 𝑝𝑖 ∈ [0, 1] denotes the probability of the system being in

the pure state |𝜓𝑖 ⟩ ∈ C2
𝑠
, and

∑
𝑖 𝑝𝑖 = 1. This ensemble corresponds

to the density matrix 𝐴 =
∑
𝑖 𝑝𝑖 |𝜓𝑖 ⟩⟨𝜓𝑖 | ∈ Den(2𝑠).

Let T(𝑛,𝑚) denote the set of all superoperators of the form Φ :

Mat(𝑛) → Mat(𝑚) (i.e.,Φ is aC-linear map from theC-vector space
Mat(𝑛) to the C-vector space Mat(𝑚)). Let T(𝑛) = T(𝑛, 𝑛) and let

1𝑛 ∈ T(𝑛) denote the identity operator. Consider some Φ ∈ T(𝑛,𝑚).
We say that Φ is positive if, ∀𝐴 ∈ Pos(𝑛), we have Φ(𝐴) ∈ Pos(𝑚).
We say that Φ is completely positive if Φ ⊗ 1𝑟 is positive, ∀𝑟 ∈
N, where ⊗ denotes the tensor product. We say that Φ is trace-
preserving if tr(Φ(𝐴)) = tr(𝐴),∀𝐴 ∈ Mat(𝑛). IfΦ is both completely

positive and trace-preserving, then we say Φ is a quantum channel;
let Chan(𝑛,𝑚) = {Φ ∈ T(𝑛,𝑚) : Φ is a quantum channel} denote
the set of all such channels, and let Chan(𝑛) = Chan(𝑛, 𝑛).

Let vec denote the usual vectorization map that takes a matrix

𝐴 ∈ Mat(𝑛) to the vector vec(𝐴) ∈ C𝑛2

consisting of the entries of

𝐴 (in some fixed order). For Φ ∈ T(𝑛), let 𝐾 (Φ) ∈ Mat(𝑛2) denote
the natural representation of Φ, which is defined to be the (unique)

matrix for which vec(Φ(𝐴)) = 𝐾 (Φ)vec(𝐴), ∀𝐴 ∈ Mat(𝑛).

2.2 Space-Bounded Quantum Computation
We briefly recall the definitions of several needed space-bounded

quantum complexity classes. Note that, in many of the previous

papers that considered space-bounded quantum computation [25,

33, 37, 46, 50–53], the quantum Turing machine model was used

to define the various complexity classes of interest. Arguably, this

is the "natural" model to be used to define these classes. However,

as the (equivalent) model of uniformly generated quantum circuits
are, arguably, more familiar to quantum complexity theorists and

physicists, we state these definitions using quantum circuits. We

emphasize that all of the results in this paper apply to both the

uniform quantum circuit model and the quantum TM model.

Definition 4. A (unitary) quantum circuit is a sequence of quantum
gates, each of which is a member of some fixed set of gates that

is universal for quantum computation (e.g., {H,CNOT,T}). We say

that a family of quantum circuits {𝑄𝑤 : 𝑤 ∈ P} is DSPACE(𝑠)-
uniform if there is a deterministic TM that, on any input 𝑤 ∈ P,
runs in space 𝑂 (𝑠 (|𝑤 |)) (and hence time 2

𝑂 (𝑠 (|𝑤 |))
), and outputs a

description of 𝑄𝑤 .

Definition 5. Consider functions 𝑐, 𝑘 : N→ [0, 1] and 𝑠 : N→ N,
with 𝑠 (𝑛) = Ω(log𝑛), all of which are computable in DSPACE(𝑠).
Let QUSPACE(𝑠)𝑐,𝑘 denote the collection of all promise problems

P = (P1, P0) such that there is a DSPACE(𝑠)-uniform family of

(unitary) quantum circuits {𝑄𝑤 : 𝑤 ∈ P}, where 𝑄𝑤 acts on

ℎ𝑤 = 𝑂 (𝑠 (|𝑤 |)) qubits and has 2
𝑂 (𝑠 (|𝑤 |))

gates, which has the

following properties. The circuit 𝑄𝑤 is applied to ℎ𝑤 qubits that

were initialized in the all-zeros state |0ℎ𝑤 ⟩, after which the first

qubit is measured in the standard basis. If the result is 1, then we

say 𝑄𝑤 accepts 𝑤 ; if, instead, the result is 0, then we say 𝑄𝑤 rejects
𝑤 . We require that the following conditions hold:

Completeness: 𝑤 ∈ P1 ⇒ Pr[𝑄𝑤 accepts𝑤] ≥ 𝑐 (|𝑤 |).
Soundness: 𝑤 ∈ P0 ⇒ Pr[𝑄𝑤 accepts𝑤] ≤ 𝑘 (|𝑤 |).

Let BQUSPACE(𝑠) = QUSPACE(𝑠) 2
3
, 1
3

denote (two-sided) bounded-

error unitary quantum space 𝑠 and let BQUL = BQUSPACE(log𝑛)
denote unitary quantum logspace.

Note that, in the preceding definition, 𝑄𝑤 has 2
𝑂 (𝑠 (|𝑤 |))

gates

(this is forced by the uniformity condition). That is to say, in our

definition of quantum space 𝑠 (𝑛), we require that the computation

also runs in time 2
𝑂 (𝑠 (|𝑤 |))

. We refer the reader to the excellent

survey paper by Saks [41] for a thorough discussion of the desir-

ability of requiring that space-bounded probabilistic computations

run in time at most exponential in their space bound, as well as

to, for instance, [33, 50, 52] for discussions of the analogous issue

for quantum computation. Note that the particular choice of uni-

versal gate set does not affect the definition of BQUSPACE(𝑠) due
to the space-efficient version [33] of the Solovay-Kitaev theorem.

Furthermore, note that the class BQUL would remain the same

if defined as BQUL = QUSPACE(log𝑛)𝑐,𝑘 for any 𝑐, 𝑘 for which

𝑐 (𝑛) = 1 − 1

𝑝𝑜𝑙𝑦 (𝑛) , 𝑘 (𝑛) = 1

𝑝𝑜𝑙𝑦 (𝑛) , and ∃𝑞 : N → N>0, where

𝑞(𝑛) = 𝑝𝑜𝑙𝑦 (𝑛), such that 𝑐 (𝑛) − 𝑘 (𝑛) ≥ 1

𝑞 (𝑛) , ∀𝑛 [17].

We next consider general space-bounded quantum computation.

Most basically, we desire a model of quantum computation that

allows intermediate quantum measurements. That is to say, rather

than considering a purely unitary quantum computation in which

a single measurement is performed at the end, we now allow mea-

surements to be performed throughout the computation, and for

the results of those measurements to be used to control the compu-

tation. As we wish for our main result (the equivalency of unitary

and general space-bounded quantum computation) to be as strong

as possible, we want to use a model of general space-bounded quan-

tum computation that is as powerful as possible. To that end, we

consider a space-bounded variant of the general quantum circuit

model, considered in the classic paper of Aharonov, Kitaev, and

Nisan [2], in which gates are now arbitrary quantum channels.

Definition 6. A general quantum circuit on ℎ qubits is a sequence

Φ = (Φ1, . . . ,Φ𝑡) of quantum channels, where each Φ𝑗 ∈ Chan(2ℎ).
By slight abuse of notation, we use Φ to denote the element Φ𝑡 ◦
· · · ◦ Φ1 ∈ Chan(2ℎ) obtained by composing the individual gates

of the circuit in order. We say that a family of general quantum

circuits {Φ𝑤 = (Φ𝑤,1, . . . ,Φ𝑤,𝑡𝑤) : 𝑤 ∈ P} is DSPACE(𝑠)-uniform
if there is a deterministic TM that, on any input𝑤 ∈ P, runs in space
𝑂 (𝑠 (|𝑤 |)) (and hence time 2

𝑂 (𝑠 (|𝑤 |))
), and outputs a description

of Φ𝑤 ; to be precise, a description of Φ𝑤 consists of the entries of

each 𝐾 (Φ𝑤,𝑗), where we require that 𝐾 (Φ𝑤,𝑗) ∈ M̂at(22ℎ).

The operation of applying a unitary transformation is a special

case of a quantum channel, and so the general quantum circuit

1346

Eliminating Intermediate Measurements in Space-Bounded Quantum Computation STOC ’21, June 21–25, 2021, Virtual, Italy

model extends the ordinary (unitary) quantum circuit model. More-

over, the process of performing any (partial or full) quantum mea-

surement in the computational basis is described by a quantum

channel, and the form of the preceding definition allows the results

of intermediate measurements to be used to control which oper-

ations are applied at later stages of the computation (this can be

accomplished by using a subset of the qubits as classical bits to

store the results of earlier measurements, thereby making these

results available to gates that appear later in the computation). It

is necessary to establish some reasonable restriction on the com-

plexity of computing a description of each gate of the circuit, as

we do not wish to unreasonably increase the power of the model

by allowing, e.g., non-computable numbers to be used in defining

each gate (see [33, 38, 39, 52] for discussion of this issue).

Definition 7. Consider functions 𝑐, 𝑘 : N→ [0, 1] and 𝑠 : N→ N,
with 𝑠 (𝑛) = Ω(log𝑛), all of which are computable in DSPACE(𝑠).
LetQSPACE(𝑠)𝑐,𝑘 denote the collection of all promise problems P =

(P1, P0) such that there is a DSPACE(𝑠)-uniform family of general

quantum circuits {Φ𝑤 : 𝑤 ∈ P}, where Φ𝑤 acts on ℎ𝑤 = 𝑂 (𝑠 (|𝑤 |))
qubits and has 2

𝑂 (𝑠 (|𝑤 |))
gates, that has the following properties.

The circuit Φ𝑤 is applied to ℎ𝑤 qubits that were initialized in the

all-zeros state |0ℎ𝑤 ⟩, after which the first qubit is measured in the

standard basis. If the result is 1, then Φ𝑤 accepts 𝑤 ; otherwise,
Φ𝑤 rejects 𝑤 . We require that 𝑤 ∈ P1 ⇒ Pr[Φ𝑤 accepts𝑤] ≥
𝑐 (|𝑤 |) and 𝑤 ∈ P0 ⇒ Pr[Φ𝑤 accepts𝑤] ≤ 𝑘 (|𝑤 |). We define

general quantum space BQSPACE(𝑠) = QSPACE(𝑠) 2
3
, 1
3

and BQL =

BQSPACE(log𝑛).
We note that this general quantum circuit model is equivalent

to the space-bounded (general) quantum TM model of Watrous

[52]. We also note that the results of this paper would apply to

any "reasonable" variant of space-bounded quantum computation

that is classically controlled, which includes all of the "standard"

variants that have been considered [33, 37, 46, 52]. We refer the

reader to [33, Section 2] for a thorough discussion of the various

models of space-bounded quantum computation, and, in particular,

of the reasonableness of requiring classical control.

We next define space-bounded quantum Merlin-Arthur proof

systems, essentially following [18].

Definition 8. Consider functions 𝑐, 𝑘 : N→ [0, 1] and 𝑠 : N→ N,
with 𝑠 (𝑛) = Ω(log𝑛), all of which are computable in DSPACE(𝑠).
Let QUMASPACE(𝑠)𝑐,𝑘 (resp. QMASPACE(𝑠)𝑐,𝑘) denote the col-

lection of all promise problems P = (P1, P0) such that there is

a DSPACE(𝑠)-uniform family of unitary (resp. general) quantum

circuits {𝑉𝑤 : 𝑤 ∈ P}, where 𝑉𝑤 acts on 𝑚𝑤 + ℎ𝑤 = 𝑂 (𝑠 (|𝑤 |))
qubits and has 2

𝑂 (𝑠 (|𝑤 |))
gates, that has the following properties.

Let Ψ𝑚𝑤
denote the set of 𝑚𝑤-qubit states. For each 𝑤 ∈ P, the

verification circuit 𝑉𝑤 is applied to the state |𝜓 ⟩ ⊗ |0ℎ𝑤 ⟩, where
|𝜓 ⟩ ∈ Ψ𝑚𝑤

is a (purported) proof of the fact that 𝑤 ∈ P1. Then,
the first qubit is measured in the standard basis. If the result is

1, then 𝑤 is accepted; otherwise, 𝑤 is rejected. We require that

𝑤 ∈ P1 ⇒ ∃|𝜓 ⟩ ∈ Ψ𝑚𝑤
, Pr[𝑉𝑤 accepts𝑤, |𝜓 ⟩] ≥ 𝑐 (|𝑤 |) and

𝑤 ∈ P0 ⇒ ∀|𝜓 ⟩ ∈ Ψ𝑚𝑤
, Pr[𝑉𝑤 accepts𝑤, |𝜓 ⟩] ≤ 𝑘 (|𝑤 |). We then

define QUMASPACE(𝑠) = QUMASPACE(𝑠) 2
3
, 1
3

, QMASPACE(𝑠) =
QMASPACE(𝑠) 2

3
, 1
3

, QUMAL = QUMASPACE(log𝑛), and QMAL =

QMASPACE(log𝑛).

Lastly we define analogues of these classes for other error types.

One-sided bounded error: RQMASPACE(𝑠) = QMASPACE(𝑠) 1
2
,0,

RQUSPACE(𝑠) = QUSPACE(𝑠) 1
2
,0, etc. One-sided unbounded er-

ror: NQSPACE(𝑠) =
⋃

𝑐 :N→(0,1]
QSPACE(𝑠)𝑐,0, NQMASPACE(𝑠) =⋃

𝑐 :N→(0,1]
QMASPACE(𝑠)𝑐,0, etc. Note that the classesRQMASPACE

and NQMASPACE have perfect soundness. We define QMASPACE
with perfect completeness: QMASPACE1 (𝑠) = QMASPACE(𝑠)

1, 1
2

and PreciseQMASPACE1 (𝑠) =
⋃

𝑘 :N→[0,1)
QMASPACE(𝑠)

1,𝑘 .

3 WELL-CONDITIONED DETERMINANT
We define the following well-conditioned versions of the standard

DET∗-complete problems [12]. We consider parameterized promise

problems of the form P = (P𝑛,𝑓1,...,𝑓ℎ)𝑛∈N, for functions 𝑓1, . . . , 𝑓ℎ :

N → R; P𝑛,𝑓1,...,𝑓ℎ consists of instances of size 𝑛 which satisfy

various conditions expressed in terms of 𝑓1 (𝑛), . . . , 𝑓ℎ (𝑛). For a
promise problem P defined over some alphabet Σ, we, by slight

abuse of notation, also write P to denote the subset of Σ∗ that

satisfies the promise; analogously, we write P𝑛,𝑓1,...,𝑓ℎ to denote

those instances of size 𝑛 that satisfy the promise. For ⟨𝑋 ⟩ ∈ P, let
P(⟨𝑋 ⟩) ∈ {0, 1} denote the desired output on input 𝑋 . We also use

the notation P = (P1, P0), where P𝑗 = {⟨𝑋 ⟩ ∈ P : P(⟨𝑋 ⟩) = 𝑗}.
We first define well-conditioned versions of DET andMATINV.

