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Abstract— We consider the problem of 7'-Private Information
Retrieval with private side information (TPIR-PSI). In this
problem, N replicated databases store K independent mes-
sages, and a user, equipped with a local cache that holds M
messages as side information, wishes to retrieve one of the
other K — M messages. The desired message index and the
side information must remain jointly private even if any T
of the IN databases collude. We show that tlhe capacity of
TPIR-PSI is gyl + L4+ (%)K7M71 . As a special
case obtained by setting T" = 1, this result settles the capacity
of PIR-PSI, an open problem previously noted by Kadhe et al.
We also consider the problem of symmetric-TPIR with private
side information (STPIR-PSI), where the answers from all NV
databases reveal no information about any other message besides
the desired message. We show that the capacity of STPIR-PSI
is 1 — % if the databases have access to common randomness
(not available to the user) that is independent of the messages,
in an amount that is at least NET bits per desired message bit.

Otherwise, the capacity of STPIR-PSI is zero.

Index Terms— Capacity, private information retrieval, side
information.

I. INTRODUCTION

HE private information retrieval (PIR) problem investi-

gates the privacy of the contents downloaded from public
databases. In the classical form of PIR [1], a user wishes
to, as efficiently as possible, retrieve one of K messages
that are replicated across N non-colluding databases while
preserving the privacy of the desired message index. Since its
first formulation by Chor et al. in [1], the PIR problem has
been studied extensively in computer science and cryptography
under both information-theoretic and computational privacy
constraints [2]-[6]. While studies of PIR typically seek to
optimize both the upload and download costs, recently there
has been a burst of activity aimed at capacity characteri-
zations for information-theoretic PIR under the assumption
of large message sizes, so that the communication cost is
dominated by the download cost [7]-[12]. The capacity of
PIR was defined in [9] as the maximum number of bits of
the desired message that can be privately obtained per bit
of total downloaded information from all the servers. In order
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to summarize some of the capacity results for PIR, let us define
the function W(A,B) = (1+ A+ A%+ + AB_l)_1 for
positive real number A and positive integer B. Correspond-
ingly, U(A,00) =1 — A for A < 1. The capacity of PIR was
characterized in [9] as Cor = ¥(1/N, K). The capacity of
T-PIR, where the privacy of the user’s desired message index
must be protected against collusion among any set of up to
T servers, was characterized in [13] as Cppr = V(T/N, K).
The capacity of symmetric PIR (SPIR), where the user learns
nothing about the database besides his desired message, was
shown in [14] to be Cyr = ¥(1/N, 00), and the capacity of
STPIR, with both symmetric privacy and robustness against
collusion among any 7' servers, was characterized in [15] as
Csww = U(T/N,00). A number of other variants of PIR
have also been investigated, such as PIR with MDS coded
storage [12], multi-message PIR [16], multi-round PIR [17],
secure PIR [18], and PIR with side information [19]-[29].
Especially relevant to this work is the problem of PIR with side
information.

The recent focus on the capacity of PIR with side informa-
tion started with the work on cache-aided PIR by Tandon [19],
where the user has enough local cache memory to store a
fraction 7 of all messages as side information. In this model,
the side information can be any function of the K messages
(subject to the storage constraint) and is globally known to
both the user and all the databases. The capacity for this setting
is characterized in [19] as ¥(1/N, K)/(1 —r).

Different from [19] which allows side information to be
an arbitrary function of the messages, the side information
in [20] (and in this paper) can only take the form of M
Sfull messages cached by the user. Within this model there are
several interesting variations depending on the constraints on
the privacy of the side information.

o PIR-GSI, or PIR with global side information, implies

that the side information is globally known.

¢ PIR-SI, i.e., PIR with (non-private) side information,
corresponds to the case that the side information is not
globally known, but the privacy of the side information
need not be preserved.

o PIR-PSI, or PIR with private side information, refers to
the setting where the joint privacy of both the desired
message and the side information must be preserved. This
is the focus of the paper.

o PIR-SPSI, or PIR with separately private side informa-
tion, refers to the setting where the privacy of the desired
message and the privacy of side information must each be
separately preserved (although their joint privacy need not
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be preserved). In Appendix A we provide some insights

into the capacity of PIR-SPSI.
Out of these four settings, PIR-GSI is rather trivial, and
PIR-SPSI has not been studied at all, perhaps because there
is insufficient practical motivation for such an assumption.
However, the remaining two variants, PIR-PSI and PIR-SI,
have indeed drawn much attention, starting with the work of
Kadhe et al. in [20].

For PIR-SI with a single database (N = 1), Kadhe et al.
showed in [20] that the capacity is [MLH]_l. The single-
database setting has seen rapid progress in various direc-
tions [23]-[29]. However, PIR-SI with multiple databases
turns out to be considerably more challenging. In [20],
Kadhe et al. provided an achievable scheme for PIR-SI with
multiple databases (N > 1), which achieves the rate ¥(1/N,
[K/(M++1)]). In spite of some progress in this direction [27],
the capacity of PIR-SI generally remains open' for multiple
databases. In addition, the works in [21], [22] consider a
different form of side information instead of full messages.

For PIR-PSI with a single database, Kadhe et al. found
in [20] that the capacity is (K — M)~!. The capacity of PIR-
PSI with more than one database was left as an open problem
in [20]. Remarkably, neither a general achievable scheme nor
a converse was known in this case. It is this open problem
that motivates this work.

The first contribution of this work is to show that the
capacity of PIR-PSI is Chrpss = Y(1/N,K — M), for an
arbitrary number of databases [V, thus settling this open
problem. This allows us to completely order? the four variants
of PIR with side information that are listed above, in terms
of their capacities as PIR-SI > PIR-SPSI > PIR-PSI = PIR-
GSI. Remarkably, all the inequalities can be strict for certain
parameters.

As a generalization, we show that the capacity of TPIR-
PSI, i.e., PIR-PSI where up to 7T databases may collude,
is Crprpst = U(T/N, K — M). Evidently, the effect of private
side information on capacity is the same as if the number
of messages in TPIR was reduced from K to K — M [13].
Similar to the case with non-colluding databases, this is also
the capacity if the side information is globally known to all
databases as well.

As the second contribution of this work, we characterize
the capacity of STPIR-PSI, i.e., PIR with private side infor-
mation with symmetric privacy and robustness against any
T-colluding servers. We show Crpres = ¥(T/N,00), pro-
vided that the databases have access to common randomness
(not available to the user) in the amount that is at least
T /(N —T) bits per queried message bit. Otherwise, the capac-
ity of STPIR-PSI is zero. Note that this is identical to the
capacity of STPIR with no side information [15].

The converse in [27] does not cover the scope of PIR-SI, because the
privacy condition assumed in [27] is not a necessary condition for PIR-SI
schemes.

2Based on progressively tighter privacy constraints, it is already immediately
obvious that in terms of their capacities, the settings can be partially ordered
as PIR-SI > PIR-SPSI > PIR-PSI, and PIR-SI> PIR-GSI. The main result
of this work shows that PIR-PSI has the same capacity as PIR-GSI, thus
allowing a complete ordering.
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The remainder of this paper is organized as follows.
Section II presents the problem statements. Section III
presents the main results, i.e., the capacity characterizations of
TPIR-PSI and STPIR-PSI. The proofs of the capacity results
are presented in Section IV and Section V, and we conclude
with Section VI.

