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Characterizing the computational advantage from noisy intermediate-scale quantum (NISQ) de-
vices is an important task from theoretical and practical perspectives. Here, we numerically inves-
tigate the computational power of NISQ devices focusing on boson sampling, one of the well-known
promising problems which can exhibit quantum supremacy. We study hardness of lossy boson
sampling using matrix product operator (MPO) simulation to address the effect of photon-loss on
classical simulability using MPO entanglement entropy (EE), which characterizes a running time
of an MPO algorithm. An advantage of MPO simulation over other classical algorithms proposed
to date is that its simulation accuracy can be efficiently controlled by increasing an MPO’s bond
dimension. Notably, we show by simulating lossy boson sampling using an MPO that as an input
photon number grows, its computational cost, or MPO EE, behaves differently depending on a
loss-scaling, exhibiting a different feature from that of lossless boson sampling. Especially when an
output photon number scales faster than the square root of an input photon number, our study
shows an exponential scaling of time complexity for MPO simulation. On the contrary, when an
output photon number scales slower than the square root of an input photon number, MPO EE
may decrease, indicating that an exponential time complexity might not be necessary.

I. INTRODUCTION

Quantum computers are expected to provide a com-
putational advantage that enables solving problems that
lie beyond the computational power of classical comput-
ers [1]. Ultimately, quantum computers are demanded
to be fault-tolerant and scalable to solve various practi-
cal problems that no known classical algorithm can effi-
ciently solve such as integer factorization [2]. However,
since fault-tolerant quantum computing is not immedi-
ately feasible with current technology, there has been a
huge interest in achieving “quantum supremacy” with
noisy intermediate-scale quantum (NISQ) [3] devices. In
particular, various sampling problems, such as IQP [4],
boson sampling [5, 6], Fourier sampling [7], and ran-
dom circuit sampling (RCS) [8], have been proposed as
promising candidates for demonstrating quantum advan-
tage over classical computers. Indeed, there are various
complexity-theoretic hardness results which show that
these problems cannot be tackled efficiently by a clas-
sical computer under reasonable conjectures [5, 9–13].

Recently, RCS was implemented in a state-of-the-
art superconducting qubit system comprising 53 qubits
which are connected in a planar architecture via two-
qubit gates of error rates lower than 0.6% [14]. Remark-
ably, it has been estimated that it would take 2.5 days
[15], 20 days [16], and 10000 years [14] to solve an equiv-
alent computational task using one of the best available
classical supercomputers. While the estimates vary, it
has become evident that classical simulation of the state-
of-the-art NISQ systems can only be done, if ever pos-

∗ This was work done before K.N. joined AWS Center for Quantum
Computing.

sible, using the most powerful supercomputer available
today.

Aside from demonstrating quantum computational ad-
vantage, RCS may prove to have practical applications
such as certified random number generation [17]. Re-
gardless of the usefulness of the sampling problems, the
question of whether a classical computer can simulate
random circuits of a NISQ device has important impli-
cations in the field of quantum computing: by studying
classical simulability of noisy versions of sampling prob-
lems, we can sharpen our understanding of how noise
limits quantum computational power and hence the util-
ity of a NISQ device.

It is worth noting that many classical algorithms for
simulating NISQ systems do not take advantage of the
fact that NISQ devices are noisy. That is, many clas-
sical simulation methods become unavoidably ineffective
for simulating large quantum systems (consisting of, e.g.,
70 qubits) due to exponentially large Hilbert space, even
if such systems are noisier than a smaller system which
can be classically simulated. On the other hand, vari-
ous efficient simulation methods based on matrix prod-
uct state (MPS) and matrix product operator (MPO)
[18] have recently been proposed for simulating large but
noisy quantum systems [19–22]. These methods take ad-
vantage of the fact that noise in quantum circuits limits
the growth of quantum entanglement in NISQ devices
and thus use MPS or MPO to describe such NISQ sys-
tems with bounded entanglement in a compressed man-
ner. Hence, these MPS-based simulation methods allow
us to systematically explore the adverse effects of noise
on the computational power of a NISQ device.

Among various proposals for quantum supremacy ex-
periments, we study boson sampling, which is one of
the promising candidates expected to exhibit quan-
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tum supremacy. Boson sampling has been proven to
be classically intractable under plausible assumptions
[5]. More precisely, there is no classical algorithm un-
der complexity-theoretic conjectures that approximately
samples the outcomes of an ideal boson sampling in poly-
nomial time as an input photon number grows. Thanks
to its experimental setup’s relatively simple structure,
experimental implementations of boson sampling are
rapidly developing [23–39]. Remarkably, the most recent
boson sampling experiment and Gaussian boson sam-
pling experiment, a variant of boson sampling, have de-
tected up to 14 photon clicks out of 20 single-photon in-
put [38] and up to 76 photons from squeezed states with
squeezing parameters ranging from 1.34 to 1.84 [39], re-
spectively. Also, there has been a proposal to employ
Gaussian boson sampling [6, 39] to generate molecular
vibronic spectra, which has recently been experimentally
conducted [40] using a superconducting bosonic proces-
sor.

The experimental platform of boson sampling is based
on linear optics (beam splitters and phase shifters), as
well as single photon sources and detectors. Although
these apparatuses are readily available in experiments,
current quantum optics experiments still severely suf-
fer from various imperfections such as impurity of single
photons, photon-loss in the circuit, and inefficiency of
photo-detectors. Theoretically, the aforementioned im-
perfections can be simply modeled as photon-loss, and
there have been many theoretical studies to address the
hardness of lossy boson sampling [9, 41–44]. Particu-
larly, it is proven that when the input photon number is
N and only a constant number of photons n is lost in the
system so that we detect Nout = N − n number of pho-
tons, the hardness of boson sampling is maintained [9].
On the other hand, it can be easily shown that if only
Nout ∝ log2N number of photons remain in the measure-
ment, an efficient classical simulation is possible [9, 45].

Recently, it has been shown that when Nout ∝
√
N num-

ber of photons survive before measurement [41, 42], the
lossy boson sampling can be efficiently simulated with a
constant error. The basic idea of such algorithms is that
an input state of boson sampling after a large amount of
loss can be approximated by thermal states or so-called
particle-separable states, which can be employed to sim-
ulate the boson sampling efficiently as an input photon
number grows.

Meanwhile, a limitation of the algorithms presented
above is apparent that once a system’s parameters are
given, the closest thermal state and particle-separable
state are determined. Thus, the simulation’s accuracy is
fixed and cannot be improved by using more computa-
tional time. For this reason, the algorithms may not be
applicable to an intermediate size of lossy boson sampling
where a loss rate is not large enough to approximate an
input state by thermal states or particle-separable states
accurately. Another algorithm to simulate lossy boson
sampling employs the fact that outcomes of a large degree
of multiphoton interference are suppressed by photon-

loss, which allows us to control the approximation error
by setting a threshold of the degree according to a target
error [43]. In this work, we employ a different approach to
simulate lossy boson sampling to overcome the limitation
of fixed accuracy by using MPOs [46, 47]. Specifically, an
approximation error of MPO simulation can be manip-
ulated to achieve a target error ε in polynomial time in
1/ε [46]. Therefore, MPO simulation enables us to simu-
late an intermediate size of boson sampling and achieve
a tunable accuracy in an efficient way. In addition, MPO
allows us to compute probabilities approximately.

We characterize how computational cost changes as
an input photon number grows using the so-called
MPS/MPO entanglement entropy (EE) [46, 48]. In fact,
MPO has been used to simulate an intermediate size of
boson sampling [19], where lossy boson sampling was sim-
ulated for fixed system size with different loss rates and it
was numerically shown that boson sampling with a large
amount of photon-loss requires only a small amount of
computational cost using MPO EE. In this paper, using
MPO simulation and MPO EE, we demonstrate how the
computational cost of a classical simulation changes as
the system size varies, namely input photon number, for
various loss scalings.

We first investigate lossless boson sampling with an
MPS method for a different number of input photons and
modes to compare with lossy boson sampling. We obtain
a consistent numerical result with the theoretical hard-
ness result of ideal boson sampling that the maximum
MPS EE over all possible bipartitions linearly increases
as the number of input photons grows, suggesting that
MPS simulations of ideal boson sampling necessitate an
exponential time cost. More importantly, we investigate
classical simulability of lossy boson sampling using MPO
simulations. Particularly, we consider a power-law scal-
ing, i.e., Nout ∝ Nγ (0 < γ ≤ 1). In this scaling, a simple
procedure using binomial sampling of a pure input state
followed by the Clifford-Clifford algorithm [45, 49], the
fastest known boson sampling algorithm, does not allow
an efficient simulation (see Sec. IV B). Our numerical
results show that for a constant loss rate, i.e., γ = 1,
the MPO simulation requires an exponential computa-
tional time in input photon numbers. We also analyti-
cally show that for γ > 1/2, the required computational
cost grows exponentially in an asymptotic regime. More-
over, we show that for some power-law loss-scaling, such
as γ = 1/4, 1/2, an MPO EE drops or increases only
logarithmically even if the number of output photons in-
creases in the system. Such a behavior of MPO EE might
allow an efficient classical simulation, while the scaling of
computational cost cannot be determined solely by MPO
EE in this regime.

Our paper is organized as follows. In Sec. II we in-
troduce basic concepts of ideal boson sampling and lossy
boson sampling, taking into account photon loss. In Sec.
III, we introduce MPS and MPO methods to simulate bo-
son sampling and MPS and MPO EE, which determines
the classical simulability from MPS and MPO methods
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in Sec. III C. Using the provided simulation procedure,
we show our numerical simulation results in Sec. IV. We
first demonstrate that MPS simulation for lossless boson
sampling is inefficient using MPS in Sec. IV A. We then
show different behaviors of simulability in the simulation
of lossy boson sampling using MPO depending on the
loss-scaling in Sec. IV B. We also show that the sim-
ulation errors can be controlled efficiently. Finally, we
summarize our results in Sec. V.

II. LOSSY BOSON SAMPLING

Let us consider boson sampling circuits consisting of
D layers of beam splitters in M bosonic modes {âj}Mj=1

with N indistinguishable single photons as an input state
|ψin〉 = |1〉N |0〉M−N . Each layer of the circuit is com-
posed of beam splitters with a random transmissivity and
phase shift as illustrated in Fig. 1 (a). More explicitly,

a beam splitter between two adjacent modes â† and b̂†

transforms the modes operators as(
â†

b̂†

)
→
(

cos θ −eiφ sin θ
e−iφ sin θ cos θ

)(
â†

b̂†

)
, (1)

where cos θ and sin θ correspond to the transmittance
and reflectance of the beam splitter, and φ is a relative
phase shift. After applying D layers of beam-splitter op-
erations, we get a passive unitary circuit Û which trans-
forms modes operators as

â†j →
M∑
k=1

Ujkâ
†
k, (2)

where Ujk’s are the matrix elements of an M ×M uni-
tary matrix U . We choose the circuit depth D, random
transmissivities (cos θ), and phase shifts (φ) such that
the resulting unitary matrix U is given by a Haar-random
M×M unitary matrix. In particular, it was shown in Ref.
[50] that a circuit depth D = M suffices to generate an
M ×M Haar-random unitary matrix U . The transmis-
sivities and phase shifts are chosen randomly following
the sampling procedure in Ref. [50]. See Appendix A for
more details.