The input to each problem consists of a matrix 𝐴 (among other

values) which is promised to be well-conditioned (among other

promises): 𝐴 ∈ M̂at(𝑛, 1/𝜅 (𝑛), 1). Recall that, by definition, this

means that 𝜎1 (𝐴) ≤ 1 and 𝜎𝑛 (𝐴) ≥ 1/𝜅 (𝑛), which implies 𝐴 has

condition number at most 𝜅 (𝑛).

Definition 9. Consider functions 𝜅 : N→ R≥1 and 𝜖 : N→ R>0.
DET𝑛,𝜅,𝜖−1
Input: 𝐴 ∈ M̂at(𝑛) and 𝑏 ∈ R≤0
Promise: 𝐴 ∈ M̂at(𝑛, 1/𝜅 (𝑛), 1), |det(𝐴) | ∈ [0, 𝑒𝑏−𝜖 (𝑛)] ∪ [𝑒𝑏 , 1]
Output: 1 if |det(𝐴) | ≥ 𝑒𝑏 , 0 otherwise

DET+
𝑛,𝜅,𝜖−1

Input: 𝐴 ∈ M̂at(𝑛) and 𝑏 ∈ R≤0
Promise: 𝐴 ∈ P̂os(𝑛, 1/𝜅 (𝑛), 1), det(𝐴) ∈ [0, 𝑒𝑏−𝜖 (𝑛)] ∪ [𝑒𝑏 , 1]
Output: 1 if det(𝐴) ≥ 𝑒𝑏 , 0 otherwise

MATINV𝑛,𝜅,𝜖−1
Input: 𝐴 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ R≥0
Promise:𝐴 ∈ M̂at(𝑛, 1/𝜅 (𝑛), 1), |𝐴−1 [𝑠, 𝑡] | ∈ [0, 𝑏 − 𝜖 (𝑛)] ∪ [𝑏,∞)
Output: 1 if |𝐴−1 [𝑠, 𝑡] | ≥ 𝑏, 0 otherwise

MATINV+
𝑛,𝜅,𝜖−1

Input: 𝐴 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ R≥0
Promise: 𝐴 ∈ P̂os(𝑛, 1/𝜅 (𝑛), 1), 𝐴−1 [𝑠, 𝑡] ∈ [0, 𝑏 − 𝜖 (𝑛)] ∪ [𝑏,∞)
Output: 1 if 𝐴−1 [𝑠, 𝑡] ≥ 𝑏, 0 otherwise

We next define well-conditioned versions of the various matrix

multiplication problems; here, "well-conditioned" has a somewhat

different definition. For a sequence of matrices 𝐴1, . . . , 𝐴𝑚 , and

for indices 𝑗1, 𝑗2, where 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚, let 𝐴 𝑗1, 𝑗2 =
𝑗2∏

𝑗=𝑗1

𝐴 𝑗 .

We require that all partial products have small singular values

𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝜅 (𝑛).

1347

STOC ’21, June 21–25, 2021, Virtual, Italy Bill Fefferman and Zachary Remscrim

Definition 10. Consider functions𝑚 : N→ N, 𝜅 : N→ R≥1, and
𝜖 : N→ R>0.
MATPOW𝑛,𝑚,𝜅,𝜖−1

Input: 𝐴 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ R≥0
Promise: 𝜎1 (𝐴 𝑗) ≤ 𝜅 (𝑛) ∀𝑗 ∈ [𝑚],

|𝐴𝑚 [𝑠, 𝑡] | ∈ [0, 𝑏 − 𝜖 (𝑛)] ∪ [𝑏,∞)
Output: 1 if |𝐴𝑚 [𝑠, 𝑡] | ≥ 𝑏, 0 otherwise

ITMATPROD𝑛,𝑚,𝜅,𝜖−1

Input: 𝐴1, . . . , 𝐴𝑚 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ R≥0
Promise: 𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝜅 (𝑛) ∀1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚,��𝐴1,𝑚 [𝑠, 𝑡]

�� ∈ [0, 𝑏 − 𝜖 (𝑛)] ∪ [𝑏,∞)
Output: 1 if

��𝐴1,𝑚 [𝑠, 𝑡]
�� ≥ 𝑏, 0 otherwise

ITMATPROD≥0
𝑛,𝑚,𝜅,𝜖−1

Input: 𝐴1, . . . , 𝐴𝑚 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ R≥0
Promise: 𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝜅 (𝑛) ∀1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚,

𝐴1,𝑚 [𝑠, 𝑡] ∈ [0, 𝑏 − 𝜖 (𝑛)] ∪ [𝑏,∞)
Output: 1 if 𝐴1,𝑚 [𝑠, 𝑡] ≥ 𝑏, 0 otherwise

SUMITMATPROD𝑛,𝑚,𝜅,𝜖−1

Input: 𝐴1, . . . , 𝐴𝑚 ∈ M̂at(𝑛), 𝐸 ⊆ [𝑛]2, 𝑏 ∈ R≥0
Promise: 𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝜅 (𝑛) ∀1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚,����� ∑

(𝑠,𝑡) ∈𝐸
𝐴1,𝑚 [𝑠, 𝑡]

����� ∈ [0, 𝑏 − 𝜖 (𝑛)] ∪ [𝑏,∞)

Output: 1 if

����� ∑
(𝑠,𝑡) ∈𝐸

𝐴1,𝑚 [𝑠, 𝑡]
����� ≥ 𝑏, 0 otherwise

Note that, with the exception of the problem DET (and DET+),
each of the above problems are defined such that they correspond

to approximating some quantity with additive error 𝜖/2; for ex-
ample, MATINV involves determining if |𝐴−1 [𝑠, 𝑡] | ≤ 𝑏 − 𝜖 or

|𝐴−1 [𝑠, 𝑡] | ≥ 𝑏. To clarify our definition of DET, observe that

this problem, which involves determining if |det(𝐴) | ≤ 𝑒𝑏−𝜖 or

|det(𝐴) | ≥ 𝑒𝑏 , is equivalent to the problem of determining if

ln(|det(𝐴) |) ≤ 𝑏 − 𝜖 or ln(|det(𝐴) |) ≥ 𝑏. In other words, we have

definedDET such that it corresponds to obtaining an approximation

of ln(|det(𝐴) |) with additive error 𝜖/2; this is equivalent to obtain-

ing a 𝑒±
𝜖
2 multiplicative approximation of |det(𝐴) |. As we will see

in Section 3.2 and Section 4, this is the "correct" definition of DET,
in the sense that it is the version of the determinant problem that

most closely corresponds to the other linear-algebraic problems

(matrix powering, matrix inversion, etc.) defined above.

Moreover, the problems as defined above are somewhat "over

parameterized." For example, if ⟨𝐴, 𝑠, 𝑡, 𝑏⟩ ∈ MATINV𝑛,𝜅 (𝑛),𝜖−1 (𝑛) ,
then MATINV(⟨𝐴, 𝑠, 𝑡, 𝑏⟩) = MATINV(⟨𝜖 (𝑛)𝐴, 𝑠, 𝑡, 𝜖−1 (𝑛)𝑏⟩) and
⟨𝜖 (𝑛)𝐴, 𝑠, 𝑡, 𝜖−1 (𝑛)𝑏⟩ ∈ MATINV𝑛,𝜅 (𝑛)𝜖−1 (𝑛),1. These additional pa-
rameters are convenient as they allow us to express certain results

more cleanly.

Definition 11. For each promise problem P𝑛,𝜅,𝜖−1 (resp. P𝑛,𝑚,𝜅,𝜖−1)

in Definitions 9 and 10, we define 𝑝𝑜𝑙𝑦-conditioned-P to be the

promise problem P𝑛,𝑛𝑂 (1) ,𝑛𝑂 (1) (resp. P𝑛,𝑛𝑂 (1) ,𝑛𝑂 (1) ,𝑛𝑂 (1)). For exam-

ple,

𝑝𝑜𝑙𝑦-conditioned-DET
Input: 𝐴 ∈ M̂at(𝑛) and 𝑏 ∈ R≤0
Promise: 𝐴 ∈ M̂at(𝑛, 𝑛−𝑂 (1) , 1), |det(𝐴) | ∈ [0, 𝑒𝑏−𝑛−𝑂 (1)] ∪ [𝑒𝑏 , 1]
Output: 1 if |det(𝐴) | ≥ 𝑒𝑏 , 0 otherwise

We say that P = (P𝑛,𝑓1,...,𝑓ℎ)𝑛∈N is (many-one) reducible to

P′ = (P′
𝑚,𝑓 ′

1
,...,𝑓 ′

ℎ′
)𝑚∈N if ∃𝑝0, . . . , 𝑝ℎ′ , where each 𝑝 𝑗 is a real (ℎ+1)-

variate polynomial, such that∀𝑛 ∈ N,∃𝑔𝑛 : P𝑛,𝑓1,...,𝑓ℎ → P′
𝑚,𝑓 ′

1
,...,𝑓 ′

ℎ′
such that the following conditions hold: (1) P(⟨𝑋 ⟩) = P′(𝑔𝑛 (⟨𝑋 ⟩)),
∀⟨𝑋 ⟩ ∈ P𝑛,𝑓1,...,𝑓ℎ , (2)𝑚 = 𝑝0 (𝑛, 𝑓1 (𝑛), . . . , 𝑓ℎ (𝑛)), and (3) 𝑓 ′

𝑗
(𝑚) =

𝑝 𝑗 (𝑛, 𝑓1 (𝑛), . . . , 𝑓ℎ (𝑛)), ∀𝑗 . If (𝑔𝑛)𝑛∈N is computable in determinis-

tic logspace (resp. uniform NC1
, uniform AC0

), we write P ≤𝑚L P′

(resp. P ≤𝑚
NC1

P′, P ≤𝑚
AC0

P′). For a complexity class C, we say that

P′ is C-complete if (1) P′ ∈ C and (2) P ≤𝑚L P′, ∀P ∈ C.
Fefferman and Lin [18] showed that 𝑝𝑜𝑙𝑦-conditioned-MATINV

is BQUL-complete. We extend their result by showing that by show-

ing that all of the above 𝑝𝑜𝑙𝑦-conditioned problems are BQUL-
complete. Along the way to proving this result, we also show that

BQUL = BQL. To accomplish this, we will prove several lemmas

that exhibit reductions between particular problems in Definitions 9

and 10. The proofs of these lemmas share a common structure: for

a pair of promise problems P, P′, we show how to transform an

instance 𝑤 ∈ P to an instance 𝑓 (𝑤) ∈ P′ such that the reduc-

tion function 𝑓 preserves the answer (i.e., P(𝑤) = P′(𝑓 (𝑤))) and
also preserves the property of being well-conditioned. Note that

P ≤𝑚L P′ ⇒ 𝑝𝑜𝑙𝑦-conditioned-P ≤𝑚L 𝑝𝑜𝑙𝑦-conditioned-P′.

3.1 Eliminating Intermediate Measurements
In this section, we show that intermediate measurements may be

eliminated without any increase in needed space. We begin by

showing that 𝑝𝑜𝑙𝑦-conditioned-ITMATPROD is BQL-hard and is

in BQUL, which implies BQL = BQUL; the general equivalence

then follows from a standard padding argument. In the following,

we assume that𝑚(𝑛),𝜅 (𝑛), and 𝜖 (𝑛)−1 can be computed to𝑂 (log𝑛)
bits of precision in uniformAC0

. For𝑚 ∈ N≥1 and 𝑟, 𝑐 ∈ [𝑚], define
𝐹𝑚,𝑟,𝑐 ∈ M̂at(𝑚) such that 𝐹𝑚,𝑟,𝑐 [𝑟, 𝑐] = 1 and 𝐹𝑚,𝑟,𝑐 [𝑟 ′, 𝑐 ′] = 0,

∀(𝑟 ′, 𝑐 ′) ≠ (𝑟, 𝑐).

Lemma 12. ITMATPROD ≤𝑚
AC0

MATPOW.

Proof. Consider ⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡, 𝑏⟩ ∈ ITMATPROD𝑛,𝑚,𝜅,𝜖−1 .

Following [12], let 𝐴 =
𝑚∑
𝑟=1

𝐹𝑚+1,𝑟 ,𝑟+1 ⊗ 𝐴𝑟 ∈ M̂at(𝑛𝑚 + 𝑛) con-
sist of 𝑛 × 𝑛 blocks, where the blocks immediately above the main

diagonal blocks are given by 𝐴1, . . . , 𝐴𝑚 , and all other entries are 0.

For 𝑗 ∈ [𝑚], we have

𝐴 𝑗 =

𝑚+1−𝑗∑︁
𝑟=1

𝐹𝑚+1,𝑟 ,𝑟+𝑗 ⊗ 𝐴𝑟,𝑟+𝑗−1 .

Let 𝑠̂ = 𝑠 , 𝑡̂ = 𝑛𝑚 + 𝑡 , 𝑏 = 𝑏. Then 𝐴𝑚 [̂𝑠, 𝑡̂] = 𝐴1,𝑚 [𝑠, 𝑡], which im-

plies ITMATPROD(⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡, 𝑏⟩) = MATPOW(⟨𝐴, 𝑠̂, 𝑡̂ , 𝑏⟩).
Moreover, ∀𝑗 ∈ [𝑚], we have

𝜎1 (𝐴 𝑗) = 𝜎1

(
𝑚+1−𝑗∑︁
𝑟=1

𝐹𝑚+1,𝑟 ,𝑟+𝑗 ⊗ 𝐴𝑟,𝑟+𝑗−1

)
= 𝜎1

(
𝑚+1−𝑗⊕
𝑟=1

𝐴𝑟,𝑟+𝑗−1

)
= max

𝑟
𝜎1 (𝐴𝑟,𝑟+𝑗−1) ≤ 𝜅 (𝑛).

Therefore, ⟨𝐴, 𝑠̂, 𝑡̂ , 𝑏⟩ ∈ MATPOW𝑛𝑚+𝑛,𝑚,𝜅 (𝑛),𝜖−1 (𝑛) . □

Lemma 13. MATPOW ≤𝑚
AC0

MATINV.