Notation: We use bold font for random variables to dis-
tinguish them from deterministic variables, that are shown in
normal font. For integers z1 < 2o, [21 : 22| represents the
set {z1,21 + 1,--+, 20} and (z1 : z2) represents the vector
(21,2141, -+, 2z2). The compact notation [z] represents [1 : z]
for positive integer z. For random variables W;, 7 = 1,2,...,
and a set of positive integers S = {s1,$2, -+, Spn}, Where
s1 < 82 < < sy, the notation Wg represents the
vector (W, , Ws,,---, W, ). For a matrix G and a vector
S, the notation G[S, :] represents the submatrix of G' formed
by retaining only the rows corresponding to the elements of
the vector S. For a matrix G, its transpose is denoted as G'.
IF, represents the finite field of size g.

II. PROBLEM STATEMENTS

A. TPIR-PSI: T-Private Information Retrieval With Private
Side Information

The TPIR-PSI problem is parametrized by (K, M, N,T).
Consider K independent messages W g} = (W1, -+, Wk),
each containing L independent and uniform bits, i.e., their
entropy satisfies

HWy,-- \Wg)=HWi)+---+HWkg), (1)
H(W;)=---=H(Wk)=L. 2

There are N databases and each database stores all K mes-
sages Wy, --- , Wpg. A user is equipped with a local cache
and has M (M < K) messages as side information. Let
S = {41,142, -+ ,ip} be M distinct indices chosen uniformly
from [K]. These M cached messages are represented as
Ws = (W, - ,W;,,). S is not known to the databases.
A user wishes to retrieve Wg, where ® is a message index
uniformly chosen from [K] \ S, as efficiently as possible,
while revealing no information about (©, .S) to any colluding
subsets of up to " out of the N databases. Note the following
independence,

K

i=1
In order to retrieve Wg, the user generates N queries
[16’3], e ,QE\?’S] with the knowledge of (©,S,Wg).
Since the queries are generated with no knowledge of the other
K — M messages, the queries must be independent of them,

I (G,S, Ws, Q%% ,QE?’S];W[K]\S) =0. @

The user sends query Q?’S] to the n'" database and in
response, the nth database returns an answer AL@’S] which
is a deterministic function of QL@’S] and W[ K]

H(AleS) Qs Wy, Wi ) =0. (5
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Upon collecting the answers from all N databases, the user
must be able to decode the desired message Weg based on the
queries and side information,

[Correctness] H (W@ | A{ﬁ]’S]’Q%]@VJS], Ws, S, @) =0. (6)

To satisfy the user-privacy constraint that any 7' collud-
ing databases learn nothing about (@, S), the information
available to any 7' databases (queries, answers and stored
messages) must be independent of (®,S). * Let 7 be any
subset of [1 : NJ, of cardinality | 7| = 7. Q[7(? 5] represents the
vector of queries corresponding to Q[n ’S],n eT. A[Te Ss
defined as the answer vector corresponding to AL@’S} ,neT.

To satisfy the T-privacy requirement we must have
VI C[1:N,|T|=T

[User privacy] I (@ S; Q [©.5] A[G o W[K]) =0. 7

A TPIR-PSI scheme is called feasible if it satisfies the
correctness constraint (6) and the user-privacy constraint (7).
For a feasible scheme, the TPIR-PSI rate indicates asymptot-
ically how many bits of desired information are retrieved per
downloaded bit, and is defined as follows.

L
Ripiwoes: = li{r;o 5 (8)
where D is the expected (over all ®, S, W[ K] and random
queries) total number of bits downloaded by the user from
all the databases. The capacity, Crpgrps;, 1S the supremum of
Riorres Over all feasible schemes.

B. STPIR-PSI: Symmetric T-Private Information Retrieval
With Private Side Information

In symmetric 7T-colluding private information retrieval,
an additional constraint is imposed: database privacy, which
means that the user does not learn any information about W g
beyond the retrieved message, Weg, and the side information,
Ws. To facilitate database privacy, suppose the databases
share a common random variable U that is not known to
the user. It has been shown that without such common
randomness, symmetric PIR is not feasible when there is
more than one message [6], [14]. The common randomness
is independent of the messages, the desired messages index,
and the side information index, so that

H((-)aSth"' aWKvU)
K
=H(©,8)+Y H(W;)+H(U). )
=1

3Note that the joint privacy of (®, S) is a stronger constraint than the mar-
ginal privacy of each of ® and S, i.e., I(®, S; QL,G’S], ALIG’S], W[K]) =
both  1(©; Q5 AP Wy = 0 and
A[e 51 W[ ) = 0. However, the reverse is not true, i.e.,
even 1f both 1(©; Q% Q’S], A[f)’s], WKk1) = 0 and
1(8;Q 5 AP w) = 0, i imply  that
1(®, S; Q[® s], A[® Wi =o.

0 1mplles
1(S; Q7

does not
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The answermg string AL 1 is a deterministic function of

Qn W[ K] and common randomness U,

H (An®7S] | Q'[n@“S’ 7W15 e 7WK7 U) = 0. (10)

The correctness condition is the same as (6). The user-privacy
condition is VZ C [1: N|,|T|=T

[User privacy] ((‘) S Q[QS [®7S],W[K],U) =0. (11

Database privacy requires that the user learns nothing about
W@ = W[K]\({@}Ufg),.i.e., messages other than his
desired message and the side information. Therefore,

[DB privacy] [ (W@ Qv AN e,8, Ws) —0. (12)

An STPIR-PSI scheme is called feasible if it satisifes the
correctness constraint (6), the user-privacy constraint (11) and
the database-privacy constraint (12). For a feasible scheme,
the STPIR-PSI rate indicates how many bits of desired
information are retrieved per downloaded bit. The capacity,
Csrropst> 18 the supremum of rates over all feasible STPIR-PSI
schemes.

III. MAIN RESULTS

The following theorem presents our first result, the capacity
of TPIR-PSI.

Theorem 1: For the TPIR-PSI problem with K messages,
N databases and M (M < K) side information messages,
the capacity is

T T\ 2 N\ K-M-1\
CTPIR—PSIZ <1+N+ (N) 4+ 4+ (N) )

= U(T/N,K — M), (13)

where W(A,B) = (1+ A+ A?+ - + AB—l)_1

The following observations place Theorem 1 in perspective.

Remark 1: The expression Crrps equals the capacity of
TPIR with K — M messages [13]. Evidently, the impact of
private side information is equivalent to reducing the effective
number of messages from K to K — M.

