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Abstract— We consider the problem of T -Private Information
Retrieval with private side information (TPIR-PSI). In this
problem, N replicated databases store K independent mes-
sages, and a user, equipped with a local cache that holds M
messages as side information, wishes to retrieve one of the
other K − M messages. The desired message index and the
side information must remain jointly private even if any T
of the N databases collude. We show that the capacity of

TPIR-PSI is 1 +
T
N

+ · · · +
T
N

K−M −1
−1

. As a special

case obtained by setting T = 1, this result settles the capacity
of PIR-PSI, an open problem previously noted by Kadhe et al.
We also consider the problem of symmetric-TPIR with private
side information (STPIR-PSI), where the answers from all N
databases reveal no information about any other message besides
the desired message. We show that the capacity of STPIR-PSI
is 1 −

T
N

if the databases have access to common randomness
(not available to the user) that is independent of the messages,
in an amount that is at least T

N −T
bits per desired message bit.

Otherwise, the capacity of STPIR-PSI is zero.

Index Terms— Capacity, private information retrieval, side
information.

I. INTRODUCTION

T
HE private information retrieval (PIR) problem investi-

gates the privacy of the contents downloaded from public

databases. In the classical form of PIR [1], a user wishes

to, as efficiently as possible, retrieve one of K messages

that are replicated across N non-colluding databases while

preserving the privacy of the desired message index. Since its

first formulation by Chor et al. in [1], the PIR problem has

been studied extensively in computer science and cryptography

under both information-theoretic and computational privacy

constraints [2]–[6]. While studies of PIR typically seek to

optimize both the upload and download costs, recently there

has been a burst of activity aimed at capacity characteri-

zations for information-theoretic PIR under the assumption

of large message sizes, so that the communication cost is

dominated by the download cost [7]–[12]. The capacity of

PIR was defined in [9] as the maximum number of bits of

the desired message that can be privately obtained per bit

of total downloaded information from all the servers. In order
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to summarize some of the capacity results for PIR, let us define

the function Ψ(A, B) =
(

1 + A + A2 + · · · + AB−1
)−1

for

positive real number A and positive integer B. Correspond-

ingly, Ψ(A,∞) = 1−A for A < 1. The capacity of PIR was

characterized in [9] as CPIR = Ψ(1/N, K). The capacity of

T -PIR, where the privacy of the user’s desired message index

must be protected against collusion among any set of up to

T servers, was characterized in [13] as CTPIR = Ψ(T/N, K).
The capacity of symmetric PIR (SPIR), where the user learns

nothing about the database besides his desired message, was

shown in [14] to be CSPIR = Ψ(1/N,∞), and the capacity of

STPIR, with both symmetric privacy and robustness against

collusion among any T servers, was characterized in [15] as

CSTPIR = Ψ(T/N,∞). A number of other variants of PIR

have also been investigated, such as PIR with MDS coded

storage [12], multi-message PIR [16], multi-round PIR [17],

secure PIR [18], and PIR with side information [19]–[29].

Especially relevant to this work is the problem of PIR with side

information.

The recent focus on the capacity of PIR with side informa-

tion started with the work on cache-aided PIR by Tandon [19],

where the user has enough local cache memory to store a

fraction r of all messages as side information. In this model,

the side information can be any function of the K messages

(subject to the storage constraint) and is globally known to

both the user and all the databases. The capacity for this setting

is characterized in [19] as Ψ(1/N, K)/(1 − r).
Different from [19] which allows side information to be

an arbitrary function of the messages, the side information

in [20] (and in this paper) can only take the form of M
full messages cached by the user. Within this model there are

several interesting variations depending on the constraints on

the privacy of the side information.
• PIR-GSI, or PIR with global side information, implies

that the side information is globally known.

• PIR-SI, i.e., PIR with (non-private) side information,

corresponds to the case that the side information is not

globally known, but the privacy of the side information

need not be preserved.

• PIR-PSI, or PIR with private side information, refers to

the setting where the joint privacy of both the desired

message and the side information must be preserved. This

is the focus of the paper.

• PIR-SPSI, or PIR with separately private side informa-

tion, refers to the setting where the privacy of the desired

message and the privacy of side information must each be

separately preserved (although their joint privacy need not
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be preserved). In Appendix A we provide some insights

into the capacity of PIR-SPSI.

Out of these four settings, PIR-GSI is rather trivial, and

PIR-SPSI has not been studied at all, perhaps because there

is insufficient practical motivation for such an assumption.

However, the remaining two variants, PIR-PSI and PIR-SI,

have indeed drawn much attention, starting with the work of

Kadhe et al. in [20].

For PIR-SI with a single database (N = 1), Kadhe et al.

showed in [20] that the capacity is # K
M+1$

−1. The single-

database setting has seen rapid progress in various direc-

tions [23]–[29]. However, PIR-SI with multiple databases

turns out to be considerably more challenging. In [20],

Kadhe et al. provided an achievable scheme for PIR-SI with

multiple databases (N > 1), which achieves the rate Ψ(1/N,
#K/(M+1)$). In spite of some progress in this direction [27],

the capacity of PIR-SI generally remains open1 for multiple

databases. In addition, the works in [21], [22] consider a

different form of side information instead of full messages.

For PIR-PSI with a single database, Kadhe et al. found

in [20] that the capacity is (K −M)−1. The capacity of PIR-

PSI with more than one database was left as an open problem

in [20]. Remarkably, neither a general achievable scheme nor

a converse was known in this case. It is this open problem

that motivates this work.

The first contribution of this work is to show that the

capacity of PIR-PSI is CPIR-PSI = Ψ(1/N, K − M), for an

arbitrary number of databases N , thus settling this open

problem. This allows us to completely order2 the four variants

of PIR with side information that are listed above, in terms

of their capacities as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI = PIR-

GSI. Remarkably, all the inequalities can be strict for certain

parameters.

As a generalization, we show that the capacity of TPIR-

PSI, i.e., PIR-PSI where up to T databases may collude,

is CTPIR-PSI = Ψ(T/N, K −M). Evidently, the effect of private

side information on capacity is the same as if the number

of messages in TPIR was reduced from K to K − M [13].

Similar to the case with non-colluding databases, this is also

the capacity if the side information is globally known to all

databases as well.

As the second contribution of this work, we characterize

the capacity of STPIR-PSI, i.e., PIR with private side infor-

mation with symmetric privacy and robustness against any

T -colluding servers. We show CTPIR-PSI = Ψ(T/N,∞), pro-

vided that the databases have access to common randomness

(not available to the user) in the amount that is at least

T/(N−T ) bits per queried message bit. Otherwise, the capac-

ity of STPIR-PSI is zero. Note that this is identical to the

capacity of STPIR with no side information [15].

1The converse in [27] does not cover the scope of PIR-SI, because the
privacy condition assumed in [27] is not a necessary condition for PIR-SI
schemes.

2Based on progressively tighter privacy constraints, it is already immediately
obvious that in terms of their capacities, the settings can be partially ordered
as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI, and PIR-SI≥ PIR-GSI. The main result
of this work shows that PIR-PSI has the same capacity as PIR-GSI, thus
allowing a complete ordering.

The remainder of this paper is organized as follows.

Section II presents the problem statements. Section III

presents the main results, i.e., the capacity characterizations of

TPIR-PSI and STPIR-PSI. The proofs of the capacity results

are presented in Section IV and Section V, and we conclude

with Section VI.

Notation: We use bold font for random variables to dis-

tinguish them from deterministic variables, that are shown in

normal font. For integers z1 < z2, [z1 : z2] represents the

set {z1, z1 + 1, · · · , z2} and (z1 : z2) represents the vector

(z1, z1+1, · · · , z2). The compact notation [z] represents [1 : z]
for positive integer z. For random variables Wi, i = 1, 2, . . . ,
and a set of positive integers S = {s1, s2, · · · , sn}, where

s1 < s2 < · · · < sn, the notation W S represents the

vector (Ws1
, Ws2

, · · · , Wsn
). For a matrix G and a vector

S, the notation G[S, :] represents the submatrix of G formed

by retaining only the rows corresponding to the elements of

the vector S. For a matrix G, its transpose is denoted as G′.

