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The Asymptotic Capacity of Private Search
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Abstract— The private search problem is introduced, where a
dataset comprised of L i.i.d. records is replicated across /N non-
colluding servers, and a user wishes to search for all records that
match a privately chosen value, without revealing any informa-
tion about the chosen value to any individual server. Each record
contains P symbols, and each symbol takes values uniformly and
independently from an alphabet of size K. Considering the large
number of records in modern datasets, it is assumed that L is
much larger than the alphabet size K. The capacity of private
search is the maximum number of bits of desired information
that can be retrieved per bit of download. The asymptotic
(large K)) capacity of private search is shown to be 1 — 1/N,
even when the scope of private search is further generalized
to allow OR search, AND search, NOT search and sequence
search. The results are based on the asymptotic behavior of a new
converse bound for private information retrieval with arbitrarily
dependent messages. The asymptotic behavior is also applicable
to T-colluding servers or (IN,T)-MDS coded servers.

Index Terms—Private search, asymptotic capacity, private
information retrieval.

I. INTRODUCTION

EARCH is among the most frequent operations performed
S on large online datasets. With privacy concerns increas-
ingly taking center stage in online interactions, a private search
functionality is highly desirable. As a basic formulation of
the information-theoretically private search problem, consider
a dataset that is replicated across /N non-colluding servers.
There are L i.i.d. records in the dataset, each record is
comprised of P symbols, and each symbol is from an alphabet
of size K. A basic form of private search, called exact private
search, allows a user to privately choose one symbol from
the alphabet, and then search for all records that contain this
symbol, without revealing any information about the queried
symbol. Suppose the record length P is a constant, and
L > K > 1, ie., the alphabet size K is large, but the
number of records in the dataset is much larger. This is not an
uncommon scenario. For example, consider datasets of DNA
sequences. When searching for a DNA pattern of length ¢
(e.g., £ = 10), the alphabet size is K = 4%, while current
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DNA sequencing machines produce millions of records (called
reads) per run. Since the upload cost of private search can be
made independent of L while the download cost scales linearly
with L, the communication cost of private search for large L
is dominated by the download cost. The capacity of private
search is therefore defined as the maximum number of bits of
desired information that can be retrieved per bit of download.
Furthermore, since K > 1, the asymptotic capacity of private
search, i.e., the capacity for large K is of particular interest.
Characterizing the asymptotic capacity of private search is our
main goal in this work.

Private search (PS) has been studied in computer science
for decades. One branch focuses on designing searchable
encryption schemes, which enable users to store encrypted
data at the servers and execute search over ciphertext domain
[2], [3]. Encryption preserves the user privacy computationally.
Various models of search functionality have been explored
in this framework, such as keyword search [2], [3], sim-
ilarity search [4], [5], OR and AND search [6], [7] and
ranked search [8]. Another branch allows servers to store
unencrypted data, and relies on private information retrieval
(PIR) [9] schemes to guarantee the privacy of the user’s query.
Problems investigated in this framework include keyword
search [10], streaming data search [11]-[13], and media search
[14], [15]. Our work is along the latter line and tries to
characterize the asymptotic capacity of private search. Recall
that in its original form as introduced by Chor et al. in [9],
the goal of PIR is to allow a user to retrieve an arbitrary
desired message out of pu independent messages that are
replicated across N distributed and non-colluding servers,
without revealing any information about the identity of the
desired message to any individual server. The capacity of PIR
is the maximum number of bits of desired information that can
be retrieved per bit of download, and was shown in [16] to be
(1+L++ #)71. The capacity of many variants of
PIR has since been characterized, such as PIR with colluding
servers [17], PIR with coded servers [18]-[20], symmetric PIR
[21], [22], PIR with side information [23]-[26] and multi-
message PIR [27].

Particularly relevant to this paper is the generalized form
of PIR introduced in [28], [29], known as the private compu-
tation problem [28] or the private function retrieval problem
[29]-[31]. As its main result, [28] establishes the capacity of
PIR when the messages have arbitrary linear dependencies.
A supplementary result of [28] shows that even if non-
linear dependencies are allowed, the asymptotic capacity of
private computation approaches 1 — 1/N provided that the
message set includes an unbounded number of independent
messages. Some other types of private computations are also
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investigated, i.e., private polynomial computation [32] which
allows polynomial relationships among messages, and private
inner product retrieval [33] which considers the inner product
of messages. Private search is a form of PIR with a specific
form of dependency among messages, that is not covered
by these prior works. This is because in private search the
dependencies among messages are neither linear nor of a
polynomial form, and no two messages are independent. To see
this clearly, consider exact search with alphabet set {A, B, C'}
(which implies K = 3). Assume there are L. = 4 records,
A, A, B,C, each of size P = 1. We search for all records
that match a queried symbol. Denote the retrieved message
for a query by Wy, for some 6 € [3], which is comprised
of 4 iid. bits, ie., Wy = (Wy(1), We(2), Wa(3), Wy (4)),
such that Wy(l) = 1 if the [-th record matches the queried
symbol, and Wy(l) = 0 otherwise. For example, if A is
queried, the corresponding message W7 = (1,1,0,0). If B
is queried, the corresponding message W5 = (0,0, 1,0). If C
is queried, the corresponding message W3 = (0,0,0,1).
It is easily seen that any two messages, W;, Wj, i # j,
are identically distributed but not independent, e.g., W;(l) =
1 implies W;(l) = 0. This dependency is neither linear
nor in a polynomial form. To approach the private search
problem, we first consider a broader generalization of PIR
to include messages with arbitrary dependencies (DPIR in
short). Then we consider private search as a special case
of DPIR.

Since simple keyword search often yields far too coarse
results, almost all the search engines such as Google, Bing,
Yahoo, Linkedin and Facebook, and large database man-
agement systems like MySQL and PostgreSQL support OR
search, AND search and NOT search. These searches allow
a broader range of search operations by connecting various
pieces of information with OR, AND or NOT operators
to make the search more precise. For example, instead of
retrieving all emails from “Alice”, a user might only want
those emails from Alice that are marked urgent and pertain to
finance, in which case what is needed is the ability to search
on the conjunction of the keywords, “Alice” and “urgent”
and “finance” [6]. In other cases, it is desirable to search for
symbols that appear in consecutive positions in a record, e.g.,
to search for a phrase. Therefore as natural generalizations
of exact private search, we also consider OR private search,
AND private search, NOT private search and sequence private
search. OR private search looks for all records which contain
any of M symbols, AND private search looks for all records
which contain all of M symbols, and NOT search looks for
all records which do not contain the chosen symbol. Finally,
sequence private search allows the user to search for all records
that contain an M -symbol long sequence.