After going through all the beam splitters, output
modes are measured by photon-number detectors. Sur-
prisingly, the output probability of the seemingly simple
structure of linear optical circuits is hard to compute on
average, which is formally written as

|〈t1, . . . , tM |Û |s1, . . . , sM 〉|2 =
|Per(US,T )|2

t1! · · · tM !s1! · · · sM !
. (3)

Here, we assumed |s1, . . . , sM 〉 an input state and
|t1, . . . , tM 〉 as an output state with sj and tj being the
photon number at jth mode, and

Per(X) ≡
∑
σ∈SN

N∏
i=1

Xi,σ(i) (4)

is the permanent of a matrix X, and SN represents a
permutation group. The matrix US,T is obtained from
the unitary matrix U by repeating tj copies of the jth
column of U to construct a matrix UT and then by repeat-
ing sj copies of the jth row of UT . In general, calculating
the probability of an outcome is hard because comput-
ing permanent is #P-complete [51]. On the other hand,
if a system has a number of multiphoton events at each
mode (collision), one can expect that the computation
of the corresponding permanent becomes easier because
the relevant matrix has a simpler structure. Based on
the difficulty of calculating permanent when multipho-
ton events are suppressed by assuming M ≥ N6, it has
been proven that the existence of a classical computer
that is able to efficiently simulate the boson sampling
leads to collapse of the polynomial hierarchy (PH) under
some conjectures [5].

While the hardness proof of classical simulation of
boson sampling assumes an ideal bosonic quantum de-
vice, there are various inevitable imperfections in bo-
son sampling experiments [38]. Photon-loss is one of
the most critical imperfections in quantum optics exper-
iments, which can be described by the transformation of
a mode operator as shown in Fig. 1 (c),

â→ √µâ+
√

1− µê, (5)

where ê denotes the mode operator of the environment,
and µ denotes the transmissivity. We assume the envi-
ronment’s quantum state to be in a vacuum state, which
is a reasonable assumption in optical frequency. The
photon-loss model can describe imperfect preparation of
single photons and inefficiency of single-photon detectors
as well as photon-loss in the circuits. In addition, it is
natural to assume that the photon-loss rate is the same
on each mode in practice. Note that our MPO algorithm
is also applicable to non-uniform loss [52] although it re-
quires more computational time (See Sec. B 2).

Especially in the uniform loss case, one can easily verify
that photon-loss channels commute with arbitrary beam-
splitter circuits as shown in Fig. 1 (d). Thus, denoting
µp, µu, and µm as the transmissivity for each photon-
loss on preparation, unitary circuits, and measurement,
the total transmissivity is given by their product µ =
µpµuµm. As a result, the uniform photon loss can be
captured by combining all the photon loss into photon-
loss only on the preparation step such that each single-
photon state is replaced by

|1〉〈1| → σ̂ = (1− µ)|0〉〈0|+ µ|1〉〈1|. (6)

Thus, we now assume that the rest of the process, such
as beam splitters and measurement, is perfect as shown
in Fig. 1 (b).

It is worth emphasizing that the use of one-dimensional
(1D) architecture in this work is only for simulation pur-
poses. That is, while we use 1D architecture, we choose
a sufficiently large circuit depth D ≈ M so that it gen-
erates a passive unitary circuit Û that mixes mode op-



4

FIG. 1. Lossy boson sampling circuit. (a) We start with N single photons as an input state and measure the output state
by photon-number resolving detectors (or single-photon detectors) after an M -mode Haar-random unitary circuit composed
of D layers of beam splitters. Imperfection, which are modeled as photon-loss described by (c), occurs in preparation of
single photons, beam splitter circuits, and detectors. (b) Assuming a uniform photon-loss rate for different modes, photon-loss
channels and beam splitter commute, as shown in (d), so that all the photon-loss can be moved to the preparation step.

erators via a global M × M Haar-random unitary ma-
trix. Hence, our results apply to any architecture [in-
cluding two-dimensional (2D) architectures, e.g., used in
Ref. [38], and the ones with more complex connectiv-
ity] that aims to realize a global Haar-random unitary
matrix. In particular, our result is independent of the
choice of architecture because we are only interested in
how many photons go into a Haar-random passive cir-
cuit (i.e., N) and how many photons are detected by the
photon-number detectors (i.e., Nout). Lastly, we remark
that while we arbitrarily put N input photons to the first
N modes, our results are independent of this arbitrary
choice because of the Haar-random nature of the unitary
matrix U .

III. METHOD

A. MPS simulation

In this section, we introduce an MPS method to sim-
ulate boson sampling [18]. MPS is a useful tool to rep-
resent a quantum state of a many-body system. The
canonical form of an MPS representation [53] is written

as

|ψ〉 =
d−1∑

i1,··· ,iM=0

ci1···iM |i1, · · · , iM 〉

=
d−1∑

i1,··· ,iM=0

χ−1∑
α0,··· ,αM=0

Γ[1]i1
α0α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

× · · ·λ[M−1]
αM−1

Γ[M ]iM
αM−1αM |i1, · · · , iM 〉, (7)

where d is the dimension of a local Hilbert space and

χ is the bond dimension. Here, the vectors λ
[k]
αk repre-

sent the singular values in a spectral decomposition for

bipartitions, |ψ〉 =
∑χ−1
αk=0 λ

[k]
αk |ψ

[1,··· ,k]
αk 〉|ψ[(k+1),··· ,M ]

αk 〉.
Also, bond dimension can be understood as the maxi-
mum Schmidt rank over all bipartitions [18]. Thus, we
need a large number of bond dimension when a quantum
state is more entangled. We provide details of the stan-
dard MPS representation and how to update the MPS
after applying two-site gates in Appendix B 1.

While an arbitrary quantum state can be described by
an MPS, the time and memory cost for an MPS depends
on its bond dimension χ. More precisely, the memory
cost of an MPS is O[χ2dM +χ(M −1)] for tensors Γ and
λ. More importantly, when we apply a unitary operation
on a state, the standard update of an MPS requires ma-
trix multiplications and a singular value decomposition,
which takes computational time O(d4χ3) and O(d3χ3),
respectively. Thus, by restricting a bond dimension and
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approximating a given quantum state by choosing the
largest χ singular values for each partition, one can re-
duce the computational complexity (see Appendix B 1 for
details).

Since boson sampling circuits are composed of pas-
sive transformations, the total system has global U(1)
symmetry (photon number preserving), which can be ex-
ploited to improve the MPS simulation more efficiently
[19, 54, 55]. The basic idea is that when the system has
U(1) symmetry, MPS tensors can be decomposed into
blocks having different photon numbers. Then a matrix
multiplication and a singular value decomposition can be
performed for each block with different photon numbers.
Thus, the matrix size for a singular value decomposition
is reduced. We provide the details of how U(1) symmetry
reduces the computation time in Appendix B 2.

B. MPO simulation

An MPS representation can be generalized to describe
mixed states [46, 47]. Basically, we exploit a similar rep-
resentation to MPS by vectorization of a given density
matrix ρ̂ such that

ρ̂ =
d−1∑

i1,i′1,··· ,iM ,i′M=0

ρi1,i′1,··· ,iM ,i′M |i1, · · · , iM 〉〈i
′
1, · · · , i′M |

→ |ρ̂〉〉 =
d−1∑

i1 ,̄i′1,··· ,iM ,̄i′M=0

χ−1∑
α0,··· ,αM=0

Γ
[1]i1 ī

′
1

α0α1 λ
[1]
α1

Γ[2]i2 ī2
α1α2

λ[2]
α2

× · · ·λ[M−1]
αM−1

Γ
[M ]iM ī

′
M

αM−1αM |i1, ī′1, · · · , iM , ī′M 〉〉.
(8)

Here, we have vectorized |ij〉〈i′j | to |ij , i′j〉〉 for each site.
Note that after the vectorization, an effective local di-
mension increases from d to d2, which increases the time
and memory cost of simulation. We provide more details
of the standard MPO method in Appendix B 1. Simi-
larly to MPS simulation, the bond dimension χ deter-
mines the computation cost. The memory requirement
is O[χ2d2M + χ(M − 1)] for the tensors Γ and λ, where
the local dimension is changed from d to d2. The time
cost for a unitary update is O(d8χ3). Again, we can em-
ploy U(1) symmetry for MPO simulation to reduce the
computational cost [55] (see Appendix B 2 for details).

C. MPS / MPO approximability

As shown in the previous sections, dominant compu-
tational time is spent for a singular value decomposi-
tion, so that the computational time cost of MPS and
MPO simulation is determined by their bond dimension
χ. More precisely, the computational time cost is writ-
ten as T = O(MDd4χ3) for an MPS simulation and
T = O(MDd8χ3) for an MPO simulation. In this section,

we introduce a way to determine how the bond dimen-
sion scales for a given problem. Let us focus on an MPS
first. In general, for the exact description of an arbitrary
pure quantum state, χ = dbM/2c number of bond dimen-
sion is required, which necessitates an exponential time
cost. In order to avoid exponential computational cost
as a system size increases, we fix the bond dimension
χ and approximate a given quantum state by keeping
the largest χ singular values only after the update for
unitary operations and discarding the smallest singular
values. When a quantum state’s entanglement is limited,
the required bond dimension does not increase exponen-
tially [18]. More precisely, whether an exponential num-
ber of bond dimension χ is necessary to approximate a
given quantum state is determined by MPS and MPO
EE, which is introduced as follows.

First of all, an MPS can efficiently approximate a quan-
tum state if the entanglement of the quantum state is
not large enough [18, 46, 48]. Formally, if for a family
of quantum states of interest {|ψN 〉} there exist c, c′ > 0
and 0 ≤ α < 1 such that Sα(ρ̂kN ) ≤ c log2N + c′ for
all reduced density matrices ρ̂kN = Tr[1,··· ,k][|ψN 〉〈ψN |],
then it can be efficiently approximated by an MPS in the
sense that the trace distance between an ideal state and
an approximate states by an MPS can be made arbitrar-
ily small using χ = poly(N) [46, 48]. Here, Sα(ρ̂) is the
Rényi entropy of a density matrix ρ̂,

Sα(ρ̂) ≡ log2(Trρ̂α)

1− α
, 0 ≤ α <∞, (9)

and limα→1 Sα(ρ̂) ≡ S1(ρ̂) = −Tr[ρ̂ log2 ρ̂], is von Neu-
mann entropy. Note that trace distance is an upper-
bound of total variance distance,

1

2

∑
x

|P (x)− Pa(x)| ≤ 1

2
‖ρ̂− ρ̂a‖1, (10)

where ρ̂ and P (x) (ρ̂a and Pa(x)) represent an ideal (ap-
proximate) density matrix and probability distribution
of an outcome x after measurement, respectively. Thus,
when the Rényi entropy satisfies the above condition, an
MPS with χ = poly(χ) allows an efficient description of
the state and sampling (See Appendix B 3). On the con-
trary, if S1(ρ̂kN ) linearly increases or there exists α > 1
and κ > 0 such that Sα(ρ̂kN ) increases as Sα(ρ̂kN ) ∝ cNκ,
an MPS cannot efficiently describe the quantum state,
i.e., we need an exponential number of bond dimension
χ = O(exp(Nκ)) [48] to approximate the quantum states.