1348

Eliminating Intermediate Measurements in Space-Bounded Quantum Computation STOC ’21, June 21–25, 2021, Virtual, Italy

Proof. Suppose ⟨𝐴, 𝑠, 𝑡, 𝑏⟩ ∈ MATPOW𝑛,𝑚,𝜅,𝜖−1 . Following [12],

let𝐺 𝑗 =
𝑚+1−𝑗∑
𝑟=1

𝐹𝑚+1,𝑟 ,𝑟+𝑗 ∈ M̂at(𝑚+1), ∀𝑗 ∈ [𝑚]. Let𝑌 = 𝐺1⊗𝐴 ∈

M̂at(𝑛𝑚 + 𝑛) consist of 𝑛 × 𝑛 blocks, where the blocks immediately

above the main diagonal blocks are all given by 𝐴. Let 𝑍 = 𝐼𝑛𝑚+𝑛 −
𝑌 ∈ M̂at(𝑛𝑚 + 𝑛) and observe that

𝑍−1 =
𝑚∑︁
𝑗=0

𝐺 𝑗 ⊗ 𝐴 𝑗 .

Let 𝑠̂ = 𝑠 and 𝑡̂ = 𝑛𝑚 + 𝑡 . Then 𝑍−1 [̂𝑠, 𝑡̂] = 𝐴𝑚 [𝑠, 𝑡]. We also have

𝜎1 (𝑍) ≤ 𝜎1 (𝐼𝑛𝑚+𝑛) + 𝜎1 (𝑌) ≤ 1 + 𝜅 (𝑛) and

𝜎1 (𝑍−1) = 𝜎1
©­«
𝑚∑︁
𝑗=0

𝐺 𝑗 ⊗ 𝐴 𝑗 ª®¬ ≤
𝑚∑︁
𝑗=0

𝜎1 (𝐺 𝑗 ⊗ 𝐴 𝑗) ≤ 1 +
𝑚∑︁
𝑗=1

𝜎1 (𝐴 𝑗)

≤ 1 +
𝑚∑︁
𝑗=1

𝜅 (𝑛) ≤ 1 +𝑚𝜅 (𝑛).

This implies 𝜎𝑛𝑚+𝑛 (𝑍) = 𝜎1 (𝑍−1)−1 ≥ (1 +𝑚𝜅 (𝑛))−1. Let 𝑍 =
1

⌈1+𝜅 (𝑛) ⌉𝑍 ∈ M̂at(𝑛𝑚 + 𝑛) and 𝑏 = ⌈1 + 𝜅 (𝑛)⌉𝑏. We then conclude

that ⟨𝑍, 𝑠̂, 𝑡̂ , 𝑏⟩ ∈ MATINV𝑛𝑚+𝑛,(1+𝑚𝜅 (𝑛)) ⌈1+𝜅 (𝑛) ⌉, ⌈1+𝜅 (𝑛) ⌉−1𝜖−1 (𝑛)
and MATPOW(⟨𝐴, 𝑠, 𝑡, 𝑏⟩) = MATINV(⟨𝑍, 𝑠̂, 𝑡̂ , 𝑏⟩). □

Lemma 14. MATINV ≤𝑚
NC1

MATINV+.

Proof. Consider ⟨𝐴, 𝑠, 𝑡, 𝑏⟩ ∈ MATINV𝜅,𝜖−1 . We define 𝐻 =

1

3

(
𝐴†𝐴 −𝐴†

−𝐴 2𝐼

)
∈ P̂os(2𝑛). Note that 𝐻−1 = 3

(
2(𝐴†𝐴)−1 𝐴−1

(𝐴†)−1 𝐼

)
.

Moreover, 𝜎1 (𝐻) ≤ 1 and 𝜎2𝑛 (𝐻) ≥ 1

9
(𝜎𝑛 (𝐴))2 ≥ (3𝜅 (𝑛))−2. Let

𝑠̂ = 𝑠 , 𝑡̂ = 𝑡 + 𝑛, and 𝑏 = 3𝑏. Then 𝐻−1 [̂𝑠, 𝑡̂] = 3𝐴−1 [𝑠, 𝑡]. There-
fore, MATINV(⟨𝐴, 𝑠, 𝑡, 𝑏⟩) = MATINV(⟨𝐻, 𝑠̂, 𝑡̂ , 𝑏⟩) and ⟨𝐻, 𝑠̂, 𝑡̂ , 𝑏⟩ ∈
MATINV+

2𝑛,(3𝜅 (𝑛))2,(3𝜖 (𝑛))−1 . □

Lemma 15. 𝑝𝑜𝑙𝑦-conditioned-ITMATPROD ∈ BQUL.

Proof. By Lemmas 12 to 14, ITMATPROD ≤𝑚
NC1

MATINV+. Re-
call P ≤𝑚

NC1
P′ ⇒ 𝑝𝑜𝑙𝑦-conditioned-P ≤𝑚

NC1
𝑝𝑜𝑙𝑦-conditioned-P′.

By [18, Theorem 13], 𝑝𝑜𝑙𝑦-conditioned-MATINV+ ∈ BQUL. □

Lemma 16. 𝑝𝑜𝑙𝑦-conditioned-ITMATPROD is BQL-hard.

Proof. Suppose P = (P1, P0) ∈ BQL. By definition, there is a uni-
form family of general quantum circuits {Φ𝑤 = (Φ𝑤,1, . . . ,Φ𝑤,𝑡𝑤) :
𝑤 ∈ P}, where Φ𝑤 acts on ℎ𝑤 = 𝑂 (log|𝑤 |) qubits and has 𝑡𝑤 =

|𝑤 |𝑂 (1)
gates, such that if𝑤 ∈ P1, then Pr[Φ𝑤 accepts𝑤] ≥ 2

3
, and

if𝑤 ∈ P0, then Pr[Φ𝑤 accepts𝑤] ≤ 1

3
. Without loss of generality

we may, for convenience, assume that Φ𝑤 "cleans-up" its workspace

at the end of the computation, by measuring the first qubit in the

computational basis, and then forcing every other qubit to the state

|0⟩ (by measuring each such qubit in the computational basis and,

if the result 1 is obtained, flipping its value).

Let 𝑑𝑤 = 2
2ℎ𝑤 = |𝑤 |𝑂 (1)

. For each 𝑗 ∈ [𝑡𝑤], we define 𝐴(𝑤) 𝑗 =
𝐾 (Φ𝑤,𝑡𝑤−𝑗+1); note that, by Definition 6, 𝐴(𝑤) 𝑗 ∈ M̂at(𝑑𝑤) and
𝐴(𝑤) 𝑗 can be constructed in deterministic space𝑂 (log(|𝑤 |)). More-

over, as Φ𝑤,𝑗 ∈ Chan(2ℎ𝑤), for 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑡𝑤 , we have

Φ𝑤,𝑡𝑤−𝑗2+1 ◦ · · · ◦ Φ𝑤,𝑡𝑤−𝑗1+1 ∈ Chan(2ℎ𝑤), which by [40, The-

orem 1] implies the following bound on the largest singular value

of any partial product of the 𝐴(𝑤) 𝑗

𝜎1 (𝐴(𝑤) 𝑗1, 𝑗2) = 𝜎1
©­«

𝑗2∏
𝑗=𝑗1

𝐴(𝑤) 𝑗
ª®¬

= 𝜎1 (𝐾 (Φ𝑤,𝑡𝑤−𝑗2+1 ◦ · · · ◦ Φ𝑤,𝑡𝑤−𝑗1+1)) ≤
√︁
𝑑𝑤 = 𝑛𝑂 (1) .

Let 𝑥𝑤 = |10ℎ𝑤−1⟩⟨10ℎ𝑤−1 | and 𝑦𝑤 = |0ℎ𝑤 ⟩⟨0ℎ𝑤 |. By Definition 7,

Pr[Φ𝑤 accepts𝑤] = ©­«
𝑡𝑤∏
𝑗=1

𝐴(𝑤) 𝑗
ª®¬ [𝑥𝑤 , 𝑦𝑤] = 𝐴(𝑤)1,𝑡𝑤 [𝑥𝑤 , 𝑦𝑤] .

Thus, ITMATPROD(⟨𝐴(𝑤)1, . . . , 𝐴(𝑤)𝑡𝑤 , 𝑥𝑤 , 𝑦𝑤 , 23 ⟩) = P(𝑤) and
⟨𝐴(𝑤)1, . . . , 𝐴(𝑤)𝑡𝑤 , 𝑥𝑤 , 𝑦𝑤 , 23 ⟩ ∈ 𝑝𝑜𝑙𝑦-conditioned-ITMATPROD.

□

For the sake of completeness, in Appendix A, we also prove

a version of the preceding lemma for the (equivalent) version of

quantum logspace that is defined using quantum Turing machines.

Lemma 17. QMAL ⊆ QUMALBQUL.

Proof. This follows by an argument similar to that of the proof

of Lemma 16. Suppose P = (P1, P0) ∈ QMAL. There is a uni-

form family of general quantum circuits {Φ𝑤 = (Φ𝑤,1, . . . ,Φ𝑤,𝑡𝑤) :
𝑤 ∈ P}, where Φ𝑤 acts on 𝑚𝑤 + ℎ𝑤 = 𝑂 (𝑠 (|𝑤 |)) qubits and

has 2
𝑂 (𝑠 (|𝑤 |))

gates, that has the following properties. Let Π1 =

|1⟩⟨1| ⊗ 𝐼
2
𝑚𝑤+ℎ𝑤−1 and let Ψ𝑚𝑤

denote the set of𝑚𝑤-qubit states.

For each 𝑤 ∈ P, the verification circuit Φ𝑤 is applied to the state

|𝜓 ⟩ ⊗ |0ℎ𝑤 ⟩, where |𝜓 ⟩ ∈ Ψ𝑚𝑤
is a (purported) proof of the fact that

𝑤 ∈ P1. Then, the first qubit is measured in the standard basis. If

the result is 1, then𝑤 is accepted; otherwise,𝑤 is rejected. If𝑤 ∈ P1,
then ∃|𝜓 ⟩ ∈ Ψ𝑚𝑤

, Pr[Φ𝑤 accepts𝑤, |𝜓 ⟩] ≥ 2

3
, and if 𝑤 ∈ P0, then

∀|𝜓 ⟩ ∈ Ψ𝑚𝑤
, Pr[Φ𝑤 accepts𝑤, |𝜓 ⟩] ≤ 1

3
.

Note Pr[Φ𝑤 accepts𝑤, |𝜓 ⟩] = ⟨Π1,Φ𝑤 (|𝜓 ⟩⟨𝜓 | ⊗ |0ℎ𝑤 ⟩⟨0ℎ𝑤 |)⟩
= ⟨Φ†

𝑤 (Π1), |𝜓 ⟩⟨𝜓 | ⊗ |0ℎ𝑤 ⟩⟨0ℎ𝑤 |⟩. Let𝑀 = (𝐼 ⊗ ⟨0ℎ𝑤 |)Φ†
𝑤 (Π1) (𝐼 ⊗

|0ℎ𝑤 ⟩) ∈ P̂os(2𝑚𝑤). Then 𝑤 ∈ P1 ⇔ 𝜆1 (𝑀) ≥ 2

3
and 𝑤 ∈

P0 ⇔ 𝜆1 (𝑀) ≤ 1

3
. Given access to 𝑀 , the problem, of determin-

ing if 𝜆1 (𝑀) ≥ 2

3
or 𝜆1 (𝑀) ≤ 1

3
, is obviously in QUMAL. By the

same argument as in the proof of Lemma 16, estimating an en-

try of 𝑀 (to 1/𝑝𝑜𝑙𝑦 (𝑛) precision) corresponds to an instance of

𝑝𝑜𝑙𝑦-conditioned-ITMATPROD, which, by Lemma 15, is in BQUL.
Therefore, P ∈ QUMALBQUL

. □

Lemma 18. BQUL = BQL = QUMAL = QMAL.

Proof. Clearly, BQUL ⊆ BQL. To see that BQL ⊆ BQUL, note
that, by Lemma 16, 𝑝𝑜𝑙𝑦-conditioned-ITMATPROD is BQL-hard,
and, by Lemma 15, 𝑝𝑜𝑙𝑦-conditioned-ITMATPROD ∈ BQUL. There-
fore, BQL = BQUL. By [18, Theorem 18] QUMAL = BQUL (in fact,

their argument shows QUMALO = BQULO , for any oracle O).
Clearly, BQL ⊆ QMAL, and so it suffices to show QMAL ⊆ BQL.
By Lemma 17, and the (straightforward) fact that BQL is self-low,

we have

QMAL ⊆ QUMALBQUL = BQUL
BQUL ⊆ BQLBQL = BQL. □

We now sketch the proof of Theorem 1 from Section 1.1.

1349

STOC ’21, June 21–25, 2021, Virtual, Italy Bill Fefferman and Zachary Remscrim

Theorem 1. For any space-constructible function 𝑠 : N→ N, where
𝑠 (𝑛) = Ω(log𝑛), we have

BQUSPACE(𝑠) = BQSPACE(𝑠)
= QUMASPACE(𝑠) = QMASPACE(𝑠).

Proof (Sketch). Clearly, BQUSPACE(𝑠) ⊆ BQSPACE(𝑠). The
reverse containment BQSPACE(𝑠) ⊆ BQUSPACE(𝑠) follows from
Lemma 18 and a standard padding argument. Analogous statements

hold for QMASPACE. See the full paper [19] for details. □

3.2 BQUL Completeness
In this section, we show that the 𝑝𝑜𝑙𝑦-conditioned versions of all

of the standard DET∗-complete problems (Definitions 9 and 10) are

BQUL-complete. By [18, Theorem 13], 𝑝𝑜𝑙𝑦-conditioned-MATINV
is BQUL-complete

2
; therefore, it suffices to exhibit a chain of re-

ductions through the various 𝑝𝑜𝑙𝑦-conditioned-P. As noted earlier,

P ≤𝑚L P′ ⇒ 𝑝𝑜𝑙𝑦-conditioned-P ≤𝑚L 𝑝𝑜𝑙𝑦-conditioned-P′

Lemma 19. DET+ ≤𝑚
AC0

SUMITMATPROD.

Proof. Consider ⟨𝐻,𝑏⟩ ∈ DET+
𝑛,𝜅,𝜖−1

. By the promise, 𝐻 ∈
P̂os(𝑛), 𝜆1 (𝐻) = 𝜎1 (𝐻) ≤ 1, and 𝜆𝑛 (𝐻) = 𝜎𝑛 (𝐻) ≥ 𝜅 (𝑛)−1, which
implies 𝜎1 (𝐼 − 𝐻) = 𝜆1 (𝐼 − 𝐻) = 1 − 𝜆𝑛 (𝐻) ≤ 1 − 𝜅 (𝑛)−1 < 1.