Our main contributions are as follows.

o« We start with a general non-asymptotic converse for
dependent private information retrieval or DPIR (The-
orem 1). Converse here denotes a lower bound on the
download cost, or equivalently, an upper bound on the
capacity.

o The converse combined with a general achievability result
for DPIR that was established in [28], leads us to a
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sufficient condition under which the asymptotic capacity
of DPIR is characterized to be 1 — 1/N (Theorem 3).

o The sufficient condition of Theorem 3 is shown to hold
for exact private search, thus establishing the asymptotic
capacity of private search as 1 — 1/N (Theorem 4).

e We show that the sufficient condition of Theorem 3
also holds for OR search, AND search, NOT search and
sequence search, so that the asymptotic capacity for these
generalizations is also equal to 1 — 1/N (Theorem 4).
Remarkably, for OR search, the asymptotic capacity
characterization holds even when M itself grows with K.

o Finally, to illustrate the difficulty of finding general
asymptotic capacity results for DPIR, we consider an
example of OR private search with special restricted
search patterns. For this example, we show that either
the new converse bound is not tight, or the asymptotic
capacity is not 1 — 1/N (Proposition 1). The asymptotic
capacity for this example remains open.

The paper is organized as follows. Section II presents the
problem statement. The download lower bound of DPIR and
the asymptotic capacity of various forms of private search are
characterized in Section III. Section IV presents the proofs of
the results. Section V concludes the paper with a discussion of
generalization of our settings, including extending Theorem 3
to T-colluding DPIR and MDS-coded DPIR, and the non-
asymptotic capacity of private search.

Notation: We use parentheses (al, as, ..., an) to represent
a vector or a tuple (sequence) and braces {s1,2,...,Sn} to
represent a set. [z1 : 22| represents the set {z1,21+1, - , 22},
for 21,20 € N, 21 < 23, [2] represents [1 : z] for z € N. Let
W1, Wa, ... be random variables, and S = {s1,52,...,5n}
be a subset of indices where s1 < s < --- < sy. The random
vector (W, , Ws,,...,Ws,) is represented by Ws. A ~ B
means that random vectors A and B are identically distributed.
A function f(L) = o(L) means that limy_,~ f(L)/L = 0.
o(L) can be positive or negative. A function f(L) = O(L)
means that limy_ . | f(L)|/L < ¢, for some constant ¢ > 0.

II. PROBLEM STATEMENT
A. Dependent Private Information Retrieval (DPIR)

Consider i € N messages, W,,,m € [u], each comprised
of L symbols, Wy, = (W, (1), W,,(2),---, Wy, (L)). The
random vectors (Wi (1), Wa(l),--- , Wy(l)), forall I € [L], are
i.i.d., and have a distribution that is identical to the distribution
of the random vector (w1, ws, - ,w,). Namely, for differ-
ent [, the vectors (W1 (1), Wa(l),--- , W, (1)) are independent;
but for any particular [, the variables W,, (1), m € [u] have
dependencies defined by the joint distribution of w,,, m € [u].

Example 1: For L = 2,u = 3, let (w1, ws,ws) be a
binary random vector and the distribution be p(w1, we, w3) =
1/3 for (wi,w2,w3) € {(1,0,0),(0,1,0),(0,0,1)}, and
p(wy,wa,ws) = 0 for all other cases. One realization of the
messages can be:

Wy |1]0
Wo | OO0
Ws 0] 1
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The first bit (column) and the second bit (column) of the
messages are independent. Within the first bit (column), only
one entry can be 1.

The amount of information carried by the m-th message,
m € [u], is

H(W,,) = LH(w,,). )

We say that the DPIR problem is balanced if all messages
Wi, ¥m € [u] carry the same amount of information,

H(W)) = H(Wa) = = H(W,) £ LH(w), @
ie. Vm € [u], H(wy) = H(w).

We note here that the random variable w may depend on
the number of messages p, especially in the context of private
search, i.e., H(w) = H(w(u)). For compact notation, we will
not explicitly show the dependence on p.

The problem of DPIR is as follows. There are N servers and
each server stores all ;1 messages. A user privately generates
0 € [u] and wishes to retrieve Wy while keeping 6 private
from each server. Depending on 6, the user employs IV queries

[19], e ,Qg\e,] and sends QL?] to the n-th server. The n-th
server returns a response string ALO ) which is a function of
QY and W, ie.,

VO € [u],vn € [N], H(AY | QI W) = 3)
From all the information that is now available to the user,
he must be able to decode the desired message Wj, with
probability of error P, — 0 as L — oo. This is called the
“correctness” constraint. From Fano’s inequality, we have
[Correctness] H (Wg | A N], Q[N]) o(L). 4)
To protect the user’s privacy, # must be indistinguishable from
', from the perspective of each server, V0,0’ € [u], i.e.,

[Privacy] (QT?],AG] W) ~ (QLG/ ,A W[ DANNE)

n

The DPIR rate characterizes how many bits of desired

information are retrieved per downloaded bit, and is limited
by the worst case as,

2 minme[u] LH(’LUm)

R D ,

(6)
where D is the expected total number of bits downloaded by
the user from all the servers. If the DPIR problem is balanced,
then the minimum over m may be ignored. The supremum of
achievable rates R is the capacity Cppr(p, N).

B. Private Search

We first define exact search and OR search. Later we define
AND search, NOT search and sequence search. Examples of
different kinds of search are given in Table I.
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TABLE I
Example of Different Types of Private Search. The Dataset Contains L = 3
Records (A, B, C), (A, C, B) and (B, B, B). Each Record
Contains P = 3 Symbols

Type Pattern A,B,C) | (A,C,B) | (B,B,B) | W,
exact A 1 1 0 110
OR A or B 1 1 1 111
AND A and B 1 1 0 110
NOT not A 0 0 1 001
sequence (A, B) 1 0 0 100

1) Exact Search and OR Search: Consider a dataset A
comprised of L i.i.d. records: A = (Ay,Ag, -+ ,Ap). Each
record A;, | € [L], is a sequence of length P, where P is
constant, denoted by (81,952, ,;p), and each symbol J;
takes values uniformly and independently from the alphabet
set U = {U1,Us,--- ,Uk}. The dataset is replicated across
N non-colluding servers.