Therefore, the computational cost of an MPS simula-
tion can be quantified by using MPS EE. Based on the
relation between MPS EE and MPS approximablity, in
this work, we investigate the maximum MPS EE over all
possible bipartitions,

Smax
α (|ψ〉) ≡ max

1≤k≤M−1
Sα(ρ̂k = Tr[1,··· ,k][|ψ〉〈ψ|])

=
log2

[∑χ−1
β=0(λ

[k]
β )2α

]
1− α

, (11)
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and its behavior as a system size increases.
One can find the same relation for MPO approxima-

bility with a minor modification. The difference of MPO
approximation from MPS approximation is that singular
value vectors are not necessarily normalized even if the

bond dimension χ is large enough:
∑χ−1
αk=0(λ

[k]
αk)2 6= 1.

Thus, we first normalize singular value vectors when we
initialize an MPO for an input state. Since the rest of
the quantum circuits are unitary operations, the singu-
lar value vectors are normalized even after updating for
quantum circuits as long as a bond dimension is chosen
large enough (see Appendix B 1). Therefore, the same re-
lation between MPO EE and MPO approximability holds
for MPO simulation by defining the maximum MPO EE
as

Smax
α (|ρ̂〉〉) ≡ max

1≤k≤M−1
Sα(Tr[1,··· ,k][|ρ̂〉〉〈〈ρ̂|]). (12)

Note that for pure states, MPO EE is equal to twice MPS
EE because a vectorized pure state simply represents
two equivalent pure states, increasing the local dimen-
sion from d to d2. It is worth emphasizing that because
of vectorization, approximation accuracy is defined as the
vector 2-norm between vectorized ideal and approximate
states, which is equal to matrix 2-norm between ideal and
approximate density matrices rather than trace distance
[56]. Because of the relation between matrix 1-norm and
2-norm, K‖A‖2 ≥ ‖A‖1, where K is the dimension of the
matrix A, MPO EE may decrease even if a larger bond
dimension is required to bound matrix 1-norm between
an ideal quantum state and an approximated state of an
MPO. On the other hand, it is guaranteed that an MPO
is inefficient if Rényi (von Neumann) entropy of α > 1
algebraically (linearly) increases.

IV. RESULTS

A. Lossless Boson Sampling

First, we numerically simulate lossless boson sampling
with an input state |ψin〉 = |1〉N |0〉M−N using MPS.
Since we use N single photons, the dimension of local
Hilbert spaces is d = N + 1. We first initialize an MPS,
update the MPS according to a unitary circuit composed
of Haar-random beam splitters, and finally obtain the
output state before measurement and calculate the max-
imum MPS EE over bipartitions. We repeat the proce-
dure with different circuits to obtain the average of the
maximum MPS EE.

In order to minimize the depth of a Haar-random cir-
cuit, we have used the fact that any M -mode passive uni-
tary transformation can be decomposed into M(M − 1)
number of beam splitters [57, 58] and that a Haar-random
circuit can be obtained by sampling the transmissivities
of the beam splitters in a structured manner [50] with a
depth D ≈M (See Appendix B for details).

Using an MPS simulation procedure as introduced in
Sec. III A, we first simulate the boson sampling with a
fixed number of modes M = 32 and different input pho-
ton numbers from N = 1 to N = 11. We take the average
of the maximum MPS EE over 200 different circuit con-
figurations for 1 ≤ N ≤ 9 and 10 different circuits for
N = 10, 11. One can show that the optimal bond dimen-
sion needed to implement an MPS simulation without
truncation error is given by χ = 2N and that typical
random circuits make MPS EE close to N for large M
(See Appendix C). Furthermore, when N and M are suf-
ficiently large, we show that MPS EE increases linearly
in N in Appendix C. The underlying principle is that for
a given bipartition [1 · · · l] : [(l+ 1) · · ·M ], since each sin-
gle photon occupies either partition after beam splitter
arrays, we need the bond dimension χ = 2N to describe
an output state without any truncation error.

Figure 2 (a) indeed shows that the maximum MPS EE
with α = 1 linearly increases as the number of photons in
the system. The linearly increasing maximum MPS EE
implies that an exponential number of bond dimension
is necessary to simulate the boson sampling within a de-
sired accuracy as the number of single photons increases.
Notice that in this simulation, the number of input pho-
tons N is not much smaller than the number of modes
M , whereas in the original proposal of boson sampling
[5], the number of modes is assumed to be much larger
than the number of photons, namely M ≥ N6, to prove
the hardness of boson sampling. Nevertheless, we obtain
a constant difference of maximum MPS EE between a
successive number of input photons. Therefore, it sug-
gests that the MPS simulation is inefficient even if the
number of modes is not large enough compared to the
number of input photons. We note that circuit depth in
Fig. 2 is defined slightly differently than a standard way
(See Appendix A).

We compare the MPS simulation of the standard bo-
son sampling [5] with the one with a different type of
an input state |ψin〉 = |N〉|0〉M−1 (Note that more gen-
eral input states are analyzed in Ref. [52] and Appendix
C.). It can be easily shown that the computation of the
probability of an outcome in this case is not difficult be-
cause the corresponding permanent is constructed by re-
peating N times of the same column [5]. In the simu-
lation, we take the average of the maximum MPS EE
over 200 different circuit configurations for 1 ≤ N ≤ 11.
Again, we have shown that the bond dimension needed
to implement MPS simulation without truncation error
is χ = N + 1, which already implies that an efficient
simulation is possible (See Appendix C). In this case, in
contrast to the previous case, the photons do not behave
independently, so that an exponential number of bond di-
mension is not required. Indeed, we show that MPS EE
increases logarithmically as the number of photons grows
in the same mode in Appendix C. Figure 2 (b) shows a
different behavior of the maximum MPS EE from the
previous standard boson sampling. As expected, in con-
trast to the previous case, the maximum MPS EE does
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(a) (b)
M = 32 M = 32

FIG. 2. Maximum MPS EE (α = 1) for different number of photons from N = 1 to 11 from the bottom to the top with
different circuit depths. The number of modes is M = 32. (a) An input state is N single photons in different modes. (b) An
input state is N photons in the first mode. Note that the bipartition that leads to the maximum MPS EE at the last step is
always [1 · · · 16] : [17 · · · 32] and that the circuit depth is defined as in Appendix A.

not increase linearly and the gap of the maximum MPS
EE between a successive number of photons decreases as
the input photon number increases.

Finally, we analyze the maximum MPS EE for a fixed
number of input photons and different number of modes,
which is shown in Fig. 3. We average over 50 differ-
ent circuit configurations. Interestingly, as we increase
the number of modes in the circuit for a fixed input
photon number N , the maximum MPS EE converges to
N . Thus, if the number of modes is large enough, in-
creasing the number of modes no longer makes the MPS
simulation hard, which is consistent with the Clifford-
Clifford algorithm where the time cost for simulation is
T = O[N2N + poly(M,N)]; the complexity in terms of
the number of modes M is polynomial [45]. In addition,
recently it was shown that when the number of modes
is proportional to the number of photons, M ∝ N , the
classical simulation can be faster than when the num-
ber of modes is much larger than the number of pho-
tons [49]. Especially when M = N , the computational
cost of boson sampling is T = O(NρN + N3) with
ρ = 27/16 ≈ 1.69. Our MPS simulation also shows a sim-
ilar tendency that the difference of the maximum MPS

Number of Modes

M
a
x
 M

P
S

 E
E

N = 2

N = 3

N = 4

N = 5

N = 6

N = 1

FIG. 3. Maximum MPS EE (α = 1) for different number of
modes M and photons N . We averaged 50 different circuits
to obtain each point. Note that the bipartition that leads to
the maximum MPS EE is always the center.

EE of two successive input photon numbers gets smaller
when the number of modes is small.

B. Lossy Boson Sampling

In this section, we analyze the effect of photon-loss in
boson sampling circuits by investigating maximum MPO
EE. As previously mentioned in Sec. II, we introduce
photon-loss by using imperfect single-photon sources σ̂:

ρ̂ = σ̂N ⊗ |0〉〈0|M−N . (13)

We denote Nout = µN as a total mean photon number
after loss channel, where the transmission rate µ = µ(N)
is a function of the number of input photons N . In other
words, we study the relation between hardness of the
simulation and a loss rate depending on the input pho-
ton number. Before we present our main results, we show
why classically simulating lossy boson sampling is non-
trivial.

1. Complexity of Lossy Boson Sampling

First, we note that exact simulation of lossy boson
sampling is hard unless the PH collapses: suppose that
we have a classical simulator that can efficiently and ex-
actly simulate lossy boson sampling. Then, with this
simulator, one can exactly simulate a lossless boson sam-
pling as well by post-selecting the case where no photon
is lost. However, since an exact boson sampling with a
post-selection allows a universal quantum computation,
the existence of an efficient and exact lossy boson sam-
pler implies that PH ⊆ PPP = Ppost-BQP = Ppost-BPP

[59], which contradicts to the fact that Ppost-BPP is in
the PH [60] assuming that the PH is infinite. Therefore,
we focus on an approximate simulation of lossy boson
sampling.
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We emphasize that using a classical algorithm ideal
boson sampling in a trivial way does not significantly re-
duce the complexity and that a potentially efficient classi-
cal lossy boson sampler should systematically employ the
fact that loss makes the entanglement grow slower. We
now explicitly present an algorithm that employs a clas-
sical boson sampler to simulate a lossy boson sampling
in a naive way. Assume that we have a classical boson
sampler that takes an exponential computational time
cn(c > 1) to simulate the ideal boson sampling with n
single photons (e.g., the Clifford-Clifford algorithm [45]).
Since a single-photon state after a loss channel is a mix-
ture of vacuum |0〉 and a single-photon state |1〉 with a
probability 1 − µ and µ, respectively, one may sample a
pure input photon configuration from a binomial distri-
bution for the first N input modes with a transmission
rate µ and execute a classical boson sampler using the
sampled input state. If the procedure is iterated for a
number of samples, the average time cost can be given
by

T =

N∑
n=0

(
N

n

)
µn(1− µ)N−ncn = [1 + µ(c− 1)]

N
. (14)

Especially when the loss-scaling follows a power-law such
that Nout = βNγ (0 < γ < 1), the time cost in an
asymptotic regime is simplified as

T =

[(
1 + β

c− 1

N1−γ

)N1−γ]Nγ
→ e(c−1)Nout . (15)

Thus, such a simple procedure using binomial sampling
and a classical boson sampler requires an exponential
time cost because it pursues exact simulation of a lossy
boson sampling.

