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Abstract Three weakly nonlinear but fully dispersive Whitham-Boussinesq sys-
tems for uneven bathymetry are studied. The derivation and discretization of one
system is presented. The numerical solutions of all three are compared with wave
gauge measurements from a series of laboratory experiments conducted by Dinge-
mans [1]. The results show that although the models are mathematically similar,
their accuracy varies dramatically.

1 Introduction

In coastal engineering, Boussinesq models are used to approximate full Euler or
Navier-Stokes equations which are numerically intractable on large scales. The
main assumptions on the waves to be represented by approximate Boussinesq-type
models are that they be of small amplitude and long wavelength when compared
to the undisturbed depth of the fluid. As explained in [2], classical Boussinesq
models are able to accurately describe waves up to a wavelength-to-depth ratio of
𝑘ℎ ∼ 1.3, where 𝑘 = 2𝜋/𝜆 is the wavenumber, 𝜆 is the wavelength, and ℎ is the local
depth. On the other hand, in many practical applications, it is desirable to be able
to treat shorter waves or waves in deeper water, and the development of coastal
models has long been focused on obtaining models allowing closer approximation
of waves in deeper water.

One of the first results in this direction was given in [3], where a KdV equation
with improved dispersion properties was found. In [2, 4], two-dimensional Boussi-
nesq equations with improved dispersion and bathymetry were put forward. The
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dispersion relation was further improved by [5], and in many subsequent articles.
Current models are able to treat smaller wavelength-to-depth ratios than the tradi-
tional Boussinesq models, up to about 𝑘ℎ ∼ 30 [6–8]. However, one drawback with
these high-order systems is that they tend to become very cumbersome to repre-
sent in writing and to implement numerically. In addition, many numerical fixes
are used (sometimes tacitly) because the modifications done in order to improve
linear dispersion and treatment of bathymetry sometimes introduce instabilities.

In the present work, we consider a class of fully dispersive Boussinesq systems.
These systems are developed using an idea of Whitham [9] who put forward the
original nonlinear fully dispersive equation

𝜂𝑡 +
3

2

𝑐0
ℎ
𝜂𝜂𝑥 +

∫︁ ∞

−∞
𝒦ℎ(𝑦)𝜂𝑥(𝑥− 𝑦) 𝑑𝑦 = 0, (1.1)

where ℎ is the undisturbed depth of the fluid, 𝑐0 =
√
𝑔ℎ is the corresponding long-

wave speed, and 𝑔 is the gravitational acceleration. The integral kernel 𝒦ℎ is given
in terms of the Fourier transform and the linear phase speed 𝑐(𝜉) by

ℱ𝒦ℎ(𝜉) = 𝑐(𝜉) =
√︁

𝑔 tanh(ℎ𝜉)
𝜉 . (1.2)

The convolution can be thought of as a Fourier multiplier operator and (1.2)
represents the Fourier symbol of the operator. Indeed, using the notation 𝐷 =
−𝑖𝜕𝑥, the integral operator can be written in the form

√
𝑔ℎ𝒦, where

𝒦 =
tanh(ℎ𝐷)

ℎ𝐷
. (1.3)

The linearization of equation (1.1) gives an exact unidirectional representation
of the linear dispersion relation of the free-surface water-wave problem. The fidelity
of solutions of this equation has been tested against numerical solutions of the the
Euler equations [10] and measurements from wave tank experiments [11]. In recent
work, the Whitham equation, (1.1), has been generalized to systems of equations
allowing for bi-directional wave propagation. Essentially, three different forms of
the equations have been put forward [12–14], and these have also been tested
against laboratory data from experiments with constant depth, see [11].

We consider the influence of bathymetry, which is an essential feature from
the point of view of coastal engineering. In fact, the model found in [12] already
featured nontrivial bathymetry, but the bathymetric terms were somewhat simpli-
fied. Here, we investigate the bidirectional Whitham-type system from [12] with
full bathymetric terms as well as capillarity in the form