For all [ € [L], &;, €U, i € [P],

1
= )

= LPlog, K bits. (8)

P(A, =
H(A)

(6l17 6l27 :
= LH(A)

-, 0p)) =
= Llogy(K") =

A user privately chooses a set (search pattern), S =
{Ug,,Upy,- -+ ,Ug,, }, S CU, M < K, and searches for all
records in A that contain at least one element of S. Note
that even though each record is of length P, given a search
pattern S the search result for a record is only a single bit,
indicating whether the P symbols in the record contain an
element in S or not. The overall search result for the dataset
is L (independent) bits. We refer to the M = 1 setting as exact
private search, and to the M > 1 setting as OR private search,
because the output of the search reveals the exact value of a
matching record if M = 1, but not if M > 1. In general, for
OR search we allow M to grow with K (either o(K) or Q(K))
in the asymptotic regime K — oo.

To view private search as a special case of DPIR, we treat
the result of each possible search pattern as one message.
A similar technique has been also used in the work of
Fanti [15]. There are a total of 4 = (1) search patterns. Let
us arbitrarily label them S,,,, m € [u]. Correspondingly, there
are a total of ;1 messages. Label these messages W,,, so that
vm € [ul,

Wm = (Wm(l)7 Wm(z)a e 7Wm(L))7 (9)

and

1, if3ieM
Wan(l) = { 0, otherwise.

Note that each message is comprised of L i.i.d. bits. VI €

l, Us, € {611, , 0P},

K — M)P

(w) = 1%, ) = 2 (F 20 ) vm e . a0

where the binary entropy function is defined as follows.

Hs(p) = —plogy(p) — (1 —p)logy(1 —p),  (11)
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Fig. 1. Relationship between PS and DPIR. The ¢-th record (row) A; in PS corresponds to the i-th symbol (column) of each message in DPIR. Different

messages (rows) in DPIR correspond to different search patterns S.

H3(0) = Hy(1) = 0. The second equation in (10) is based on
the facts that for each record there are a total of K” possible
realizations and (K — M)? of those do not match. Fig. 1
shows the relationship between private search and DPIR. For
example, suppose there are L = 2 records of length P = 1,
the alphabet is U = {A, B,C} of size K = 3, and we do
exact search (M = 1). Let the records be A; = A, Ay = C.
Then the ;1 = 3 messages are shown as in Example 1. See
Table I for additional examples.

2) AND Search: For AND private search, a set S,, =
{Uy,,Ug,, -+ ,Up,, } is chosen out of a total of u = (1)
possibilities. In general, M can be arbitrary. However, if M >
P the problem degenerates into a trivial case where no record
can contain all of the chosen symbols. Therefore, we only
consider the non-trivial case where 1 < M < P. For all
m € [u],l € [L], the I*" bit of the corresponding message
W, is defined as,

Win(l) = { 1, if Vi € [M], Up, € {11, , 0P},

0, otherwise.
The L-bits of each message are i.i.d., and VI € [L],Vm €
(1], H(w) = H(W,,(1)). See Table I for an example.
3) NOT Search: For NOT private search, a user privately
chooses a value S, = {Uy} out of y = K possibilities. The
I*h symbol of the corresponding message W,, is defined as

_ 1 if Upg ¢ {on, - ,0p},
W (1) = { 0, otherwise.

The L bits of each message are i.i.d. and VI € [L],Vm €
], Hw) = H(W,/(l)). Essentially NOT search is the
complement of exact search. For example, in terms of the
same chosen symbol, if W;,(l) = 1 in exact search, then
Wi (1) = 0 in NOT search, and vice versa. See Table I for an
example.

4) Sequence Search: Sequence private search is similar
to AND search, the difference is that the order of symbols
matters in sequence search. Specifically, a sequence S, =
(Ug,,Us,,- - ,Ug,,) is chosen, out of ;1 = KM possibilities.
For the same reason as AND search, we only consider the non-
trivial scenario where 1 < M < P. For all m € [u],l € [L],
the I*" symbol of the corresponding message W,

1, if S, € {(51i+1, ‘e
0, otherwise.

Wm(l)—{ 010 ),i € [0 P—M]},

The L-bits of each message are i.i.d., and VI € [L],VYm €
(], H(w) = H(Wy,(1)). See Table I for an example.

Even though in our definitions of private search, we assume
that all search sets S (or search sequence S) of size M
are allowed, one can generalize the definition to restricted
search patterns. One example of such a setting is discussed
in Section III-E.

The queries and answers, privacy and correctness con-
straints, rate and capacity definitions for private search are
inherited from DPIR. The capacity of private search is denoted
Cps(K,M,P,N), and the asymptotic capacity of private
search is denoted lim g oo Cps(K, M, P, N).

III. RESULTS

We present the main results in this section. All proofs appear
in Section IV.

A. A General Converse for DPIR

The download cost (expected number of bits of download)
for DPIR is bounded as follows.
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Theorem 1: For DPIR, denote by Wy, W, ..., W, an arbi-
trary permutation of the p messages. Then
H(W2|W1) H(W3|W[1:2])
D> H(W
> H(Wy) + N + N2
H(WH|W[1:M71])

Note that the bound depends on the chosen permutation of
message indices, so finding the best bound from Theorem 1
requires a further optimization of the permutation. Substituting
(12) into (6), we obtain an equivalent bound on capacity. If the
messages are independent, we recover the converse bound
of [16]. However, Theorem 1 is more broadly useful since
it allows arbitrary dependencies. Also note that Theorem 1 is
not limited to balanced DPIR.

B. General Achievable Rate for DPIR [28]

A PIR achievable scheme for independent messages is also
a DPIR achievable scheme. We use the achievable PIR scheme
with © — oo messages from [28, Theorem 2] (also see [9],
[21], [34]), from which we obtain the following lower bound
on the capacity of DPIR.

Chmr (M; N) > /}LHOIO Chr (M; N) > /}LHOIO CPIR(,ufv N)

1 i m H m
_ (1 _ —> mitimefp) 4 (Wm) (13)
N ) max,,e(,] H(w,y,)
Theorem 2: The capacity of DPIR satisfies
1 Hmin
CDPIR(ﬂv N) > <]- - N) Hmax’ (14)

where M, min =
max, () H(wm).