Remark 2: Remarkably, the capacity expression in (13)
matches the capacity for the setting where the side informa-
tion is assumed to be globally known, i.e., if the M side
information messages are globally known, then the capacity
is also Cpres = Y(T/N,K — M). This can be seen as
follows. The achievable scheme is the TPIR scheme of [13]
after the cached messages are eliminated. To prove the con-
verse by contradiction, suppose the capacity is greater than
U(T/N,K — M). Then there is a scheme II that achieves
a larger rate than U(T/N, K — M) in the presence of the
M globally known messages. Consider a TPIR problem with
K — M messages and no side information. From [13] we
know that its capacity is W(T'/N, K — M). It can be assumed
that there are M globally known dummy messages. With this
globally known side information, the user can use scheme II
to retrieve the desired message while achieving a rate larger
than U(T'/N, K — M), thus exceeding the capacity of TPIR,
i.e., creating a contradiction. Therefore, the capacity of TPIR
with globally known side information is W(T'/N, K — M).
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Remark 3: It is worthwhile to place the previous remark
in perspective with the capacity results in [19], where it is
also assumed that the side information is globally available.
Chrest 18 in general less than the capacity expression found
in [19]. The reason is that Cpres is the capacity for a setting
where the side information can only be M full messages
(excluding the desired one). However, in [19], the side infor-
mation is allowed to be any function of all messages. The
relaxed setting of [19] should allow a higher capacity in gen-
eral. For example, if 7' = 1 and the amount of side information
is ML bits, then the capacity result of [19] corresponds to
the expression W(1/N, K)/ (1 — 2£). It is easy to verify that
Cromos = V(1/N,K — M) < U(1/N,K)/ (1 —2%) when
N > 2, K > 2 M € [K — 1]. Aside from this superficial
distinction, it is notable that the essential insight in both
settings is the same. The best strategy in the setting of [19] is to
cache % portion of each message and use the protocol of the
original PIR scheme [9] to download the uncached portion.
What this means is that if the side information is globally
known, then there is nothing better than removing the side
information from the effective messages. The expression for
Chprast Teflects the same insight — the role of globally known
side information is to reduce the effective number of messages
by M. The authors of [21] also give a similar explanation for
the scheme in [19].

Remark 4: Now we can completely order the four variants
of PIR with side information, in terms of their capacities
as PIR-SI > PIR-SPSI > PIR-PSI = PIR-GSI. Remarkably,
all the inequalities can be strict for certain parameters. For
example, as will be shown in Appendix, suppose we have
K = 6 messages stored at N = 1 database, and M = 2 of
these messages are available to the user as side-information.
Then for this example, the capacity of PIR-SI is 1/2 while
the capacity of PIR-SPSI is no more than 1/3, so that
PIR-SI > PIR-SPSI. Now suppose we have K = 6 messages
stored at N = 1 database, and M = 1 of these messages
is available to the user as side-information. Then for this
example, the capacity of PIR-SPSI is 1/3 while the capacity
of PIR-PSI is only 1/5, so that PIR-SPSI > PIR-PSL

Our second result is the capacity of STPIR-PSI, presented
in the following theorem.

Theorem 2: For the STPIR-PSI problem with K > 2
messages, IV databases and M (M < K) side information
messages, the capacity is

1, it M =K -1,
C. 1 I if M < K—1and p > r (14)
=1 1— =, i —1 an
STPIR-PSI N p= N_T’
0, otherwise,
where p = @ is the amount of common random-

ness available to the databases, normalized by the message
size.

The following observations are in order.

Remark 5: When there is only K = 1 message, or when
there are M = K —1 side information messages, the database-
privacy constraint is satisfied trivially, so STPIR reduces to the
TPIR setting and the capacity is 1. Note that for symmetric

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

PIR without side information, when K > 2, the common
randomness is necessary for feasibility. However, for STPIR-
PSI, if there are M = K — 1 side information messages, then
common randomness is not needed.

Remark 6: When K > 2 and M < K — 1, then Cgrpraps
only depends on the number of databases N, the colluding
parameter 7', and the amount of common randomness. It is
independent of the number of messages K and the number of
side information messages M.

Remark 7: The capacity of STPIR-PSI is strictly smaller
than the capacity of TPIR-PSI, which means that the additional
requirement of preserving database privacy strictly penalizes
the capacity. However, the penalty vanishes in the regime of
large number of messages, i.e., Crprpest > Csprest fOr any finite
K and Crgress — Csress When K — o0o. This observation
also holds for the case without side information.

Remark 8: Cyprps 18 equal to the capacity of STPIR
without side information, which is characterized in [30].
Furthermore, the capacity result remains the same even if
the side information is globally known.* Thus, utilizing the
private or globally known side information does not help
improve the capacity.

IV. PROOF OF THEOREM 1

A. Achievability

The backbone of the achievable scheme for TPIR-PSI
with parameters (K, M, N,T) is the achievable scheme of
TPIR [13]. We inherit the steps of the query structure con-
struction and query specialization. The novel element of the
achievable scheme is query redundancy removal based on the
side information. To illustrate how this idea works, we present
one toy example with (K, M,N,T) = (3,2,3,2), and then
generalize it to arbitrary (K, M, N, T).

1) Example With (K, M,N,T) = (3,2,3,2). Let us start
with the case without side information (K, M,N,T) =
(3,0,3,2), ie., there are 3 messages, 3 databases and any
2 of them can collude. Following the construction of [13],
let each message consist of L = N¥ = 27 symbols from
a finite field F, that is large enough so that a systematic
(28,19) maximum distance separable (MDS) code exists. The
MDS property implies that any 19 out of the 28 codeword
symbols is sufficient to recover all 19 information symbols.
A systematic code is a code in which the information symbols
are embedded in the codeword symbols [31]. According to
the query structure construction and query specialization for
TPIR [13], the messages Wi, Wy, W3 € IE‘§7 are 27 x 1
column vectors and let Y7, Y>, Y3 € F27 27 represent random
matrices chosen privately by the user, independently and
uniformly from all 27 x 27 full-rank matrices over F,. Let
Gex s denote the generator matrix of an (e, f) MDS code
(e.g., a Reed Solomon code), for some integers e, f. The
generator matrices need not be systematic or random, and
may be globally known. Define the 27 x 1 column vectors

4The explanation is similar to that for TPIR with globally known side
information as in Remark 2.
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TABLE I
ACHIEVABLE SCHEME OF TPIR [13]

DB DBo DB3
ai,az,as, a4 as,ag,ar,as ag,aio, a1, a1z
b1,b2,b3,b4 bs, bs, b7, bs by, b1o, b11, b12
c1,c2,C3,C4 c5,C6,C7,Cs €9, €10, C11, C12

a3 + bis ais + bis a2 + b7
aig + big a6 + bie az2 + big
ai7 + ci3 aig + c15 a3 + c17
aig + cia azo + ci6 a4 + c18
big + c19 bo1 +c21 bo3 + co23
boo + c20 b2 + c22 bog + c24
ags +bos +co5 | aze +bag +c26 | a7 +bar +car

a(1:27), b(1:27), C(1:27) S ]F37 as fOHOWS.

a(.on = Y1Wh, (15)
b1:1s) = Gisx12Y2[(1 : 12),:]Wy, (16)
c1s) = Gisx12Y3[(1: 12),:]Ws3, (17)
blroar) = GoxsYa[(13 : 18), ;] W, (18)
coam = GoxeY3[(13 1 18), | W, (19)

where Y3[(1 : 18),:] and Y3[(1 : 18),:] are 18 x 27 matrices
comprised of the first 18 rows of Y> and Y3, respectively.
Note that the same generator matrix Gigx12 is used in (16)
and (17), and the same generator matrix Gy is used in (18)
and (19).