This implies ln(𝐻) = −
∞∑
𝑘=1

(𝐼−𝐻)𝑘
𝑘

, where here ln(𝐻) denotes the

matrix logarithm. Recall that, as a consequence of Jacobi’s formula,

ln(det(𝐻)) = tr(ln(𝐻)).
For 𝑚 ∈ N≥1, let 𝑆𝑚 =

𝑚∑
𝑘=1

(𝐼−𝐻)𝑘
𝑘

, let 𝑅𝑚 =
∞∑

𝑘=𝑚+1
(𝐼−𝐻)𝑘

𝑘
=

− log(𝐻) − 𝑆𝑚 , and let 𝐷𝑚 ∈ M̂at(𝑚) denote the diagonal matrix

where 𝐷𝑚 [𝑘, 𝑘] = 1

𝑘
. Let 𝑙̂ = ⌊1 + log(⌊𝜅 (𝑛)⌋)⌋, let 𝐴1 = 𝐼

𝑛𝑙̂
⊕

(−𝐷𝑚 ⊗ (𝐼 − 𝐻)) ∈ M̂at(𝑛𝑙̂ + 𝑛𝑚), and, for 𝑘 ∈ [𝑚], let 𝐴𝑘 =

𝐼
𝑛 (𝑙̂+𝑘−1) ⊕ (𝐼𝑚+1−𝑘 ⊗ (𝐼 − 𝐻)) ∈ M̂at(𝑛𝑙̂ + 𝑛𝑚). Then

𝐴1,𝑚 =

𝑚∏
𝑗=1

𝐴 𝑗 = 𝐼𝑛𝑙̂
⊕

(
𝑚⊕
𝑘=1

−(𝐼 − 𝐻)𝑘
𝑘

)
.

Let 𝐸𝑚 = {(𝑑,𝑑) : 𝑑 ∈ [𝑛𝑙̂ + 𝑛𝑚]}. We then have∑︁
(𝑠,𝑡) ∈𝐸𝑚

𝐴1,𝑚 [𝑠, 𝑡] = tr(𝐴1,𝑚) = tr(𝐼
𝑛𝑙̂
) −

𝑚∑︁
𝑘=1

tr

(
(𝐼 − 𝐻)𝑘

𝑘

)
= 𝑛𝑙̂ − tr(𝑆𝑚) = 𝑛𝑙̂ + ln(det(𝐻)) + tr(𝑅𝑚) .

Moreover, for 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚, we have

𝜎1 (𝐴 𝑗1, 𝑗2) ≤ max

(
𝜎1 (𝐼𝑛𝑙̂), max

𝑘∈{0,..., 𝑗2−𝑗1 }
𝜎1 ((𝐼 − 𝐻)𝑘)

)
= 1.

As shown above, 𝜎1 (𝐼 − 𝐻) ≤ 1 − 𝜅 (𝑛)−1, which implies

𝜎1 (𝑅𝑚) = 𝜎1

(∞∑︁
𝑘=𝑚+1

(𝐼 − 𝐻)𝑘
𝑘

)
≤

∞∑︁
𝑘=𝑚+1

(𝜎1 (𝐼 − 𝐻))𝑘
𝑘

≤
∞∑︁

𝑘=𝑚+1

(1 − 𝜅 (𝑛)−1)𝑘
𝑘

≤ 𝜅 (𝑛)
(
1 − 1

𝜅 (𝑛)

)𝑚+1
.

2
Note that Ref. [18] showed 𝑝𝑜𝑙𝑦-conditioned-MATINV+ ∈ BQUL and that

𝑝𝑜𝑙𝑦-conditioned-MATINV is BQUL-hard, but the equivalence between these two

problems is "obvious" (and shown explicitly in Lemma 14)

If𝑚 ≥ 𝜅 (𝑛) ln(2𝑛𝜅 (𝑛)𝜖 (𝑛)−1), then

tr(𝑅𝑚) ≤ 𝑛𝜎1 (𝑅𝑚) ≤ 𝑛𝜅 (𝑛)
(
1 − 1

𝜅 (𝑛)

)𝜅 (𝑛) ln(2𝑛𝜅 (𝑛)𝜖 (𝑛)−1)
≤ 𝑛𝜅 (𝑛)

(
1

𝑒

)
ln(2𝑛𝜅 (𝑛)𝜖 (𝑛)−1)

=
1

2

𝜖 (𝑛) .

Let𝑚 = ⌈𝜅 (𝑛)⌉ ⌊1+log(⌊2𝑛𝜅 (𝑛)𝜖 (𝑛)−1⌋)⌋ ≥ 𝜅 (𝑛) ln(2𝑛𝜅 (𝑛)𝜖 (𝑛)−1)
and 𝐸 = 𝐸𝑚 . Note that tr(𝑅𝑚) ≥ 0. We then have,

𝑛𝑙̂ + ln(det(𝐻)) ≤
∑︁

(𝑠,𝑡) ∈𝐸

𝐴1,𝑚 [𝑠, 𝑡] = 𝑛𝑙̂ + ln(det(𝐻)) + tr(𝑅𝑚)

≤ 𝑛𝑙̂ + ln(det(𝐻)) + 1

2

𝜖 (𝑛).

If det(𝐻) ≥ 𝑒𝑏 , then ∑
(𝑠,𝑡) ∈𝐸

𝐴1,𝑚 [𝑠, 𝑡] ≥ 𝑛𝑙̂ +𝑏; if det(𝐻) ≤ 𝑒𝑏−𝜖 (𝑛) ,

then

∑
(𝑠,𝑡) ∈𝐸

𝐴1,𝑚 [𝑠, 𝑡] ≤ 𝑛𝑙̂ + 𝑏 − 1

2
𝜖 (𝑛). Let 𝑏 = 𝑛𝑙̂ + 𝑏. There-

fore, ⟨𝐴1, . . . , 𝐴𝑚, 𝐸, 𝑏⟩ ∈ SUMITMATPROD
𝑛 (𝑙̂+𝑚),𝑚,1,2𝜖−1 (𝑛) and

DET(⟨𝐻,𝑏⟩) = SUMITMATPROD(⟨𝐴1, . . . , 𝐴𝑚, 𝐸, 𝑏⟩). □

Lemma 20. ITMATPROD ≤𝑚
AC0

ITMATPROD≥0.

Proof. Consider ⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡, 𝑏⟩ ∈ ITMATPROD𝑛,𝑚,𝜅,𝜖−1 .

For 𝑗 ∈ [2𝑚 + 1], we define

𝐴 𝑗 =


𝐴 𝑗 , 𝑗 ≤ 𝑚
|𝑡⟩⟨𝑡 |, 𝑗 =𝑚 + 1

𝐴
†
2𝑚+2−𝑗 , 𝑗 ≥ 𝑚 + 2

We then have 𝐴1,2𝑚+1 [𝑠, 𝑠] = 𝐴1,𝑚 [𝑠, 𝑡]𝐴1,𝑚 [𝑠, 𝑡] = |𝐴1,𝑚 [𝑠, 𝑡] |2.
Let 𝑠̂ = 𝑡̂ = 𝑠 and 𝑏 = 𝑏2. Then ITMATPROD(⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡, 𝑏⟩) =
ITMATPROD(⟨𝐴1, . . . , 𝐴2𝑚+1, 𝑠̂, 𝑡̂ , 𝑏⟩). Consider 𝑗1, 𝑗2 such that 1 ≤
𝑗1 ≤ 𝑗2 ≤ 𝑚 + 1. If 𝑗1 ≤ 𝑚 + 1 ≤ 𝑗2, then

𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝜎1 (𝐴 𝑗1,𝑚)𝜎1 (|𝑡⟩⟨𝑡 |)𝜎1 (𝐴†
𝑗2,𝑚

) ≤ 𝜅 (𝑛)2 .

If 𝑗2 < 𝑚 + 1, then 𝜎1 (𝐴 𝑗1, 𝑗2) = 𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝜅 (𝑛). If 𝑗1 > 𝑚 + 1,

then 𝜎1 (𝐴 𝑗1, 𝑗2) = 𝜎1 (𝐴 𝑗1−𝑚−1, 𝑗2−𝑚−1) ≤ 𝜅 (𝑛). We then conclude,

⟨𝐴1, . . . , 𝐴2𝑚+1, 𝑠̂, 𝑡̂ , 𝑏⟩ ∈ ITMATPROD≥0
𝑛,2𝑚+1,𝜅2,𝜖−2

. □

Lemma 21. ITMATPROD≥0 ≤𝑚
AC0

DET.

Proof. Consider ⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡, 𝑏⟩ ∈ ITMATPROD≥0
𝑛,𝑚,𝜅,𝜖−1

.

Let 𝑌 =
𝑚∑
𝑟=1

𝐹𝑚+1,𝑟 ,𝑟+1 ⊗ 𝐴𝑟 ∈ M̂at(𝑛𝑚 + 𝑛) consist of 𝑛 × 𝑛 blocks,

where the blocks immediately above the main diagonal blocks are

given by𝐴1, . . . , 𝐴𝑚 , and all other entries are 0. Let 𝐵 = 𝐼𝑛𝑚+𝑛−𝑌 ∈
M̂at(𝑛𝑚 + 𝑛) and observe that

𝐵−1 = 𝐼𝑛𝑚+𝑛 +
𝑚∑︁
𝑟=1

𝑚+1∑︁
𝑐=𝑟+1

𝐹𝑚+1,𝑟 ,𝑐 ⊗ 𝐴𝑟,𝑐−1 .

Let 𝐶 = 𝐵 + |𝑛𝑚 + 𝑡⟩⟨𝑠 |. By the matrix determinant lemma, and the

fact that det(𝐵) = 1,

det(𝐶) = (1 + ⟨𝑠 |𝐵−1 |𝑛𝑚 + 𝑡⟩) det(𝐵) = 1 +𝐴1,𝑚 [𝑠, 𝑡] .
Next, observe that

𝜎1 (𝐶) ≤ 𝜎1 (|𝑛𝑚+𝑡⟩⟨𝑠 |)+𝜎1 (𝐼)+𝜎1 (𝑌) ≤ 2+max

𝑗
𝜎1 (𝐴 𝑗) ≤ 2+𝜅 (𝑛) .

1350

Eliminating Intermediate Measurements in Space-Bounded Quantum Computation STOC ’21, June 21–25, 2021, Virtual, Italy

Notice that 𝐵−1 =
𝑚∑
𝑗=0

𝑌 𝑗
, which implies

𝜎1 (𝐵−1) ≤
𝑚∑︁
𝑗=0

𝜎1 (𝑌 𝑗) ≤ 1 +
𝑚∑︁
𝑗=1

(
max

𝑘∈[𝑚−𝑗+1]
𝜎1 (𝐴𝑘,𝑘+𝑗−1)

)
≤ 1 +

𝑚∑︁
𝑗=1

𝜅 (𝑛) = 1 +𝑚𝜅 (𝑛).

By the Sherman-Morrison formula,𝐶−1 = 𝐵−1 (𝐼 − (1+ ⟨𝑠 |𝐵−1 |𝑛𝑚 +
𝑡⟩)−1 |𝑛𝑚 + 𝑡⟩⟨𝑠 |𝐵−1). Recall that, by the promise, ⟨𝑠 |𝐵−1 |𝑛𝑚 + 𝑡⟩ =
𝐴1,𝑚 [𝑠, 𝑡] ∈ R≥0. Therefore,

𝜎1 (𝐶−1) ≤ 𝜎1 (𝐵−1) (𝜎1 (𝐼) + (1 + ⟨𝑠 |𝐵−1 |𝑛𝑚 + 𝑡⟩)−1𝜎1 (𝐵−1))

≤ (1 +𝑚𝜅 (𝑛)) (2 +𝑚𝜅 (𝑛)) .
This implies 𝜎𝑛𝑚+𝑛 (𝐶) = 𝜎1 (𝐶−1)−1 ≥ ((1+𝑚𝜅 (𝑛)) (2+𝑚𝜅 (𝑛)))−1.
Let 𝑙̂ = ⌊1 + ln(⌊2 +𝜅 (𝑛)⌋)⌋ and let𝐶 = 𝑒−𝑙̂𝐶 ∈ M̂at(𝑛𝑚 +𝑛). Then,
for 𝑗 ∈ [𝑛𝑚 + 𝑛], 𝜎 𝑗 (𝐶) = 𝑒−𝑙̂𝜎 𝑗 (𝐶); in particular, 𝜎1 (𝐶) ≤ 1 and

𝜎𝑛𝑚+𝑛 (𝐶) ≥ (2 +𝑚𝜅 (𝑛))−3. Moreover,

|det(𝐶) | = |𝑒−𝑙̂ (𝑛𝑚+𝑛)
det(𝐶) |

= |𝑒−𝑙̂ (𝑛𝑚+𝑛) (1 +𝐴1,𝑚 [𝑠, 𝑡]) | = 𝑒−𝑙̂ (𝑛𝑚+𝑛) (1 +𝐴1,𝑚 [𝑠, 𝑡]).
Let 𝑎 = ln(1 + 𝑏 − 𝜖 (𝑛)) − 𝑙̂ (𝑛𝑚 + 𝑛) and 𝑏 = ln(1 + 𝑏) − 𝑙̂ (𝑛𝑚 + 𝑛).
If 𝐴1,𝑚 [𝑠, 𝑡] ≥ 𝑏, then |det(𝐶) | ≥ 𝑒𝑏 ; if 𝐴1,𝑚 [𝑠, 𝑡] ≤ 𝑏 − 𝜖 (𝑛), then
|det(𝐶) | ≤ 𝑒𝑎 . We have

𝑏 − 𝑎 = ln

(
1 + 𝑏

1 + 𝑏 − 𝜖 (𝑛)

)
= ln

(
1 + 𝜖 (𝑛)

1 + 𝑏 − 𝜖 (𝑛)

)
≥ ln

(
1 + 𝜖 (𝑛)

1 + 𝜅 (𝑛)

)
≥ 𝜖 (𝑛)

2(1 + 𝜅 (𝑛)) .

Therefore, ITMATPROD(⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡, 𝑏⟩) = DET(⟨𝐶,𝑏⟩) and
⟨𝐶,𝑏⟩ ∈ DET𝑛𝑚+𝑚,(2+𝑚𝜅 (𝑛))3,𝜖−1 (𝑛) (2+2𝜅 (𝑛)) . □

Lemma 22. DET ≤𝑚
NC1

DET+.