For balanced DPIR, this gives us 1 —1/N as a lower bound
on capacity. As a simple example of the achievable scheme,
assume there are N = 2 servers and p = 2 messages with
the size of 1 bit. A user wishes to retrieve WW;. He generates
two binary random variables « and 3 independently, and sends
(a, B) to server 1 and (a+1, 3) to server 2. Here “+” denotes
XOR. He downloads aW; + W5 and (o + 1)Wq + gWs
from server 1 and server 2, respectively, which allows him to
retrieve W privately. Therefore the total download is 2 bits,
and R = 1/2 =1—1/N. This achievable scheme requires one
multiplication for each symbol of each message. In general,
for each server, the computation complexity is O(uL).

minme[u] H(wy,) and  Hpyax =

C. Asymptotic Optimality of Rate 1 — 1/N for Balanced
DPIR

For balanced DPIR, as the number of messages yu —
00, the asymptotic behavior of (12) gives us the following
sufficient condition. Here we define W, = 0 if & > p,
and define a sequence function to be a sequence of functions
ki(p), ko(p),- -+, where every k;,4 > 1, is a mapping N —
N. When it is clear from the context, we drop the variable p
and simply use k; to denote k;(u). But one should keep in
mind that k; depends on the number of messages .

4713

D/LH(w)
é Z22Z 2

abhwN

20 25 30

Fig. 2. Normalized download lower bound of exact search (P = 1) based
on Theorem 1 versus alphabet size K. The asymptotic value (1 — 1/N)~1
is the upper bound.

Theorem 3: For balanced DPIR, if there exists an increasing
sequence k; € N, Vi € N, such that VI € N,

I (Wk1+1 ; Wk[m] )

li =0 15
oo LH(w) ’ (15)
then the asymptotic capacity is
. 1
lim Chpp(p, N) =1— —. (16)
p—00 N

Note since H (w) may depend on p, the sufficient condition is
in general not equivalent to lim,, . / (Wk,H;Wk[M]) = 0.
In particular, (15) provides a measure of “weak” dependency
among the messages in the asymptotic regime, such that the
capacity of DPIR is 1 —1/N. Intuitively, if we find an infinite
sequence of messages that have this weak dependency in
DPIR, we know the asymptotic capacity is 1 — 1/N.

D. Asymptotic Capacity of Private Search

Theorem 4: The asymptotic capacity of private search is

1
lim Cps(K,M,P,N)=1— — (17)
K—o0

N Y
for exact search (M = 1), NOT search (M = 1), OR search
(M > 1), AND search (1 < M < P) and sequence private
search (1 < M < P). For OR search, M can even grow with
K, satisfying either M = o(K) or M = Q(K).

Theorem 4 is proved by showing that the sufficient condition
(15) is satisfied for private search. Note that condition (15) is
explicitly proven to be true for balanced DPIR, and private
search indeed has balanced messages. Notably, for exact
private search, as K — oo, both (W, ,; Wi, ) and H(w)
approach zero. The key to the asymptotic capacity result is
that I(Wy, ,; Wi, ,,;) approaches zero much faster than H (w).
Furthermore, as shown in Fig. 2, convergence of capacity to
its asymptotic value is quite fast, and the larger the value of
N, the faster the convergence. For example, when the record
size P = 1 and the number of servers N = 5, the bound
(12) for K = 10 messages is already within 1% gap from the
asymptotic value.
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E. Difficulty of Private Search Over Restricted
Search Patterns

Finding the capacity of DPIR with arbitrary dependency
structures is in general a difficult problem. The difficulty
remains even when the problem is limited to asymptotic
capacity. To highlight this aspect, we present an example
of approximate private search over restricted search patterns
where the asymptotic capacity remains an open problem.

Proposition 1: Consider OR private search, with P = 1 and
M = | £], where the only search sets allowed are

Sk =A{Uk+1y: U2y, - - Uerany ), Vk € [K],

and (m) £ (m mod K) + 1. As K — oo, either the bound
(12) is not tight, or limg_,oo Cps(K, M, P,N) # 1 — %

Here privacy is required only within the ;1 = K choices of
search sets.

(18)

IV. PROOFS
A. Proof of Theorem 1
For the DPIR problem, the total download is bounded as,

D>H (A[”] | QE\],]) (19)
@ g (A{N}, W | Q%) +o(L) (20)

— (W1 | QH) +H (AF]] | QB\],],Wl) +o(L) 1)

> H(Wh)+ H (A | QY W1) +o(L) (22)
= H W)+ H (A1 QY w1) +o(L) 23)

D )+ (4P 1@ m) +o(D) (24)
= HW1)+ B (AP | Q) + (D). (25)

where (22) follows because the queries are independent of W7,
and Am is an element of AE\]”, and (23) follows from the fact
A and Q[ 5] Are independent given Q[ll]. Similarly, for all
n € [2: N] we have,

D= HWy) + H (AP QfF,m). (26)
Adding all of these N inequalities we obtain,
(2] 2]
ND > NH(Wy) +H (AR QW) @D
2 2
H (AR | @y 1)
—~ D> H(W) + = L@

Proceeding recursively in a similar manner as (28), Ym € [2:
w— 1], we have

H(A%ﬁ% | Q%ﬁ%;Wh . ,Wm—l) ZH(Wm, | W17 ce ,Wm—l)
[m+1] [m+1]
o (AR 1@ o W) (29)
N
and when m = p,
H(APJI;;] |QP;’\;],W17 ,mL—l)ZH(WH | Wl,--- 7WH_1)'
(30)
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Therefore,
42 ol
( v | Qs Wi )
D> H(W)) + ~ (31)
B3] | 3]
H(Wy | Wh) (A v | Qv W )
> H(Wh) + I + e
(32)
2 .
HW, | Wy)  H(Ws | W,
> H(W) + ( ?\r' D, H %2 1:21)
HWy | Wiiu-1))
e . (33)

B. Proof for Theorem 3

Define m such that k,, < p < kp,4+1. Note that m is a
function of p and as u — oo, m — co. Based on Theorem 1
and equations (1), (2),

H(Wg, | W
D> H(Wk1)+ ( kj\) k1)+
H(Wk’s | Wkl ) Wk’2) H (Wk’m | Wk[l:vnfl])
+ N2 + Nm—1
H(Wh,) HWk,,)
=HWi) + — + i
CIWaiWa) I (W Wity )
N Nm—1
B 1 1 1
(1+N+m+"'+Nm 1)LH( w)
_ I(sz 5 Wkl) _____ (ka; Wk[lszl]) (34)
N Nm—1 '
Normalizing both sides by LH (w) we have
= 14— b o
LH(w) N Nz Nm—1
_ I(Wk’Q 5 Wk1) ..... I (ka; Wk[limfl]) (35)
NLH (w) Nm=1LH(w)
Applying limit ;o — oo, the reciprocal of rate is bounded as
. D 1 -1 . m—1 ] (Wkl+1;Wk[1:l])
lim —— > (1——) — lim —
p—oo LH (w) N p—co &= LH(w)N
Now, we need to show that
m—1
I(Wkl 'Wk . )
li s =0, 36
Jim > LH(w)N! (56)