Fq represents the finite field of size q.

II. PROBLEM STATEMENTS

A. TPIR-PSI: T -Private Information Retrieval With Private

Side Information

The TPIR-PSI problem is parametrized by (K, M, N, T ).
Consider K independent messages W [K] = (W1, · · · , WK),
each containing L independent and uniform bits, i.e., their

entropy satisfies

H(W1, · · · , WK) = H(W1) + · · · + H(WK), (1)

H(W1) = · · · = H(WK) = L. (2)

There are N databases and each database stores all K mes-

sages W1, · · · , WK . A user is equipped with a local cache

and has M (M < K) messages as side information. Let

S = {i1, i2, · · · , iM} be M distinct indices chosen uniformly

from [K]. These M cached messages are represented as

W S = (Wi1 , · · · , WiM
). S is not known to the databases.

A user wishes to retrieve WΘ, where Θ is a message index

uniformly chosen from [K] \ S, as efficiently as possible,

while revealing no information about (Θ, S) to any colluding

subsets of up to T out of the N databases. Note the following

independence,

H(Θ, S, W1, · · · , WK) = H(Θ, S) +

K
∑

i=1

H(Wi). (3)

In order to retrieve WΘ, the user generates N queries

Q
[Θ,S]
1 , · · · , Q

[Θ,S]
N with the knowledge of (Θ, S, WS).

Since the queries are generated with no knowledge of the other

K − M messages, the queries must be independent of them,

I
(

Θ, S, WS, Q
[Θ,S]
1 , · · · , Q

[Θ,S]
N ; W [K]\S

)

= 0. (4)

The user sends query Q
[Θ,S]
n to the nth database and in

response, the nth database returns an answer A
[Θ,S]
n which

is a deterministic function of Q
[Θ,S]
n and W [K],

H
(

A[Θ,S]
n | Q[Θ,S]

n , W1, · · · , WK

)

= 0. (5)
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Upon collecting the answers from all N databases, the user

must be able to decode the desired message WΘ based on the

queries and side information,

[Correctness] H
(

WΘ | A
[Θ,S]
[N ] , Q

[Θ,S]
[N ] , W S, S,Θ

)

=0. (6)

To satisfy the user-privacy constraint that any T collud-

ing databases learn nothing about (Θ, S), the information

available to any T databases (queries, answers and stored

messages) must be independent of (Θ, S). 3 Let T be any

subset of [1 : N ], of cardinality |T | = T . Q
[Θ,S]
T represents the

vector of queries corresponding to Q
[Θ,S]
n , n ∈ T . A

[Θ,S]
T is

defined as the answer vector corresponding to A
[Θ,S]
n , n ∈ T .

To satisfy the T -privacy requirement we must have

∀T ⊂ [1 : N ], |T | = T ,

[User privacy] I
(

Θ, S; Q
[Θ,S]
T , A

[Θ,S]
T , W [K]

)

= 0. (7)

A TPIR-PSI scheme is called feasible if it satisfies the

correctness constraint (6) and the user-privacy constraint (7).

For a feasible scheme, the TPIR-PSI rate indicates asymptot-

ically how many bits of desired information are retrieved per

downloaded bit, and is defined as follows.

RTPIR-PSI ! lim
L→∞

L

D
, (8)

where D is the expected (over all Θ, S, W[K] and random

queries) total number of bits downloaded by the user from

all the databases. The capacity, CTPIR-PSI, is the supremum of

RTPIR-PSI over all feasible schemes.

B. STPIR-PSI: Symmetric T -Private Information Retrieval

With Private Side Information

In symmetric T -colluding private information retrieval,

an additional constraint is imposed: database privacy, which

means that the user does not learn any information about W[K]

beyond the retrieved message, WΘ, and the side information,

WS . To facilitate database privacy, suppose the databases

share a common random variable U that is not known to

the user. It has been shown that without such common

randomness, symmetric PIR is not feasible when there is

more than one message [6], [14]. The common randomness

is independent of the messages, the desired messages index,

and the side information index, so that

H (Θ, S, W1, · · · , WK , U)

= H (Θ, S) +

K
∑

i=1

H (Wi) + H(U). (9)

3Note that the joint privacy of (Θ,S) is a stronger constraint than the mar-

ginal privacy of each of Θ and S, i.e., I(Θ,S; Q
[Θ,S ]
T , A

[Θ,S ]
T , W [K]) =

0 implies both I(Θ; Q
[Θ,S ]
T , A

[Θ,S ]
T , W [K]) = 0 and

I(S; Q
[Θ,S ]
T , A

[Θ,S ]
T , W [K]) = 0. However, the reverse is not true, i.e.,

even if both I(Θ; Q
[Θ,S ]
T , A

[Θ,S ]
T , W [K]) = 0 and

I(S; Q
[Θ,S ]
T , A

[Θ,S ]
T , W [K]) = 0, this does not imply that

I(Θ,S; Q
[Θ,S ]
T , A

[Θ,S ]
T , W [K]) = 0.

The answering string A
[Θ,S]
n is a deterministic function of

Q
[Θ,S]
n , W [K] and common randomness U ,

H
(

A[Θ,S]
n | Q[Θ,S]

n , W1, · · · , WK , U
)

= 0. (10)

The correctness condition is the same as (6). The user-privacy

condition is ∀T ⊂ [1 : N ], |T | = T ,

[User privacy] I
(

Θ, S; Q
[Θ,S]
T , A

[Θ,S]
T , W[K], U

)

= 0. (11)

Database privacy requires that the user learns nothing about
W (Θ,S) = W [K]\({Θ}∪S), i.e., messages other than his

desired message and the side information. Therefore,

[DB privacy] I W (Θ,S); Q
[Θ,S ]
[N] , A

[Θ,S ]
[N] ,Θ, S, W S = 0. (12)

An STPIR-PSI scheme is called feasible if it satisifes the

correctness constraint (6), the user-privacy constraint (11) and

the database-privacy constraint (12). For a feasible scheme,

the STPIR-PSI rate indicates how many bits of desired

information are retrieved per downloaded bit. The capacity,

CSTPIR-PSI, is the supremum of rates over all feasible STPIR-PSI

schemes.

III. MAIN RESULTS

The following theorem presents our first result, the capacity

of TPIR-PSI.

Theorem 1: For the TPIR-PSI problem with K messages,

N databases and M (M < K) side information messages,

the capacity is

CTPIR-PSI =

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)K−M−1
)−1

= Ψ(T/N, K − M), (13)

where Ψ(A, B) =
(

1 + A + A2 + · · · + AB−1
)−1

.

The following observations place Theorem 1 in perspective.

Remark 1: The expression CTPIR-PSI equals the capacity of

TPIR with K − M messages [13]. Evidently, the impact of

private side information is equivalent to reducing the effective

number of messages from K to K − M .

Remark 2: Remarkably, the capacity expression in (13)

matches the capacity for the setting where the side informa-

tion is assumed to be globally known, i.e., if the M side

information messages are globally known, then the capacity

is also CTPIR-GSI = Ψ(T/N, K − M). This can be seen as

follows. The achievable scheme is the TPIR scheme of [13]

after the cached messages are eliminated. To prove the con-

verse by contradiction, suppose the capacity is greater than

Ψ(T/N, K − M). Then there is a scheme Π that achieves

a larger rate than Ψ(T/N, K − M) in the presence of the

M globally known messages. Consider a TPIR problem with

K − M messages and no side information. From [13] we

know that its capacity is Ψ(T/N, K −M). It can be assumed

that there are M globally known dummy messages. With this

globally known side information, the user can use scheme Π

to retrieve the desired message while achieving a rate larger

than Ψ(T/N, K − M), thus exceeding the capacity of TPIR,

i.e., creating a contradiction. Therefore, the capacity of TPIR

with globally known side information is Ψ(T/N, K − M).
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Remark 3: It is worthwhile to place the previous remark

in perspective with the capacity results in [19], where it is

also assumed that the side information is globally available.