𝜕𝑡𝜂 = −ℎ𝒦𝜕𝑥(1 +
𝜏

𝑔
𝐷2)𝑢− 𝜕𝑥(𝜂𝑢) − 𝜕𝑥𝐿(𝛽)𝐷−1𝑢,

𝜕𝑡𝑢 = −𝑔𝜕𝑥𝜂 − 𝜕𝑥𝑢
2/2,

(1.4)

where the parameter 𝜏 represents the coefficient of surface tension. The unknowns
𝜂 and 𝑢 are real-valued functions of the spatial variable 𝑥 ∈ R and the temporal
variable 𝑡 ∈ [0,∞). They represent the surface displacement of the fluid and the
horizontal velocity component defined by 𝑢 = 𝜕𝑥𝛷 where 𝛷(𝑥, 𝑡) is the surface
trace of the fluid’s velocity potential 𝜑(𝑥, 𝑧, 𝑡). The bathymetry operator 𝐿(𝛽) was
introduced in [15] and has the form

𝐿(𝛽) = −𝐶(𝛽)−1𝐴(𝛽), (1.5)
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where the operators 𝐴(𝛽) and 𝐶(𝛽) are defined by

𝐴(𝛽)𝑓 =

∫︁
𝑒𝑖𝑘𝑥 sinh

(︀
𝛽(𝑥)𝑘

)︀
sech(ℎ𝑘) ̂︀𝑓(𝑘)𝑑𝑘 =

∫︁
𝑒𝑖𝑘(𝑥−𝑠) sinh

(︀
𝛽(𝑥)𝑘

)︀
cosh(ℎ𝑘)

𝑓(𝑠)𝑑𝑠𝑑𝑘,

(1.6)

𝐶(𝛽)𝑓 =

∫︁
𝑒𝑖𝑘𝑥 cosh

(︀
(−ℎ+𝛽(𝑥))𝑘

)︀ ̂︀𝑓(𝑘)𝑑𝑘 =

∫︁
𝑒𝑖𝑘(𝑥−𝑠) cosh

(︀
(−ℎ+𝛽(𝑥))𝑘

)︀
𝑓(𝑠)𝑑𝑠𝑑𝑘.

(1.7)
If the bottom is flat, then 𝛽(𝑥) = 0 and 𝐿(𝛽) = 0, and in this case, it was proven in
[16] that this system is well-posed if the surface displacement is strictly positive.
Additionally, it was suggested that this system is ill-posed in general. Numerical
results corroborating these well-posedness/ill-posedness statements were detailed
in [17, 18]. However, as will be shown below, these result do not seem to have
a bearing on the numerical experiments presented here. Indeed, it was shown in
[11] that the flat-bottom version of this system represents a more accurate model
of the evolution of initial waves of depression over a flat bottom than the KdV
equation and even the higher-order Serre-Green-Naghdi system.

The system has the conserved Hamiltonian function

ℋ =
1

2

∫︁
R

(︁
𝑔𝜂2 + ℎ𝑢𝒦(1 +

𝜏

𝑔
𝐷2)𝑢 + 𝑢𝐿𝐷−1𝑢 + 𝜂𝑢2

)︁
𝑑𝑥, (1.8)

and in terms of ℋ , the system can be written in the form

𝜂𝑡 = −𝜕𝑥
𝛿ℋ
𝛿𝑢

,

𝑢𝑡 = −𝜕𝑥
𝛿ℋ
𝛿𝜂

.
(1.9)

It was shown in [10] that (1.8) can be viewed as a fully-dispersive approximation
of the total energy of the full water-wave problem.

A different model system was proposed in the case of a flat-bottom in [14]. In
the presence of bathymetry and capillarity, the system has the form

𝜕𝑡𝜂 = −ℎ𝜕𝑥𝑢− 𝜕𝑥(𝜂𝑢) − 𝜕𝑥𝐿(𝛽)𝐷−1𝑢,

𝜕𝑡𝑢 = −𝑔𝒦𝜕𝑥(1 +
𝜏

𝑔
𝐷2)𝜂 − 𝜕𝑥𝑢

2/2,
(1.10)

where 𝜂 is the free-surface displacement, and 𝑢 = 𝜕𝑥𝛷(𝑥, 𝑡) is the horizontal velocity
component as before. The system (1.10) also has a Hamiltonian structure. Indeed,
the system can be written in the form

𝜂𝑡 = −𝜕𝑥
𝛿ℋ
𝛿𝑢

,

𝑢𝑡 = −𝜕𝑥
𝛿ℋ
𝛿𝜂

,
(1.11)

with the Hamiltonian

ℋ =
1

2

∫︁
R

(︁
𝑔𝜂𝒦(1 +

𝜏

𝑔
𝐷2)𝜂 + ℎ𝑢2 + 𝑢𝐿𝐷−1𝑢 + 𝜂𝑢2

)︁
𝑑𝑥. (1.12)
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However this Hamiltonian is not an approximation of the Hamiltonian of the
water-wave problem in the context of the Craig-Sulem-Zakharov formulation (see
for example[19]). It was shown in [14] that periodic traveling-wave solutions are
spectrally unstable with respect to long-wave perturbations due to the modula-
tional instability.