=1

Equivalently, for every € > 0 we will show that

e I (Wk1+1 5 Wk[l:l])

li <e. 37
oo ; LHw)NL =€ G
Choose a finite [* such that
—1
1 1
— (1-=) <e
N ( N) <e (38)
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Note that [* depends only on N and €. More importantly, it is
not a function of p. Now partition the sum as follows

e I (Wk’HﬁWk’[u])

lim E
H—00

£ LH(w)N'
-1 m—1
I (W W) I (W3 W)
— 1 +1 [1:1] 1 +17 [1:2] )
HE;Z; LH(w)N *QE&Z; LH(w)N
(39)

The first term on the RHS of (39) is zero because it is a sum of
finitely many terms (I* is finite), each of which is zero because
(15) holds by assumption. For the second term in (39),

m—1 m—1
I (Wi Wip) 1
i 1417 ) 1 40
uﬂg LH(w)N wﬂgw (40)
m—1-—1~"
1 . 1
Sﬁﬁﬂyz N (41)
=0
1 1\

Thus, the reciprocal of rate is bounded as 1/R > (1—1/N)~1,
i.e., the rate is bounded as R < 1 — 1/N. By Theorem 2 this
rate is achievable. Hence proved.

C. Proof of Theorem 4

We treat private search as a balanced DPIR problem. As an
application of Theorem 3, we show that (15) is satisfied.
Therefore the asymptotic capacity must be 1 —1/N. Note that
for all the private search variations, the number of messages
p — oo if and only if the alphabet size K — co. So in our
proofs we let K grow to infinity.

In the following proofs, we consider a subset of the possible
messages, W1, Wy, ..., Wy, for some f(u) < p that grows
with p. We use the identity sequence functions k; = ¢ for
1 < i < f(u), and map 7 to some k; > p for i > f(u).
In other words, we only use the first f(u) messages in our
proofs. Then (15) becomes

I (Wig1; W)

LHw) "

lim
JL—> 00

(43)

forall 1 <1< f(u).

1) Exact Private Search: We start with the exact private
search problem (M =1).

Firstly, consider the case where the record length P = 1,
note that

. . 1
dm Hw) = i () <0 @
According to L'Hopital’s rule,
li e (ﬁ) 1 (45)
im ——— =1,
K=oo Hy (%)

where t is a constant. The detailed proof of (45) is shown in
Appendix A.

4715

Since VI € [K],Wi(1),--- ,Wy(L) are iid., H(W;) =
LH (W;(n)), n can be any integer between 1 to L. Consider
the dependence among the messages,

H (W1 | Wiy)

i =H (Wigi(n) | Wi (n))  (46)
= Pr (Wpy(n) =0) - H(Wit1(n) | Wy (n) = 0)
1
+ ZPT (Wi(n) =1, Wi g3 (n) = 0)
- H (Wi (n) | Wi(n) = 1, Wi i3 (n) = 0) 47)
l 1 L1
:(1_F)H2<—K_Z)+;}-O (48)
l 1
(- x)m (=) @

where Pr(e) is the probability of event e and bold 0 is the zero
vector. The above equalities are explained as below. The only
possible values for W (n) are either all zeros or 1 one and
I — 1 zeros. Note that the probability Pr (W[l:l] (n)=0) =
1—-1/K.If Wy(n) = 0,¥i € [l], then A, # Uy,---,U;
and A, can only take values from {Ui1,Uiyo, -+, Uk},
each with probability 1/(K — ). Therefore, conditioning on
Wiy (n) = 0, we have A, = Upyq, ie., Wipi(n) = 1, with
probability 1/(K — 1), and A, # Uiq1, ie., Wii(n) = 0,
with probability 1 — 1/(K —1). If Wi (n) =1, then A, = Uy
and Wa(n), -+, Wk (n) must be equal to zero. Thus there is
at most one W;(n) = 1 and each W;(n) = 1 with probability
1/K. 1t any Wi () = 1, then H (W,(n) | Wi(n)) = 0,%j # i

Substituting ¢+ = K into the LHS of (43), we have for any
fixed [ € N,

IT(Wi1; Wy, Wa, -, W)

i
W L (3) e
~ lim H(Wiy1) —H(Wl/'zﬂ | Wia) 51)
K—o0 LHy(%)
 H(F) - (1) ()
= lim I (52)
Koo H, (%
(1- %) Hz (7)
=1— lim - =1-1=0. (53)
Koo H ()

Here (53) follows from (45). Therefore, (43) is satisfied, and
based on Theorem 3, the asymptotic capacity is 1 — 1/N.
Then consider the case where P > 1 is a constant, note that

: o (K-1D"\ _
i ) = i 1 () <0
According to L'Hopital’s rule,
P
Hy (S
Jim “K”)—1 (55)

K—o00 HQ((KI;;)P) o

where ¢ is a constant. The detailed proof of (55) is shown
in Appendix B. For any fixed | € N, we denote by E;
the event that 4 entries out of Wy (n),---,W;(n) are 1, and
the remaining [ — ¢ entries are 0. Let its probability be
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7; = Pr(FE;). Since each record size is P, there are at most
P of W;(n) equal to 1, hence 0 < i < min(P,1).
H(VVl-i-l |Wl)"' )Wl) (56)
=LHWita(n) [ Wi(n),--- . Wi(n)) (57)
min(P,l) I
= > (Z> T LH(Wita(n) | Ei) (58)
i=0
l
> (o) L HOVi ()] £4) 59)
= ToLH(Wl+1(7]) | Eo) (60)
Note that
K-nF
TOZPT(EO):(}—(ip)a (61)

and conditioned on Ey, W;41(n) is 0 with probability (K —

- 1)P/(K —1)F, thus
K—1-1DF
H(Wi1(n) | Eo) = Ha <((KfZ)P)> . (62)
Therefore,
HWp | Wi, ,Wh) > 10LH(Wiga(n) | Eo)  (63)
L(K —1)F (K —1-1)F
= H . 4
KF 2( (K — )P ©4)
Substituting ¢ = K into the LHS of (43), we have
K—oo LH ((K 1) )
H(W, — H(W, Wiy,
— lim ( l+1) ( l+Pl | [141]) (66)
K—o00 LHQ((K 1) )
(%) - S, (Y )
< lim 67)
K—o00 HQ((K HF )
(K- (K—1-1)"
. KP H2 ( (K—D)T )
=1— lim =1—-1=0. (68)
K—o0 Hg((K nHF )

Here (68) follows from (55). Therefore, (43) is satisfied, and
based on Theorem 3, the asymptotic capacity is 1 — 1/N.