On the other hand, one may choose only dominant bi-
nomial coefficients in binomial sampling for approximate
sampling. Since the dominant binomial coefficients are
around Nout, the computational cost to run the classical
boson sampler is given by O(cNout) = O(cN

γ

), which is
still inefficient for 0 < γ < 1. Even though it decreases
the complexity, such an approach does not fully exploit
the fact that the system is lossy because it still samples
a pure state to run an ideal classical boson sampler. By
contrast, a potentially more efficient classical algorithm
for lossy boson sampling should properly employ the fact
that the output state from which we sample is a mixture
of pure quantum states. The mixedness makes the out-
put state less entangled than an output state in lossless
boson sampling, which is the key to reduce the complex-
ity of lossy boson sampling. For this reason, an MPO
simulation that we propose has a major advantage for
lossy boson sampling since it systematically exploits the
fact that loss in the system makes the entanglement grow
slower.

Indeed, there have been many proposals of an efficient
approximate classical algorithm for lossy boson sampling
using the mixedness of the output state. Particularly, an

efficient approximate classical simulation algorithm for a
scaling Nout ∝

√
N has been proposed when a loss rate

is large or in an asymptotic regime in Refs. [41, 42].
The proposed simulation is based on finding the closest
thermal state [42] or the closest particle-separable state
[41], which can be used for an efficient simulation. How-
ever, because the simulations rely on a particular state
determined by given parameters, providing more time
for the simulation does not improve its accuracy. Unlike
the previous studies, one can efficiently control our MPO
simulation’s accuracy by adjusting the bond dimension
in the simulation. Also, our MPO simulation focuses on
the behavior of classical simulation of lossy boson sam-
pling a non-asymptotic regime where a loss rate is not
very large so that thermal states fail to approximate the
output state properly.

We remark that another way to approximately simu-
late lossy boson sampling is to discard the probability of
outcomes corresponding to a large degree of multiphoton
interference, which is highly suppressed when the system
is lossy [43]. Thus, choosing a threshold of the degree of
multiphoton interference allows one to control an approx-
imation error. On the other hand, our MPO simulation
controls a simulation error by keeping dominant singular
values and discarding small singular values.

2. MPO EE for various loss scalings

We first simulate the case where a loss-rate is constant
in the number of input photons, i.e., Nout = µN(γ = 1)
with a constant 0 < µ < 1. Figure 4 (d) shows that
in this case, an maximum MPO EE (α = 1) linearly
increases as N . It indicates that boson sampling for a
constant loss rate cannot be efficiently simulated using
MPO because a bond dimension for an accurate approx-
imation is required to increase exponentially as an input
photon number increases. To the best of our knowledge,
a constant loss case has not been investigated yet, and
our numerical result provides evidence that hardness of
boson sampling might persist in this regime. Here, the
average of the maximum MPO EE is taken over 100 dif-
ferent circuits for 1 ≤ N ≤ 5 and 10 different circuits
for N = 6. The maximum bond dimension we used is
χ = 4000. Note that even though we fix the number of
modes to be M = 32 throughout the simulation, we have
checked for MPO simulation that increasing the number
of modes further does not change the MPO EE much,
similarly to Fig. 3.

A constant loss-scaling is particularly important from
an experimental perspective although it is a rather opti-
mistic scaling. First, when one increases the number of
single photons with fixing number of modes, the loss rate
for the whole optical circuits can be assumed to be con-
stant because we assume a uniform loss on each mode.
However, experimentally various factors will degrade the
performance of boson sampling such as diminishing of
distinguishability of single photons and a coincidence de-
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FI G. 4. M a xi m u m M P O E E o b t ai n e d b y si m ul a ti o n f o r M = 3 2 a n d di ff e r e nt i n p u t p h o t o n s n u m b e r s N = 1 ∼ 6 a n d di ff e r e nt
l o s s s c al e s of ( a ) N o u t = β N 1 / 4 , ( b ) N o u t = β

√
N , ( c ) N o u t = β N 3 / 4 , a n d ( d ) N o u t = β N . E m p t y ci r cl e s r e p r e s e nt t h e

m a xi m u m M P O E E f o r l o s sl e s s c a s e. ( d ) N o u t = β N . M a xi m u m M P O E E di r e c tl y c o m p u t e d f o r M = 1 2 8 a n d di ff e r e nt i n p u t

p h o t o n s n u m b e r s N = 1 ∼ 3 2 a n d di ff e r e nt l o s s s c al e s of ( e ) N o u t = β N 1 / 4 , (f ) N o u t = β
√

N , ( g ) N o u t = β N 1 / 4 , a n d ( h )
N o u t = β N . E m p t y ci r cl e s r e p r e s e nt t h e m a xi m u m M P O E E f o r l o s sl e s s c a s e. N o t e t h a t t h e di ff e r e n c e of M P O E E s b e t w e e n
t h e u p p e r p a n el a n d t h e l o w e r p a n el f o r t h e s a m e p a r a m e t e r s i s p r e s e nt b e c a u s e w e si m ul a t e d wi t h U ( 1 ) s y m m e t r y t o o b t ai n
M P O E E f o r ( a )- ( d ) a n d c o m p u t e d M P O E E wi t h o u t t h e s y m m e t r y f o r ( e )- ( h ).

t e cti o n r at e. I n a d diti o n, w h e n t h e n u m b er of m o d e s i n-
c r e a s e s a s t h e n u m b er of p h ot o n s a s t h e ori gi n al pr o p o s al
[ 5] a n d t h e d e pt h of t h e cir c uit t o i m pl e m e nt a H a ar-
r a n d o m u nit ar y m atri x a c c or di n gl y, it b e c o m e s m or e dif-
fi c ult t o m ai nt ai n t h e s a m e l o s s r at e. N e v ert h el e s s, o ur
n u m eri c al r e s ult s i n di c at e t h at if o n e c a n m a ni p ul at e t h e
l o s s r at e f or t h e e ntir e cir c uit t o b e c o n st a nt wit h i n-
c r e a si n g t h e n u m b er of p h ot o n s, cl a s si c al si m ul ati o n s f or
t h e l o s s- s c ali n g mi g ht b e i n e ffi ci e nt. We e m p h a si z e t h at
m or e ri g or o u s c o m pl e xit y-t h e or eti c al pr o of i s r e q uir e d.

Si n c e t h e a b o v e s c ali n g i s s o m e w h at o pti mi sti c i n pr a c-
ti c e, w e a n al y z e a s c ali n g w h er e a l o s s r at e i n cr e a s e s a s
t h e n u m b e r of si n gl e p h ot o n s ( γ < 1). If t h e d e pt h of a
cir c uit i n cr e a s e s a s t h e n u m b er of i n p ut p h ot o n s f oll o w-
i n g t h e ori gi n al pr o p o s al [ 5], t h e l o s s r at e of t h e e ntir e
cir c uit will i n cr e a s e a c c or di n gl y. A n i nt er e sti n g s c ali n g i s
N o u t = µ N = β

√
N , w h er e a n e ffi ci e nt si m ul ati o n wit h

a c o n st a nt err or h a s b e e n pr o p o s e d [ 4 1, 4 2]. R e m ar k a bl y
i n t hi s s c ali n g, o n e c a n o b s er v e t h at f or a s m all c o e ffi-
ci e nt β , t h e m a xi m u m M P O E E (α = 1) s at ur at e s or
e v e n d e cr e a s e s w h e n N o u t i n cr e a s e s, w hi c h i s s h o w n i n
Fi g. 4 ( b). O n e c a n o b s er v e t h at t h e b e h a vi or i s cl e arl y
di ff er e nt fr o m l o s sl e s s c a s e s or γ = 1 c a s e s. T h e si m u-
l ati o n r e s ult s u g g e st s t h at t h e c o m p ut ati o n al c o st of a n
M P O si m ul ati o n f or l o s s y b o s o n s a m pli n g d o e s n ot i n-
c r e a s e a s f a st a s l o s sl e s s b o s o n s a m pli n g. T h e t e n d e n c y
i s m or e a p p ar e nt w h e n γ < 1 / 2. F or e x a m pl e, w h e n
γ = 1 / 4 a s s h o w n i n Fi g. 4 ( a), t h e m a xi m u m M P O E E
d e cr e a s e s f or a br o a d r a n g e of β . O n t h e ot h er h a n d,
w h e n γ = 3 / 4, alt h o u g h it i s sl o w er t h a n li n e ar, t h e
M P O E E i n cr e a s e s f a st e n o u g h t o b e h ar d t o si m ul at e
u si n g p ol y n o mi al n u m b er of a b o n d di m e n si o n a s s h o w n

i n Fi g. 4 ( c). We e m p h a si z e a g ai n t h at e v e n if M P O
E E d e cr e a s e s, it d o e s n ot i m pl y t h at t h e c o m p ut ati o n al
c o st, or t h e b o n d di m e n si o n, t o a c hi e v e a d e sir e d a c c u-
r a c y f or t ot al v ari a n c e di st a n c e r e d u c e s b e c a u s e M P O E E
i s r el e v a nt t o t h e v e ct or 2- n or m of i d e al a n d a p pr o xi m at e
v e ct ori z e d st at e s, w hil e t ot al v ari a n c e di st a n c e m a y h a v e
a n e xtr a m ulti pli c ati v e pr ef a ct or t o t h e v e ct or 2- n or m
i n cr e a si n g wit h t h e Hil b ert s p a c e’ s di m e n si o n [ 5 6]. N e v-
ert h el e s s, t h e b e h a vi or of M P O E E f or di ff er e nt l o s s s c al-
i n g s s h o w s t h at l o s s y b o s o n s a m pli n g l e a d s t o a di ff er e nt
t e n d e n c y of M P O E E fr o m l o s sl e s s b o s o n s a m pli n g.

T o a n al y z e M P O E E s of l ar g e s y st e m si z e cir c uit s, w e
u s e a di ff er e nt a p pr o a c h. I n st e a d of si m ul ati n g t h e cir-
c uit u si n g M P O, w e dir e ctl y c al c ul at e M P O E E. N ot e
t h at i n t hi s c a s e, U( 1) s y m m etr y i s n ot a p pli e d; t h u s,
t h e v al u e s of M P O E E ar e di ff er e nt fr o m t h o s e fr o m si m-
ul ati o n s. Fi g ur e 4 ( e)-( h) pr e s e nt M P O E E s f or di ff er-
e nt l o s s- s c ali n g s a n d p h ot o n s n u m b er s f or a bi p artiti o n
[ 1 · · · M / 2 : ( M / 2 + 1) · · · M ], w hi c h gi v e s t h e m a xi m u m
o v er ot h er bi p artiti o n s. M P O E E s ar e o bt ai n e d b y a v er-
a gi n g o v er 1 0 0 di ff er e nt cir c uit c o n fi g ur ati o n s. S p e cif-
i c all y, w e fir st s a m pl e a H a ar-r a n d o m u nit ar y m atri x
a n d c o m p ut e M P O E E, a s s u mi n g a c olli si o n-fr e e c a s e
( S e e A p p e n di x C f or d et ail s). N oti c e t h at c olli si o n-fr e e
c a s e s gi v e a l ar g er M P O E E t h a n w h e n t h er e ar e c ol-
li si o n e v e nt s i n g e n er al. A s e x p e ct e d, w h e n γ < 1 / 2,
t h e M P O E E d e cr e a s e s a s t h e i n p ut p h ot o n n u m b er i n-
cr e a s e s, w hi c h i n di c at e s a p o s si bilit y of a n e ffi ci e nt si m-
ul ati o n. I n c o ntr a st, w h e n γ ≥ 1 / 2, t h e M P O E E i n-
cr e a s e s a s t h e i n p ut p h ot o n n u m b er i n cr e a s e s, w hil e t h e
i n cr e a s e i s sl o w f or γ = 1 / 2. T h u s, t h e M P O E E i n-
cr e a s e s e xt e n si v el y f or γ > 1 / 2 s o t h at t h e e nt a n gl e m e nt
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is large enough to simulate efficiently using MPO meth-
ods. Moreover, in a large system size of N and M and
for collision-free cases, an asymptotic expression of MPO
EEs can be obtained, which is given by (See Appendix
C),

SM/2
α (|ρ̂〉〉) = O(N1−2(1−γ)α) when α 6= 1, (16)

S
M/2
1 (|ρ̂〉〉) = O(N2γ−1 log2N). (17)

It shows that when γ < 1/2, MPO EE with α → 1 con-
verges to zero in an asymptotic limit, while there exists α
such that MPO EE decreases. On the other hand, when
γ > 1/2, one can find α > 1 such that MPO EE increases
algebraically and conclude that an MPO simulation re-
quires an exponential computational time [48].