A third model can be obtained by imposing the operator 𝒦 also on the nonlinear
parts of (1.10). This gives the system

𝜕𝑡𝜂 = −ℎ𝜕𝑥𝑣 −𝒦𝜕𝑥(𝜂𝑣) − 𝜕𝑥𝐿(𝛽)𝐷−1𝒦−1𝑣,

𝜕𝑡𝑣 = −𝑔𝒦𝜕𝑥(1 +
𝜏

𝑔
𝐷2)𝜂 −𝒦𝜕𝑥𝑣

2/2.
(1.13)

The unknowns 𝜂 and 𝑣 are real-valued functions of the spatial variable 𝑥 ∈ R and
the temporal variable 𝑡 ∈ [0,∞). They represent the surface displacement of the
fluid and the “velocity” defined by 𝑣 = 𝒦𝜕𝑥𝛷 where 𝛷(𝑥, 𝑡) is the surface trace
of the fluid’s velocity potential 𝜑(𝑥, 𝑧, 𝑡). The system given in equation (1.13) is
a conservative Hamiltonian system. In 𝜂, 𝑣 variables the Hamiltonian functional,
ℋ(𝜂, 𝑣), has the form

ℋ =
1

2

∫︁
R

(︁
𝑔𝜂(1 +

𝜏

𝑔
𝐷2)𝜂 + ℎ𝑣𝒦−1𝑣 + 𝑣𝒦−1𝐿𝐷−1𝒦−1𝑣 + 𝜂𝑣2

)︁
𝑑𝑥, (1.14)

with the structure map

𝐽𝜂,𝑣 =

(︂
0 −𝒦𝜕𝑥

−𝒦𝜕𝑥 0

)︂
.

Thus, the Hamiltonian system is given by

𝜂𝑡 = −𝒦𝜕𝑥
𝛿ℋ
𝛿𝑣

,

𝑣𝑡 = −𝒦𝜕𝑥
𝛿ℋ
𝛿𝜂

.
(1.15)

The system (1.13) was first introduced in [18] in the context of an even bed and
without capillarity, and it was shown in [13, 20] that in this simpler case, the
system is mathematically well-posed. It was also shown that the simplified system
admits solitary-wave solutions [21].

The three systems detailed above are similar, yet have very different mathe-
matical properties. In this article, we aim to study these systems from a modeling
point of view, in order to determine which of these systems holds most promise as
a water-wave model. We start by giving a derivation of (1.13) from the full water
wave problem by applying the Hamiltonian long-wave approximation presented
in [22]. In fact, the derivation of these three systems is similar, and we chose to
show the derivation of (1.13) because it has appeared most recently in the lit-
erature. The derivation is based on an approximation of the Hamiltonian which
approximates the total energy of the water-wave problem based on the full Euler
equations.
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2 Hamiltonian formulation

Consider an inviscid, incompressible, and irrotational fluid with domain 𝑥 ∈ R,
−ℎ + 𝛽(𝑥) < 𝑧 < 𝜂(𝑥, 𝑡). Its motion is described by the Laplace equation

𝜕2
𝑥𝜑 + 𝜕2

𝑧𝜑 = 0,

in the fluid domain, the Neumann boundary condition

𝜕𝑛𝜑 = 0,

at the bottom, 𝑧 = −ℎ+𝛽(𝑥), indicating the fact that the bottom is impenetrable,
the kinematic condition

𝜕𝑡𝜂 + (𝜕𝑥𝜂)𝜕𝑥𝜑− 𝜕𝑧𝜑 = 0,

at the free surface, 𝑧 = 𝜂(𝑥, 𝑡), and the Bernoulli equation including surface tension