CTPIR-GSI is in general less than the capacity expression found

in [19]. The reason is that CTPIR-GSI is the capacity for a setting

where the side information can only be M full messages

(excluding the desired one). However, in [19], the side infor-

mation is allowed to be any function of all messages. The

relaxed setting of [19] should allow a higher capacity in gen-

eral. For example, if T = 1 and the amount of side information

is ML bits, then the capacity result of [19] corresponds to

the expression Ψ(1/N, K)/
(

1 − M
K

)

. It is easy to verify that

CTPIR-GSI = Ψ(1/N, K − M) < Ψ(1/N, K)/
(

1 − M
K

)

when

N ≥ 2, K ≥ 2, M ∈ [K − 1]. Aside from this superficial

distinction, it is notable that the essential insight in both

settings is the same. The best strategy in the setting of [19] is to

cache M
K

portion of each message and use the protocol of the

original PIR scheme [9] to download the uncached portion.

What this means is that if the side information is globally

known, then there is nothing better than removing the side

information from the effective messages. The expression for

CTPIR-GSI reflects the same insight — the role of globally known

side information is to reduce the effective number of messages

by M . The authors of [21] also give a similar explanation for

the scheme in [19].

Remark 4: Now we can completely order the four variants

of PIR with side information, in terms of their capacities

as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI = PIR-GSI. Remarkably,

all the inequalities can be strict for certain parameters. For

example, as will be shown in Appendix, suppose we have

K = 6 messages stored at N = 1 database, and M = 2 of

these messages are available to the user as side-information.

Then for this example, the capacity of PIR-SI is 1/2 while

the capacity of PIR-SPSI is no more than 1/3, so that

PIR-SI > PIR-SPSI. Now suppose we have K = 6 messages

stored at N = 1 database, and M = 1 of these messages

is available to the user as side-information. Then for this

example, the capacity of PIR-SPSI is 1/3 while the capacity

of PIR-PSI is only 1/5, so that PIR-SPSI > PIR-PSI.

Our second result is the capacity of STPIR-PSI, presented

in the following theorem.

Theorem 2: For the STPIR-PSI problem with K ≥ 2
messages, N databases and M (M < K) side information

messages, the capacity is

CSTPIR-PSI =















1, if M = K − 1,

1 −
T

N
, if M < K − 1 and ρ ≥

T

N−T
,

0, otherwise,

(14)

where ρ = H(U)
L

is the amount of common random-

ness available to the databases, normalized by the message

size.

The following observations are in order.

Remark 5: When there is only K = 1 message, or when

there are M = K−1 side information messages, the database-

privacy constraint is satisfied trivially, so STPIR reduces to the

TPIR setting and the capacity is 1. Note that for symmetric

PIR without side information, when K ≥ 2, the common

randomness is necessary for feasibility. However, for STPIR-

PSI, if there are M = K − 1 side information messages, then

common randomness is not needed.

Remark 6: When K ≥ 2 and M < K − 1, then CSTPIR-PSI

only depends on the number of databases N , the colluding

parameter T , and the amount of common randomness. It is

independent of the number of messages K and the number of

side information messages M .

Remark 7: The capacity of STPIR-PSI is strictly smaller

than the capacity of TPIR-PSI, which means that the additional

requirement of preserving database privacy strictly penalizes

the capacity. However, the penalty vanishes in the regime of

large number of messages, i.e., CTPIR-PSI > CSTPIR-PSI for any finite

K and CTPIR-PSI → CSTPIR-PSI when K → ∞. This observation

also holds for the case without side information.

Remark 8: CSTPIR-PSI is equal to the capacity of STPIR

without side information, which is characterized in [30].

Furthermore, the capacity result remains the same even if

the side information is globally known.4 Thus, utilizing the

private or globally known side information does not help

improve the capacity.

IV. PROOF OF THEOREM 1

A. Achievability

The backbone of the achievable scheme for TPIR-PSI

with parameters (K, M, N, T ) is the achievable scheme of

TPIR [13]. We inherit the steps of the query structure con-

struction and query specialization. The novel element of the

achievable scheme is query redundancy removal based on the

side information. To illustrate how this idea works, we present

one toy example with (K, M, N, T ) = (3, 2, 3, 2), and then

generalize it to arbitrary (K, M, N, T ).
1) Example With (K, M, N, T ) = (3, 2, 3, 2). Let us start

with the case without side information (K, M, N, T ) =
(3, 0, 3, 2), i.e., there are 3 messages, 3 databases and any

2 of them can collude. Following the construction of [13],

let each message consist of L = NK = 27 symbols from

a finite field Fq that is large enough so that a systematic

(28, 19) maximum distance separable (MDS) code exists. The

MDS property implies that any 19 out of the 28 codeword

symbols is sufficient to recover all 19 information symbols.

A systematic code is a code in which the information symbols

are embedded in the codeword symbols [31]. According to

the query structure construction and query specialization for

TPIR [13], the messages W1, W2, W3 ∈ F
27
q are 27 × 1

column vectors and let Y1, Y2, Y3 ∈ F
27×27
q represent random

matrices chosen privately by the user, independently and

uniformly from all 27 × 27 full-rank matrices over Fq. Let

Ge×f denote the generator matrix of an (e, f) MDS code

(e.g., a Reed Solomon code), for some integers e, f . The

generator matrices need not be systematic or random, and

may be globally known. Define the 27 × 1 column vectors

4The explanation is similar to that for TPIR with globally known side
information as in Remark 2.
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TABLE I

ACHIEVABLE SCHEME OF TPIR [13]

a(1:27), b(1:27), c(1:27) ∈ F
27
q as follows.

a(1:27) = Y1W1, (15)

b(1:18) = G18×12Y2[(1 : 12), :]W2, (16)

c(1:18) = G18×12Y3[(1 : 12), :]W3, (17)

b(19:27) = G9×6Y2[(13 : 18), :]W2, (18)

c(19:27) = G9×6Y3[(13 : 18), :]W3, (19)

where Y2[(1 : 18), :] and Y3[(1 : 18), :] are 18 × 27 matrices

comprised of the first 18 rows of Y2 and Y3, respectively.

Note that the same generator matrix G18×12 is used in (16)

and (17), and the same generator matrix G9×6 is used in (18)

and (19).

The downloaded symbols from each database are repre-

sented in Table I. We use DBi to represent the ith database.

It correctly recovers the queried message and maintains user

privacy even if 2 databases collude. The achieved rate is

RTPIR = 9/19, namely, in this scheme the user recovers 9
desired symbols from a total of 19 downloads symbols from

each database.

Now let us consider the case with side information

(K, M, N, T ) = (3, 2, 3, 2), i.e., 2 of the messages are known

to the user as side information. Assume the user knows

W2 and W3 as side information and wishes to retrieve

W1. He does not need to download individual symbols

of W2, W3, or the linear combinations comprised of only

W2, W3 symbols, i.e., bi, ci, 1 ≤ i ≤ 12 and bj + cj ,
19 ≤ j ≤ 24 in Table I. Therefore, 10 redundant symbols

may be reduced from each database. Let us take the step of

query redundancy removal. The idea is that the user asks each

database to encode the 19 original downloaded symbols with a

systematic (28, 19) MDS code and downloads only the 9 linear

combinations corresponding to the non-systematic part, called

parity symbols. Formally, let Gs
e×f denote the generator matrix

of a systematic (e, f) MDS code. The generator matrix does

not need to be random, and it may be globally known. For i =
1, 2, 3, denote by vector Xi ∈ F

19
q the symbols downloaded

from DBi after the query structure construction and query spe-

cialization (symbols in the DBi column in Table I). The user

asks each database to encode Xi with a systematic (28, 19)
MDS code generator matrix Gs

28×19 = [V19×9 | I19×19]
′
,

where I19×19 is the identity matrix, and downloads only the 9
linear combinations corresponding to the parity part, V ′

19×9Xi.