The downloaded symbols from each database are repre-
sented in Table I. We use DB, to represent the i*" database.
It correctly recovers the queried message and maintains user
privacy even if 2 databases collude. The achieved rate is
Ry = 9/19, namely, in this scheme the user recovers 9
desired symbols from a total of 19 downloads symbols from
each database.

Now let us consider the case with side information
(K,M,N,T)=(3,2,3,2), i.e., 2 of the messages are known
to the user as side information. Assume the user knows
W5y and W3 as side information and wishes to retrieve
W,. He does not need to download individual symbols
of Wy, W3, or the linear combinations comprised of only
Wy, W3 symbols, ie., bj,c;,1 < ¢ < 12 and b; + cj,
19 < 57 < 24 in Table 1. Therefore, 10 redundant symbols
may be reduced from each database. Let us take the step of
query redundancy removal. The idea is that the user asks each
database to encode the 19 original downloaded symbols with a
systematic (28, 19) MDS code and downloads only the 9 linear
combinations corresponding to the non-systematic part, called
parity symbols. Formally, let G¢,  denote the generator matrix
of a systematic (e, f) MDS code. The generator matrix does
not need to be random, and it may be globally known. For ¢ =
1,2,3, denote by vector X; € F,? the symbols downloaded
from DB; after the query structure construction and query spe-
cialization (symbols in the DB; column in Table I). The user
asks each database to encode X; with a systematic (28,19)
MDS code generator matrix Ggy19 = [Viexo | Tiox19]’
where I19x19 is the identity matrix, and downloads only the 9
linear combinations corresponding to the parity part, V{g o X.

The correctness constraint is satisfied because of the
property of MDS code and the correctness of the original
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TPIR scheme. Given (bz’)ie[12]7 (Cz’)ie[12]7 (b; + Ci)ie[19:24]»
VigwoX1, Vg9 X2 and Vg, o X3, the user is able to decode
X1, X5 and X3, which constitute the original TPIR scheme.
The privacy is essentially inherited from the original PIR
scheme and the fact that the MDS code is fixed a priori,
i.e., it does not depend on (®,.S). Thus, the rate achieved
with private side information iS Ryprps = 27/27 = 1 which
gives a lower bound on the capacity.

1) Arbitrary (K, M,N,T): Scheme description. For the
sake of completeness, let us briefly introduce the original TPIR
achievable scheme in [13]. In this scheme, the message is
L = N¥ symbols from a large enough finite field F,, and the
normalized total download is 1+ & + -+ + (%)% 71 It has
two key steps: 1) query structure construction and 2) query
specialization.

1) Query Structure Construction: Construct the query struc-
ture. After this step, the query of each database is comprised
of K layers. Over the k'" layer, the query symbols are in the
form of sums of k£ message symbols, each from one distinct
message, called k-sum. There are (Ik() possible “types" of
k-sums and (N — T)*='TX-F distinct instances® of each
type of k-sum in k" layer. So, the total number of elements
contained in layer k is (Ik() (N — T)k=1TK=k Therefore,
the total number of symbols to be downloaded from each
database is > p—, (X)(N — T)¥~1TK~*, This structure has
two properties: symmetry across databases and message sym-
metry within the query from each database. Symmetry across
databases means that the queries among the databases have
the same structure (i.e., the same form of k-sums). Message
symmetry implies that within the query of each database, any
set of M messages determines the same number of k-sums,
1<k <M.

2) Query Specialization: Map the message symbols to the
symbols in the query structure. This step is to ensure the
correctness and privacy.

Now we are ready to present the achievable scheme for
arbitrary (K, M, N,T). First do query structure construction
and query specialization without considering the side
information, and denote the scheme by II. Then do query
redundancy removal based on the side information. Due to
symmetry across databases and message symmetry within the
query from each database, regardless of the realization of side
information, the number of queried symbols and the number of
known symbols (based on the side information) in each query
are constants. For each database, let p; denote the number of
symbols to be downloaded in II. Out of these p; symbols, let
p2 (p2 < p1) denote the number of user known symbols.
Denote by vector X; € L' the symbols downloaded
from DB; in II. For each database, use a systematic
(2p1 — p2,p1) MDS code with generator matrix
Gprl —p2)XPp1 [VPIX(PI —p2) | Ipl Xpl}, to encode the
p1 symbols into 2p; — po symbols, of which p; are
systematic, and download only the p; — po parity symbols,
V! X.

p1X(p1—p2)

5The term (N —T)*~1TX=F comes from the undesired message exploita-
tion step (Step 4) of achievability in [13] and can be verified recursively.
A detailed analysis of a similar flavor can be found in [9].
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Note that the user does not need to know the realization
of side information S or Wg in order to construct the
queries. This is because the systematic MDS code in the query
redundancy removal does not depend on S or Wg. During
the decoding, S and Wy are only used after the answers
from the databases are collected. Therefore, the privacy of this
TPIR-PSI scheme is inherited from the privacy of the original
TPIR scheme. Correctness follows from the MDS property
because in addition to the p; — po downloaded symbols from
DB;, i.e., ‘/;71><(2p1 pQ)XZ-, the user provides the p, symbols
that he already knows, to obtain a total of p; symbols from
the MDS code. Since any p; symbols from an MDS code
suffice to recover the original p; symbols, the user recovers
X;. Then the correctness is inherited from the correctness of
the original TPIR scheme. All that remains is to calculate the
rate achieved by this scheme.

Rate calculation. Consider the scheme II, the total
downloaded symbols from each database pi = >, (%)
(N — T)k=1TK =k The next step is to calculate, out of these
p1 symbols, how many are already known to the user based on
his side information. Suppose the user knows the M messages
Wi, Wiy, {81, ,im} € [K] as side information
beforehand. Thus the user knows all linear combinations that
are comprised of symbols from these M messages. In terms
of layer k (k < M), the user knows all the instances of k-
sum that contain only symbols W; ,Wj,,--- , Wj, , where
{41,d2, - ,Je} < {i1,- - ,im}. So the total number of
symbols known to the user corresponding to each database

is po = Zk 1 ( J(N — T)*=*TK =k Notice that p; can be
simplified as,
= K
p1=>» (N-T)Firk* < k) (20)
k=1
SN -TpTER —TE
= N_T (2D
NK _ TK
=—F 22
N_T (22)
And ps can be simplified as,
M u
pa=Y (N-— T)’“lTK’“< L > (23)
k=1
- M
:TK—M N—-T k—lTM—k’ 24
;( ) . (24)
TKfM(NM _ T]\l)
= 25
N_T (25)

From each database the number of downloaded symbols of
desired messages can be calculated as,

K-1
k—1mK—k _ K-l
m= kglN Ty T <k;—1>N ) (26)

Therefore, the rate achieved is
Nm

TPIRPSI — 77\ 2
e = o= 1) 7
NE-1(N —T)

" (NK —TK) _TK-M(NM _TM) (28)
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(29)

7N\ KMl -1
¥ '+<N> ) . (30)

This gives a lower bound on the capacity of TPIR-PSI, thus
completing the proof of achievability for Theorem 1.