𝜕𝑡𝜑 +
1

2
|∇𝜑|2 + 𝑔𝜂 − 𝜏𝜕𝑥

(︁
𝜕𝑥𝜂√︀

1 + (𝜕𝑥𝜂)2

)︁
= 0,

also at the free surface.
In order to reduce this system, we introduce the trace of the velocity potential

at the free surface, 𝛷(𝑥, 𝑡) = 𝜑(𝑥, 𝜂(𝑥, 𝑡), 𝑡), and the Dirichlet-Neumann operator,
𝐺(𝜂, 𝛽), via the formula

𝐺(𝜂, 𝛽)𝛷 =
√︀

1 + (𝜕𝑥𝜂)2𝜕𝑛𝜑, (2.1)

where 𝜕𝑛𝜑 is the projection of the surface fluid velocity on the outward normal
vector. For a more detailed definition of 𝐺(𝜂, 𝛽) taking into account the appropriate
asymptotic conditions on 𝜑, we refer the reader to [19, 23]. Using the Dirichlet-
Neumann operator, the full problem reduces to

𝜕𝑡𝜂 = 𝐺(𝜂, 𝛽)𝛷,

𝜕𝑡𝛷 = −𝑔𝜂 + 𝜏𝜕𝑥

(︁
𝜕𝑥𝜂√︀

1 + (𝜕𝑥𝜂)2

)︁
− 1

2
(𝜕𝑥𝛷)2 +

((𝜕𝑥𝜂)𝜕𝑥𝛷 + 𝐺(𝜂, 𝛽)𝛷)2

2(1 + (𝜕𝑥𝜂)2)
,

(2.2)

posed on the free surface. A pair (𝜂, 𝛷) that solves system (2.2) completely describes
the surface waves. A drawback of this formulation is that the Dirichlet-Neumann
operator implicitly depends on the surface elevation 𝜂. Zakharov [24] showed that
system (2.2) has the Hamiltonian structure

𝜕𝑡𝜂 =
𝛿ℋ
𝛿𝛷

,

𝜕𝑡𝛷 = −𝛿ℋ
𝛿𝜂

,
(2.3)

with total energy

ℋ(𝜂, 𝛷) =
1

2

∫︁
R

(︁
𝑔𝜂2 + 𝛷𝐺(𝜂, 𝛽)𝛷 + 2𝜏(𝜕𝑥𝜂)

2

1+
√

1+(𝜕𝑥𝜂)2

)︁
𝑑𝑥, (2.4)

serving as the Hamiltonian. The first term in the integral, which we denote ℋ𝑝,
represents the potential energy, the second term, ℋ𝑘, represents the kinetic en-
ergy, and the last term, ℋ𝜏 , represents the capillary energy. The surface water
wave problem can be further simplified by approximating the Dirichlet-Neumann
operator using different explicit expressions. We also note that there are different
Hamiltonian formulations for this problem, such as detailed for example in [25]
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3 Derivation

It is well known that the Dirichlet-Neumann operator can be expanded in a power
series in 𝜂, see for example, [15]. In the weakly nonlinear framework considered
here, we keep the first two terms in this power series, and disregard all higher-order
terms. In other words, we make the approximation 𝐺 ≈ 𝐺0 + 𝐺1, where

𝐺0 = 𝐷 tanh(ℎ𝐷) + 𝐷𝐿,

𝐺1 = 𝐷𝜂𝐷 −𝐺0𝜂𝐺0.
(3.1)

Recall that the operator 𝐿 = 𝐿(𝛽) defined above in equation (1.5) represents
bathymetric effects. Note also that 𝐺0 = 𝐺(0, 𝛽) is symmetric, i.e. for any real-
valued functions 𝑓1 and 𝑓2 belonging to the domain of 𝐺0 the following identity∫︁

R
(𝐺0𝑓1)(𝑥)𝑓2(𝑥)𝑑𝑥 =

∫︁
R
𝑓1(𝑥)(𝐺0𝑓2)(𝑥)𝑑𝑥,

holds. This follows from the definition of the Dirichlet-Neumann operator and
Green’s formula. In particular, 𝐷𝐿 is symmetric and therefore 𝐿𝐷−1 is also sym-
metric. This fact will figure into the analysis below.