The correctness constraint is satisfied because of the

property of MDS code and the correctness of the original

TPIR scheme. Given (bi)i∈[12], (ci)i∈[12], (bi + ci)i∈[19:24],

V ′

19×9X1, V ′

19×9X2 and V ′

19×9X3, the user is able to decode

X1, X2 and X3, which constitute the original TPIR scheme.

The privacy is essentially inherited from the original PIR

scheme and the fact that the MDS code is fixed a priori,

i.e., it does not depend on (Θ, S). Thus, the rate achieved

with private side information is RTPIR-PSI = 27/27 = 1 which

gives a lower bound on the capacity.

1) Arbitrary (K, M, N, T ): Scheme description. For the

sake of completeness, let us briefly introduce the original TPIR

achievable scheme in [13]. In this scheme, the message is

L = NK symbols from a large enough finite field Fq, and the

normalized total download is 1 + T
N

+ · · · + ( T
N

)K−1. It has

two key steps: 1) query structure construction and 2) query

specialization.

1) Query Structure Construction: Construct the query struc-

ture. After this step, the query of each database is comprised

of K layers. Over the kth layer, the query symbols are in the

form of sums of k message symbols, each from one distinct

message, called k-sum. There are
(

K
k

)

possible “types" of

k-sums and (N − T )k−1T K−k distinct instances5 of each

type of k-sum in kth layer. So, the total number of elements

contained in layer k is
(

K
k

)

(N − T )k−1T K−k. Therefore,

the total number of symbols to be downloaded from each

database is
∑K

k=1

(

K

k

)

(N − T )k−1T K−k. This structure has

two properties: symmetry across databases and message sym-

metry within the query from each database. Symmetry across

databases means that the queries among the databases have

the same structure (i.e., the same form of k-sums). Message

symmetry implies that within the query of each database, any

set of M messages determines the same number of k-sums,

1 ≤ k ≤ M .

2) Query Specialization: Map the message symbols to the

symbols in the query structure. This step is to ensure the

correctness and privacy.

Now we are ready to present the achievable scheme for

arbitrary (K, M, N, T ). First do query structure construction

and query specialization without considering the side

information, and denote the scheme by Π. Then do query

redundancy removal based on the side information. Due to

symmetry across databases and message symmetry within the

query from each database, regardless of the realization of side

information, the number of queried symbols and the number of

known symbols (based on the side information) in each query

are constants. For each database, let p1 denote the number of

symbols to be downloaded in Π. Out of these p1 symbols, let

p2 (p2 < p1) denote the number of user known symbols.

Denote by vector Xi ∈ F
p1

q the symbols downloaded

from DBi in Π. For each database, use a systematic

(2p1 − p2, p1) MDS code with generator matrix

Gs
(2p1−p2)×p1

=
[

Vp1×(p1−p2) | Ip1×p1

]′

to encode the

p1 symbols into 2p1 − p2 symbols, of which p1 are

systematic, and download only the p1 − p2 parity symbols,

V ′

p1×(p1−p2)Xi.

5The term (N−T )k−1T K−k comes from the undesired message exploita-
tion step (Step 4) of achievability in [13] and can be verified recursively.
A detailed analysis of a similar flavor can be found in [9].
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Note that the user does not need to know the realization

of side information S or WS in order to construct the

queries. This is because the systematic MDS code in the query

redundancy removal does not depend on S or WS . During

the decoding, S and WS are only used after the answers

from the databases are collected. Therefore, the privacy of this

TPIR-PSI scheme is inherited from the privacy of the original

TPIR scheme. Correctness follows from the MDS property

because in addition to the p1 − p2 downloaded symbols from

DBi, i.e., V ′

p1×(2p1−p2)
Xi, the user provides the p2 symbols

that he already knows, to obtain a total of p1 symbols from

the MDS code. Since any p1 symbols from an MDS code

suffice to recover the original p1 symbols, the user recovers

Xi. Then the correctness is inherited from the correctness of

the original TPIR scheme. All that remains is to calculate the

rate achieved by this scheme.

Rate calculation. Consider the scheme Π, the total

downloaded symbols from each database p1 =
∑K

k=1

(

K
k

)

(N − T )k−1T K−k. The next step is to calculate, out of these

p1 symbols, how many are already known to the user based on

his side information. Suppose the user knows the M messages

Wi1 , · · · , WiM
, {i1, · · · , iM} ∈ [K] as side information

beforehand. Thus the user knows all linear combinations that

are comprised of symbols from these M messages. In terms

of layer k (k ≤ M), the user knows all the instances of k-

sum that contain only symbols Wj1
, Wj2

, · · · , Wjk
, where

{j1, j2, · · · , jk} ⊂ {i1, · · · , iM}. So the total number of

symbols known to the user corresponding to each database

is p2 =
∑M

k=1

(

M
k

)

(N − T )k−1T K−k. Notice that p1 can be

simplified as,

p1 =

K
∑

k=1

(N − T )k−1T K−k

(

K

k

)

(20)

=

∑K

k=0(N − T )kT K−k
(

K

k

)

− T K

N − T
(21)

=
NK − T K

N − T
. (22)

And p2 can be simplified as,

p2 =
M
∑

k=1

(N − T )k−1T K−k

(

M

k

)

(23)

= T K−M

M
∑

k=1

(N − T )k−1T M−k

(

M

k

)

(24)

=
T K−M(NM − T M)

N − T
. (25)

From each database the number of downloaded symbols of

desired messages can be calculated as,

m =

K
∑

k=1

(N − T )k−1T K−k

(

K − 1

k − 1

)

= NK−1. (26)

Therefore, the rate achieved is

RTPIR-PSI =
Nm

N(p1 − p2)
(27)

=
NK−1(N − T )

(NK − T K) − T K−M(NM − T M )
(28)

=
1 − T

N

1 − ( T
N

)K−M
(29)

=

(

1 +
T

N
+ · · · +

(

T

N

)K−M−1
)−1

. (30)

This gives a lower bound on the capacity of TPIR-PSI, thus

completing the proof of achievability for Theorem 1.

B. Converse

Let S be a set whose elements are all possible realizations

of S, i.e., S = {S
∣

∣ S ⊂ [K], |S| = M}. We will need the

following lemmas.

Lemma 1: For all S1 ∈ S, θ ∈ [K] \ S1, S2 ⊆ [K] \ S1,

and T ⊂ [N ], |T | = T , given S = S1,Θ = θ, A
[Θ,S]
T ↔

(

Q
[Θ,S]
T , WS1∪S2

)

↔ Q
[Θ,S]
[N ]\T is a Markov chain.

Proof: In this proof, to be convenient, denote E1 = S1∪S2

and E2 = [K] \ (S1 ∪ S2). It is equivalent to prove

I
(

A
[Θ,S]
T ; Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T , WE1

,Θ = θ, S = S1

)

= 0.

By the chain rule of mutual information,

I
(

A
[Θ,S]
T , WE2

; Q
[Θ,S]
[N ]\T | Q

[Θ,S]
T , WE1

,Θ = θ, S = S1

)

= I
(

A
[Θ,S]
T ; Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T , WE1

,Θ = θ, S = S1

)

+ I
(

WE2
; Q

[Θ,S]
[N ]\T | A

[Θ,S]
T , Q

[Θ,S]
T , WE1

,Θ=θ, S =S1

)

= I
(

WE2
; Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T , WE1

,Θ = θ, S = S1

)

+ I
(

A
[Θ,S]
T ; Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T , W[K],Θ = θ, S = S1

)

.

Therefore,

I A
[Θ,S ]
T ; Q

[Θ,S ]

[N]\T
| Q

[Θ,S ]
T , WE1

,Θ = θ, S = S1

= I WE2
; Q

[Θ,S ]

[N]\T | Q
[Θ,S ]
T , WE1

,Θ = θ, S = S1

+ I A
[Θ,S ]
T ; Q

[Θ,S ]
[N]\T | Q

[Θ,S ]
T , W[K], Θ = θ, S = S1

− I WE2
; Q

[Θ,S ]

[N]\T
| A

[Θ,S ]
T , Q

[Θ,S ]
T , WE1

,Θ = θ, S = S1 .