Proof. Consider ⟨𝐴,𝑏⟩ ∈ DET𝑛,𝜅,𝜖−1 . Let 𝐻 = 𝐴𝐴† ∈ P̂os(𝑛)
and 𝑏 = 2𝑏. Then, det(𝐻) = |det(𝐴) |2 and 𝜎 𝑗 (𝐻) = 𝜎2

𝑗
(𝐴), ∀𝑗 .

Thus, ⟨𝐻,𝑏⟩ ∈ DET𝑛,𝜅2,2𝜖−1 and DET(⟨𝐴,𝑏⟩) = DET(⟨𝐻,𝑏⟩). □

Lemma 23. MATINV+ ≤𝑚
AC0

SUMITMATPROD.

Proof. Consider ⟨𝐻, 𝑠, 𝑡, 𝑏⟩ ∈ MATINV+
𝜅,𝜖−1

. For 𝑚 ∈ N, we
have

𝑚∑︁
𝑗=0

(𝐼 − 𝐻) 𝑗 = 𝐻−1 (𝐼 − (𝐼 − 𝐻)𝑚+1).

Let 𝑚 = ⌈𝜅 (𝑛)⌉ ⌊1 + log(⌊4𝜅 (𝑛)𝜖 (𝑛)−1⌋)⌋. For 𝑗 ∈ [𝑚], let 𝐴 𝑗 =

𝐼 𝑗𝑛 ⊕ (𝐼𝑚−𝑗+1 ⊗ (𝐼 − 𝐻)) ∈ M̂at(𝑛𝑚 + 𝑛). For 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚, we

have

𝜎1 (𝐴 𝑗1, 𝑗2) = 𝜎1
©­«𝐼 𝑗1𝑛 ⊕ ©­«

𝑚−𝑗1+1⊕
𝑘=1

(𝐼 − 𝐻)min(𝑘,𝑗2−𝑗1+1)ª®¬ª®¬
= max

𝑘∈{0,..., 𝑗2−𝑗1+1}
𝜎1 ((𝐼 − 𝐻)𝑘) = 1.

Let 𝐸 = {(𝑠 + 𝑗𝑛, 𝑡 + 𝑗𝑛) : 𝑗 ∈ [𝑚]}. We then have∑︁
(𝑠̂,̂𝑡) ∈𝐸

𝐴
1,𝑚 [̂𝑠, 𝑡̂] =

𝑚∑︁
𝑗=0

(𝐼 −𝐻) 𝑗 [𝑠, 𝑡] = (𝐻−1 (𝐼 − (𝐼 −𝐻)𝑚+1)) [𝑠, 𝑡] .

This implies������
���� ∑︁
(𝑠̂,̂𝑡) ∈𝐸

𝐴
1,𝑚 [̂𝑠, 𝑡̂]

���� − |𝐻−1 [𝑠, 𝑡] |

������ ≤ |(𝐻−1 (𝐼 − 𝐻)𝑚+1) [𝑠, 𝑡] |

≤ 𝜎1 (𝐻−1 (𝐼 − 𝐻)𝑚+1) ≤ 𝜎1 (𝐻−1) (𝜎1 (𝐼 − 𝐻))𝑚+1

≤ 𝜅 (𝑛)
(
1 − 1

𝜅 (𝑛)

)𝑚+1
≤ 1

4

𝜖 (𝑛) .

Let 𝑏 = 𝑏 − 1

4
𝜖 (𝑛). Therefore, we then haveMATINV(⟨𝐻, 𝑠, 𝑡, 𝑏⟩) =

SUMITMATPROD(⟨𝐴1, . . . , 𝐴𝑚, 𝐸, 𝑏⟩) and, furthermore, we have

⟨𝐴1, . . . , 𝐴𝑚, 𝐸, 𝑏⟩ ∈ SUMITMATPROD𝑛𝑚+𝑛,𝑚,1,2𝜖−1 (𝑛) . □

Lemma 24. SUMITMATPROD ≤𝑚
AC0

ITMATPROD.

Proof. Fix ⟨𝐴1, . . . , 𝐴𝑚, 𝐸, 𝑏⟩ ∈ SUMITMATPROD𝑛,𝑚,𝜅,𝜖−1 . Let

𝑇𝑐,𝑑 ∈ M̂at(𝑛) denote the permutation matrix corresponding to

interchanging elements 𝑐, 𝑑 ∈ [𝑛] and leaving all other elements

fixed. For 𝑗 ∈ [𝑚], let 𝐴 𝑗 =
⊕

(𝑠,𝑡) ∈𝐸
𝑇1,𝑡𝐴 𝑗𝑇1,𝑠 ∈ M̂at(𝑛 |𝐸 |) . Let

𝑅 ∈ M̂at(|𝐸 |) be defined such that 𝑅𝑟,𝑐 = 1 if 𝑟 = 𝑐 or 𝑟 = 1,

and 𝑅𝑟,𝑐 = 0 otherwise; let 𝐴0 = 𝑅 ⊗ 𝐼𝑛 and 𝐴𝑚+1 = 𝐴
†
0
. We

then have 𝐴0,𝑚+1 [1, 1] =
∑

(𝑠,𝑡) ∈𝐸
𝐴1,𝑚 [𝑠, 𝑡]. Let 𝑠̂ = 𝑡̂ = 1 and 𝑏 =

𝑏. We then conclude that SUMITMATPROD(⟨𝐴1, . . . , 𝐴𝑚, 𝐸, 𝑏⟩) =
ITMATPROD(⟨𝐴0, . . . , 𝐴𝑚+1, 𝑠̂, 𝑡̂ , 𝑏⟩).

Notice that 𝜎1 (𝐴0) = 𝜎1 (𝐴𝑚+1) = 𝜎1 (𝑅)𝜎1 (𝐼𝑛) ≤
√︁
2|𝐸 |, which

implies that, for 0 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚 + 1,

𝜎1

(
𝐴 𝑗1, 𝑗2

)
≤ 2|𝐸 |𝜎1

(
𝐴
max(𝑗1,1),min(𝑗2,𝑚)

)
≤ 2|𝐸 |𝜅 (𝑛) ≤ 2𝑛2𝜅 (𝑛) .

Thus, ⟨𝐴0, . . . , 𝐴𝑚+1, 𝑠̂, 𝑡̂ , 𝑏⟩ ∈ ITMATPROD𝑛3,𝑚+2,2𝑛2𝜅,𝜖−1 . □

We now prove Theorem 2 from Section 1.2.

Theorem 2. All of the 𝑝𝑜𝑙𝑦-conditioned versions of the "standard"
DET∗-complete problems, given in Definitions 9 and 10 are BQUL-
complete.

Proof. Recall that 𝑝𝑜𝑙𝑦-conditioned-MATINV is already known

to be BQUL-complete [18, Theorem 13]. By Lemmas 12 to 14 and 19

to 24, we have

MATINV+ ≤𝑚
AC0

SUMITMATPROD ≤𝑚
AC0

ITMATPROD

≤𝑚
AC0

MATPOW ≤𝑚
AC0

MATINV ≤𝑚
NC1

MATINV+

and

DET+ ≤𝑚
AC0

SUMITMATPROD ≤𝑚
AC0

ITMATPROD

≤𝑚
AC0

ITMATPROD≥0 ≤𝑚
AC0

DET ≤𝑚
NC1

DET+ .

Recall that ≤𝑚
AC0

or ≤𝑚
NC1

reducibility implies ≤𝑚L reducibility, and

that P ≤𝑚L P′ ⇒ 𝑝𝑜𝑙𝑦-conditioned-P ≤𝑚L 𝑝𝑜𝑙𝑦-conditioned-P′.
Therefore, each such 𝑝𝑜𝑙𝑦-conditioned-P is BQUL-complete. □

1351

STOC ’21, June 21–25, 2021, Virtual, Italy Bill Fefferman and Zachary Remscrim

4 FULLY LOGARITHMIC APPROXIMATION
SCHEMES

We next study the class of functions that are well-approximable in

quantum logspace, following (essentially) the notation and def-

initions of [16]. In particular, we work with the general (resp.

unitary) quantum Turing machine model, rather than the equiva-
lent model of a uniform family of general (resp. unitary) quantum

circuits; of course, all results also apply to the quantum circuit

model. For simplicity, throughout this section, we fix the alphabet

Σ = {0, 1}. We say that a function 𝑓 : Σ∗ → R is 𝑝𝑜𝑙𝑦-bounded if

|𝑓 (𝑤) | ≤ 𝑝𝑜𝑙𝑦 (|𝑤 |), ∀𝑤 ∈ Σ∗.

Definition 25. We say that a 𝑝𝑜𝑙𝑦-bounded 𝑓 has a fully logarith-
mic quantum approximation scheme FLQAS if there is a (general)

quantum TM 𝑀𝑓 that, on input ⟨𝑥, 𝜖, 𝛿⟩, where 𝑥 ∈ Σ∗ and 𝜖, 𝛿 ∈
R>0, runs in time 𝑝𝑜𝑙𝑦 (|𝑥 |, 𝜖−1, log(𝛿−1)) and space 𝑂 (log(|𝑥 |) +
log(𝜖−1) + log(log(𝛿−1))), and outputs a value 𝑦 ∈ R such that

Pr[|𝑓 (𝑥) − 𝑦 | ≥ 𝜖] ≤ 𝛿 (to be precise,𝑀𝑓 outputs a string that en-

codes a dyadic rational number 𝑦). In other words, with confidence
at least 1 − 𝛿 , the value 𝑦 is an additive approximation of 𝑓 (𝑥) with
error at most 𝜖 . We analogously say that 𝑓 has a FLQUAS if𝑀𝑓 is

a unitary quantum TM, a FLRAS if𝑀𝑓 is a randomized TM, and a

FLAS if 𝑀𝑓 is a deterministic TM (where, in this last case, we set

𝛿 = 0 and remove the dependence on 𝛿 from the time and space

bounds).

Following the notation established in Section 2.1 and Defini-

tions 9 to 11, let

D(𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣) =
⋃
𝑛

{⟨𝐴, 𝑠, 𝑡⟩ : 𝐴 ∈ M̂at(𝑛, 𝑛−𝑂 (1) , 1), 𝑠, 𝑡 ∈ [𝑛]}.

In other words, D(𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣) consists of encodings of instances
of a variant of 𝑝𝑜𝑙𝑦-conditioned-MATINV where we only have a

promise involving the singular values (i.e., there is no restriction

on 𝐴−1 [𝑠, 𝑡] involving 𝑏). We then consider the 𝑝𝑜𝑙𝑦-conditioned

matrix inversion function |𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣 (·) | : D(𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣) →
R≥0, which is given by |𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣 (⟨𝐴, 𝑠, 𝑡⟩) | = |𝐴−1 [𝑠, 𝑡] |.

Similarly, D(𝑝𝑜𝑙𝑦-𝑖𝑡𝑚𝑎𝑡𝑝𝑟𝑜𝑑) consists of all ⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡⟩,
where 𝑚 = 𝑝𝑜𝑙𝑦 (𝑛), 𝐴1, . . . , 𝐴𝑚 ∈ M̂at(𝑛), 𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝑝𝑜𝑙𝑦 (𝑛)
for 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚, and 𝑠, 𝑡 ∈ [𝑛]. We then define the func-

tion |𝑝𝑜𝑙𝑦-𝑖𝑡𝑚𝑎𝑡𝑝𝑟𝑜𝑑 (·) | : D(𝑝𝑜𝑙𝑦-𝑖𝑡𝑚𝑎𝑡𝑝𝑟𝑜𝑑) → R≥0 such that

|𝑝𝑜𝑙𝑦-𝑖𝑡𝑚𝑎𝑡𝑝𝑟𝑜𝑑 (⟨𝐴1, . . . , 𝐴𝑚, 𝑠, 𝑡⟩) | = |𝐴1,𝑚 [𝑠, 𝑡] |. Lastly, we de-

fine D(𝑝𝑜𝑙𝑦-𝑑𝑒𝑡) =
⋃

𝑛{⟨𝐴⟩ : 𝐴 ∈ M̂at(𝑛, 𝑛−𝑂 (1) , 1)}. Note that
the promise problem DET, given in Definition 9, corresponds to ap-

proximating the function ln(|𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) |) : D(𝑝𝑜𝑙𝑦-𝑑𝑒𝑡) → R≤0,
defined in the obvious way.

Note that, following [16], we have defined fully logarithmic

(quantum, randomized, etc.) approximation schemes with respect to

additive error 𝜖 ; that is to say, we approximate 𝑓 (𝑥) by a value𝑦 such
that Pr[|𝑓 (𝑥) − 𝑦 | ≥ 𝜖] ≤ 𝛿 . We then define a multiplicative fully
logarithmic (quantum, randomized, etc.) approximation scheme

of a function 𝑔 : Σ∗ → R≥0 as an analogous procedure that pro-

duces an approximation 𝑧 such that Pr[𝑧 ∉ [𝑒−𝜖𝑔(𝑥), 𝑒𝜖𝑔(𝑥)]] ≤ 𝛿 .
Note that here, for convenience, we follow the convention (as used

in, for example, [23]) that multiplicative approximations are de-

fined using 𝑒±𝜖 , rather than the more standard (and essentially

equivalent) (1 ± 𝜖). Note that ln(|𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) |) has an (additive)

FLQUAS (resp. FLQAS, FLRAS, FLAS) if and only if |𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) |

has a multiplicative FLQUAS (resp. FLQAS, FLRAS, FLAS); this fol-
lows from the fact that |ln(|det(𝐴) |) − 𝑦 | ≥ 𝜖 if and only if 𝑒𝑦 ∉

[𝑒−𝜖 |det(𝐴) |, 𝑒𝜖 |det(𝐴) |].

Lemma 26. Each of |𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣 (·) |, |𝑝𝑜𝑙𝑦-𝑖𝑡𝑚𝑎𝑡𝑝𝑟𝑜𝑑 (·) |, and
ln(|𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) |) have a FLQUAS. Moreover, |𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) | has a mul-
tiplicative FLQUAS.

Proof. By [18, Theorem 14] (and the discussion following it),

|𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣 (·) | has a FLQUAS; this improved upon the earlier re-

sult of Ta-Shma [46], which showed that this function has a FLQAS
[16]. By Lemmas 12 and 13, |𝑝𝑜𝑙𝑦-𝑖𝑡𝑚𝑎𝑡𝑝𝑟𝑜𝑑 (·) | has a FLQUAS. Fi-
nally, by Lemmas 19, 22 and 24, ln(|𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) |) has a FLQUAS;
this implies |𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) | has a multiplicative FLQUAS. □

Doron and Ta-Shma [16, Theorem 6] showed that, if BQL =

BPL, then every 𝑝𝑜𝑙𝑦-bounded function that has a FLQAS also has

a FLRAS (recall that we use BQL and BPL to denote classes of

promise problems, which differs from the notation used in [16]).