3. Relation between simulation accuracy and running time

We now show that our simulation can effectively im-
prove its accuracy by increasing the bond dimension.
Figure 5 presents the distributions of singular values for
the case of M = 32, N = 5, µ = 0.5, χ = 500, and the
bipartition [1 · · · 16] : [17 · · · 32] as an example. It shows
that the tail of the singular value distribution decreases
superpolynomially for the two extreme instances of the
largest and smallest MPO EE. Thus, the bond dimen-
sion truncation’s impact on the simulation is negligible
as long as the bond dimension is chosen such that log2 χ
is much larger than the MPO EE. More explicitly, the su-
perpolynomially decaying tail indicates that the required
bond dimension χ and the simulation time cost would
increase slower than poly(1/ε) with ε being the sum of
discarded singular values. We have checked for different
parameters and observed the same behavior. We note

Bond index

M
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O
 s
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g
u
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r 
v
a
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es

Instance with the largest MPO EE
Instance with the smallest MPO EE

FIG. 5. Singular value distributions in the descending order
for M = 32 modes, N = 5 input photons, and bipartition
[1, · · · , 16] : [17, · · · , 32] with loss rate µ = 0.5. The singular
value vectors are chosen by the circuits that render the largest
and smallest MPO EE among 100 different circuits. Since the
singular values decay superpolynomially, the required bond
dimension of poly(1/ε) is enough to achieve an error ε.

that a previously proposed algorithm [42], approximat-
ing a lossy single-photon state by a thermal state, has
an upper bound of total variance distance to be β2 for
Nout = β

√
N with an arbitrary N , while an MPO simula-

tion’s accuracy can be easily controlled. Especially when
β ≥ 1, the former algorithm’s total variance distance be-
comes larger than 1, which indicates that its simulation
error might not be bounded properly and shows an MPO
simulation’s advantage over the algorithm.

More explicitly, we compare how an MPO simulation’s
accuracy changes as a bond dimension χ increase for dif-
ferent loss-scalings in Fig. 6. We have used M = 32
modes with two different loss-scales Nout = 0.3N in Fig.
6 (a) and Nout = 0.6

√
N in Fig. 6 (b). We have al-

ready checked in Fig. 4 that MPO EE linearly increases
in the former case, whereas it decreases in the latter case
as N increases. In this figure, we measure the error of
the simulation as 1 − Trρ̂ instead of total variance dis-
tance because total variance distance requires very large
computational time for large photon numbers. We have
checked that 1−Trρ̂ and total variance distance present a
very similar behavior in a small size. Therefore, we quan-
tify an error here by the amount of lost probabilities from
truncation.

First of all, Figures 6 (a)-(c) show that for a given
input photon number N , a simulation error can be ef-
fectively reduced by increasing a bond dimension. More-
over, one can observe by comparing between Figs. (a)-(c)
that when Nout grows slowly as N , the increment of the
required bond dimension becomes smaller, the behavior
of which is elaborated in Figs. 6 (d)-(f). Also, we present
the running time of simulating lossy boson sampling in
Figs 6 (g)-(i). Figure 6 (g) clearly shows that when the
simulation accuracy is smaller, the running time can be
significantly reduced. Thus, one can more efficiently sim-
ulate a lossy boson sampling when Nout increases slowly
and when a target accuracy is smaller.

In Figs. 6 (h) and (i), the difference of running time for
different errors is not significant because the dimension
of a matrix for which we perform matrix multiplication
and singular value decomposition is small due to U(1)
symmetry, so that most of time is spent to employ U(1)
symmetry. We note that the computational overhead to
employ U(1) symmetry is poly(N), which is shown in
Appendix B 2. On the other hand, in Fig. 6 (g), the
difference becomes substantial because bond dimension
for each charge gets larger, so that matrix multiplica-
tion and singular value decomposition are dominant than
the overhead for U(1) symmetry. We note that even if
MPO EE decreases for the cases of Nout = 0.6N1/4 and
Nout = 0.6

√
N as shown in Figs. 4 (a) and (b), a bond

dimension and running time to attain a target accuracy
can increase, which stems from the fact that MPO EE
quantifies a distance between an MPO and an exact state
in a vectorized form. Here, we have used 28 cores of Intel
E5-2680v4 2.4GHz to attain the running time in Figs. 6
(g)-(i). We note that the size of a matrix that we perform
singular value decomposition without using U(1) symme-
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FIG. 6. MPO simulation errors 1 − Trρ̂ with different bond dimensions for (a) Nout = 0.3N , (b) Nout = 0.6
√
N , and (c)

Nout = 0.6N1/4. The number of modes is M = 32 and the number of input photons is N = 2, 3, 4, 5, 6, 7 (from left to right).

Bond dimension to achieve errors 1 − Trρ̂ = 0.01, 0.02, 0.05 for (d) Nout = 0.3N , (e) Nout = 0.6
√
N , (f) Nout = 0.6N1/4.

Running time to attain errors 1 − Trρ̂ = 0.01, 0.02, 0.05 for (g) Nout = 0.3N , (h) Nout = 0.6
√
N , and (i) Nout = 0.6N1/4. The

curves are guides for dots. The running time for N = 10 in (g) is 35000 s.

try is d2χ× d2χ with d = N + 1, which becomes almost
intractable quickly as χ and N increase.

Lastly, we briefly compare our analysis of boson sam-
pling with a related previous work on 1D noisy RCS [22].
Both studies build on an observation that noise tends to
reduce non-trivial correlation in quantum systems and
use MPOs to more efficiently simulate such noisy sys-
tems than the brute force methods. However, while the
previous work on RCS is applicable only to 1D architec-
tures, our boson sampling results are not limited to 1D
architectures. In our work, the use of 1D architecture
is only for the simulation purpose, i.e., for generating
a Haar-random boson sampling interferometer (see Ap-
pendix A). Since all boson sampling experiments are set
up to realize a Haar-random passive interferometer, our
results apply to all such setups regardless of the geometric
connectivity of the system. We also remark that unlike
the previous work where each gate was assumed to fail
with a non-zero gate error rate, we only consider how
many photons remain in the system (i.e., Nout) at the
end of the entire process, compared to the input photon
number N . Note that input photon loss and detection

loss rates (analogous to state preparation and measure-
ment error rates) are expected to not depend on the sys-
tem size. Photon loss within the interferometer (analo-
gous to gate error rates) is in principle also taken into
account in our model as they will reduce the output pho-
ton number Nout. Unlike input and detection loss rates,
however, such loss rate will be enhanced as the system
size increases since then larger interferometer is needed
to reach Haar randomness and thus more photons will be
lost along the way.

V. DISCUSSION AND CONCLUSION

As experimental scales of boson sampling have been in-
creasing, characterizing the computational cost of a clas-
sical simulation of lossy boson sampling becomes more
crucial. Typically, quantum optics experiments suffer
from various imperfections, and critical ones in boson
sampling are impurity of single-photon sources, photon-
loss in the circuit, and inefficiency of photo-detectors.
Due to the aforementioned imperfections, a state-of-the-
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art boson sampling experiment [38] has used N = 20
input photons but the largest number of photons they
detected is only 14, and the sampling rate was not large
enough. The most recent Gaussian boson sampling ex-
periment also suffers from about 70% of photon loss
[39]. On the other hand, except for a recently proposed
classical algorithm [43] employing a fact that photon-
loss reduces quantum interference, many classical algo-
rithms proposed for lossy boson sampling are not de-
signed to simulate an intermediate-sized lossy boson sam-
pling where photon loss is not extremely large [41, 42].
To overcome this limitation, we have employed MPOs,
which enable us to simulate lossy boson sampling with a
moderate amount of photon-loss. An important advan-
tage of the MPO algorithm compared to other classical
algorithms is that it can improve its accuracy efficiently.
We have numerically shown that a computational time
cost as well as a required bond dimension increases at
most polynomially in the simulation error. We note that,
in principle, our MPO scheme can also be used to sim-
ulate Gaussian boson sampling by truncating the total
photon number properly, which determines the dimen-
sion of local Hilbert spaces and the total charge of an
MPO representation. In practice, since MPO for Gaus-
sian boson sampling requires a larger local Hilbert space
dimension than single-photon boson sampling, its run-
ning time would be larger than the latter.

We have studied the effect of photon-loss on MPO’s
computational cost of simulating lossy boson sampling as
input photon number grows for various loss-scalings us-
ing MPO EE. We first show that if a loss rate can be fixed
as the number of photons in boson sampling experiments
increases, the computational cost of an MPO simulation
exponentially increases. Since our numerical simulation
results rely on a particular simulation method, it does
not rule out existence of a more efficient classical simula-
tor that can possibly simulate a constant loss-scaling of
boson sampling. Nevertheless, our results will motivate
further rigorous studies for the effect of loss on boson
sampling. We have also demonstrated that an exponen-
tial cost is required for MPO simulation for loss-scalings
Nout ∝ Nγ with γ > 1/2 in an asymptotic limit. On the
other hand, when loss is more severe such that γ ≤ 1/2,
the complexity of MPO simulation might not increase
exponentially because MPO EE increases at most loga-
rithmically. Although the same scaling has been studied
in Refs. [41, 42], an important distinctive feature is that
our simulation can control the simulation accuracy by
increasing its running time. Therefore, our MPO algo-
rithm can be useful to simulate an intermediate scale of
lossy boson sampling with achieving a high accuracy.

We emphasize that a sampling task does not require
the full description of an output density matrix as an
MPO algorithm does. Therefore, our MPO algorithm in-
evitably has a computational overhead than direct sam-
pling algorithms, while it provides more information.
The crucial difference between our MPO algorithm and
direct sampling algorithms is that the former takes a lot

of time to get the description but sampling from it is
very efficient, whereas the latter takes much time cost
to obtain each sample. Also, the full description allows
computing output probabilities efficiently, whereas direct
sampling algorithms generally do not.