In order to simplify the system, we introduce four nondimensional parameters:
𝜀 = 𝑎𝑠/ℎ, 𝜇 = ℎ2/𝜆2, 𝛾 = 𝑎𝑏/ℎ, and κ = 𝜏/(𝑔ℎ2) that measure nonlinearity, shal-
lowness, bathymetric variation, and capillarity, respectively. Here 𝑎𝑠 represents a
characteristic surface amplitude, 𝑎𝑏 represents a characteristic bathymetric vari-
ation, and 𝜆 represents a characteristic surface wavelength. We assume 𝜇 ≪ 1.
Generally in the Boussinesq regime, 𝜀 = 𝒪(𝜇). However below, it is sufficient to
assume only 𝜖 = 𝑜(1). Additionally, we assume that the bathymetric variation does
not have to be small by allowing 𝛾 = 𝒪(1).

Linear theory suggests defining 𝑡0 = 𝜆/
√
𝑔ℎ and 𝛷0 = 𝑎𝑠𝜆

√
𝑔ℎ/ℎ to be the

units for time and velocity potential. Therefore, let 𝑥̃ = 𝑥/𝜆, 𝜂 = 𝜂/𝑎𝑠, 𝛽 = 𝛽/𝑎𝑏,
𝑡 = 𝑡/𝑡0 and 𝛷 = 𝛷/𝛷0 be dimensionless variables. Similarly, it is convenient to
take the units of energy to be ℋ0 = 𝑔𝑎2𝑠𝜆. The dimensionless Dirichlet-Neumann
operator, 𝐺𝜇, is defined by

𝐺𝜇
(︀
𝜀𝜂, 𝛾𝛽

)︀
𝛷 =

ℎ

𝛷0
𝐺(𝜂, 𝛽)𝛷,

and in particular, 𝐺0
𝜇 = 𝐺𝜇

(︀
0, 𝛾𝛽

)︀
. See [19] for a rigorous proof that 𝐺0

𝜇𝛷 = 𝒪(𝜇).

In dimensionless variables, the operator 𝒦 is written in the form

𝒦 =
tanh(

√
𝜇𝐷̃)

√
𝜇𝐷̃

,

where 𝐷̃ = −𝑖𝜕𝑥̃ is the derivative with respect to the nondimensional horizontal
variable 𝑥. Finally, the dimensionless velocity is 𝑣 = 𝒦𝜕𝑥̃𝛷 and therefore 𝑣 = 𝜀

√
𝑔ℎ𝑣.

The kinetic energy is approximated by

ℋ𝑘 =
1

2

∫︁
R
𝛷
(︀
𝐺0 + 𝐺1)︀𝛷𝑑𝑥,
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where the 𝐺0 part is given by∫︁
R
𝛷𝐺0𝛷𝑑𝑥 =

∫︁
R

(︁
ℎ𝑣𝒦−1𝑣 + 𝑣𝒦−1𝐿𝐷−1𝒦−1𝑣

)︁
𝑑𝑥,

and the 𝐺1 part is given by∫︁
R
𝛷𝐺1𝛷𝑑𝑥 =

∫︁
R
𝛷𝐷(𝜂𝐷𝛷)𝑑𝑥−

∫︁
R
𝛷𝐺0

(︁
𝜂𝐺0𝛷

)︁
𝑑𝑥 =

∫︁
R
𝜂(𝜕𝑥𝛷)2𝑑𝑥−

∫︁
R
𝜂
(︁
𝐺0𝛷

)︁2

𝑑𝑥,

where we have integrated by parts in the first integral and used symmetry property
of 𝐺0 in the second. Converting to nondimensional variables gives∫︁
R
𝛷𝐺1𝛷𝑑𝑥 = 𝜀ℋ0

[︂∫︁
R
𝜂
(︀
𝜕𝑥̃𝛷

)︀2
𝑑𝑥− 1

𝜇

∫︁
R
𝜂
(︁
𝐺0

𝜇𝛷
)︁2

𝑑𝑥

]︂
= 𝜀ℋ0

∫︁
R
𝜂

[︂(︁
𝒦−1𝑣

)︁2

+ 𝒪(𝜇)

]︂
𝑑𝑥.

Making use of the small-𝜇 Taylor expansion, 𝒦−1 = 1 + 𝒪(𝜇), gives∫︁
R
𝛷𝐺1𝛷𝑑𝑥 = 𝜀ℋ0

∫︁
R
𝜂𝑣2𝑑𝑥 (1 + 𝒪(𝜇)) .