By combining this with the BQUL-hardness of the various 𝑝𝑜𝑙𝑦-
conditioned promise problems (Theorem 2) and our result that

BQUL = BQL (Lemma 18), the following proposition is immediate;

we note that a partial (weaker) version of this proposition was

implicit in [15].

Proposition 27. The following statements are equivalent.
(i) BQL = BPL.
(ii) Every 𝑝𝑜𝑙𝑦-bounded function that has a FLQAS also has a

FLRAS.
(iii) Every 𝑝𝑜𝑙𝑦-bounded function that has a FLQUAS also has a

FLRAS.
(iv) |𝑝𝑜𝑙𝑦-𝑚𝑎𝑡𝑖𝑛𝑣 (·) | has a FLRAS.
(v) |𝑝𝑜𝑙𝑦-𝑖𝑡𝑚𝑎𝑡𝑝𝑟𝑜𝑑 (·) | has a FLRAS.
(vi) ln(|𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) |) has a FLRAS.
(vii) |𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) | has a multiplicative FLRAS.

Remark. In particular, the preceding proposition suggests that

|𝑝𝑜𝑙𝑦-𝑑𝑒𝑡 (·) | does not have a multiplicative FLRAS (as this would

imply the seemingly unlikely statement BQL = BPL). It is natu-
ral to compare this statement with the result of Jerrum, Sinclair,

and Vigoda [23] which shows the existence of a (multiplicative)

FPRAS (fully polynomial randomized approximation scheme) for

the permanent of a nonnegative integer matrix.

5 WELL-CONDITIONED SINGULAR
The class C=L has a collection of natural complete problems, given

by the "verification" versions of the standard DET∗-complete prob-

lems [43]. In this section, we study the well-conditioned versions

of these problems.

Definition 28. Consider functions𝑚 : N→ N, 𝜅 : N→ R≥1, and
𝜖 : N→ R>0.
SINGULAR𝑛,𝜖−1
Input: 𝐴 ∈ �Herm(𝑛)
Promise: 𝜎1 (𝐴) ≤ 1, 𝜎𝑛 (𝐴) ∈ {0} ∪ [𝜖 (𝑛), 1]
Output: 1 if 𝜎𝑛 (𝐴) = 0, 0 otherwise

vMATINV𝑛,𝜅,𝜖−1
Input: 𝐴 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ Q[𝑖]𝑛
Promise: 𝐴 ∈ M̂at(𝑛, 1/𝜅 (𝑛), 1), |𝐴−1 [𝑠, 𝑡] − 𝑏 | ∈ {0} ∪ [𝜖 (𝑛),∞)

1352

Eliminating Intermediate Measurements in Space-Bounded Quantum Computation STOC ’21, June 21–25, 2021, Virtual, Italy

Output: 1 if 𝐴−1 [𝑠, 𝑡] = 𝑏, 0 otherwise
vMATPOW𝑛,𝑚,𝜅,𝜖−1

Input: 𝐴 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ Q[𝑖]𝑛
Promise: 𝜎1 (𝐴 𝑗) ≤ 𝜅 (𝑛) ∀𝑗 ∈ [𝑚], |𝐴𝑚 [𝑠, 𝑡] −𝑏 | ∈ {0}∪ [𝜖 (𝑛),∞)
Output: 1 if 𝐴𝑚 [𝑠, 𝑡] = 𝑏, 0 otherwise

vITMATPROD𝑛,𝑚,𝜅,𝜖−1

Input: 𝐴1, . . . , 𝐴𝑚 ∈ M̂at(𝑛), 𝑠, 𝑡 ∈ [𝑛], 𝑏 ∈ Q[𝑖]𝑛
Promise: 𝜎1 (𝐴 𝑗1, 𝑗2) ≤ 𝜅 (𝑛) ∀1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑚,��𝐴1,𝑚 [𝑠, 𝑡] − 𝑏

�� ∈ {0} ∪ [𝜖 (𝑛),∞)
Output: 1 if 𝐴1,𝑚 [𝑠, 𝑡] = 𝑏, 0 otherwise

We begin by exhibiting reductions between the above problems;

in subsequent sections, we will use these reductions to prove new

properties of quantum logspace.

Lemma 29. vMATINV ≤𝑚
AC0

SINGULAR.

Proof. Consider ⟨𝐴, 𝑠, 𝑡, 𝑏⟩ ∈ vMATINV𝑛,𝜅,𝜖−1 . We define 𝐵 =

(2⌈𝜅 (𝑛)⌉𝐴) ⊕
(
1 − 𝑏

2 ⌈𝜅 (𝑛) ⌉

)−1
𝐼1 ∈ M̂at(𝑛 + 1), 𝑢 = |𝑠⟩ + |𝑛 + 1⟩,

𝑣 = |𝑡⟩ + |𝑛 + 1⟩, and 𝐶 = 𝐵 − 𝑣𝑢† ∈ M̂at(𝑛 + 1). By the matrix

determinant lemma,

det(𝐶) = (1 − 𝑢𝐵−1𝑣) det(𝐵)

=

(
1 − 𝐴−1 [𝑠, 𝑡]

2⌈𝜅 (𝑛)⌉ − 1 + 𝑏

2⌈𝜅 (𝑛)⌉

)
det(𝐵) = 𝑏 −𝐴−1 [𝑠, 𝑡]

2⌈𝜅 (𝑛)⌉ det(𝐵) .

If 𝐴−1 [𝑠, 𝑡] = 𝑏, then det(𝐶) = 0, which implies 𝜎𝑛+1 (𝐶) = 0.

If, instead, |𝐴−1 [𝑠, 𝑡] − 𝑏 | ≥ 𝜖 (𝑛), then |det(𝐶) | ≥ 𝜖 (𝑛)
2 ⌈𝜅 (𝑛) ⌉ |det(𝐵) |.

By the Weyl inequalities, 𝜎1 (𝐶) ≤ 𝜎1 (𝐵) + 𝜎1 (−𝑣𝑢†) = 𝜎1 (𝐵) + 1

and, for 𝑗 ∈ [2, . . . , 𝑛 + 1], we have 𝜎 𝑗 (𝐶) ≤ 𝜎 𝑗−1 (𝐵) + 𝜎2 (−𝑣𝑢†) =
𝜎 𝑗−1 (𝐵). Moreover, 𝜎1 (𝐵) = 2⌈𝜅 (𝑛)⌉𝜎1 (𝐴) ≤ 2⌈𝜅 (𝑛)⌉, 𝜎𝑛 (𝐵) =

2⌈𝜅 (𝑛)⌉𝜎𝑛 (𝐴) ≥ 2, and 𝜎𝑛+1 (𝐵) =

���1 − 𝑏
2 ⌈𝜅 (𝑛) ⌉

���−1 ≥ 2√
5

. There-

fore,

𝜎𝑛+1 (𝐶) =
|det(𝐶) |

𝜎1 (𝐶)
𝑛∏
𝑗=2

𝜎 𝑗 (𝐶)
≥

𝜖 (𝑛)
2 ⌈𝜅 (𝑛) ⌉ |det(𝐵) |

(𝜎1 (𝐵) + 1)
𝑛−1∏
𝑗=1

𝜎 𝑗 (𝐵)

=
𝜖 (𝑛)𝜎𝑛 (𝐵)𝜎𝑛+1 (𝐵)
2⌈𝜅 (𝑛)⌉ (𝜎1 (𝐵) + 1)

≥ 2𝜖 (𝑛)
√
5⌈𝜅 (𝑛)⌉ (2⌈𝜅 (𝑛)⌉ + 1)

.

Let 𝑑 = 1

2 ⌈𝜅 (𝑛) ⌉+1 and 𝐻 = 𝑑

(
0𝑛+1 𝐶

𝐶†
0𝑛+1

)
∈ �Herm(2𝑛 + 2).

Notice that 𝐻 has eigenvalues {±𝑑𝜎1 (𝐶), . . . ,±𝑑𝜎𝑛+1 (𝐶)}. This im-

plies 𝜎1 (𝐻) = 𝑑𝜎1 (𝐶) ≤ 1 and 𝜎2𝑛+2 (𝐻) = 𝑑𝜎𝑛+1 (𝐶) ∈ {0} ∪[
2𝜖 (𝑛)√

5 ⌈𝜅 (𝑛) ⌉ (2 ⌈𝜅 (𝑛) ⌉+1)2 , 1
]
. Moreover, 𝜎2𝑛+2 (𝐻) = 0 ⇔ 𝐴−1 [𝑠, 𝑡] =

𝑏. Therefore, ⟨𝐻 ⟩ ∈ SINGULAR
2𝑛+2,(2𝜖 (𝑛))−1

√
5 ⌈𝜅 (𝑛) ⌉ (2 ⌈𝜅 (𝑛) ⌉+1)2

and vMATINV(⟨𝐴, 𝑠, 𝑡, 𝑏⟩) = SINGULAR(⟨𝐻 ⟩). □

The following pair of lemmas have proofs precisely analogous

to that of Lemma 12 and Lemma 13, respectively.

Lemma 30. vITMATPROD ≤𝑚
AC0

vMATPOW.

Lemma 31. vMATPOW ≤𝑚
AC0

vMATINV.

5.1 RQSPACE vs. RQUSPACE vs. RQUMASPACE
In this section, we will prove the following relationships between

the various one-sided bounded-error space-bounded quantum com-

plexity classes.

Theorem 32. For any space-constructible function 𝑠 : N → N,
where 𝑠 (𝑛) = Ω(log𝑛), we have

RQUMASPACE(𝑠) = RQUSPACE(𝑠) ⊆ RQSPACE(𝑠)
⊆ coQUMASPACE1 (𝑠) .

This theorem, which is very much the one-sided error analogue

of Theorem 1, has a proof which follows the same general structure

of Theorem 1. For those promise problems P given in Definition 28,

we define 𝑝𝑜𝑙𝑦-conditioned-P as in Definition 11.

Lemma 33. 𝑝𝑜𝑙𝑦-conditioned-vITMATPROD is coRQL-hard.

Proof. Precisely analogous to the proof of Lemma 16. □

Lemma 34. RQUMAL ⊆ RQUL

Proof (sketch). Apply the well-known technique of replacing

Merlin’s proof with the totally mixed state [32], which preserves

perfect soundness [27]; then use space-efficient probability ampli-

fication for one-sided bounded-error (unitary) quantum logspace

[51]. See the full paper [19] for details. □

Lemma 35. 𝑝𝑜𝑙𝑦-conditioned-SINGULAR is QUMAL1-complete.

Proof. We first establish QUMAL1-hardness. Consider some

P = (P1, P0) ∈ QUMAL1. By definition, there is a uniform family of

(unitary) quantum circuits {𝑉𝑤 = (𝑉𝑤,1, . . . ,𝑉𝑤,𝑡𝑤) : 𝑤 ∈ P}, where
𝑉𝑤 acts on𝑚𝑤 + ℎ𝑤 = 𝑂 (log|𝑤 |) qubits and has 𝑡𝑤 = 𝑝𝑜𝑙𝑦 (|𝑤 |)
gates, such that 𝑤 ∈ P1 ⇒ ∃|𝜓 ⟩ ∈ Ψ𝑚𝑤

, Pr[𝑉𝑤 accepts𝑤, |𝜓 ⟩] ≥
𝑐 = 1, and 𝑤 ∈ P0 ⇒ ∀|𝜓 ⟩ ∈ Ψ𝑚𝑤

, Pr[𝑉𝑤 accepts𝑤, |𝜓 ⟩] ≤ 𝑘 = 1

2
,

where Pr[𝑉𝑤 accepts𝑤, |𝜓 ⟩] = ∥Π1𝑉𝑤 (|𝜓 ⟩ ⊗ |0ℎ𝑤 ⟩)∥2.
We make use of the Kitaev clock Hamiltonian construction [26,

Section 14.4], in a manner similar to [18, Lemma 21] (though, with-

out the need to first apply space-efficient probability amplifica-

tion techniques). Let 𝑑𝑤 = 2
𝑚𝑤+ℎ𝑤 (𝑡𝑤 + 1) = 𝑝𝑜𝑙𝑦 (|𝑤 |), define

the 𝑑𝑤-dimensional Hilbert space H𝑤 = C2
𝑚𝑤 ⊗ C2ℎ𝑤 ⊗ C𝑡𝑤+1

,

and let Π𝑏 = 𝐼
2
𝑏−1 ⊗ |1⟩⟨1| ⊗ 𝐼

2
𝑚𝑤+ℎ𝑤−𝑏 ∈ P̂roj(2𝑚𝑤+ℎ𝑤) denote

the projection onto the subspace of C2
𝑚𝑤 ⊗ C2ℎ𝑤 spanned by

states in which the 𝑏th qubit is 1. We define the Hamiltonians

𝐻
𝑝𝑟𝑜𝑝
𝑤 , 𝐻 𝑖𝑛

𝑤 , 𝐻
𝑜𝑢𝑡
𝑤 , 𝐻𝑤 ∈ P̂os(𝑑𝑤) on H𝑤 as follows:

𝐻
𝑝𝑟𝑜𝑝
𝑤 =

1

2

𝑡𝑤∑︁
𝑗=1

(
−𝑉𝑤,𝑗 ⊗ | 𝑗⟩⟨ 𝑗 − 1| −𝑉 †

𝑤,𝑗
⊗ | 𝑗 − 1⟩⟨ 𝑗 |

+𝐼
2
𝑚𝑤+ℎ𝑤 ⊗ (| 𝑗⟩⟨ 𝑗 | + | 𝑗 − 1⟩⟨ 𝑗 − 1|)

)
𝐻 𝑖𝑛
𝑤 =

𝑚𝑤+ℎ𝑤∑︁
𝑏=𝑚𝑤+1

(Π𝑏 ⊗ |0⟩⟨0|), 𝐻𝑜𝑢𝑡
𝑤 = Π1 ⊗ |𝑡𝑤⟩⟨𝑡𝑤 |,

𝐻𝑤 = 𝐻 𝑖𝑛
𝑤 + 𝐻𝑝𝑟𝑜𝑝

𝑤 + 𝐻𝑜𝑢𝑡
𝑤 .