In summary, for arbitrary constant P the asymptotic capac-
ity of exact private search is 1 — 1/N.

2) NOT Search: Since NOT search essentially is the com-
plement of exact search, the asymptotic capacity of NOT
search is 1 — 1/N.

3) OR Search: For OR search, first we show that any
P > 1 OR search problems can be viewed as P = 1
OR search problem. For example, suppose the alphabet set
is {A,B,C}, ie., K = 3 and record length P = 2.
A user wishes to search for A or B. It is equivalent to the
problem that the alphabet set is all ordered tuples consisting of
{A,B,C}, ie. {AA AB,AC,BA,BB,BC,CA,CB,CC}
and the record length is P’ = 1. Notice that every
character in the new alphabet set is searched for with
the same probability. The user wishes to search for
AA or AB or AC or BA or BB or BC or C'A or CB.
In general, for OR search problem with alphabet size K,
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Ui Us Us Uk
u
M
Wi
[vM] - vM]
Wa
[ylyM]] |y M = y[yM]]
W3

[vyM —~[yM]] M —2|yM — y|yM|] — |y|vyM]]

Fig. 3. Partition of the alphabet to obtain a sequence of dependent messages
for OR search, M = Q(K),P = 1. Here v = M/K. The alphabet
U ={U1,Us,--- ,Uxk} is represented on a straight line.

record length P > 1 and search set size M, it is equivalent to
the OR search problem with alphabet size K’ = K*, record

length P’ = 1 and search set size M’ = K' — (K — M)".
Note that if M = o(K),
M KPP (K-M)P
P
ie. M' = o(K'). Similarly, if M = Q(K),M’' = Q(K’).

Therefore in the following proof of OR private search, we only
consider the case P = 1.

Define v & M/K < 1. When M = o(K), regard
each M-element set as one new symbol and consider mes-
sages corresponding to disjoint search patterns. For example,
suppose the alphabet set is {1,2,---, K}, M = 2, regard
{1,2},{1,3},{2,3}, -+ as new symbols. Consider the mes-
sages corresponding to {1,2},{3,4},{5,6},---. There are
K' = | K/2] such messages. As K — oo, K/ — co. Based
on the proof for the exact search setting, these messages
satisfy (15). Therefore the asymptotic capacity is 1 — 1/N.
For the general case, consider the K/ = |K /M| messages
corresponding to disjoint search patterns. Invoking Theorem 3
we conclude that the asymptotic capacity is 1 — 1/N.

For M = Q(K), by symmetry of the truth function,
searching for a given set is the same as searching for its
complement. The entropy Ha () = Ho(1—-y) and the capacity
as a function of +, is symmetric around v = 1/2. Thus we only
need to consider v = M/K < 1/2. Let us find a sequence
of dependent messages such that (43) is satisfied. Choose W;
corresponding to S7 = {U1,Us, -+ ,Up}. It separates the
alphabet set I/ into 2 parts: Sy of size vK, and U\ S, of size
(1—~)K. Note that yK = M is an integer. Choose the second
message W so that it is comprised of |yM | elements of Sy
and M — [yM | elements of U/\S;. Repeating this step we get
a series of dependent messages, as in Fig. 3.

Note that

H(W)

= LH(7), V. (70)

Since v < 1/2, 7]‘]/\[;1 < LVAJ/\[“ < 1/2. In terms of func-
tion Ha(x), % and LVA]/\I“ are both in the monotonically
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increasing range. When % <1/2,

H(W[Wh)
_ IyM]|\ M M—|yM|\ K-M
LH2< M )K+LH2< K- M ) K
(71)
M -1\ M (K -M)—1\ K—-M
ZLHQ( )E LHQ( K- M ) K
(72)
B VK -1 M y1—-9)K -1\ K- M
‘LHQ( K )K*LHQ( (=Y ) K
(73)
Then we have
KhinooH(WﬂWl) > LH;(v) = H(Wh), (714)
= lim H(Wa|Wh) = H(W), (75)

When % > 1/2, MI;B\];” and V(lzf_]\lﬁfl are in
non-monotonic range, (72) is still true. Due to the symme-
try, we only need to show M=vM] s closer to 1 /2 than

(K—M)—1 KM
W.W@have
M—-|yM] 1
K- M 2
M — |yM] 1
==t _ i 76
KM v+ 5 (76)
M —|yM| M—~M 1
_ M| gl 1 a7
K-M K-M 2
M = |yM| 1
T k-Mm 277 (78)
<1 1, (79)
< %o 5 T
P (80)
“K-M
And
1 M—-—~yM-1
2 K—-M
1 M—-—yM-1
= - - —— — 1
5 Kx_ 7 1)
1 M—-—~yM—-1 M—-—~M
== - - 2
2 K — M K—M (82)
1
=s+x— " (83)
1
> . 84
> (84)

Combining (80) and (84), (72) is satisfied.

Since M = Q(K), there exists a constant 0 < ¢ < 1 such
that v = M/K > c¢ for sufficiently large K. For a given K,
consider the search of only the restricted messages {W; : I <
log, /. VK'}. Note that the number of the restricted messages
goes to infinity as K — oo. Next we prove

H(Wi (W)

lim
LHs(v)

K—oo

=1, VI <log, ., VK.  (85)

4717

According to our choice of the message W; in Fig. 3,
we partition the alphabet into 2! parts at step [. Thus there
are 2171 terms in H(W;|W};_1j). In particular, Vi € [2/71],
the i-th term corresponds to the event that the record symbol
is in the ¢-th part, and we use ¢; to denote its probability.
To bound the ¢-th term, let us use a binary number to represent
i — 1. Let the number of “1”s in the binary number be m;
and m; € [l — 1]. For example, if [ = 4 and 7 = 2, then
i —1 = (001)2, and m; = 1. The size of the i-th part is
between v/~ (1—)™ K —[+1 and /=™ (1—y)™ K +1—1.
Then the i-th term of H(W;|W1,--- ,W;_1) is greater than or
equal to

l—m;+1 m;
AT — ) K =1+ 1
LH & 86
2( Al=mi(1 =)y K +1—1 S
o L
::LH5<1 . ’ﬂlﬁ)”K>-€@ (87)
TR
When K — oo, Vi € [2!71],1 < log; /. VK,
-1 -1
. < M —
Kh_r,noo ’yl_"”(l _ ,y)m,;K - Kh_r,noo 'YZK (88)
Therefore,
SR S S
lim LH, ( S "K> = lim LHy(v). (89)
oo I+ T=miymw oo
Summing up all the terms, we obtain
Klim H(W, Wy, W) > Klim LHs(vy), (90)
= lim H(Wi|Wy,--- ,Wiy) = lim H().  OD

Invoking Theorem 3 at this point, we conclude that the
asymptotic capacity is 1 — 1/N.