(31)

Consider the first RHS mutual information term in (31),

I
(

WE2
; Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T , WE1

,Θ = θ, S = S1

)

= I
(

WE2
; Q

[Θ,S]
[N ] , WS1∪S2

,Θ = θ, S = S1

)

− I
(

W[K]\(S1∪S2); Q
[Θ,S]
T , WE1

,Θ = θ, S = S1

)

(32)

= 0, (33)

where (33) holds because of (1) and (4). The second RHS

mutual information term in (31) satisfies

I
(

A
[Θ,S]
T ; Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T , W[K],Θ = θ, S = S1

)

= 0

because of (5). At last, the RHS negative mutual information

term in (31) must also be zero because the LHS mutual

information cannot be negative. Thus

I
(

A
[Θ,S]
T ; Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T , WE1

,Θ = θ, S = S1

)

= 0.
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Lemma 2: For all S ∈ S, θ, θ′ ∈ [K] \ S, and

T ⊂ [N ], |T | = T ,

H
(

A
[Θ,S]
T | Q

[Θ,S]
T , WΘ, WS,Θ = θ, S = S

)

= H
(

A
[Θ,S]
T | Q

[Θ,S]
T , WΘ, WS,Θ = θ′, S = S

)

, (34)

H
(

A
[Θ,S]
T | Q

[Θ,S]
T , WS,Θ = θ, S = S

)

= H
(

A
[Θ,S]
T | Q

[Θ,S]
T , WS,Θ = θ′, S = S

)

. (35)

Proof: It follows from the user-privacy constraint (11) and

the non-negativity of mutual information, that for all S ∈ S,

T ⊂ [N ], |T | = T

I
(

Θ; Q
[Θ,S]
T , A

[Θ,S]
T , W[K] | S = S

)

= 0, (36)

which implies that ∀θ, θ′ ∈ [K] \ S,

H
(

Q
[Θ,S]
T , A

[Θ,S]
T , Wθ, WS | Θ = θ, S = S

)

= H
(

Q
[Θ,S]
T , A

[Θ,S]
T , Wθ, WS | Θ = θ′, S = S

)

, (37)

H
(

Q
[Θ,S]
T , Wθ, WS | Θ = θ, S = S

)

= H
(

Q
[Θ,S]
T , Wθ, WS | Θ = θ′, S = S

)

. (38)

Subtracting (38) from (37) yields (34). Equation (35) is

similarly obtained.

Before presenting the general converse, let us start with

a simple example (K, M, N, T ) = (3, 1, 3, 2) for ease of

exposition.

1) Converse for (K, M, N, T ) = (3, 1, 3, 2): The total

download is bounded as,

D ≥ H(A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] , W S,Θ, S) (39)

≥ min
S∈S

θ∈[K]\S

H(A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] , W S,Θ=θ, S =S). (40)

We will derive a lower bound on the entropy in (40) that holds

for all (θ, S).
For (K, M, N, T ) = (3, 1, 3, 2), without loss of generality

suppose message W1 is known as side information and W2

is desired. Let S = {1}. We bound the total download as,

D ≥ H
(

A
[Θ,S]
[3] | Q

[Θ,S]
[3] , W1,Θ = 2, S = S

)

(41)

(6)
= H

(

A
[Θ,S]
[3] , W2 | Q

[Θ,S]
[3] , W1,Θ = 2, S = S

)

(42)

= H
(

W2 | Q
[Θ,S]
[3] , W1,Θ = 2, S = S

)

+ H
(

A
[Θ,S]
[3] | Q

[Θ,S]
[3] , W[2],Θ = 2, S = S

)

(43)

≥ L + H
(

A
[Θ,S]
[2] | Q

[Θ,S]
[3] , W[2],Θ = 2, S = S

)

(44)

= L + H
(

A
[Θ,S]
[2] | Q

[Θ,S]
[2] , W[2],Θ = 2, S = S

)

(45)

= L + H
(

A
[Θ,S]
[2] | Q

[Θ,S]
[2] , W[2],Θ = 3, S = S

)

(46)

≥ L + H
(

A
[Θ,S]
[2] | Q

[Θ,S]
[3] , W[2],Θ = 3, S = S

)

(47)

where (44) holds because of (2), (4), the chain rule and non-

negativity of entropy. Equation (45) holds due to Lemma 1.

Equation (46) holds because of Lemma 2. Similarly,

D ≥ L + H
(

A
[Θ,S]
{2,3} | Q

[Θ,S]
[3] , W[2],Θ=3, S =S

)

, (48)

D ≥ L + H
(

A
[Θ,S]
{1,3} | Q

[Θ,S]
[3] , W[2],Θ=3, S =S

)

. (49)

Adding (47), (48), (49) and divided by 3 we have

D ≥ L +
1

3
H

(

A
[Θ,S]
{1,2} | Q

[Θ,S]
[3] , W[2],Θ = 3, S = S

)

+
1

3
H

(

A
[Θ,S]
{2,3} | Q

[Θ,S]
[3] , W[2],Θ=3, S =S

)

+
1

3
H

(

A
[Θ,S]
{1,3} | Q

[Θ,S]
[3] , W[2],Θ = 3, S = S

)

(50)

≥ L +
2

3
H

(

A
[Θ,S]
[3] | Q

[Θ,S]
[3] , W[2],Θ=3, S =S

)

(51)

= L +
2

3
L (52)

=
5

3
L. (53)

Here (51) follows from Han’s inequality, and (52) holds

because from
(

W[2], A
[Θ,S]
[3] , Q

[Θ,S]
[3] ,Θ = 3, S = S

)

one can

recover W3 with vanishing probability of error. Since the

same argument holds for all realizations (Θ, S) = (θ, S), this

gives us the upper bound on the capacity of TPIR-PSI with

(K, M, N, T ) = (3, 1, 3, 2) as CTPIR-PSI ≤
3
5 .

2) Converse for Arbitrary (K, M, N, T ): If M = K − 1,

it is trivial that 1 is an upper bound, since any rates cannot be

larger than 1. So let us assume that M < K −1. For compact

notation, let us define

D(K, S, θ, V ) ! H
(

A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] , W[V ],Θ=θ, S =S

)

.

Here W[V ] = (W1, W2, · · · , WV ) represents the messages

that appear in the conditioning. Also, define an arbitrary

T ⊂ [N ] with cardinality |T | = T which represents the set of

indices of colluding databases.

Without loss of generality, suppose messages W1, · · · , WM

are known as side information and WM+1 is desired. Then,

we have

D(K, [M ], M + 1, M)

= H(A
[Θ,S]
[N ] |Q

[Θ,S]
[N ] , W[M ],Θ = M + 1, S = [M ])

(6)
= H

(

A
[Θ,S]
[N ] , WΘ | Q

[Θ,S]
[N ] , W[M ],Θ=M +1, S =[M ]

)

= H
(

WΘ | Q
[Θ,S]
[N ] , W[M ],Θ = M + 1, S = [M ]

)

+ H
(

A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] , W[M+1],Θ = M + 1, S = [M ]

)

.