Il
—
_|_
|~

_|_

B. Converse

Let S be a set whose elements are all possible realizations
of S,ie,S={S]|5c[K]|S| =M} We will need the
following lemmas.

Lemma 1: For all S; € S, 0 € [K]\ S1, S2 C \Sl,
and 7 C [N],|T| =T, given § = 51,0 = 0, A

S1USs

(Q[T(B,S]7 Wslusz) o Q{ﬁ]\S]T is a Markov chain.

Proof: In this proof, to be convenient, denote & =
and & = [K]\ (S1 U Ss). It is equivalent to prove

(A[GS,QGS] |Q[@S ng,@ZQ,stl):O.

By the chain rule of mutual information,

I(A[T@vs],wgz, Q% 1Y S],W51a9:9,5:51)
—1 (AL?,S];Q{%@ QS W 0= 0.5 - 51)
+I(W52, Q%% |A[®S7Q[T®xs]7ng,@:9,S:51)
=1 (W€2§Q{3]€T QP W, ©=6,8 = Sl)
+1 (AP QI | QP Wi, ©

Therefore,
(A[@ S],Q[® ,S] | Q[® ,S] W£17® = 0,5 = Sl)

:9,5:51).

—I(Wsz,Q{?\S]TIQ[es] W, ©=0,5=51)
+1 (AP QI%L | QY Wi, 0 =0,5=51)

[@ 5]

[NI\T | A[® S]7Q[® S W517

—1(We,iQ ©=0,5=5)

(3D
Consider the first RHS mutual information term in (31),
1 (We.; Q{ﬁ]\s,[ QP We, 0 =0,5 = 51)
-y (Wgz, QI WSMZ, ©=0,8= 51)
-1 (W[K]\ siws Qr
=0,

| We,,©=0,8 = 51) (32)
(33)

where (33) holds because of (1) and (4). The second RHS
mutual information term in (31) satisfies

(AP Q%T 1 QP Wik, © = 6,5 = 81) =0

because of (5). At last, the RHS negative mutual information
term in (31) must also be zero because the LHS mutual
information cannot be negative. Thus

(A[®S7Q@S] |Q[@s ng,eze,szsl)zo
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Lemma 2: For all S € S, 0,0/ ¢ and

T CN|IT|=T

(K] \ S,

H (A[:?’S] 1 QS We,Ws,0 =0,8 = S)
- (A[@’S] 1 QIS We, Ws, 0 =0, 8 = S) . (34)
(A[@S | QoS! WS,Q:H,S:S)
:H(A[TG’S | QL€ ’S],Ws,@ze’,szs). (35)

Proof: Tt follows from the user-privacy constraint (11) and

the non-negativity of mutual information, that for all §' € S,
T CINLIT|=T

(@Q[@S, @s] W[K|S S) 0,

€ [K]\ S,
H<Q'[T®7S]5A'[;B7S];W9;WS | e = H,S: S)

(36)

which implies that V6, 6’

—H (QL[@’S],A[T@’S], Wy, Ws|© =08 = S) . 37
H(QPS, Wy, Ws |©=0,5=5)

H(Q?’S],mes |®=9’,S:S). (38)

Subtracting (38) from (37) yields (34). Equation (35) is
similarly obtained. [ ]

Before presenting the general converse, let us start with
a simple example (K, M,N,T) = (3,1,3,2) for ease of
exposition.

1) Converse for (K,M,N,T) = (3,1,3,2): The total
download is bounded as,
D> HARGY Q3% Ws,©,8) (39)
0,s] @ s
> min HARGY | QR Ws 0=6,5=5). (40)

0E[KI\S
We will derive a lower bound on the entropy in (40) that holds
for all (6, .9).

For (K, M,N,T) = (3,1, 3,2), without loss of generality
suppose message W is known as side information and Wy
is desired. Let S = {1}. We bound the total download as,

D>H( A9 Q9 W1,®:2,S:S)
(43"
:H(W2|Q®’S] W1,®:2,S=S)

(41)

W2 | Q% W@ =2,5=5) @)

+H (A7 1QT Wi, =2,8=5) @)
> L+ 0 (AlgT QT Wiy, 0 =2,5 = 5) @4
L+ H (Agvsl QIS Wy 0=2.5= S) (45)
— L+ H (A5 Q5% Wiy, 0 =3,5=5) 46)
>+ 0 (AT QI W, =3,5=5) @)

where (44) holds because of (2), (4), the chain rule and non-
negativity of entropy. Equation (45) holds due to Lemma 1.
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Equation (46) holds because of Lemma 2. Similarly,

{2,3}

D=L+ (A3

Adding (47), (48), (49) and divided by 3 we have

D2L+H(A[®S|Q®S]W ©=385= S) (48)

[
3
Q5% Wy @:3,5:5). (49)

D>L+1H< {?QS}]|QES W[2]7®=3,S:S)
21 (A5 Q) Wiy 0=3,5=5)
g 103w -s5-5) o
2L+§H( 57 1Q5 7 Wy, 0=3,5=5) 1)
:L+§L (52)
_ gL. (53)

Here (51) follows from Han’s inequality, and (52) holds
because from (W[Q],AE ] ,QS’S], ©® =3,5=5) one can
recover W3 with vanishing probability of error. Since the
same argument holds for all realizations (®, S) = (6, .S), this
gives us the upper bound on the capacity of TPIR-PSI with
(K,M,N,T)=(3,1,3,2) as Crpprs < 2.

2) Converse for Arbitrary (K, M,N,T): If M = K — 1,
it is trivial that 1 is an upper bound, since any rates cannot be
larger than 1. So let us assume that M < K — 1. For compact
notation, let us define

D(K,5.0,v) 2 H (A" Q%

Here Wiy = (Wi, Wy, -+, Wy,) represents the messages
that appear in the conditioning. Also, define an arbitrary
7T C [N] with cardinality |7| = T which represents the set of
indices of colluding databases.

Without loss of generality, suppose messages Wy, ---, Wi
are known as side information and Wy, is desired. Then,
we have

D(K,[M],M +1, M)

= HART QN Wiy, © =M +1,8 =

W[V],®=6,5=S) .