On the other hand, the proof of hardness of boson
sampling assumes the number of modes M of a circuit
to be much larger than the number of single photons N
such that M ≥ N6 [5]. Although the assumption is ex-
pected to be compromised to a less demanding condition
M ≥ N2 [5], it is still far beyond a current technol-
ogy. For example, the largest scale of boson sampling
experiment so far employed N = 20 input photons with
M = 60 modes [38] and that of Gaussian boson sampling
used N = 50 and M = 100 [39], where N is understood
as a number of squeezed states. Clearly, the number of
modes used in the experiment is far smaller than the pro-
posed scale, M ≥ N2. In fact, the fastest known classical
algorithm shows that the computational cost to simu-
late boson sampling can be significantly reduced when
the number of modes is linear in the number of photons
N , although an exponential time cost is still required
[45, 49]. Our numerical simulation using an MPS shows
a similar tendency to the fastest classical algorithm in
the sense that MPS EE increases linearly as an input
photon number grows while the increment gets smaller
when the number of modes is small. Considering that
the requirement of large number of modes is another crit-
ical obstacle to hinder one from demonstrating quantum
supremacy using boson sampling, complexity-theoretical
studies to reduce the condition will be an important task.
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Appendix A: Haar-random Unitary circuit

In this Appendix, we present a procedure to implement
a Haar-random unitary circuit represented by U for bo-
son sampling. More details of the procedure can be found
in Ref. [50]. Here, the unitary matrix U characterizes the
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transformation of the mode operators

âj →
M∑
k=1

Ujkâk. (A1)

We assume the number of modes M to be even for sim-
plicity. First of all, any M ×M unitary matrix U can be
written as a product of blocks Rn such that [58]

U =

M/2∏
j=1

R2j−1

M/2−1∏
i=0

RM−2i, (A2)

where each block Rn consists of beam splitters

Rn =
∏
k∈Sn

Bn,k. (A3)

Here, Sn = (s1, · · · , sn−1) is a sequence of n − 1 in-
dices with odd numbers arranged in descending order and

followed by even numbers arranged in ascending order.
For example, for n = 4, S4 = (3, 1, 2), and for n = 5,
S5 = (3, 1, 2, 4), as shown in Fig. 7. The beam splitter
of a reflectivity r and a relative phase shift φ transforms
two input modes as(

â†

b̂†

)
=

(√
1− r −eiφ

√
r

e−iφ
√
r
√

1− r

)(
â†

b̂†

)
, (A4)

Note that the circuit depth in Fig. 2 is defined as in
Fig. 7.

Most importantly, in order to implement Haar-random
unitary circuits, the reflectivity rn,i of the beam splitter
Bn,si is sampled from a distribution,

Prn,i(r) = (n− si)(1− r)n−si−1. (A5)

Each relative phase shift φ is independently sampled from
a uniform distribution on [0, 2π). Using this procedure,
we have implemented a Haar-random unitary circuit for
MPS and MPO simulations.

Appendix B: Matrix Product States (MPS) and Matrix Product Operators (MPO)

1. Standard MPS and MPO method

In this Appendix, we provide the basic concept of MPS and MPO [18]. In principle, any pure quantum states can
be represented by an MPS exactly by choosing an appropriate bond dimension 0 < χ ≤ dbM/2c such that

|ψ〉 =
d−1∑

i1,··· ,iM=0

ci1,··· ,iM |i1, · · · , iM 〉 =
d−1∑

i1,··· ,iM=0

χ−1∑
α0,··· ,αM=0

A[1]i1
α0α1

A[2]i2
α1α2

· · ·A[M ]iM
αM−1αM |i1, · · · , iM 〉, (B1)

where d is the dimension of a local Hilbert space. The latter representation is not unique and has a gauge freedom.
Thus, we canonicalize the MPS to fix the gauge as [53]

|ψ〉 =

d−1∑
i1,··· ,iM=0

χ−1∑
α0,··· ,αM=0

Γ[1]i1
α0α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2
· · ·λ[M−1]

αM−1
Γ[M ]iM
αM−1αM |i1, · · · , iM 〉. (B2)

Here, the vectors λ
[k]
αk represent the singular values in a spectral decomposition for bipartitions, |ψ〉 =∑χ−1

αk=0 λ
[k]
αk |ψαk[1,··· ,k]〉|ψ

αk
[k+1,··· ,M ]〉 with the orthogonality condition on each partition,

〈ψαk[1,··· ,k]|ψ
α′k
[1,··· ,k]〉 = δαk,α′k , 〈ψ

αk
[k+1,··· ,M ]|ψ

α′k
[k+1,··· ,M ]〉 = δαk,α′k . (B3)

The singular value vectors λ
[k]
αk enable one to easily calculate the entanglement entropy (EE) between two partitions.

Also, one of the advantages of the MPS method is that the transformation of a quantum state by a two-site unitary
operation acting on k and k+ 1 sites can be efficiently described by updating only the following three relevant tensors
with a singular value decomposition,

Γ[k]ik
αk−1αk

, λ[k]
αk
,Γ[k+1]ik+1

αkαk+1
. (B4)

Specifically, we first write the quantum state in the MPS form as

|ψ〉 =
d−1∑

ik,ik+1=0

χ−1∑
αk−1,αk,αk+1=0

λ[k−1]
αk−1

Γ[k]ik
αk−1αk

λ[k]
αk

Γ[k+1]ik+1
αkαk+1

λ[k+1]
αk+1
|ψαk−1

[1,··· ,k−1]〉|ik〉|ik+1〉|ψ
αk+2

[k+2,··· ,M ]〉. (B5)
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FIG. 7. Boson sampling circuit with M = 6. The dashed lines separate different blocks Rn, which consists of beam splitters
Bn,k (See the main text for details.)

After the unitary operation acting on k and k + 1 sites, the state evolves to

Ûk,k+1|ψ〉 =
d−1∑

ik,ik+1=0

χ−1∑
αk−1,αk,αk+1=0

λ[k−1]
αk−1

Γ[k]ik
αk−1αk

λ[k]
αk

Γ[k+1]ik+1
αkαk+1

λ[k+1]
αk+1
|ψαk−1

[1,··· ,k−1]〉Ûk,k+1(|ik〉|ik+1〉)|ψ
αk+2

[k+2,··· ,M ]〉 (B6)

=
d−1∑

jk,jk+1,ik,ik+1=0

χ−1∑
αk−1,αk,αk+1=0

λ[k−1]
αk−1

Γ[k]ik
αk−1αk

λ[k]
αk

Γ[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

U
ikik+1

jkjk+1
|ψαk−1

[1,··· ,k−1]〉|jk〉|jk+1〉|ψ
αk+2

[k+2,··· ,M ]〉

(B7)

=
d−1∑

jk,jk+1=0

χ−1∑
αk−1,αk+1=0

Θjk,jk+1
αk−1,αk+1

|ψαk−1

[1,··· ,k−1]〉|jk〉|jk+1〉|ψ
αk+2

[k+2,··· ,M ]〉, (B8)

where we defined

Θjkjk+1
αk−1αk+1

=
d−1∑

ik,ik+1=0

χ−1∑
αk=0

U
jkjk+1

ikik+1
λ[k−1]
αk−1

Γ[k]ik
αk−1αk

λ[k]
αk

Γ[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

, U
jkjk+1

ikik+1
= 〈jk, jk+1|Ûk,k+1|ik, ik+1〉. (B9)

Note that the complexity of obtaining Θ is O(d4χ3). We now perform singular value decomposition of Θ to recover
the MPS representation of the evolved state,

Θjkjk+1
αk−1αk+1

=

dχ−1∑
βk=0

V(jk,αk−1),βk λ̃
[k]
βk
Wβk,(jk+1,αk+1) ≈

χ−1∑
αk=0

λ[k−1]
αk−1

Γ̃[k]ik
αk−1αk

λ̃[k]
αk

Γ̃[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

. (B10)

In the approximation, we keep the largest χ singular values λ̃
[k]
βk

. Also, we defined

Γ̃[k]ik
αk−1αk

= V(jk,αk−1),βk/λ
[k−1]
αk−1

, Γ̃[k+1]ik+1
αkαk+1

= Wβk,(jk+1,αk+1)/λ
[k+1]
αk+1

. (B11)

Thus, we obtain the MPS representation after two-site unitary operation. We note that one can increase the accuracy
of the simulation by transforming the MPO into an orthogonal form by performing QR decomposition after the
truncation [21].

Consequently, since the dominant time cost comes from matrix multiplications and singular value decomposition,
the computational time cost for a two-site unitary update is T = O(d4χ3) which accounts for matrix multiplications
and singular value decomposition of a dχ × dχ matrix. It implies that the computational cost for MPS simulations
depends on the bond dimension χ we choose. As a result, the computational cost to implement MPS simulation for
boson sampling circuits is given by

T = O(DMd4χ3), (B12)

where D and M accounts for the number of beam splitter layers and the number of two-site unitary operators in each
layer, respectively.
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From now on, let us consider MPO representation and a two-site unitary operator on k and k + 1 sites to describe
mixed states. Similarly, the MPO representation can be updated easily. We first vectorize a density matrix ρ̂ as

ρ̂ =
d−1∑

i1,i′1,··· ,iM ,i′M=0

ρi1,i′1,··· ,iM ,i′M |i1, · · · , iM 〉〈i
′
1, · · · , i′M |

→ |ρ̂〉〉 =
d−1∑

i1 ,̄i′1,··· ,iM ,̄i′M=0

χ−1∑
α0,··· ,αM=0

Γ
[1]i1 ī

′
1

α0α1 λ
[1]
α1

Γ[2]i2 ī2
α1α2

λ[2]
α2
· · ·λ[M−1]

αM−1
Γ

[M ]iM ī
′
M

αM−1αM |i1, ī′1, · · · , iM , ī′M 〉〉. (B13)

The MPO can be rewritten as

|ρ̂〉〉 =
d2−1∑

Ik,Ik+1=0

χ−1∑
αk−1,αk,αk+1=0

λ[k−1]
αk−1

Γ[k]Ik
αk−1αk

λ[k]
αk

Γ[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1
|ψαk−1

[1,··· ,k−1]〉〉|Ik〉〉|Ik+1〉〉|ψ
αk+2

[k+2,··· ,M ]〉〉, (B14)

where Ik ≡ ik + dīk and |Ik〉〉 ≡ |ik, īk〉〉. After the two-site unitary operation, the vectorized density matrix is
transformed to

|ρ̂′〉〉 =
d2−1∑

Jk,Jk+1,Ik,Ik+1=0

χ−1∑
αk−1,αk,αk+1=0

λ[k−1]
αk−1

Γ[k]Ik
αk−1αk

λ[k]
αk

Γ[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1
UIkIk+1

JkJk+1
|ψαk−1

[1,··· ,k−1]〉〉|Jk〉〉|Jk+1〉〉|ψ
αk+2

[k+2,··· ,M ]〉〉

(B15)

=

d2−1∑
Jk,Jk+1=0

χ−1∑
αk−1,αk+1=0

ΘJk,Jk+1
αk−1,αk+1

|ψαk−1

[1,··· ,k−1]〉〉|Jk〉〉|Jk+1〉〉|ψ
αk+2

[k+2,··· ,M ]〉〉, (B16)

where

UIkIk+1

JkJk+1
≡ 〈jkjk+1|Û |ikik+1〉〈̄ik īk+1|Û †|j̄k j̄k+1〉, (B17)