The error term ℋ0𝒪(𝜀𝜇) is neglected below. The surface tension energy

ℋ𝜏 = κ𝜇ℋ0

∫︁
R

(𝜕𝑥̃𝜂)2

1 +
√︀

1 + 𝜇𝜀2(𝜕𝑥̃𝜂)2
𝑑𝑥 =

κ𝜇ℋ0

2

∫︁
R
(𝜕𝑥̃𝜂)2𝑑𝑥

(︁
1 + 𝒪

(︁
𝜇𝜀2

)︁)︁
,

where the error term is negligible. Note that the linearization of system (2.2) has
energy equal to ℋ0𝒪(1). We have also neglected ℋ0𝒪(𝜀2) in equation (2.4) by
discarding the high-order terms, 𝐺𝑛 with 𝑛 > 2, in the expansion of the Dirichlet-
Neumann operator. In total, discarding the terms ℋ0𝒪(𝜇𝜀 + 𝜀2) in equation (2.4)
and converting back to the original dimensional variables leads to the Hamiltonian
given in equation (1.14). Calculating variational derivatives in (1.15) with ℋ given
by (1.14) gives system (1.13).

4 Numerical evaluation

Define the Fourier transform of a function 𝑓(𝑥) by

ℱ
(︀
𝑓(𝑥)

)︀
= 𝑓(𝑘) =

∫︁
𝑒−𝑖𝑘𝑥𝑓(𝑥)𝑑𝑥,

and the inverse Fourier transform of a function 𝑓(𝑘) by

ℱ−1(︀𝑓(𝑘)
)︀

= 𝑓(𝑥) =
1

2𝜋

∫︁
𝑒𝑖𝑘𝑥𝑓(𝑘)𝑑𝑘.

Any differential operator 𝜙(𝐷) can be calculated by

𝜙(𝐷) = ℱ−1𝜙ℱ ,

where 𝜙 is the operation of multiplication by the function 𝜙 in Fourier space.
Bathymetric effects are defined by the operator −𝜕𝑥𝐿𝐷

−1 = −𝑖𝐷𝐿𝐷−1. As with
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other differential operators, this one can be calculated as follows (omitting −𝑖 for
simplicity)

𝐷𝐿(𝛽)𝐷−1 = ℱ−1𝒬(𝛽)ℱ ,

where
𝒬(𝛽) = ℱ𝐷𝐿(𝛽)𝐷−1ℱ−1 =

(︁
ℱ𝐷ℱ−1

)︁
ℱ𝐿(𝛽)𝐷−1ℱ−1.

Note that
ℱ𝐿𝐷−1ℱ−1 = −(𝐶ℱ−1)−1𝐴𝐷−1ℱ−1,

where operator 𝐴𝐷−1ℱ−1 is defined on functions in spectral space(︀
𝒜𝑓

)︀
(𝑥) =

(︁
𝐴𝐷−1ℱ−1𝑓

)︁
(𝑥) =

∫︁
𝑒𝑖𝑘𝑥

sinh(𝛽(𝑥)𝑘)

𝑘 cosh(ℎ𝑘)
𝑓(𝑘)𝑑𝑘, (4.1)

and operator 𝐶ℱ−1 can be represented as multiplication of operators

𝐶ℱ−1 = 𝐶 sech(ℎ𝐷)ℱ−1ℱ cosh(ℎ𝐷)ℱ−1,

with(︀
𝒞𝑓

)︀
(𝑥) =

(︁
𝐶 sech(ℎ𝐷)ℱ−1𝑓

)︁
(𝑥) =

∫︁
𝑒𝑖𝑘𝑥

cosh((−ℎ + 𝛽(𝑥))𝑘)

cosh(ℎ𝑘)
𝑓(𝑘)𝑑𝑘. (4.2)

The last factorization helps to diminish significantly the condition number of the
corresponding discretization. And so,

(𝐶ℱ−1)−1 = ℱ sech(ℎ𝐷)ℱ−1𝒞−1.

Combining all of this together, gives the following factorization of the bathymetry
operator

−𝑖𝐷𝐿(𝛽)𝐷−1 = −𝑖ℱ−1𝒬(𝛽)ℱ = 𝑖ℱ−1
(︁
ℱ𝐷 sech(ℎ𝐷)ℱ−1

)︁
𝒞−1𝒜ℱ ,

with 𝒜 and 𝒞 defined by (4.1) and (4.2) respectively. In system (1.13) one applies
the operator 𝒦−1 first, and then the bathymetry operator.