Note that

H
(

WΘ | Q
[Θ,S]
[N ] , W[M ],Θ = M + 1, S = [M ]

)

= L

since messages are independent, and queries are independent
of the messages. And

H A
[Θ,S ]

[N] | Q
[Θ,S ]

[N] , W[M+1],Θ = M + 1, S = [M ]

≥ H A
[Θ,S ]
T | Q

[Θ,S ]
[N] , W[M+1], Θ = M + 1, S = [M ] (54)

= H A
[Θ,S ]
T | Q

[Θ,S ]
T , W[M+1], Θ = M + 1, S = [M ] (55)

= H A
[Θ,S ]
T | Q

[Θ,S ]
T , W[M+1], Θ = M + 2, S = [M ] (56)

≥ H A
[Θ,S ]
T | Q

[Θ,S ]
[N] , W[M+1], Θ=M+2,S =[M ] , (57)
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where equation (55) holds because of Lemma 1. Equation (56)

holds because of Lemma 2. There are a total of
(

N
T

)

such

subsets T . Writing (57) for all such subsets, adding those

inequalities and divided by
(

N

T

)

, we obtain

D(K, [M ], M + 1, M)

≥
T

N
H

(

A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] , W[M+1],Θ = M + 2, S = [M ]

)

+ L (58)

=L +
T

N
D(K, [M ], M + 2, M + 1), (59)

where (58) follows from Han’s inequality. Proceeding along

these lines, we have

D(K, [M ], M + 1, M)

≥ L +
T

N
D(K, [M ], M + 2, M + 1) (60)

≥ L +
T

N

(

L +
T

N
D(K, [M ], M + 3, M + 2)

)

(61)

≥ · · · (62)

≥ L +
T

N

(

L + · · · +
T

N

(

L +
T

N
D(K, [M ], K, K − 1)

))

(63)

where D(K, [M ], K, K − 1) ≥ L. Therefore,

D(K, [M ], M + 1, M)

≥ L +
T

N
L + · · · +

(

T

N

)K−M−1

L (64)

= L

(

1 +
T

N
+ · · · +

(

T

N

)K−M−1
)

. (65)

The above argument holds similarly for any (θ, S), and hence

the upper bound on the rate of TPIR-PSI is

R = lim
L→∞

L

D

≤

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)K−M−1
)−1

.

Thus, the proof of converse for Theorem 1 is complete.

Remark 9: The converse can also be proved alternatively

by a genie-aided approach using the capacity of TPIR-

GSI of Remark 2 as follows. Starting from the TPIR-PSI

problem, suppose we provide the indices of the side infor-

mation S to all the databases, so the side information is

now globally known and only the privacy of the desired

message needs to be preserved. Any schemes for TPIR-

PSI are applicable to this TPIR-GSI setting, because they

preserve the privacy of the desired message index even after

the side-information is revealed. This is because TPIR-PSI

schemes satisfy I
(

Θ, S; Q
[Θ,S]
T , A

[Θ,S]
T , W [K]

)

= 0, which

in turn implies that I
(

Θ; Q
[Θ,S]
T , A

[Θ,S]
T , W [K] | S

)

= 0.

Therefore,

CTPIR-PSI ≤ CTPIR-GSI

=

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)K−M−1
)−1

.

V. PROOF OF THEOREM 2

A. Achievability

When M = K − 1, the user can download the sum of all

the messages from one database and get the desired message

with side information. The rate is 1, achieving the capacity.

Note that in this case, common randomness among databases

is not required. When M < K − 1, the achievable scheme

can directly use the scheme of STPIR [14], [15], and the side

information is simply not used.

B. Converse

When M = K − 1, it is obvious that 1 is an upper bound.

When M < K − 1, we show that 1 − T
N

is an upper bound.

a) Proof of the bound R ≤ 1−T/N : Let us start with an

intuitive understanding of the upper bound, R ≤ 1−T/N . Due

to database privacy, given the side information, the answers

from all N databases should be independent of the non-queried

messages. At the same time, the answers from any T databases

should contain no information about the queried message

index since the user privacy must be preserved. Combining

these two facts, given the side information, the answers from

any T databases should contain no information about any

individual message, whether desired or undesired. As a result,

the useful information about the desired message must come

from the remaining N −T databases. Thus, the download per

database must be at least 1/(N − T ) times the entropy of the

desired message.

The formal proof is as follows. Since M < K − 1, for

any S ∈ S, there exist at least 2 messages that are not in

the set S. Any feasible STPIR-PSI scheme must satisfy the

database-privacy constraint (12),

0 = I
(

W
(Θ,S)

; Q
[Θ,S]
[N ] , A

[Θ,S]
[N ] | WS, S,Θ

)

(66)

Therefore, ∀T ⊂ [N ], |T | = T, ∀S ∈ S, and for all distinct

θ, θ′ ∈ [K] \ S,

0 = I
(

Wθ′ ; A
[Θ,S]
T , Q

[Θ,S]
T | WS,Θ = θ, S = S

)

(67)

= I
(

Wθ′ ; Q
[Θ,S]
T | WS,Θ = θ, S = S

)

+ I
(

Wθ′ ; A
[Θ,S]
T | Q

[Θ,S]
T , WS,Θ = θ, S = S

)

(68)

= H
(

A
[Θ,S]
T | Q

[Θ,S]
T , WS,Θ = θ, S = S

)

− H
(

A
[Θ,S]
T | Q

[Θ,S]
T , WS, Wθ′ ,Θ = θ, S = S

)

(69)

(34)
= H

(

A
[Θ,S]
T | Q

[Θ,S]
T , WS,Θ = θ, S = S

)

− H
(

A
[Θ,S]
T | Q

[Θ,S]
T , WS, Wθ′ ,Θ = θ′, S = S

)

(70)

where (67) holds because T is a subset of [N ] and (69) holds

due to (4). According to the correctness condition,

L = H (Wθ′)

(6)
= I

(

Wθ′ ; A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

(71)

= H
(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

− H
(

A
[Θ,S]
[N ] | Wθ′ , WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

(72)
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≤ H
(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

− H
(

A
[Θ,S]
T | Wθ′, WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

(73)

= H
(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

− H
(

A
[Θ,S]
T | Wθ′, WS, Q

[Θ,S]
T ,Θ = θ′, S = S

)

(74)

(70)
= H

(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

− H
(

A
[Θ,S]
T | WS, Q

[Θ,S]
T ,Θ = θ, S = S

)

(75)

(35)
= H

(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

− H
(

A
[Θ,S]
T | WS, Q

[Θ,S]
T ,Θ = θ′, S = S

)

(76)

≤ H
(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

− H
(

A
[Θ,S]
T | WS, Q

[Θ,S]
[N ] ,Θ = θ′, S = S

)

, (77)

where (74) follows due to Lemma 1. Writing (77) for all
T ⊂ [1 : N ], |T | = T , adding those inequalities and divided

by
(

N

T

)

we obtain,

L ≤ H A
[Θ,S ]

[N]
| WS , Q

[Θ,S ]

[N]
,Θ = θ

′
, S = S

−
1
N

T T

H A
[Θ,S ]
T | WS , Q

[Θ,S ]

[N]
,Θ = θ

′
, S = S (78)

≤ H A
[Θ,S ]
[N] | WS , Q

[Θ,S ]
[N] ,Θ = θ

′
, S = S

−
T

N
H A

[Θ,S ]
[N] | WS , Q

[Θ,S ]
[N] ,Θ = θ

′
, S = S (79)

= 1 −
T

N
H A

[Θ,S ]
[N] | WS , Q

[Θ,S ]
[N] ,Θ = θ

′
, S = S (80)

where (79) is due to Han’s inequality. Since this inequality is

true for all S ∈ S, θ′ ∈ [K] \ S, it is also true when averaged

across them, so,

L ≤

(

1 −
T

N

)

H
(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ, S

)

(81)

≤

(

1 −
T

N

)

H
(

A
[Θ,S]
[N ]

)

(82)

≤

(

1 −
T

N

)

D, (83)

where (82) holds because dropping conditioning does not

reduce entropy. Therefore, R = limL→∞
L
D

≤ 1 − T
N

, and

we have shown that the rate of any feasible STPIR-SI scheme

cannot be more than 1 − T
N

.

b) Proof of the bound ρ ≥ T/(N−T ): Let us first explain

the intuition behind this bound on the size of the common

randomness U that should be available to all databases but not

to the user. We have already shown that the normalized size

of the answer from any individual database must be at least

L/(N −T ). Due to the user and database privacy constraints,

the answers from any T databases are independent of the

messages. Therefore, to ensure database privacy, the amount

of common randomness must be no smaller than the size of

the answers from T databases.