ΘJkJk+1
αk−1αk+1

≡
d2−1∑

Ik,Ik+1=0

χ−1∑
αk=0

UJkJk+1

IkIk+1
λ[k−1]
αk−1

Γ[k]Ik
αk−1αk

λ[k]
αk

Γ[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1

. (B18)

The time complexity of obtaining Θ is given by O(d8χ3) Again, we perform singular value decomposition and keep
the χ largest singular values only,

ΘJkJk+1
αk−1αk+1

=
d2−1∑

Ik,Ik+1=0

d2χ−1∑
βk=0

Ṽ(Jk,αk−1),βk λ̃
[k]
βk
W̃βk,(Jk+1,αk+1) ≈

χ−1∑
αk=0

λ[k−1]
αk−1

Γ̃[k]Ik
αk−1αk

λ̃[k]
αk

Γ̃[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1

, (B19)

which is the updated MPO representation after the unitary operation. Thus, the total computational time cost for
boson sampling circuits is given by

T = O(DMd8χ3). (B20)

One can easily check that normalization of
∑χ−1
αk=0 λ

2
αk

is conserved for unitary updates if there is no truncation

error. Note that for an arbitrary n by m matrix A,
∑min(n,m)
α=1 λ2

α =
∑n,m
i,j=1 |Ai,j |2, where λα is singular values. Using

the unitarity Û Û † = Û†Û = 1,

d2−1∑
Jk,Jk+1=0

UJkJk+1

IkIk+1
U∗JkJk+1

I′kI
′
k+1

=
d2−1∑

Jk,Jk+1=0

〈jkjk+1|Û |ikik+1〉〈̄ik īk+1|Û†|j̄k j̄k+1〉〈i′ki′k+1|Û †|jkjk+1〉〈j̄k j̄k+1|Û† |̄ik īk+1〉

= δik,i′kδik+1,i′k+1
δīk ,̄i′kδīk+1 ,̄i′k+1

= δIk,I′kδIk+1,I′k+1
, (B21)

and for some unitary matrix V and W ,

χ−1∑
αk−1=0

d2−1∑
Ik=0

(
λ[k−1]
αk−1

)2

Γ[k]Ik
αk−1αk

Γ
∗[k]Ik
αk−1α′k

=

χ−1∑
αk−1=0

d2−1∑
Ik=0

V(Ik,αk−1),αkV
∗
(Ik,αk−1),α′k

= δαk,α′k , (B22)

χ−1∑
αk+1=0

d2−1∑
Ik+1=0

(
λ[k]
αk+1

)2

Γ[k]Ik+1
αkαk+1

Γ
∗[k]Ik+1

α′kαk+1
=

χ−1∑
αk+1=0

d2−1∑
Ik+1=0

Wαk,(Ik+1,αk+1)W
∗
α′k,(Ik+1,αk+1) = δαk,α′k , (B23)
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one can show that

χ−1∑
βk=0

λ̃2
βk

=
d2−1∑

Jk,Jk+1=0

χ−1∑
αk−1,αk+1=0

|ΘJk,Jk+1
αk−1,αk+1

|2 =

χ−1∑
αk=0

λ2
αk
. (B24)

2. MPS / MPO simulation using U(1) symmetry

In this Appendix, we introduce a method to simulate boson sampling using an MPS representation with U(1)
symmetry, which can be used to improve an MPS simulation more efficiently [19, 54, 55]. Basically, we enforce the

global U(1) symmetry by introducing a charge vector c
[k]
αk on each bond index αk. Here, a charge c

[k]
αk accounts for

the photon number occupied by the right-hand side of the bipartition of [1 · · · k] : [(k + 1) · · ·M ] for a given bond

index αk. Since the total photon number N is fixed in the system, the charges on each end are set as c
[0]
α0=0 = N and

c
[M ]
αM=0 = 0. For example, consider the following state:

|ψ〉 = |1100〉, (B25)

which is an initial state when M = 4 and N = 2. Since the total photon number is N = 2, we initialize c
[0]
0 = 2

and c
[4]
0 = 0. Charge vectors for different bipartitions can be easily determined by counting how many photons the

right-hand side of a bipartition occupies. For bipartition [1] : [2, 3, 4], the charge vector becomes c
[1]
0 = 1 because the

partition [2, 3, 4] is occupied by a single photon, and for bipartition [1, 2] : [3, 4] and [1, 2, 3] : [4], the charge vectors

become c
[2]
0 = 0 and c

[3]
0 = 0 because there is no photon for the right-hand side partition. As a result of the charge

conservation, only tensor elements Γ
[k]ik+1
αkαk+1 that satisfy the constraint c

[k]
αk−c

[k+1]
αk+1 = ik+1 are non-vanishing [19, 54, 55].

Thus, each tensor Γ
[k]ik+1
αkαk+1 for different ik+1 is compressed by a tensor Γ

[k]
αkαk+1 with charge vectors c

[k]
αk and c

[k+1]
αk+1 .

Consequently, in contrast to a typical MPS without U(1) symmetry where tensors {Γ[k]ik
αk,αk+1 , λ

[k]
αk} constitute an MPS,

here, charge vector c
[k]
αk has to be added as {Γ[k]

αk,αk+1 , λ
[k]
αk , c

[k]
αk} to fully describe a given quantum state.

Notably, the memory usage of an MPS simulation is significantly reduced because local indices ik+1 are dropped.

Specifically, whereas an original tensor Γ
[k]ik+1
αk,αk+1 without U(1) symmetry requires O(dχ2) memories for the local index

d and two bond indices χ, since local indices are dropped, we only need O(χ2) for a single tensor and O(χ) for a
charge vector. Thus, taking into account singular value vectors and charge vectors, a total memory cost is given by
O(Mχ2 + (M − 1)χ+ (M + 1)χ), which is significantly reduced from a memory cost O(Mdχ2 + (M − 1)χ) required
without U(1) symmetry. In principle, the probability amplitude ci1,··· ,iM in Eq. (B1) can be reproduced by

ci1,··· ,iM =

χ−1∑
α0,··· ,αM=0

Γ[1]
α0α1

λ[1]
α1

Γ[2]
α1α2

· · ·λ[M−1]
αM−1

Γ[M ]
αM−1αM

M∏
k=1

δ(c[k−1]
αk−1

− c[k]
αk
− ik), (B26)

where the delta function indicates the constraint c
[k−1]
αk−1 − c

[k]
αk = ik for 1 ≤ k ≤ M . The delta function is defined as

δ(0) = 1 and zero otherwise.
In addition, a computational time cost of a canonical update for a two-site unitary can also be reduced as follows.

Let us consider a two-site unitary acting on k and k + 1 sites, where the relevant tensors for the update are

λ[k−1]
αk−1

,Γ[k]
αk−1αk

, λ[k]
αk
,Γ[k+1]

αkαk+1
, λ[k+1]
αk+1

. (B27)

For all 0 ≤ c[k] ≤ N , we multiply the unitary matrix and obtain

Θik,ik+1
αk−1,αk+1

(c[k]) =
d−1∑

jk,jk+1=0

χ−1∑
αk=0

U
ik,ik+1

jk,jk+1
λ[k−1]
αk−1

Γ[k]
αk−1αk

λ[k]
αk

Γ[k+1]
αkαk+1

λ[k+1]
αk+1

(B28)

× δ(c[k−1]
αk−1

− c[k]
αk
− jk)δ(c[k]

αk
− c[k+1]

αk+1
− jk+1)δ(c[k−1]

αk−1
− c[k] − ik)δ(c[k] − c[k+1]

αk+1
− ik+1), (B29)

where the first two delta functions correspond to the constraints of the input photon numbers and the last two delta
functions to the constraints of the output photon numbers. Thus, the complexity of computing Θ is given as O(d5χ3).
We note that such a scaling is conservative in the sense that the bond dimension χ is partitioned according to different
charges so that a partitioned bond dimension is much smaller than χ and the scaling is smaller in practice. Hence,
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U(1) symmetry highly decreases the computational cost in practice. Since the scaling from d is polynomial, the bond
dimension χ is the important parameter that determines if an efficient simulation is possible.

In order to obtain the updated tensors, we perform singular value decompositions,

Θik,ik+1
αk−1,αk+1

(c[k]) =
∑
βk

V(ik,αk−1),βk λ̃
[k]
βk
Wβk,(ik+1,αk+1), (B30)

where we assign the charge c[k] for each βk. After iterating the same procedure for all 0 ≤ c[k] ≤ N , we update a
singular value vector by choosing the largest χ singular values only among all singular values of βk and relabeling them

as 0 ≤ αk ≤ χ − 1. A charge vector c
[k]
αk is updated by c[k] that corresponds to αk. Finally, tensors are accordingly

updated,

Γ[k]
αk−1αk

= V(ik,αk−1),αk/λ
[k−1]
αk−1

, Γ[k+1]
αkαk+1

= Wαk,(ik+1,αk+1)/λ
[k+1]
αk+1

. (B31)

For example, let us consider a beam-splitter operation on the first and second mode, which transforms a state as
follows:

|100〉 → 1√
2

(|100〉+ |010〉). (B32)

After multiplying the unitary matrix as Eq. (B28) and performing a singular value decomposition, we obtain tensors

corresponding to |100〉/
√

2 for c[1] = 0 and tensors corresponding to |010〉/
√

2 for c[1] = 1 due to the charge constraints

in Eq. (B28). As a result, the elements of the initial charge vector c
[1]
0 = 0 are updated to c

[1]
0 = 0 and c

[1]
1 = 1 after

the beam-splitter. Since a singular value decomposition is performed for different charges, the matrix size for each
singular value decomposition is significantly reduced, which results in a reduction of the computation time.

Even when a given quantum state is a superposition of different photon number states, one can still use the U(1)

symmetry in such a way that a charge on the left edge c
[1]
α0 has different conserved charges [55], which will be elaborated

below.
We can employ U(1) symmetry for an MPO simulation with a slight modification of an MPS simulation [55]. As

a byproduct of vectorization, we have two different conserved charges corresponding to indices ik’s and ī′k’s. Thus,
charge vectors now save two different charges (n,m). Since initial states for lossy boson sampling do not have a definite
photon number as shown in Eq. (6), a straightforward extension of MPS simulation with U(1) symmetry to MPO
simulation is to decompose an initial state depending on the total charge and execute unitary updates separately. In
other words, we constitute N + 1 different MPOs having a different total charge by setting conserved charges (n, n)

on the left end c
[0]
α0=0 for the nth MPO and on the right end as c

[M ]
αM=0 = (0, 0). For example, consider the following

bipartite state

1

2
(|00〉〉+ |11〉〉)⊗ 1

2
(|00〉〉+ |11〉〉). (B33)

Without using U(1) symmetry, the singular values of the state are given by λ
[1]
α1=0 = 1 and λ

[1]
α1>0 = 0 because it is a

product state. However, since we are using U(1) symmetry, the state is decomposed as

1

4
|00〉〉 ⊗ |00〉〉, 1

4
|11〉〉 ⊗ |11〉〉, 1

4
(|00〉〉 ⊗ |11〉〉+ |11〉〉 ⊗ |00〉〉). (B34)

Here, conserved charges for each element are the sum of the first elements in the vector form and that of the second
elements. In this example, we have three subspaces whose conserved charges are (0, 0), (2, 2) and (1, 1), respectively.
Thus, one may constitute MPOs for each conserved charge separately. In addition, if one wants to simulate a post-
selected total photon number as done in Ref. [38], this procedure can be used to simulate the dynamics by selecting
a desired total charge.