4) AND Private Search: For AND search, the record size
P > M, otherwise no record matches. Similar to OR
search, we translate it to OR search with the record size
P’ = 1. For example, consider the alphabet set is {A, B,C},
ie., K = 3 and record length P = 2. A user wishes to
search for A and B. It is equivalent to the problem that the
alphabet set is all ordered tuples consisting of {A, B, C'}, i.e.
{AA,AB,AC,BA,BB,BC,CA,CB,CC} and the record
length is P’ = 1. The user wishes to search for AB or BA.

In general case, for AND search problem with alphabet
size K, search set size M and record length P > M,
it is equivalent to the OR search problem with alphabet
size¢ K/ = KT, record length P’ = 1 and search set size
M’ = o(K'). Here M’ is the number of matching cases
for an AND search, which is a function of P, M, K, i.e.
M’ =T(P,M,K). To show M’ = o(K’), we first calculate
the value of I'(P, M, K). Notice the fact that there are two
cases where a P-symbol length record matches: 1) The first
P — 1 symbols already contain all of the M chosen symbols,
and 2) The first P — 1 symbols only contain M — 1 chosen
symbols. For the first case, the last symbol can be any one in
the alphabet while for the second case, the last symbol must
be the missing symbol and any one of the M symbols could
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be missing. Thus, the value of I'(P, M, K) can be calculated
by recursive equation

I'P,M,K)=KI'(P-1,M,K)
+MI(P—-1,M —-1,K — 1), (92)
with base cases
I(P1,K)=K"—(K-1)7", (93)
NM,M,K)= M\ (94)

Recall that P and M are constants, which do not grow with
K. When K — o0, I'(P,1,K) = o(KP) and T'(M, M, K) =
O(1). Suppose T'(P — 1, M, K) = o(KF~1) and T'(P —

M—1,K—1)=o((K —1)P1),
I(P,M,K)=K-o(K" ")+ M- o((K-1)"")
=o(K"). (95)

Based on mathematical induction, VM and VP > M,

I'(P,M,K) = o(K") = o(K"). (96)

Since the asymptotic capacity of OR search is 1 — 1/N,
the asymptotic capacity of AND search is 1 — 1/N.

5) Sequence Private Search: For sequence search, the non-
trival case is under the condition P > M, otherwise no
record matches. Suppose the chosen sequence is the tuple
S = (Ug,,---,Us,,). Note that here Up, and Uy, can be the
same symbol even through ¢ # j. For sequence search, again
we translate it to OR search with the record size P’ = 1.
Consider the same example where alphabet set is {4, B, C'},
i.e., K = 3 and record length P = 2. A user wishes to search
for a sequence AB. It is equivalent to the problem that the
alphabet set is all ordered tuples consisting of {A, B,C1}, i.e.
{AA,AB,AC,BA,BB,BC,CA,CB,CC} and the record
length is P’ = 1. The user wishes to search for AB.

In general case, for sequence search problem with alphabet
size K, search set size M and record length P > M,
it is equivalent to the OR search problem with alphabet
size K’ = KT, record length P’ = 1 and search set size
M' = o(K'). Here M’ is the number of matching cases
for a sequence search, which is a function of P, M, K, i.e.
M' = ¥(P,M,K). To show M’ = o(K’), note that if
a sequence is contained in a record, every character in the
sequence must be contained in that record,

U(P,M,K) <T(P,m,K) =o(K") = o(K'), (97)

where m = |{Up,, -+ ,Up,}| < M is the number of
distinct searched symbols. Therefore the asymptotic capacity
of sequence search is 1 — 1/N.

D. Proof of Proposition 1

Consider the even values of K as it approaches infinity
so that we have H(Wy(n)) = H(1/2) = 1 bit, i.e., each
message bit is marginally uniform. We prove the proposition
by contradiction. Suppose the asymptotic capacity is 1 — %,
namely, th—>OO m = (1 — %)_
bound (12) is tight for some sequence ki, ko, - - -

1, and suppose the
. Note that
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Fig. 4. Alphabet circle.

message W, corresponds to search set Si,. Then we have the

following equation.

1 1+ ! + ! + - 1 D li
lm - - 1m ——" = 1um -—
N N2 K—oo LH(%) K—oo L

lim H(Wy, (n)) + NH(W’” () [ Wy (1))

K—oo

12

(Wk3( ) | Wkl (77); sz (77)) +.. (98)

N2
Therefore,

1
= lim —(1-
0 im (

K—oo

H(Wi, (n) | Wi, (1))

+ H(Wk3(n) | Wkl (U)asz(U))) T+

REAS
which implies that

i 1 (W () | Wiy () Wes () = 1. (100)

Let us represent Ui, Us, - - -
shown in Fig. 4.

Since Sj, is a contiguous set of K/2 points on the circle,
without loss of generality it may be represented by the red
semi-circle. Wy, () and Wy, (n) are binary random variables.
So if limg oo H (Wi, (n) | Wi, (1)) = 1, then

Jlim H (Wi ()| Wiy (1) = 0) = 1
KIEHOOH(Wk’Q (77) | Wi, (77) = 1) =1

,Ur on an alphabet circle U

(101)
(102)

This is equivalent to, within Sj, half of the points must be
in Sy, and half of the points must be outside Sj,, when
K approaches infinity. Similar for the points outside S, .
Therefore, without loss of generality, Sy, is represented by the
blue semi-circle on the alphabet circle. Note that this divides
the alphabet circle into 4 parts, labeled as A, B,C, D, cor-
responding to (Wlﬁ (77)7 Wk, (77)) = (Oa 0)7 (Oa 1)7 (1a 1)7 (1a 0)7
respectively. Note that each of these spans K /4+o(K) points.