The formal proof is as follows. Suppose a feasible

STPIR-PSI scheme exists that achieves a non-zero rate. Then

we show that it must satisfy ρ ≥ T/(N −T ). For S = S ∈ S

and for Θ = θ ∈ [K] \ S, consider the answering strings

A
[Θ,S]
1 , · · · , A

[Θ,S]
N and the side information WS , from which

the user can retrieve Wθ. According to the database-privacy

constraint, we have

0 = I
(

W(θ,S) ; A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

(6)
= I

(

W(θ,S) ; A
[Θ,S]
[N ] , Wθ | WS, Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

(9)
= I

(

W(θ,S) ; A
[Θ,S]
[N ] | Wθ, WS, Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

≥ I
(

W(θ,S) ; A
[Θ,S]
T | Wθ, WS, Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

= H
(

A
[Θ,S]
T | Wθ, WS, Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

− H
(

A
[Θ,S]
T | W[K], Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

(10)
= H

(

A
[Θ,S]
T | Wθ, WS, Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

− H
(

A
[Θ,S]
T | W[K], Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

+ H
(

A
[Θ,S]
T | W[K], Q

[Θ,S]
[N ] , U ,Θ = θ, S = S

)

= H
(

A
[Θ,S]
T | Wθ, WS, Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

− I
(

U ; A
[Θ,S]
T | W[K], Q

[Θ,S]
[N ] ,Θ = θ, S = S

)

≥ H
(

A
[Θ,S]
T | Wθ, WS, Q

[Θ,S]
T ,Θ = θ, S = S

)

− H(U)

(70)
= H

(

A
[Θ,S]
T | WS, Q

[Θ,S]
T ,Θ = θ′, S = S

)

− H(U)

(35)
= H

(

A
[Θ,S]
T | WS, Q

[Θ,S]
T ,Θ = θ, S = S

)

− H(U).

Therefore,

H(U) ≥ H
(

A
[Θ,S]
T | WS, Q

[Θ,S]
T ,Θ = θ, S = S

)

. (84)

Adding (84) for all T ⊂ [N ], |T | = T and divided by
(

N

T

)

,

we obtain,

H(U)≥
T

N
H

(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
T ,Θ=θ, S =S

)

(85)

≥
T

N
H

(

A
[Θ,S]
[N ] | WS, Q

[Θ,S]
[N ] ,Θ=θ, S =S

)

(86)

(80)

≥
T

N

(

N

N − T

)

L =

(

T

N − T

)

L. (87)

⇒ ρ =
H(U)

L
≥

T

N − T
(letting L → ∞). (88)

Note that (85) is due to Han’s inequality. Thus the amount of

common randomness normalized by the message size for any

feasible STPIR-PSI scheme cannot be less than T/(N − T ).

VI. CONCLUSION

In this paper, the capacity of TPIR-PSI and the capacity of

STPIR-PSI are characterized. As a special case of TPIR-PSI

obtained by setting T = 1, the result settles the capacity of

PIR-PSI, an open problem highlighted by Kadhe et al. in [20].

Notably, the results of our work (initially limited to capacity of

PIR-PSI for T = 1 as reported in our original ArXiv posting

in 2017 [32]) have subsequently been generalized to multi-

message PIR-PSI in [33]. Other generalizations, e.g., PIR-PSI
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with multi-round communication, secure and/or coded stor-

age, remain promising directions for future work, as are the

capacity characterizations for PIR-SI (multiple databases) and

PIR-SPSI which remain open.

APPENDIX

SOME INSIGHTS ON THE CAPACITY OF PIR-SPSI

The four variants of PIR with side information are defined

as follows.

• PIR-SI, or PIR with (non-private) side information.

Only the privacy of the desired message is preserved,

i.e., I
(

Θ; Q
[Θ,S]
n , W [K]

)

= 0, ∀n ∈ [N ].

• PIR-SPSI, or PIR with separately private side infor-

mation. The privacy of the desired message and the

privacy of the side information are preserved individually,

i.e., I
(

Θ; Q
[Θ,S]
n , W [K]

)

= I
(

S; Q
[Θ,S]
n , W [K]

)

= 0,

∀n ∈ [N ].
• PIR-PSI, or PIR with jointly private side information.

The privacy of the desired message and the privacy

of the side information are preserved jointly,

i.e., I
(

Θ, S; Q
[Θ,S]
n , W [K]

)

= 0, ∀n ∈ [N ].

• PIR-GSI, or PIR with global side information. The side

information is globally known, i.e., the databases are also

fully knowledgeable about the side information. In this

case, the privacy of the desired message index must be

preserved in spite of the globally known side information,

I
(

Θ; Q
[Θ,S]
n , W [K] | S

)

= 0, ∀n ∈ [N ].

From the result of Theorem 1 we know the capacity

of PIR-PSI is Ψ(1/N, K − M), and from Remark 2 that

follows Theorem 1 we also know the capacity of PIR-GSI

is Ψ(1/N, K − M). The capacity of PIR-SI is known to be

# K
M+1$

−1 for N = 1 database from [20]. In spite of various

attempts the capacity of PIR-SI remains in general an open

problem for multiple databases. The remaining setting of PIR-

SPSI has not been studied, perhaps due to lack of practical

motivation for this setting. Nevertheless, out of technical

curiosity, let us present some insights into the capacity of

PIR-SPSI. We will focus only on the single database setting,

i.e., N = 1 in this section.

A. PIR-SPSI: N = 1, M = 1, K Even

For this setting the capacity of PIR-SPSI is
(

K
2

)−1
= #K

2 $
−1, i.e., the same as the capacity of

PIR-SI. Since PIR-SPSI is a more constrained version of

PIR-SI, its capacity cannot be higher than that of PIR-SI.

Thus, the converse is trivial. It turns out that the achievability

is also straightforward because the Partition and Code

scheme in [20] already preserves the separate privacy of

side information. Let us present just an example to illustrate

this. Suppose N = 1, M = 1, K = 6, and suppose each

message is comprised of one bit. Let θ denote the desired

message index and s denote the index of the message

available as side information to the user. The user asks the

database for three bits, corresponding to the three partitions:

P1 = Wi1 + Wi2 , P2 = Wi3 + Wi4 , P3 = Wi5 + Wi6 .

The indices (i1, i2, · · · , i6) are obtained by first randomly

permuting (1, 2, · · · , 6) and then switching the position of

the side information index s with another index (if needed)

so that it appears within the same partition as θ, i.e., one

of the partitions must contain Wθ + Ws. The scheme is

correct because the user can recover Wθ from the sum

Wθ + Ws (because Ws is already available to the user as

side information). It is easily verified that θ and s are each

uniformly distributed over (i1, i2, · · · , i6), so the scheme

preserves their separate privacy. However, since θ, s must

appear in the same partition, it is also clear that their joint

privacy is not preserved. For example, (θ, s) cannot be equal

to (i1, i3). The general scheme in [20] works for any even

K by partitioning the messages into sets of size 2, one of

which contains both θ and s. Each of θ and s is uniformly

distributed over the indices but they are not jointly uniform.

B. PIR-SPSI: N = 1, M = 1, K Odd

For this setting also the capacity of PIR-SPSI is
(

K+1
2

)−1
= #K

2 $
−1, the same as the capacity of PIR-SI.

Once again, the converse is trivially inherited from PIR-SI.

Achievability requires a small modification to the Partition and

Code scheme of [20], as explained next. Let us also illustrate

this through an example. Suppose N = 1, M = 1, K = 7
and each message is comprised of one symbol from, say F5.