[M])
@i (AT We | QYT Wiy, @=M+1,5=[M))
:H<W@|Q®’S] Wi, ®:M+1,S:[M])

+ 1 (AR QYT Wing, © = M +1,8 = [M]).
Note that
H(We | Q3% Wing,© = M +1,8 = [M]) = L

since messages are independent, and queries are independent
of the messages. And

H (A[®,S] | Q[@ ,5] Winrar,© = M +1, S — [M])

S (A[® 81| Q[@ .S Wi, © =M +1,8 = [M]) (54)
:H( AleS QoS w @ =M+, S:[M]) (35
= H (Al@ ol Q'[T@ sl Wi, =M +2,8 = [M]) (36)
> " (A[® S QI Winrir, ©=M+2,8 = [M]) ;o (D
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where equation (55) holds because of Lemma 1. Equation (56)
holds because of Lemma 2. There are a total of () such
subsets 7. Writing (57) for all such subsets, adding those
inequalities and divided by (1}[) we obtain

D(K [M], M +1, M)

>— H (A{g]s | Q%]evjs];W[M-H]?@ =M+28= [M])
+L (58)

T
=L+ DK, [M], M +2,M + 1), (59)

where (58) follows from Han’s inequality. Proceeding along
these lines, we have

D(K,[M],M +1, M)
L DK, M), M +2, M +1)

2L+N (60)
>LTLTDKMM3M2 61
= +N +N ( a[ ]7 + 9, +) (61)
= 62)
T T

>L+N<L+-~ N<L+ —D(K, [M],K,K—1)>>
(63)

where D(K, [M], K, K — 1) > L. Therefore,

D(K,[M],M +1, M)

T 7\ K-M-1
>L+NL+'”+<N) L (64)

T T\ E-M-1

The above argument holds similarly for any (6, .S), and hence
the upper bound on the rate of TPIR-PSI is
L
R= lim —
im -

L—o0

(e Ee () e ()

Thus, the proof of converse for Theorem 1 is complete.
Remark 9: The converse can also be proved alternatively
by a genie-aided approach using the capacity of TPIR-
GSI of Remark 2 as follows. Starting from the TPIR-PSI
problem, suppose we provide the indices of the side infor-
mation S to all the databases, so the side information is
now globally known and only the privacy of the desired
message needs to be preserved. Any schemes for TPIR-
PSI are applicable to this TPIR-GSI setting, because they
preserve the privacy of the desired message index even after
the side-information is revealed. This is because TPIR-PSI
schemes satisfy [ (@ S; Q [©,5] A[@ 5] W[K]) = 0, which

in turn implies that [ (@;QTQ’S],A[T@’S],W[M | S) = 0.
Therefore,

CTPIR-PSI < CTPIR-GSI

(R )
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V. PROOF OF THEOREM 2
A. Achievability

When M = K — 1, the user can download the sum of all
the messages from one database and get the desired message
with side information. The rate is 1, achieving the capacity.
Note that in this case, common randomness among databases
is not required. When M < K — 1, the achievable scheme
can directly use the scheme of STPIR [14], [15], and the side
information is simply not used.

B. Converse

When M = K — 1, it is obvious that 1 is an upper bound.

When M < K — 1, we show that 1 — % is an upper bound.

a) Proof of the bound R < 1—T/N: Let us start with an
intuitive understanding of the upper bound, R < 1—T/N. Due
to database privacy, given the side information, the answers
from all NV databases should be independent of the non-queried
messages. At the same time, the answers from any 7" databases
should contain no information about the queried message
index since the user privacy must be preserved. Combining
these two facts, given the side information, the answers from
any T databases should contain no information about any
individual message, whether desired or undesired. As a result,
the useful information about the desired message must come
from the remaining N — T databases. Thus, the download per
database must be at least 1/(N — T') times the entropy of the
desired message.

The formal proof is as follows. Since M < K — 1, for
any S € &, there exist at least 2 messages that are not in
the set S. Any feasible STPIR-PSI scheme must satisfy the
database-privacy constraint (12),

_ .0l©:51 41©.5]
0=1(WesiQ” A" I Ws.5.0)  ©6)
Therefore, VI C [N],|7| = T,¥S € S, and for all distinct
0,0 € [K]\ S,

O:I(WewA[@’S],Q[T@’S] | Ws,©=0,8 = S) (67)
—I(Wgz Q951|WS,®:9,S:S)

+I<
=1 (AP QP ws,0=6,5=5)

Wo; APS | Q0S| ws @ =0,5 = S) (68)

_H( Al®sl | gle-s] Ws7W9'7@=97S:S) (69)

(34) (A[es |Q®S] Ws,®=9,S:S)

— i (AP QP W, Wy, 0 =0, 5 = 5) (0)
where (67) holds because 7 is a subset of [N] and (69) holds

due to (4). According to the correctness condition,
L=H (Wy)
(6)

1(Wo; AT | Ws, Q%@ =05 =5) 1)
=1 (AR Ws. QY% 0 =0, 5=5)
— i (A7 | We. W5, QN @ = 0.5 = 5) (72
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0,5] ©,S
< (A" ws. QY 0=0,5=3)

— 1 (AP Wy, Ws, QY7 0= 0,5 =5) 73)
_ g (al@s Q©s) ;
— 1 (A7 W, QY% e =05 =3)
—H( APS w, ws, QoS e :9’,5:5) (74)
(70) [©,8] @s] ’

(A" 1 ws. Q%Y 0=0,5=5)

—H (AP w5, QP e =05 =5) (75)
(35) [©,8] [@s] /

H (A | W, Q%" @ =05 =5)
— 1 (AP | ws, QP e =05 = 5) (76)
< (A% ws. QY 0=0,5=3)
—H( AP ws, QYT e =0 5= 5) 7

where (74) follows due to Lemma 1. Writing (77) for all

T C 1: NJ,|T| = T, adding those inequalities and divided
by ) we obtaln
L<H( 7 Ws, Q% e =05 =)
-y ZH( P Ws, QYT @ =0,5=5) (8
T
<H (A[N] | Ws,Q%, @ =0,5=5)

T [©,5] [©,5]
fNH(A[N] | Ws, Q[ @=0,5= S)

_ T [©,5] ©.5] & o o
_(17N)H(A[N] | Ws, Q% ,9_9,5_5) (80)

)

where (79) is due to Han’s inequality. Since this inequality is
true for all S € §,0" € [K]\ S, it is also true when averaged
across them, so,

T ©.5] | [@ Sl
T [©,5]

< <1 - N) (A% (82)
T

< _

< <1 N) D, (83)

where (82) holds because dropping conditioning does not
reduce entropy. Therefore, R = limy_. é <1- 4, and
we have shown that the rate of any feasible STPIR-SI scheme
cannot be more than 1 — %

b) Proof of the bound p > T'/(N —T): Let us first explain
the intuition behind this bound on the size of the common
randomness U that should be available to all databases but not
to the user. We have already shown that the normalized size
of the answer from any individual database must be at least
L/(N —T). Due to the user and database privacy constraints,
the answers from any 7' databases are independent of the
messages. Therefore, to ensure database privacy, the amount
of common randomness must be no smaller than the size of
the answers from 7" databases.