4.1 Direct discretization of Bathymetry operator.

Let L be the period for the periodic approximation of the problem. Short waves do
not “feel” the bottom, see [26]. If additionally one can show that the bathymetry
does not cause the creation of short waves, then waves with frequencies |𝑘| > 𝜋𝑀/L
belong to the kernel of the operator 𝐿(𝛽)𝐷−1 for some large enough even integer
𝑀 . This corresponds to assuming that short waves do not play a significant role in
the bathymetry terms in equations (1.4), (1.10), and (1.13). Define the projection
onto low frequency waves by 𝑃0 = ℱ−1𝜒[−𝜋𝑀/L,𝜋𝑀/L]ℱ with 𝜒 standing for the
indicator function. The velocity in equation (1.13) can be represented as 𝑣 =
𝑃0𝑣+(1−𝑃0)𝑣, where the last term belongs to the kernel of the operator 𝐿(𝛽)𝐷−1.
As a result one can write the approximation

− 𝑖𝐷𝐿(𝛽)𝐷−1𝒦−1 = −𝑖𝑃0𝐷𝐿(𝛽)𝐷−1𝒦−1𝑃0

= 𝑖ℱ−1𝜒[−𝜋𝑀/L,𝜋𝑀/L]

(︁
ℱ𝐷 sech(ℎ𝐷)ℱ−1

)︁
𝒞−1𝒜(ℱ𝒦−1ℱ−1)𝜒[−𝜋𝑀/L,𝜋𝑀/L]ℱ .
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This allows us to replace the operator 𝒜 with

(︀
𝒜𝑓

)︀
(𝑥) =

∫︁ 𝜋𝑀/L

−𝜋𝑀/L
𝑒𝑖𝑘𝑥

sinh(𝛽(𝑥)𝑘)

𝑘 cosh(ℎ𝑘)
𝑓(𝑘)𝑑𝑘,

and the operator 𝒞 the

(︀
𝒞𝑓

)︀
(𝑥) =

∫︁ 𝜋𝑀/L

−𝜋𝑀/L
𝑒𝑖𝑘𝑥

cosh((−ℎ + 𝛽(𝑥))𝑘)

cosh(ℎ𝑘)
𝑓(𝑘)𝑑𝑘.

A discrete approximation of these operators can be obtained in a manner similar
to the discrete Fourier transform on the grid 𝑥𝑙 = 𝑙L/𝑀 with 𝑙 = 0, . . . ,𝑀 − 1 and
𝑘𝑞 = 2𝜋𝑞/L with 𝑞 = −𝑀/2 + 1, . . . ,𝑀/2. Then the operators 𝒜 and 𝒞 have the
form (︀

𝒜𝑓
)︀
(𝑥𝑙) =

2𝜋

L

𝑀/2∑︁
𝑞=−𝑀/2+1

𝑒𝑖𝑘𝑞𝑥𝑙
sinh(𝛽(𝑥𝑙)𝑘𝑞)

𝑘𝑞 cosh(ℎ𝑘𝑞)
𝑓(𝑘𝑞),

(︀
𝒞𝑓

)︀
(𝑥𝑙) =

2𝜋

L

𝑀/2∑︁
𝑞=−𝑀/2+1

𝑒𝑖𝑘𝑞𝑥𝑙
cosh((−ℎ + 𝛽(𝑥𝑙))𝑘𝑞)

cosh(ℎ𝑘𝑞)
𝑓(𝑘𝑞).

Thus the corresponding discrete transforms have the forms

𝒜(𝑙, 𝑞) =
2𝜋

L 𝑒𝑖𝑘𝑞𝑥𝑙
sinh(𝛽(𝑥𝑙)𝑘𝑞)

𝑘𝑞 cosh(ℎ𝑘𝑞)
,

𝒞(𝑙, 𝑞) =
2𝜋

L 𝑒𝑖𝑘𝑞𝑥𝑙
cosh((−ℎ + 𝛽(𝑥𝑙))𝑘𝑞)

cosh(ℎ𝑘𝑞)
.