Since limp oo H (Wi (1) | Wiy (n), Wi, (1)) = 1, then
Jim H (Wi (n) | (Wi, (n), W, () = (0,0)) =1, (103)
i H Wiy ()| (W, (), Wi (a)) = 0.1) = 1, (108
Jim H (Wey (n) | (W, (1), Wiy () = (L1) = 1, (105)
Jim H (Wi () | (Wi (n). Wiy () = (1.0) = 1. (106
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Consider (103), it is the sector of the U circle labeled A.
Within this sector Wy, (n) must be uniform, i.e., half of A
must be in Sy, and half of A must be outside Sj,. Similarly,
conditions (104), (105) and (106) imply that half of B, C,
D must be in Sy, and half of B,C, D must be outside S,.
But Sy, is a contiguous semicircle, a continuous semi-circle
cannot overlap with half of each of A, B,C,D. Therefore
we have a contradiction. The contradiction means that either
the asymptotic capacity of OR search with special patterns is
not 1 — 1/N or Theorem 1 is not tight for this OR private
search.

V. CONCLUDING REMARKS

We introduced the private search problem, which requires
PIR with dependent messages (DPIR). We derived a general
converse bound for DPIR, studied its asymptotic behavior,
and combined it with a known general achievability result in
order to characterize the asymptotic capacity of various forms
of private search, which include exact search, OR search,
AND search, NOT search and sequence search. We also
showed through an example that even asymptotic capacity
characterizations for private search are difficult for additionally
constrained message structures.

We note that the sufficient condition in Theorem 3 is
applicable to T-colluding servers [17] or (IV,T)-MDS coded
servers (T < N) [18], i.e.,, for DPIR with T-colluding
servers or (N,T)-MDS coded servers, if there exists an
increasing sequence k; that satisfies (15), then the asymptotic
capacity is 1 — N The converse proof is similar to the proof
of Theorem 3. Following [17], [18], we can obtain a download
lower bound similar to Equation (34),

T T2 Tmfl
DZ <1+N+N2++W>LH(U))

A Wy Wik ) Tmfll (ka 3 Wk [1: 7”71])

N Nm— 1
(107)

With the method in Section IV-B, it is easily proven that

(Wi W
1 kg1 Wy
limy, oo D1y (Ll-}z—ul;)Nl = 0. In terms of the

achievable scheme, one can use the scheme of [35] and set
the parameters K. = 1, X = 0,7 =T,B = 0,U = 0 for
T-colluding servers, and set parameters K. = T, X = 0,
T=1,B=0,U =0 for (N,T)-MDS coded servers.

One future direction is the capacity of private search over
restricted search patterns discussed in section IV-D. Another
future direction is the capacity in non-asymptotic regime.
In contrast to the outer bound matching the achieving rate
in the asymptotic regime, there is a gap between the outer
bound and the achieving rate in the non-asymptotic regime.
Take exact search with P = 1 as an example, when there are
only K = 2 messages, the result is trivial because Wj is a
function of Ws. So there is no privacy for K = 2. Consider
K = 3 and N = 2, suppose the desired message is Wi,
an achievable scheme is shown in Table II.

The “+” in the scheme means XOR operation. a; notates
W1 (i), which is the i-th symbol of the first message. Similarly,
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TABLE 11
ACHIEVABLE SCHEME

Server 1 Server 2
a1, b az, ba
a3 + b as + by
aq +c2 ae + c2
by +c3 bs + c5
a7 +bg+c5 | ag+bg+c3

bi, ¢; notate Wo (i) and W3(7). Based on the problem setting,
dependency only exists among a;, b;, ¢;. The correctness and
privacy of this scheme are inherited from the achievable
scheme of PIR [16] and the dependence.

In this scheme, on one hand due to the dependency among
a;, bi, c;, we achieve the rate R = 0.6617. On the other hand,
according to our outer bound (12), Cps(3,1,1,2) < 0.7337.
There is a gap between the achievable rate and the outer bound.
Bound (12) is an outer bound for general DPIR problems,
and Proposition 1 and this example show that the outer bound
may not be tight for private search. To close the gap, one
might need to improve the converse bound in the future. Note
that for N = 2, K = 3, the PIR capacity is 4/7 < 0.6617.
It shows that in the non-asymptotic regime, dependency among
messages can increase the capacity, which is different from
that in the asymptotic case.

APPENDIX
A. Proof of (45)

Let f(p) = Ha(p) = —plogy(p) — (1 —p) logy(1—p). When
K — 00, 5 — 0 and + — 0. Since limg oo f (7 ) =

0, img o0 f (%) = 0 and both of them are differen-
tiable, L'Hopital’s rule is applicable. Consider the derivative

of f(p),

d —-Dp
— =—1 1 — (108

= log, (1 —p) —log, p = log, —— (109)

Let p = ﬁ and ¢ = % According to L'Hopital’s rule,

f( . ) df dp
. =) . dpdK
T Y T (110)
dq dK
1 1og —D
— im T (111)
K—o00 F]()gQTq
logo(K —t—1
= lim & 2 ) (112)
—1
. . 52 . logy (K—t—1) _
Since limg o0 (KF) =1 and limg fng(Tl) =1,
we obtain
I (#5)
lim —1. (113)

K= f (%)
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B. Proof of (55)

Let f(p) = Haz(p) = —plog,(p) — (1 — p)logy(1 — p).

When K — oo, % — 1 and (Klg—;)P — 1. Since
lim oo f (U554 ) = 0, lim oo f (U535 ) = 0 and
both of them are differentiable, L'Hopital’s rule is applicable.
Letp = S0 and g = E-D° According to L'Hopital
p = Trg—pr— and ¢ = “—7—. According to oOpital’s
rule,
7 (Ss) j_ff_fi
. -t _ p
I(lgnoo f ((Kfl)P) TRk df dq (114
KP -
dg dK
P(K—t—1)P~ Y (K—t)P ! 1—
— lim (k0 loga 5" (115)
e R Ty
P(K—t—1)"" Y (K—t)P ! (K-t)"
o ks logs (s — 1)
I e P(K—1)P-1KP-1 KP
- k2P 10g2 W —1
(116)
Since
P(K—t—1)" "1 (Kk—t)" !
. (K—1)2P B
I(lgnoo P(K—I)P_lKP_l - 1 (117)
B o>
and
P
log, (% - 1)
1Og2 (W — ].)
1 —PE-t)F!
P — P+1
LIHGpﬂlsrule hm (ﬁ*l) In2 (K t 1) + .,
o K—oo 1 . —PKP1 Y
(s 7T
(119)
we obtain
P
7 (YF5)
lim — B0 /g (120)
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