By [26, Section 14.4], ∃𝑟0, 𝑟1 ∈ R>0, such that ∀𝑤 ∈ P the follow-

ing conditions hold: (1) 𝜎1 (𝐻𝑤) ≤ 𝑟0, (2) 𝑤 ∈ P1 ⇒ 𝜎𝑑𝑤 (𝐻𝑤) ≤
1−𝑐
𝑡𝑤+1 = 0, and (3)𝑤 ∈ P0 ⇒ 𝜎𝑑𝑤 (𝐻𝑤) ≥ 𝑟1 1−

√
𝑘

𝑡𝑤+1 = 1/𝑝𝑜𝑙𝑦 (𝑑𝑤).

1353

STOC ’21, June 21–25, 2021, Virtual, Italy Bill Fefferman and Zachary Remscrim

By the above, ⟨𝐻𝑤⟩ ∈ 𝑝𝑜𝑙𝑦-conditioned-SINGULAR and P(𝑤) =
SINGULAR(⟨𝐻𝑤⟩), which implies 𝑝𝑜𝑙𝑦-conditioned-SINGULAR is

QUMAL1-hard.
The fact that 𝑝𝑜𝑙𝑦-conditioned-SINGULAR ∈ QUMAL1 follows

from using the quantum walk based Hamiltonian simulation tech-

nique of Childs [7, 11] to allow the phase estimation of [18, Lemma

19] to be carried out with one-sided error, in the style of [18, Propo-

sition 32], we omit the straightforward details. □

Lemma 36. RQUMAL = RQUL ⊆ RQL ⊆ coQUMAL1.

Proof. Clearly, RQUL ⊆ RQUMAL. By Lemma 34, RQUMAL ⊆
RQUL, which implies RQUMAL = RQUL. Trivially, RQUL ⊆ RQL
By Lemma 33, 𝑝𝑜𝑙𝑦-conditioned-vITMATPROD is coRQL-hard, and
so, by Lemmas 29 to 31, 𝑝𝑜𝑙𝑦-conditioned-SINGULAR is coRQL-
hard. By Lemma 35, 𝑝𝑜𝑙𝑦-conditioned-SINGULAR ∈ QUMAL1,
which implies coRQL ⊆ QUMAL1; thus, RQL ⊆ coQUMAL1. □

The main theorem stated at the beginning of this section now

follows immediately.

Proof of Theorem 32. Follows from Lemma 36 and a padding

argument analogous to that of Theorem 1. □

5.2 NQSPACE vs. NQUSPACE vs. NQUSPACE
By considering variants of the problems of Definition 28, in which

𝜖 (𝑛) = 0, ∀𝑛 ∈ N, we establish the following result. See the full

paper [19] for details.

Theorem 37. For any space-constructible function 𝑠 : N → N,
where 𝑠 (𝑛) = Ω(log𝑛), we have

NQUMASPACE(𝑠) = NQUSPACE(𝑠) = NQSPACE(𝑠)
= coPreciseQUMA1SPACE(𝑠) = coC=SPACE(𝑠) .

6 DISCUSSION
We conclude by stating a few interesting open problems related

to our work. In Theorem 1 we established the equivalence of uni-

tary quantum space, general quantum space, and space-bounded

quantum Merlin-Arthur proof systems, in the two-sided bounded-

error case. We obtained an analogous equivalence for one-sided

unbounded-error in Theorem 37. However, in the case of one-

sided bounded-error, we only have the partial results of Theo-

rem 32. In particular, specializing to the case of logspace, we have

BQL = BQUL = QUMAL in the two-sided bounded-error case

(Lemma 18), and we have RQUMAL = RQUL ⊆ RQL ⊆ coQUMAL1
in the one-sided bounded-error case (Lemma 36). It is naturally to

ask if the analogues of results known to hold for two-sided bounded-

error also hold for one-sided bounded-error.

Open Problem 1. Is RQUL = RQL? Is RQL = coQUMAL1?

By the well-known result of Zachos and Fürer [56], MA = MA1;
that is to say, it is possible to achieve perfect completeness for clas-
sical (polynomial time) Merlin-Arthur proof systems. On the other

hand, the question of whether or not it is possible to achieve perfect

completeness for quantum (polynomial time) Merlin-Arthur proof

systems (i.e., is QMA = QMA1?) remains open (see, for instance,

[1, 3, 9, 24] for previous discussion). We next consider the logspace

analogue of this question.

Open Problem 2. Is QMAL = QMAL1?

A possible explanation for the difficulty of proving QMA =

QMA1 (if these classes are indeed equal) was provided by Aaron-

son’s result [1] that there is a quantum oracleU such thatQMAU ≠

QMA1U ; therefore, any proof of QMA = QMA1 must use a tech-

nique that is quantumly nonrelativizing. Note that the technique
used by Zachos and Fürer [56] to showMA = MA1 is (classically)
relativizing. It is not hard to see that Aaronson’s argument can

also be used to produce a quantum oracle U such that QMALU ≠

QMAL1U , and so any proof of QMAL = QMAL1 must also use

quantumly nonrelativizing techniques. We emphasize that the tech-

niques used in this paper to show our results concerning new in-

clusions between various complexity classes (i.e., the various re-

ductions between linear-algebraic problems shown in this paper)

are quantumly nonrelativizing.
Moreover, it is known that it is possible to achieve perfect com-

pleteness in quantum Merlin-Arthur proof systems that have a

classical witness; that is to say, QCMA = QCMA1 [24]. Note that,
trivially, BQUL ⊆ QCMAL ⊆ QMAL. Thus, the known equality

BQUL = QMAL immediately implies QCMAL = QMAL. Therefore,
QMAL = QMAL1 ⇔ QCMAL = QMAL1 ⇐ QCMAL = QCMAL1.

Recall thatBQL ⊆ DSPACE(log2 𝑛) [52] is the current best upper
bound of this type. As discussed in Section 1.2, Boix-Adserà, Eldar,

and Mehraban [8] have recently shown that 𝜅-conditioned-DET ∈
DSPACE(log(𝑛) log(𝜅 (𝑛))𝑝𝑜𝑙𝑦 (log log𝑛)). Furthermore, we have

shown that 𝑝𝑜𝑙𝑦-conditioned-DET is BQL-complete. Therefore, if

BQL ⊈ DSPACE(log2−𝜖 𝑛), ∀𝜖 > 0, then both our result and their

result are essentially optimal, in terms of the relationship between

condition number and needed space. It is then natural to ask if

either result can be improved.

Open Problem 3. Does 𝜅-conditioned-DET remain BQL-hard for
some 𝜅 (𝑛) = 𝑛𝑜 (1)? Is 𝜅-conditioned-DET ∈ DSPACE(𝑠) for some

𝑠 (𝑛) = 𝑜 (log(𝑛) log(𝜅 (𝑛))𝑝𝑜𝑙𝑦 (log log𝑛))?

We conclude with a general question.

Open Problem 4. What further relationships can be established

between BQL and other natural logspace complexity classes (e.g.,

#L,GapL, L/𝑝𝑜𝑙𝑦, etc.)?

ACKNOWLEDGMENTS
B.F. and Z.R acknowledge support fromAFOSR (YIP number FA9550-

18-1-0148 and FA9550-21-1-0008). B.F additionally acknowledges

support from the National Science Foundation under Grant CCF-

2044923 (CAREER). We would like to thank Dieter van Melkebeek,

as well as the anonymous reviewers, for many helpful comments

on a preliminary draft.

A A TM-BASED PROOF OF BPL ⊆ BQUL=BQL
While, trivially, BPL ⊆ BQL, it is not obvious, a priori, that BPL ⊆
BQUL. To the best of our knowledge, the strongest partial result in

this direction is the classic result of Watrous [50, Theorem 4.12],

which showed that BPL is contained in a variant of BQUL in which

there is no bound on the running time of the QTM. By Theorem 2,

𝑝𝑜𝑙𝑦-conditioned-MATPOW ∈ BQUL. As we next observe, this

implies BPL ⊆ BQUL and, more strongly, BQL = BQUL. Of course,

1354

Eliminating Intermediate Measurements in Space-Bounded Quantum Computation STOC ’21, June 21–25, 2021, Virtual, Italy

the statement BQL = BQUL immediately implies BPL ⊆ BQUL;
nevertheless, we will first show, directly, that BPL ⊆ BQUL.

Proposition 38. BPL ⊆ BQUL.

Proof. Suppose P = (P1,P0) ∈ BPL. Then there is some

probabilistic TM 𝑀 that recognizes P with two-sided error ≤ 1

3

within time 𝑡 (𝑛) = 𝑛𝑂 (1)
and space 𝑠 (𝑛) = 𝑂 (log𝑛), for any in-

put 𝑤 ∈ P of length 𝑛 = |𝑤 |. Let |𝑀 | denote the size of the

finite control of 𝑀 , let Γ denote the work-tape alphabet of 𝑀 ,

and let 𝑐 (𝑛) = |𝑀 | (𝑛 + 2) (𝑠 (𝑛)) |Γ |𝑠 (𝑛) = 𝑛𝑂 (1)
denote the num-

ber of possible configurations of 𝑀 on inputs of length 𝑛. It is

well-known that, for input 𝑤 ∈ P, one may construct, in deter-

ministic space 𝑂 (log(|𝑤 |)) a stochastic matrix 𝐴𝑤 ∈ M̂at(𝑐 (𝑛))
and values 𝑥𝑤 , 𝑦𝑤 ∈ [𝑐 (𝑛)] such that 𝐴𝑡𝑤 [𝑥𝑤 , 𝑦𝑤] is precisely the

probability that 𝑀 accepts 𝑤 within 𝑡 steps [15, 36]; this implies

MATPOW(⟨𝐴𝑤 , 𝑥𝑤 , 𝑦𝑤 ,
2

3
⟩) = P(𝑤). Note that, as 𝐴𝑤 is stochas-

tic, so is 𝐴𝑡𝑤 , ∀𝑡 ∈ N; this implies 𝜎1 (𝐴𝑡𝑤) ≤
√︁
𝑐 (𝑛) = 𝑛𝑂 (1)

,

which then implies ⟨𝐴𝑤 , 𝑥𝑤 , 𝑦𝑤 ,
2

3
⟩ ∈ MATPOW

𝑐 (𝑛),𝑡 (𝑛),
√
𝑐 (𝑛),3.

By Theorem 2,MATPOW
𝑐 (𝑛),𝑡 (𝑛),

√
𝑐 (𝑛),3 ∈ BQUL, which implies

P ∈ BQUL. □

By applying an analogous argument to general quantum Turing

machines (where the stochastic matrix that describes a single step

of the computation of a probabilistic TM is replaced by the quantum

channel that describes a single step of the computation of a quantum

TM), we may then show that BQL ⊆ BQUL (and, therefore, that

BQL = BQUL). Here, BQL is defined in terms of a logspace quantum
Turing machine (QTM), as was the case in, for instance [25, 33, 37,

46, 50–53], rather than the equivalent model of a uniform family of

general quantum circuits used in this paper.

For concreteness, we use the classically controlled logspace (gen-

eral) QTM defined by Watrous [52] (with the minor alteration that

we require all transition amplitudes of the QTM to be computable

in L); however, we note that our result would apply equally well

to any “reasonable" logspace QTM model that is classically con-

trolled (this includes all models considered in all of the papers

cited above). In brief, such a QTM𝑀 consists of a (classical) finite

control, an internal quantum register of constant size, a classi-

cal “measurement" register of constant size, and three tapes: (1)

a read-only input tape that, on any input 𝑤 , contains the string

#𝐿𝑤#𝑅 , where #𝐿 and #𝑅 are special symbols that serve as left and

right end-markers, (2) a read/write classical work tape consisting

of 𝑠 (|𝑤 |) = 𝑂 (log|𝑤 |) cells, each of which holds a symbol from

some finite alphabet Γ, and (3) a read/write quantum work tape,

consisting of 𝑠 (|𝑤 |) = 𝑂 (log|𝑤 |) qubits. Each of the tapes has a

single bidirectional head. At the start of the computation, both

work-tapes are “blank" (to be precise, each cell of the classical work

tape contains some specified blank-symbol in Γ and each qubit

of the quantum work tape is in the state |0⟩); each qubit of the

internal quantum register is also in the state |0⟩. Each step of the

computation of𝑀 involves applying a selective quantum operation
to the combined register consisting of the internal quantum register

and the single qubit that is currently under the head of the quan-

tum work tape; the particular choice of which selective quantum

operation to perform may depend on the state of the finite control

and the symbols currently under the heads of the input tape and

classical work tape. The (classical) result of this quantum operation

is stored in the measurement register. Then, depending on this

result, as well as on the state of the finite control and the symbols

currently under the heads of the input tape and classical work tape,

the classical configuration of the machine evolves; to be precise,

the state of the finite control is updated, a symbol is written on

the classical work-tape, and the head of each work tape moves up

to one cell in either direction. The machine accepts (resp.) rejects

its input by entering a special (classical) accepting (resp. rejecting

state). See [52] for a complete definition.

Proposition 39. BQL = BQUL.

Proof. Trivially, BQL ⊇ BQUL. We next show BQL ⊆ BQUL.
Suppose P = (P1,P0) ∈ BQL. By definition, there is some QTM𝑀

such that the following conditions are satisfied: (1) on any input𝑤 ∈
P of length 𝑛 = |𝑤 |,𝑀 runs in space at most 𝑠 (𝑛) = 𝑂 (log𝑛) (and
hence time 𝑡 (𝑛) = 2

𝑂 (𝑠 (𝑛))
), (2) if𝑤 ∈ P1, then Pr[𝑀 accepts𝑤] ≥

2

3
, and (3) if𝑤 ∈ P0, then Pr[𝑀 accepts𝑤] ≤ 1

3
.