However, one can improve the simulation more efficiently by combining all the MPOs by assigning charges on the

left end as c
[0]
α0=n = (n, n) for 0 ≤ n ≤ N . The unitary update of the latter method is more consistent since the

truncation of singular values is performed at the same time. For this reason, we use the latter method for MPO
simulation. The procedure of unitary updates is similar to MPS simulation. The only difference is that the charge
vector now consists of two components, so we iterate d2 times singular value decompositions. Thus, the time cost
to compute Θ in Eq. (B28) for MPO is given by O(d10χ3). Again, this scaling is conservative and the practical
complexity is much smaller because the bond dimension is partitioned according to charges so that a bond dimension
in each partition is reduced. Thus, in practice, U(1) symmetry highly reduces the computational cost. Also, since
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the scaling from d is polynomial, the bond dimension χ is the parameter that determines if an efficient simulation is
possible. Memory saving from U(1) symmetry is more significant in MPO simulation because the local indices up to
d2 can be dropped.

As a remark, in the case of non-uniform loss [52], we cannot simplify the problem by merging all loss channels as
we did for uniform loss because non-uniform loss channels do not commute with beam splitters in general. Therefore,
one needs to update an MPO by a completely positive trace-preserving map for a loss-channel for each step, which
requires more computational time [22]. In addition, we may not be able to take advantage from symmetry because
loss-channels do not preserve global U(1) symmetry.

3. Computing outcome probabilities and sampling outcomes from MPS / MPO

Now, we present how to compute outcome probabilities and sample outcomes according to the probability distri-
bution using MPS and MPO [22]. The probability of obtaining a given outcome ~n is written as

P|ψ〉(~n) ≡ |〈ψ|~n〉|2, (B35)

for pure states, and

Pρ̂(~n) ≡ Tr[ρ̂|~n〉〈~n]] = 〈〈~n|ρ̂〉〉, (B36)

for mixed states. Here, |~n〉 = |n1, · · · , nM 〉 corresponds to the outcome ~n. First of all, a marginal probability can be
efficiently computed. For example, a probability to detect (n1, · · · , nl) on the first l modes is given by

P
[1,··· ,l]
ρ̂ (n1, · · · , nl) =

∣∣∣∣ χ−1∑
α0,··· ,αM=0

Γ[1]
α0α1

λ[1]
α1
· · ·Γ[M ]

αM−1αM

l∏
k=1

δ(c[k−1]
αk−1

− c[k]
αk
− nk)

∣∣∣∣2 (B37)

for an MPS and

P
[1,··· ,l]
ρ̂ (n1, · · · , nl) =

χ−1∑
α0,··· ,αM=0

Γ[1]
α0α1

λ[1]
α1
· · ·Γ[M ]

αM−1αM

l∏
k=1

δ(c[k−1]
αk−1

− c[k]
αk
− (nk, nk)) (B38)

for an MPO. Using the above equations, one can easily find that an outcome probability for ~n can be obtained by
setting l = M .

Now, we present a procedure to sample an outcome from MPS / MPO representation. First, one computes a
marginal probability to detect n1 at the first mode P [1](n1) using Eq. (B37) or Eq. (B38). After obtaining the first
outcome n∗1, we sample n2 from the conditional probability distribution which can be efficiently found by using

P [2|1](n2|n∗1) =
P [1,2](n∗1, n2)

P [1](n∗1)
. (B39)

We sample the remaining measurement outcomes following the same rule as

P [k+1|1···k](nk+1|n∗1, · · · , n∗k) =
P [1···(k+1)](n∗1, · · · , nk+1)

P [1···k](n∗1, · · · , n∗k)
. (B40)

We finally obtain ~n = (n∗1, · · · , n∗M ) that follows Born’s rule as in Eqs. (B35) and (B36), which can be efficiently
performed.

Appendix C: Entanglement entropy of Matrix Product states and Matrix Product operators

Let us consider a beam splitter array, which transforms the creation operators of input modes â†j into the creation

operators of output modes b̂†j as

â†j → b̂†j = Û†â†jÛ =
M∑
k=1

Ujkâ
†
k. (C1)
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To obtain entanglement entropy between partitions [1, · · · , l] and [(l+1), · · · ,M ], we rewrite the output mode operators
as

b̂†j = cos θjB̂
†
up,j + sin θjB̂

†
down,j , (C2)

where we defined normalized creation operators for each partition as

cos θjB̂
†
up,j =

l∑
k=1

Ujkâ
†
k, sin θjB̂

†
down,j =

M∑
k=l+1

Ujkâ
†
k, (C3)

and their normalization as

cos2 θj ≡
∑l
k=1 |Ujk|2∑M
k=1 |Ujk|2

=
l∑

k=1

|Ujk|2, sin2 θj ≡
∑M
k=l+1 |Ujk|2∑M
k=1 |Ujk|2

=
M∑

k=l+1

|Ujk|2. (C4)

Note that assuming collision-free cases M ≥ N2 [5], the creation operators B̂†up,j , B̂
†
down,j satisfy the canonical com-

mutation relations,

[B̂up,j , B̂
†
up,k] = δjk, [B̂down,j , B̂

†
down,k] = δjk, [B̂up,j , B̂down,k] = 0, [B̂up,j , B̂

†
down,k] = 0. (C5)

For typical random beam splitter arrays with a large number of modes M � 1, we will have cos2 θj ≈ sin2 θj ≈ 1/2
for l = M/2.

Let us first consider the input state occupied by Nj photons for jth modes,

|ψin〉 =

 M∏
j=1

â
†Nj
j√
Nj !

 |0〉 → |ψout〉 =
M∏
j=1

1√
Nj !

(
cos θjB̂

†
up,j + sin θjB̂

†
down,j

)Nj
|0〉 (C6)

= ⊗Mj=1

 Nj∑
kj=0

√
kj !(Nj − kj)!

Nj !

(
Nj
kj

)
coskj θj sinNj−kj θj |kj〉up,j |Nj − kj〉down,j

 . (C7)

The reduced density matrix of the output state for a partition [1, · · · , l] is then written as

ρ̂up ≡ Tr[(l+1),··· ,M ]|ψout〉〈ψout| = ⊗Mj=1

 Nj∑
kj=0

(
Nj
kj

)
cos2kj θj sin2(Nj−kj) θj |kj〉〈kj |up,j

 . (C8)

Now, assuming M � 1, we can approximate cos2 θj ≈ sin2 θj ≈ 1/2 for l = M/2, and thus the density matrix becomes

ρ̂up ≈ ⊗Mj=1

 Nj∑
kj=0

1

2Nj

(
Nj
kj

)
|kj〉〈kj |up,j

 , (C9)

which is a product of states whose eigenvalues follow a binomial distributions. Thus, the entanglement entropy is
given by the sum of the entanglement entropy of each state. It indicates that if we add more modes occupied by at
least a single photon, the entanglement entropy increases linearly. In contrast, if we increase the number of photon
in each mode and assume that Nj � 1, then the entanglement entropy can be approximated as

S(ρ̂up) ≈ 1

2

M∑
j=1

log2

(
πeNj

2

)
. (C10)

where we have used a Gaussian approximation of binomial distribution. Thus, the entanglement entropy increases
logarithmically of Nj , which suggests that the MPS simulation can be efficiently performed for Nj . Here, note that
when Nj is zero for some modes, we treat the entropy to be zero for the modes in the summation.

Particularly, let us first consider the input state of the standard boson sampling, where Nj = 1 for 1 ≤ j ≤ N and
otherwise Nj = 0. One can immediately see that for large M , the reduced density matrix is written as

ρ̂up ≈ ⊗Nj=1

1

2
(|0〉〈0|up,j + |1〉〈1|up,j) , (C11)
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which leads to the entanglement entropy S(ρ̂up) = N . Since the entanglement entropy increases linearly, an MPS
simulation is inefficient.

For the second case in the main text, we consider an input state, where N1 = N , and Nj = 0 for 2 ≤ j ≤ M . In
this case, from the analysis above, the reduced density matrix of the output state is written as

ρ̂up ≈
N∑
k=0

1

2N

(
N

k

)
|k〉〈k|up,1, (C12)

and the entanglement entropy is given by

S(ρ̂up) ≈ 1

2
log2

(
πeN

2

)
. (C13)

Since the entanglement entropy increases logarithmically, its MPS simulation can be efficiently performed. Particu-
larly, using χ = N + 1, the time complexity of a MPS simulation is O(DMd3χ3) = O(M2(N + 1)6).

In the case of lossy standard boson sampling, we can write the quantum state as

ρ̂out =
N∏
j=1

[
µ cos2 θj |10〉〈10|j + µ sin2 θj |01〉〈01|j + µ sin θj cos θj(|10〉〈01|j + |01〉〈10|j) + (1− µ)|00〉〈00|j

]
(C14)

→ |ρ̂〉〉 =
N∏
j=1

[
µ cos2 θj |30〉〉j + µ sin2 θj |03〉〉j + µ sin θj cos θj(|21〉〉j + |12〉〉j) + (1− µ)|00〉〉j

]
. (C15)

Here, the index j represents up, j and down, j in order, and for the vectorization, we merged the indices on each
party as |0〉〈0| → |0〉〉, |0〉〈1| → |1〉〉, |1〉〈0| → |2〉〉, and |1〉〈1| → |3〉〉. To obtain the matrix product operator (MPO)
entanglement entropy (EE), we find the reduced density matrix for the vectorized state,

|ρ̂〉〉〈〈ρ̂|up =

N∏
j=1

[(µ cos2 θj |3〉〉+ (1− µ)|0〉〉)(µ cos2 θj〈〈3|+ (1− µ)〈〈0|)up,j + µ2 sin4 θj |0〉〉〈〈0|up,j

+ µ2 sin2 θj cos2 θj(|2〉〉〈〈2|up,j + |1〉〉〈〈1|up,j)]. (C16)

Since MPO EE is additive, it is straightforward to obtain MPO EE. For Figure 4, we first generate a global Haar-
random unitary matrix and find θj corresponding to the matrix. We then use Eq. (C16) to compute the MPO EE.
Especially when µ = βNγ/N (Nout = βNγ), assuming M ≥ N2 (collision-free) and an asymptotic limit N � 1, the
average MPO EE for a bipartition [1 · · ·M/2] : [M/2 · · ·M ] can be approximated as

SM/2
α (|ρ̂〉〉) = O(N1−2(1−γ)α) when α 6= 1, (C17)

S
M/2
1 (|ρ̂〉〉) = O(N2γ−1 log2N). (C18)
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