The formal proof is as follows. Suppose a feasible
STPIR-PSI scheme exists that achieves a non-zero rate. Then
we show that it must satisfy p > T/(N —T).For § =5 € S
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and for © = 0 € [K]\ S, consider the answering strings
A[le’s], e AB\(?’S] and the side information Wg, from which
the user can retrieve Wy. According to the database-privacy
constraint, we have

)

0=1(Wyg: A% | We, Q5% 0 = 0,5 = 5)

© I(W— AT Wy | W, QY @ =05 = 5)

iI(W—, o W Ws, Qi @ =6.5= 5)

> (W(GS), AR Wy, ws, QYT @ =05 = S)

_ (A[@S | We. Ws. Q%" © :9,5:5)

—H( AP Wi, Q%Y e 79,5:5)

@H( AP W, W, QI @ =6.5= 5)

—H (AP Wi, QY% e =05 =5)

+H (AP | Wik, Q3 U@ = 0,5 = 5)

=1 (AP W, Ws, Q3% @ = 0,5 = 5)
— 1 (U AP Wiy, Q%% @ = 0,5 = 5)

> H (A[®S|W9,WS, [GS,Gzé,st)—H(U)

(7:0)H( AlPS  wg Q1% @ :9’,5:5)—H(U)

D (AR W, @ 0 =0,5=5) - H(U).
Therefore,

H(U)zH( AlPS wg Q%) @ _e,szs). (84)
Adding (84) for all 7 C [N],|7| = T and divided by (}),
we obtain,

H(U)z%H(AeSHWS, el @—9,8 s) (85)

> %H (A% 1 Ws, Q%% 0=0,5=5) 36
(820)% N]\—[T)L_ (NJ:T) L. (87
= p:H(U) > (letting L — o0). (88)

Note that (85) is due to Han’s inequality. Thus the amount of
common randomness normalized by the message size for any
feasible STPIR-PSI scheme cannot be less than 7'/(N — T).

VI. CONCLUSION

In this paper, the capacity of TPIR-PSI and the capacity of
STPIR-PSI are characterized. As a special case of TPIR-PSI
obtained by setting 7" = 1, the result settles the capacity of
PIR-PSI, an open problem highlighted by Kadhe et al. in [20].
Notably, the results of our work (initially limited to capacity of
PIR-PSI for T' = 1 as reported in our original ArXiv posting
in 2017 [32]) have subsequently been generalized to multi-
message PIR-PSI in [33]. Other generalizations, e.g., PIR-PSI
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with multi-round communication, secure and/or coded stor-
age, remain promising directions for future work, as are the
capacity characterizations for PIR-SI (multiple databases) and
PIR-SPSI which remain open.

APPENDIX
SOME INSIGHTS ON THE CAPACITY OF PIR-SPSI

The four variants of PIR with side information are defined

as follows.

o PIR-SI, or PIR with (non-private) side information.
Only the privacy of the desired message is preserved,
ie, I g(a; Qe W[K]) —0,¥n € [N].

o PIR-SPSI, or PIR with separately private side infor-
mation. The privacy of the desired message and the
privacy of the side information are preserved individually,
e, 1(©;Q17 W) = 1(5:Q17, wiq) =0,
Vn € [N].

o PIR-PSI, or PIR with jointly private side information.
The privacy of the desired message and the privacy

of the side information are preserved jointly,
ie, I <s® S; QIS W) = 0,vn € [N].
o PIR-GSI, or PIR with global side information. The side

information is globally known, i.e., the databases are also
fully knowledgeable about the side information. In this
case, the privacy of the desired message index must be
preserved in spite of the globally known side information,
1(©:Q%% Wik | §) =0,vn e [N].

From the result of Theorem 1 we know the capacity
of PIR-PSI is U(1/N,K — M), and from Remark 2 that
follows Theorem 1 we also know the capacity of PIR-GSI
is U(1/N, K — M). The capacity of PIR-SI is known to be
[ML_H]” for N = 1 database from [20]. In spite of various
attempts the capacity of PIR-SI remains in general an open
problem for multiple databases. The remaining setting of PIR-
SPSI has not been studied, perhaps due to lack of practical
motivation for this setting. Nevertheless, out of technical
curiosity, let us present some insights into the capacity of
PIR-SPSI. We will focus only on the single database setting,
i.e., N =1 in this section.

A. PIR-SPSI: N =1, M =1, K Even

For this setting the
K -1 |'K‘|—1 ie.,

capacity of PIR-SPSI is
the same as the capacity of
PIR SI. Slnce PIR-SPSI is a more constrained version of
PIR-SI, its capacity cannot be higher than that of PIR-SI.
Thus, the converse is trivial. It turns out that the achievability
is also straightforward because the Partition and Code
scheme in [20] already preserves the separate privacy of
side information. Let us present just an example to illustrate
this. Suppose N = 1,M = 1,K = 6, and suppose each
message is comprised of one bit. Let 6 denote the desired
message index and s denote the index of the message
available as side information to the user. The user asks the
database for three bits, corresponding to the three partitions:
P1 = Wil + Wiz,PQ = Wi3 + Wi4,P3 = Wi5 + Wiﬁ.
The indices (i1,%2,--- ,i6) are obtained by first randomly
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permuting (1,2,---,6) and then switching the position of
the side information index s with another index (if needed)
so that it appears within the same partition as 6, i.e., one
of the partitions must contain Wy + W,. The scheme is
correct because the user can recover Wy from the sum
Wy + Wy (because Wy is already available to the user as
side information). It is easily verified that § and s are each
uniformly distributed over (i1,i2,--- %), so the scheme
preserves their separate privacy. However, since 6,s must
appear in the same partition, it is also clear that their joint
privacy is not preserved. For example, (6, s) cannot be equal
to (i1,43). The general scheme in [20] works for any even
K by partitioning the messages into sets of size 2, one of
which contains both 6 and s. Each of # and s is uniformly
distributed over the indices but they are not jointly uniform.

B. PIR-SPSI: N =1, M =1, K Odd

For this

Settlllg alSO the CapaCIty Of PIR—SPSI 1S
( )
2

= [5£]7!, the same as the capacity of PIR-SL
Once again, the converse is trivially inherited from PIR-SI.
Achievability requires a small modification to the Partition and
Code scheme of [20], as explained next. Let us also illustrate
this through an example. Suppose N = I, M = 1, K =7
and each message is comprised of one symbol from, say Fs.
The user asks the database for 4 symbols, corresponding to
P1 = Wil + Wiz’ P2 = Wi3 + Wu, P3 = Wi5 + Wiﬁ + Wi7,
and Py = W;, +2W;, + 3W;.. In fact, P3, P, can be the non-
systematic symbols of any (5, 3) systematic MDS code applied
to Wi, , Wi, , Wi.. Once again, the indices (i1,1i2, -+ ,i7) are
obtained by first randomly permuting (1,2,---,7) and then
switching the position of the side information index s with
another index (if needed) so that it appears within the same
partition as 6. If Wy and W, appear in P; or P, then
Wy is decoded by subtracting the side-information, while
if Wy and W, appear in partitions Ps, P, with interfering
message W;, then after eliminating the known side information
W, the two equations can be solved for the remaining two
variables Wy, W; (equivalently, the MDS property guarantees
decodability). Once again, it is easily verified that # and s
are each uniformly distributed over (iy,ia,--- ,i7), so the
scheme preserves their separate privacy. However, since 6, s
must appear in the same partition, it is also clear that their
Jjoint privacy is not preserved. The example generalizes to
any odd value of K, by constructing (K + 1)/2 partitions
of the form W,;, + W;,, Wis + Wi ooy Wige_s + Wi;(_;;»
WiK72 + WiK71 -+ WiK and WiK72 + QWZ'K71 + 3WiK,
and generating the indices (41,42, ,ix) by first randomly
permuting (1,2,---,K) and then switching the position of
the side information index s with another index (if needed) so
that it appears within the same partition as . This ensures that
0 and s are each uniformly distributed over (i1,i2, - ,ik),
so the scheme preserves their separate privacy. However, since
0, s must appear in the same partition, it is also clear that their
Jjoint privacy is not preserved.