The user asks the database for 4 symbols, corresponding to

P1 = Wi1 + Wi2 , P2 = Wi3 + Wi4 , P3 = Wi5 + Wi6 + Wi7 ,

and P4 = Wi5 +2Wi6 +3Wi7 . In fact, P3, P4 can be the non-

systematic symbols of any (5, 3) systematic MDS code applied

to Wi5 , Wi6 , Wi7 . Once again, the indices (i1, i2, · · · , i7) are

obtained by first randomly permuting (1, 2, · · · , 7) and then

switching the position of the side information index s with

another index (if needed) so that it appears within the same

partition as θ. If Wθ and Ws appear in P1 or P2 then

Wθ is decoded by subtracting the side-information, while

if Wθ and Ws appear in partitions P3, P4 with interfering

message Wi, then after eliminating the known side information

Ws, the two equations can be solved for the remaining two

variables Wθ, Wi (equivalently, the MDS property guarantees

decodability). Once again, it is easily verified that θ and s
are each uniformly distributed over (i1, i2, · · · , i7), so the

scheme preserves their separate privacy. However, since θ, s
must appear in the same partition, it is also clear that their

joint privacy is not preserved. The example generalizes to

any odd value of K , by constructing (K + 1)/2 partitions

of the form Wi1 + Wi2 , Wi3 + Wi4 , · · · , WiK−4
+ WiK−3

,

WiK−2
+ WiK−1

+ WiK
and WiK−2

+ 2WiK−1
+ 3WiK

,

and generating the indices (i1, i2, · · · , iK) by first randomly

permuting (1, 2, · · · , K) and then switching the position of

the side information index s with another index (if needed) so

that it appears within the same partition as θ. This ensures that

θ and s are each uniformly distributed over (i1, i2, · · · , iK),
so the scheme preserves their separate privacy. However, since

θ, s must appear in the same partition, it is also clear that their

joint privacy is not preserved.

C. PIR-SPSI: N = 1, M = 2, K = 6

The preceding discussion shows that PIR-SI and PIR-SPSI

have the same capacity for N = 1, M = 1. Let us now present
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an example to show that the capacity of PIR-SPSI can be

strictly less than the capacity of PIR-SI in general. For this

example, let us consider K = 6 messages stored at N = 1
database, out of which M = 2 messages are available to the

user as side information. From [20] we know that the capacity

of PIR-SI for this example is 1/2. Incidentally, this is achieved

by downloading two partitions, namely Wi1 + Wi2 + Wi3

and Wi4 + Wi5 + Wi6 , where the indices (i1, i2, · · · , i6)
are generated by first randomly permuting (1, 2, · · · , 6) and

then switching indices if necessary to place the two side

information indices into the same partition as θ. Note that

this scheme does not preserve the privacy of side information

indices, e.g., (i1, i4) cannot be both side information indices

(because side information indices must be within the same

partition). We will show that for this example the capacity of

PIR-SPSI is no more than 1/3, i.e., strictly smaller than the

capacity of PIR-SI.

Let us denote the entropy of each message as L bits.

We will show that conditioned on each realization of the query,

the download from the database must be at least 3L bits, which

also proves that the average download must be at least 3L
bits. To set up a proof by contradiction, let us assume that

conditioned on the query realization Q = q, the download A

from the database is less than 3L bits. This assumption implies

that,

H(A | Q = q) < 3L. (89)

The conditioning on Q = q will be assumed throughout the

remainder of this proof.

We need some preliminary work before we start the core of

the converse proof. To have compact notation, for any subset

P ⊂ [K], let us define

HA(WP ) ! H
(

A | Q = q, W[K]\P

)

. (90)

Intuitively, HA(WP ) represents the entropy that remains in

the answer A due to messages WP (after all other messages

are known), i.e., the ‘space’ occupied by the messages WP in

A. We need the following facts.

Lemma 3: The following facts hold for PIR-SPSI with

N = 1, M = 2, K = 6.
1) If P is a singleton set, e.g., P = {k}, then we must

have

HA(Wk) ≥ L, ∀k ∈ [K]. (91)

2) If P1 ⊂ P2 ⊂ [K], then

HA(P1) ≤ HA(P2). (92)

3) If Θ = θ is the desired message index, S = (s1, s2) are

the M = 2 side information indices, and l, m, n are the

3 remaining indices representing interfering messages,

then we must have,

HA(Wl, Wm, Wn) < 2L (93)

HA(Wθ, Wi) ≥ 2L, ∀i ∈ {l, m, n}. (94)

Proof: The first fact, (91) holds because given the answer

A and all messages except Wk (which must include the side

information), the user must be able to decode Wk, therefore

L = I(Wk;A | Q = q, W[K]\{k}) ≤ HA(Wk). The next fact,

(92) is simply the statement that conditioning reduces entropy.

The third fact, (93) is quite intuitive, as it says that the space

occupied by interference must be less than 2L bits because

the overall download is less than 3L bits, out of which L bits

are needed for the desired message. Formally, this can be seen

as follows.

L = I(Wθ ;A | Q = q, Ws1
, Ws2

) (95)

= H(A | Q = q, Ws1
, Ws2

)

− H(A | Q = q, Ws1
, Ws2

, Wθ) (96)

≤ H(A | Q = q) − HA(Wl, Wm, Wn) (97)

< 3L − HA(Wl, Wm, Wn) (98)

which implies (93). Finally, the last fact, (94) is also quite

intuitive. It says that the desired information must not align

with interference so that the user is able to resolve the two.

Formally, for any i ∈ {l, m, n}, because the user must be

able to decode his desired message from A and his side

information,

L = I(Wθ;A | Q = q, W[K]\{θ,i}) (99)

= HA(Wθ, Wi) − HA(Wi) (100)

≤ HA(Wθ, Wi)−L (101)

which implies (94). Note that we used (91) to obtain (101).

With these preliminary facts established, let us now proceed

with the core of the converse argument. Since the query

preserves the privacy of the side information, all choices of

(s1, s2) must be equally likely. In particular they must all be

feasible (have non-zero probability) from the database’s per-

spective. Note that because the database knows Q = q, it can

evaluate H(WP ) for all P ⊂ [K]. Let (a, b, c, d, e, f) represent

some permutation of (1, 2, · · · , 6). The main reasoning now

proceeds through the following steps.
1) Consider (s1, s2) = (a, b). Since this must be feasible,

there must exist another index in [K] that could be

a desired message, i.e., that satisfies facts (93), (94).

Without loss of generality, let c be this index, so that,

HA(Wd, We, Wf ) < 2L, (102)

HA(Wc, Wi) ≥ 2L, ∀i ∈ {d, e, f}. (103)

2) Now consider (s1, s2) = (b, c). This must also be

feasible, so there must exist an index in [K] which can

be a desired message. Based on (102), and the fact (94)

the database can conclude that this index must be a. This

is because all other indices lead to contradictions. For

example, if the desired message is Wd, then from (94)

we must have HA(Wd, We) ≥ 2L, which contradicts

the fact that HA(Wd, We) ≤ HA(Wd, We, Wf ) < 2L
according to (92) and (102). Similarly, the desired

message index cannot be e or f either, leaving a as the

only possibility. Now (94) implies that we must have

HA(Wa, Wi) ≥ 2L, ∀i ∈ {d, e, f}. (104)

3) Next, consider (s1, s2) = (e, f). This must also be

feasible, so there must exist an index in [K] which can

be a desired message. Based on (103), (104) and the fact

(93) the database can conclude that this index must be d.

This is because all other indices lead to contradictions.
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For example, if the desired message is a, then from (93)

we must have HA(Wb, Wc, Wd) < 2L. Along with (92)

this implies that HA(Wc, Wd) < 2L which contradicts

(103). Similarly, the desired message index cannot be

b or c either, leaving d as the only possibility. Now (93)

implies that we must have

HA(Wa, Wb, Wc) < 2L. (105)

4) Finally, consider (s1, s2) = (a, d). This must also be

feasible, so there must exist an index in [K] which

can be a desired message. However, it turns out that

every choice of this desired message index leads to a

contradiction. For example, suppose the desired mes-

sage index is b. Then according to (94) we must have

HA(Wb, Wc) ≥ 2L, which contradicts with the combi-

nation of (105) and (92). All other indices are similarly

ruled out, leaving us with an unavoidable contradiction.

The contradiction proves that the download must be at least

3L bits, which in turn implies that the average download

must be at least 3L bits, and therefore the capacity cannot be

more than 1/3. The exact capacity even for this simple setting

remains an intriguing open problem. Remarkably, if the capac-

ity is less than 1/3 then that would imply that having more

side-information is counterproductive for PIR-SPSI (because if

M is reduced from 2 to 1 then we do know from the preceding

discussion in this section that the capacity of PIR-SPSI is 1/3).
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