Consider running𝑀 on some input of length 𝑛. At any particular

point in time, the configuration of (a single probabilistic branch of)

𝑀 consists of the current (classical) state of the finite control, the

(quantum) contents of the internal quantum register, the (classical)

contents of the measurement register, the (classical) positions of the

heads on the read only input-tape and the classical and quantum

work-tapes, the current (classical) contents of the classical work-

tape, and the current (quantum) contents of the quantum work-

tape. Let |𝑀 | denote the size of the finite control, let 𝑏𝑚 denote

the number of bits of the measurement register, let 𝑏𝑞 denote the

number of qubits of the internal quantum register, and let Γ denote

the classical work-tape alphabet. Let𝐶𝑛 denote the set of all possible

classical configurations of 𝑀 on inputs of length 𝑛, where |𝐶𝑛 | =
|𝑀 |2𝑏𝑚 (𝑛+2)𝑠 (𝑛)2 |Γ |𝑠 (𝑛) = 𝑛𝑂 (1)

. Each classical configuration 𝑐 ∈
𝐶𝑛 corresponds to the element |𝑐⟩ in the natural orthonormal basis

of the Hilbert space C𝐶𝑛
. Let𝑄𝑛 denote the set of |𝑄𝑛 | = 2

𝑠 (𝑛)+𝑏𝑞 =

𝑛𝑂 (1)
quantum basis states corresponding to the quantum work-

tape and internal quantum register. The contents of the quantum

work-tape and the internal quantum register is then described by

some |𝜓 ⟩ ∈ C𝑄𝑛
. Then each configuration of 𝑀 on an input of

length 𝑛 corresponds to an element |𝑐⟩|𝜓 ⟩ of the Hilbert space

H𝑀,𝑛 = C𝐶𝑛 ⊗ C𝑄𝑛
. Let 𝑑 (𝑛) = dim(H𝑀,𝑛) = |𝐶𝑛 | |𝑄𝑛 | = 𝑛𝑂 (1)

.

Consider some input 𝑤 ∈ P. Let 𝑛 = |𝑤 | denote the length

of 𝑤 , let Φ𝑀,𝑤 ∈ Chan(H𝑀,𝑛) denote the quantum channel that

corresponds to a single step of the computation of 𝑀 on 𝑤 , and

let 𝐾 (Φ𝑀,𝑤) ∈ M̂at(𝑑2 (𝑛)) denote the natural representation of

Φ𝑀,𝑤 . For any 𝑡 ∈ N, we have Φ𝑡𝑀,𝑤
∈ Chan(H𝑀,𝑛), which implies

𝜎1 ((𝐾 (Φ𝑀,𝑤))𝑡) = 𝜎1 (𝐾 (Φ𝑡𝑀,𝑤
)) ≤

√︁
𝑑 (𝑛) = 𝑛𝑂 (1)

[40, Theorem

1]. Let |𝜓𝑛𝑠𝑡𝑎𝑟𝑡 ⟩ = |𝑐𝑛𝑠𝑡𝑎𝑟𝑡 ⟩|𝑞𝑛𝑠𝑡𝑎𝑟𝑡 ⟩ ∈ H𝑀,𝑛 denote the starting config-

uration of𝑀 on an input of length 𝑛, where 𝑐𝑛𝑠𝑡𝑎𝑟𝑡 ∈ 𝐶𝑛 is the clas-

sical part of the starting configuration, and |𝑞𝑛𝑠𝑡𝑎𝑟𝑡 ⟩ = |0𝑠 (𝑛)+𝑏𝑞 ⟩ ∈
C𝑄𝑛

is the quantum part. Without loss of generality we may, for

convenience, assume that𝑀 “cleans-up" its workspace at the end of

the computation, by returning both its classical and quantum work

tapes to the “blank" configuration described above; in particular,

this implies that𝑀 has a unique accepting configuration |𝜓𝑛𝑎𝑐𝑐𝑒𝑝𝑡 ⟩ =
|𝑐𝑛𝑎𝑐𝑐𝑒𝑝𝑡 ⟩|𝑞𝑛𝑠𝑡𝑎𝑟𝑡 ⟩ ∈ H𝑀,𝑛 on any input of length 𝑛. Let 𝐴𝑤 =

1355

STOC ’21, June 21–25, 2021, Virtual, Italy Bill Fefferman and Zachary Remscrim

𝐾 (Φ𝑀,𝑤) ∈ M̂at(𝑑2 (𝑛)), 𝑥𝑤 = vec(|𝜓𝑛𝑎𝑐𝑐𝑒𝑝𝑡 ⟩⟨𝜓𝑛𝑎𝑐𝑐𝑒𝑝𝑡 |) ∈ [𝑑2 (𝑛)],
and 𝑦𝑤 = vec(|𝜓𝑛𝑠𝑡𝑎𝑟𝑡 ⟩⟨𝜓𝑛𝑠𝑡𝑎𝑟𝑡 |) ∈ [𝑑2 (𝑛)]. Then 𝐴𝑡𝑤 [𝑥𝑤 , 𝑦𝑤] is
precisely the probability that𝑀 accepts𝑤 within 𝑡 steps. We then

have MATPOW(⟨𝐴𝑤 , 𝑥𝑤 , 𝑦𝑤 ,
2

3
⟩) = P(𝑤) and ⟨𝐴𝑤 , 𝑥𝑤 , 𝑦𝑤 ,

2

3
⟩ ∈

MATPOW
𝑑2 (𝑛),𝑡 (𝑛),

√
𝑑 (𝑛),3. To complete the proof, note that, by

Theorem 2, MATPOW
𝑑2 (𝑛),𝑡 (𝑛),

√
𝑑 (𝑛),3 ∈ BQUL, which implies

P ∈ BQUL. □

REFERENCES
[1] Scott Aaronson. 2009. ON PERFECT COMPLETENESS FOR QMA. Quantum

Information and Computation 9, 1 (2009), 0081–0089.

[2] Dorit Aharonov, Alexei Kitaev, and Noam Nisan. 1998. Quantum circuits with

mixed states. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing. 20–30.

[3] Dorit Aharonov and Tomer Naveh. 2002. Quantum NP-a survey. arXiv preprint
quant-ph/0210077 (2002).

[4] Eric Allender and Mitsunori Ogihara. 1996. Relationships Among PL, #L, and the

Determinant. RAIRO-Theoretical Informatics and Applications 30, 1 (1996), 1–21.
[5] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. 1997.

Strengths and weaknesses of quantum computing. SIAM journal on Computing
26, 5 (1997), 1510–1523.

[6] Stuart J Berkowitz. 1984. On computing the determinant in small parallel time

using a small number of processors. Information processing letters 18, 3 (1984),
147–150.

[7] DominicWBerry, AndrewMChilds, Richard Cleve, Robin Kothari, and RolandoD

Somma. 2014. Exponential improvement in precision for simulating sparse

Hamiltonians. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing. 283–292.

[8] Enric Boix-Adserà, Lior Eldar, and Saeed Mehraban. 2019. Approximating the

Determinant of Well-Conditioned Matrices by Shallow Circuits. arXiv preprint
arXiv:1912.03824 (2019).

[9] Sergey Bravyi. 2011. Efficient algorithm for a quantum analogue of 2-SAT.

Contemp. Math. 536 (2011), 33–48.
[10] Harry Buhrman, John Tromp, and Paul Vitányi. 2001. Time and space bounds

for reversible simulation. In International Colloquium on Automata, Languages,
and Programming. Springer, 1017–1027.

[11] Andrew M Childs. 2010. On the relationship between continuous-and discrete-

time quantum walk. Communications in Mathematical Physics 294, 2 (2010),

581–603.

[12] Stephen A Cook. 1985. A taxonomy of problems with fast parallel algorithms.

Information and Control 64, 1-3 (1985), 2–22.
[13] C Damm. 1991. DET=L(#L). Fachbereich Informatik der Humboldt-Universitat zu,

Berlin (1991).

[14] David P DiVincenzo. 2000. The physical implementation of quantum computation.

Fortschritte der Physik: Progress of Physics 48, 9-11 (2000), 771–783.
[15] Dean Doron, Amir Sarid, and Amnon Ta-Shma. 2017. On approximating the eigen-

values of stochastic matrices in probabilistic logspace. computational complexity
26, 2 (2017), 393–420.

[16] Dean Doron and Amnon Ta-Shma. 2015. On the de-randomization of space-

bounded approximate counting problems. Inform. Process. Lett. 115, 10 (2015),
750–753.

[17] Bill Fefferman, Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Morimae, and

Harumichi Nishimura. 2016. Space-Efficient Error Reduction for Unitary Quan-

tum Computations. In 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[18] Bill Fefferman and Cedric Yen-Yu Lin. 2018. A Complete Characterization of

Unitary Quantum Space. In 9th Innovations in Theoretical Computer Science Con-
ference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[19] Bill Fefferman and Zachary Remscrim. 2020. Eliminating intermediate measure-

ments in space-bounded quantum computation. arXiv preprint arXiv:2006.03530
(2020).

[20] Richard P Feynman. 1999. Simulating physics with computers. Int. J. Theor. Phys
21, 6/7 (1999).

[21] Uma Girish, Ran Raz, and Wei Zhan. 2020. Quantum logspace algorithm for

powering matrices with bounded norm. arXiv preprint arXiv:2006.04880 (2020).
[22] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm

for linear systems of equations. Physical review letters 103, 15 (2009), 150502.
[23] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. 2004. A polynomial-time ap-

proximation algorithm for the permanent of a matrix with nonnegative entries.

Journal of the ACM (JACM) 51, 4 (2004), 671–697.
[24] Stephen P Jordan, Hirotada Kobayashi, Daniel Nagaj, and Harumichi Nishimura.

2012. Achieving perfect completeness in classical-witness quantum Merlin-

Arthur proof systems. Quantum Information & Computation 12, 5-6 (2012),

461–471.

[25] Richard Jozsa, Barbara Kraus, Akimasa Miyake, and John Watrous. 2010. Match-

gate and space-bounded quantum computations are equivalent. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 2115
(2010), 809–830.

[26] Aleksei Yur’evich Kitaev. 1997. Quantum computations: algorithms and error

correction. Uspekhi Matematicheskikh Nauk 52, 6 (1997), 53–112.

[27] Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami. 2003. Quantum

Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur?. In

International Symposium on Algorithms and Computation. Springer, 189–198.
[28] Rolf Landauer. 1961. Irreversibility and heat generation in the computing process.

IBM journal of research and development 5, 3 (1961), 183–191.
[29] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. 2000. Reversible space equals

deterministic space. J. Comput. System Sci. 60, 2 (2000), 354–367.
[30] Seth Lloyd. 1996. Universal quantum simulators. Science (1996), 1073–1078.
[31] Meena Mahajan and V Vinay. 1997. Determinant: Combinatorics, Algorithms,

and Complexity. Chicago Journal of Theoretical Computer Science (1997).
[32] Chris Marriott and John Watrous. 2005. Quantum Arthur–Merlin games. Com-

putational Complexity 14, 2 (2005), 122–152.

[33] Dieter van Melkebeek and Thomas Watson. 2012. Time-space efficient simula-

tions of quantum computations. Theory of Computing 8, 1 (2012), 1–51.

[34] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. 2009. Fast amplification of QMA.

Quantum Information & Computation 9, 11 (2009), 1053–1068.

[35] Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum

information.

[36] Noam Nisan. 1992. Pseudorandom generators for space-bounded computation.

Combinatorica 12, 4 (1992), 449–461.
[37] Simon Perdrix and Philippe Jorrand. 2006. Classically controlled quantum com-

putation. Mathematical Structures in Computer Science 16, 4 (2006), 601–620.
[38] Zachary Remscrim. 2020. The Power of a Single Qubit: Two-Way Quantum Finite

Automata and the Word Problem. In 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 168). 139:1–139:18.

[39] Zachary Remscrim. 2021. Lower Bounds on the Running Time of Two-Way

Quantum Finite Automata and Sublogarithmic-Space Quantum Turing Machines.

In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
[40] Wojciech Roga, Zbigniew Puchala, Lukasz Rudnicki, and Karol Zyczkowski. 2013.

Entropic trade-off relations for quantum operations. Physical Review A 87, 3

(2013), 032308.

[41] Michael Saks. 1996. Randomization and derandomization in space-bounded

computation. In Proceedings of Computational Complexity (Formerly Structure in
Complexity Theory). IEEE, 128–149.

[42] Michael Saks and Shiyu Zhou. 1999. BPhSPACE(s) in DSPACE(sˆ3/2). Journal of
computer and system sciences 58, 2 (1999), 376–403.

[43] Miklos Santha and Sovanna Tan. 1998. Verifying the determinant in parallel.

Computational Complexity 7, 2 (1998), 128–151.

[44] Peter W Shor. 1994. Algorithms for quantum computation: Discrete logarithms

and factoring. In Proceedings 35th annual symposium on foundations of computer
science. Ieee, 124–134.

[45] Peter W Shor and Stephen P Jordan. 2008. Estimating Jones polynomials is a

complete problem for one clean qubit. Quantum Information & Computation 8, 8

(2008), 681–714.

[46] Amnon Ta-Shma. 2013. Inverting well conditioned matrices in quantum logspace.

In Proceedings of the forty-fifth annual ACM symposium on Theory of computing.
881–890.

[47] Seinosuke Toda. 1991. Counting problems computationally equivalent to the

determinant.

[48] Leslie G Valiant. 1992. Why is Boolean complexity theory difficult. Boolean
Function Complexity 169 (1992), 84–94.

[49] V Vinay. 1991. Counting auxiliary pushdown automata and semi-unbounded

arithmetic circuits. In Proceedings of the Sixth Annual Structure in Complexity
Theory Conference. IEEE, 270–284.

[50] John Watrous. 1999. Space-bounded quantum complexity. J. Comput. System Sci.
59, 2 (1999), 281–326.

[51] John Watrous. 2001. Quantum simulations of classical random walks and undi-

rected graph connectivity. Journal of computer and system sciences 62, 2 (2001),
376–391.

[52] John Watrous. 2003. On the complexity of simulating space-bounded quantum

computations. Computational Complexity 12, 1-2 (2003), 48–84.

[53] John Watrous. 2009. Encyclopedia of Complexity and System Science, chapter

Quantum computational complexity.

[54] John Watrous. 2009. Zero-knowledge against quantum attacks. SIAM J. Comput.
39, 1 (2009), 25–58.

[55] John Watrous. 2018. The theory of quantum information. Cambridge University

Press.

[56] Stathis Zachos and Martin Furer. 1987. Probabilistic quantifiers vs. distrustful

adversaries. In International Conference on Foundations of Software Technology
and Theoretical Computer Science. Springer, 443–455.

1356

	Abstract
	1 Introduction
	1.1 Eliminating Intermediate Measurements
	1.2 Exact and Approximate Linear Algebra
	1.3 Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 General Notation and Definitions
	2.2 Space-Bounded Quantum Computation

	3 Well-Conditioned Determinant
	3.1 Eliminating Intermediate Measurements
	3.2 BQUL Completeness

	4 Fully Logarithmic Approximation Schemes
	5 Well-Conditioned Singular
	5.1 RQSPACE vs. RQUSPACE vs. RQUMASPACE
	5.2 NQSPACE vs. NQUSPACE vs. NQUSPACE

	6 Discussion
	A A TM-based Proof of BPL in BQUL=BQL
	References