C. PIR-SPSI: N=1, M =2 K=6

The preceding discussion shows that PIR-SI and PIR-SPSI
have the same capacity for N = 1, M = 1. Let us now present
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an example to show that the capacity of PIR-SPSI can be
strictly less than the capacity of PIR-SI in general. For this
example, let us consider KX = 6 messages stored at N = 1
database, out of which M = 2 messages are available to the
user as side information. From [20] we know that the capacity
of PIR-SI for this example is 1/2. Incidentally, this is achieved
by downloading two partitions, namely W;, + W;, + W,
and W;, + W,. + W,,, where the indices (i1,i2,-- ,ig)
are generated by first randomly permuting (1,2,---,6) and
then switching indices if necessary to place the two side
information indices into the same partition as #. Note that
this scheme does not preserve the privacy of side information
indices, e.g., (i1,44) cannot be both side information indices
(because side information indices must be within the same
partition). We will show that for this example the capacity of
PIR-SPSI is no more than 1/3, i.e., strictly smaller than the
capacity of PIR-SIL

Let us denote the entropy of each message as L bits.
We will show that conditioned on each realization of the query,
the download from the database must be at least 3L bits, which
also proves that the average download must be at least 3L
bits. To set up a proof by contradiction, let us assume that
conditioned on the query realization Q = ¢, the download A
from the database is less than 3L bits. This assumption implies
that,

H(A|Q=q) < 3L. (89)

The conditioning on Q = ¢ will be assumed throughout the
remainder of this proof.

We need some preliminary work before we start the core of
the converse proof. To have compact notation, for any subset
P C [K], let us define

HA(Wp) £ H (A]Q=q.Wi\p)-

Intuitively, Ha (Wp) represents the entropy that remains in
the answer A due to messages Wp (after all other messages
are known), i.e., the ‘space’ occupied by the messages Wp in
A. We need the following facts.

Lemma 3: The following facts hold for PIR-SPSI with
N=1,M=2K =6.

1) If P is a singleton set, e.g., P = {k}, then we must

(90)

have
Ha(Wy) > L, Vk € [K]. 91)
2) If P, C P, C [K], then
Ha(P1) < Ha(P2). 92)

3) If ® = 0 is the desired message index, S = (s1, s2) are
the M = 2 side information indices, and [, m, n are the
3 remaining indices representing inferfering messages,
then we must have,

Hpa (Wi, Wy, Wy,) < 2L
Ha(Wy, W;) > 2L, Vi € {l,m,n}.

93)
94

Proof: The first fact, (91) holds because given the answer
A and all messages except W, (which must include the side

information), the user must be able to decode W}, therefore
L=1Wi;A|Q=qWikpixy) < Ha(Wy). The next fact,
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(92) is simply the statement that conditioning reduces entropy.
The third fact, (93) is quite intuitive, as it says that the space
occupied by interference must be less than 2L bits because
the overall download is less than 3L bits, out of which L bits
are needed for the desired message. Formally, this can be seen
as follows.

L=1Wgp;A|Q=q,W,,,Ws,) (95)
=HA|Q=q, W, ,Ws,)
—H(A | Q=q,Ws,,W,,, W) (96)
SH(A | QZQ)_HA(VVthaWn) 97)
<3L— Ha(W;,W,,, Wp,) (98)

which implies (93). Finally, the last fact, (94) is also quite
intuitive. It says that the desired information must not align
with interference so that the user is able to resolve the two.
Formally, for any ¢ € {l,m,n}, because the user must be
able to decode his desired message from A and his side
information,

L=1Ws; A|Q=q,Wikpio,i}) (99)
= HA(Wy, W;) — HA(W;) (100)
< HA(Wp, Wy)—L (101)

which implies (94). Note that we used (91) to obtain (101). H
With these preliminary facts established, let us now proceed
with the core of the converse argument. Since the query
preserves the privacy of the side information, all choices of
(s1,$2) must be equally likely. In particular they must all be
feasible (have non-zero probability) from the database’s per-
spective. Note that because the database knows Q = ¢, it can
evaluate H(Wp) forall P C [K]. Let (a, b, ¢, d, e, f) represent
some permutation of (1,2,---,6). The main reasoning now
proceeds through the following steps.
1) Consider (s1,s2) = (a,b). Since this must be feasible,
there must exist another index in [K] that could be
a desired message, i.e., that satisfies facts (93), (94).
Without loss of generality, let ¢ be this index, so that,

HA(Wd,We, Wf) < 2L, (102)
Ha(W.,W;) > 2L, Vi€ {de f}. (103)
2) Now consider (s1,$2) = (b,c¢). This must also be

feasible, so there must exist an index in [K] which can
be a desired message. Based on (102), and the fact (94)
the database can conclude that this index must be a. This
is because all other indices lead to contradictions. For
example, if the desired message is W, then from (94)
we must have Ha (W4, W,) > 2L, which contradicts
the fact that Ha (Wy, W,) < Ha(Wq, We, Wy) < 2L
according to (92) and (102). Similarly, the desired
message index cannot be e or f either, leaving a as the
only possibility. Now (94) implies that we must have
HA(Wa; WZ) 2 2L7 Vi € {dvevf}' (104)

3) Next, consider (s1,s2) = (e, f). This must also be
feasible, so there must exist an index in [K] which can
be a desired message. Based on (103), (104) and the fact
(93) the database can conclude that this index must be d.
This is because all other indices lead to contradictions.
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4)

The

For example, if the desired message is a, then from (93)
we must have Ha (W, W, W,) < 2L. Along with (92)
this implies that Ha (W., W;) < 2L which contradicts
(103). Similarly, the desired message index cannot be
b or c either, leaving d as the only possibility. Now (93)
implies that we must have

HA(W,, Wy, W,) < 2L. (105)

Finally, consider (s1,s2) = (a,d). This must also be
feasible, so there must exist an index in [K] which
can be a desired message. However, it turns out that
every choice of this desired message index leads to a
contradiction. For example, suppose the desired mes-
sage index is b. Then according to (94) we must have
Ha(Wy, W,) > 2L, which contradicts with the combi-
nation of (105) and (92). All other indices are similarly
ruled out, leaving us with an unavoidable contradiction.
contradiction proves that the download must be at least

3L bits, which in turn implies that the average download
must be at least 3L bits, and therefore the capacity cannot be
more than 1/3. The exact capacity even for this simple setting
remains an intriguing open problem. Remarkably, if the capac-
ity is less than 1/3 then that would imply that having more
side-information is counterproductive for PIR-SPSI (because if
M is reduced from 2 to 1 then we do know from the preceding
discussion in this section that the capacity of PIR-SPST is 1/3).
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