For the discretization of the operators like 𝐷 and sech(ℎ𝐷), we let 𝑁 > 𝑀 be
a power of two and compute ℱ and ℱ−1 using fast Fourier transforms (FFTs) of
dimension 𝑁 .

4.2 An alternative evaluation via power series

The operator 𝐿 can be represented as a series of the form

𝐿 =
∞∑︁
𝑗=1

𝐿𝑗 , (4.3)

where

𝐿1(𝛽) = − sech(ℎ𝐷)𝛽𝐷 sech(ℎ𝐷),

𝐿2(𝛽) = sech(ℎ𝐷)𝛽𝐷 sinh(ℎ𝐷)𝐿1,

𝐿3(𝛽) = − sech(ℎ𝐷)
(︁1

6
𝛽3𝐷2 − 1

2
𝛽2𝐷2𝛽 + 𝛽𝐷 tanhℎ𝐷𝛽𝐷 tanhℎ𝐷𝛽

)︁
𝐷 sech(ℎ𝐷),

and the higher-order terms are given in [15]. A similar approach was used in [12].
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Fig. 1 (a) A plot of our entire computational domain. (b) A zoomed-in plot of the “seamount.”
In both plots, the horizontal line at 𝑧 ≈ 84.68 is the undisturbed water surface, the dashed
horizontal line is at 𝑧 = 0, and the dots represent the gauge locations.

5 Results and conclusions

In order to test the validity and accuracy of these three models, we compare
their predictions with the experimental data collected in [1]. These experimental
measurements have been used as a benchmark for a number of Boussinesq models
(see [1, 27, 28]). In the laboratory experiments, surface water waves were created
at one end of a tank by a vertically moving paddle. These waves traveled down
the tank and over a “seamount” to the other end of the tank where they were
dissipated. Plots of the bathymetry are shown in Figure 1. Note that our domain is
vertically shifted with respect to that used in [1] because we require the bathymetry
to have zero mean. This is simply a choice of coordinates and does not affect the
dynamics. The undisturbed water depth over the seamount is 20 cm. Eleven wave
gauges located near the seamount recorded time series of the free surface deflection
as the waves propagated. Data was recorded every 0.05 seconds. The time series
data for the gauges ordered by distance from the wave maker are included in
Figures 3-6. These plots are discussed in more detail below.

We numerically solve the systems given in equations (1.4), (1.10), and (1.13)
using sixth-order operator splitting in time and a Fourier basis in space. The
Fourier basis in space allows the linear, non-bathymetric parts of the models to be
solved exactly (to within spectral resolution). This ensures that the linear phase
speed of the waves is accurately reproduced. No dissipation of any sort, physical
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or numerical, was included in our codes. More specifically, we used no filtering to
prevent numerical instabilities. We used 𝜏 = 72.86 cm3/s2 and 𝑔 = 981 cm/s2 as
the coefficient of surface tension and the acceleration due to gravity respectively.
It is important to note that applying 𝒬 is a multiplication of a symmetric matrix
in Fourier space. This means applying the operator 𝒬 is an 𝒪(𝑀2/4) operation.
Finally, note that the inverse of 𝒞 only needs to be computed once per simulation
(not per time step) since the bathymetry does not change in time.

A drawback of using a Fourier basis is that the motion of the wave maker at the
boundary cannot easily be reproduced. Therefore, we chose the initial conditions
to consist of second-order Stokes waves multiplied by an envelope with compact
support placed just before the seamount. The amplitude (2 cm), temporal period
(2.86 sec), and wavelength (766 cm) of the waves were chosen to match the exper-
imental wave parameters. Figure 2 includes a plot of the initial conditions. Since
we used periodic boundary conditions and did not include dissipation, we needed
to use a computational domain that was large enough that waves did not “wrap
around” at the right boundary of the domain. This forced our computational do-
main to be much larger than the experimental tank. We used a numerical tank
that with length 24000𝜋 cm. Requiring the bathymetry to have zero mean gives
ℎ ≈ 84.68. A plot of the entire computational domain is shown in Figure 1(a).

All three systems were solved using 𝑁 = 2048 (resolution of 𝜂 and 𝑢 or 𝑣),
𝑀 = 2048 (resolution of the bathymetry), and a time step of 0.05 seconds. For
the systems given in equations (1.10) and (1.13), the conserved quantities (the
integral of 𝜂, the integral of 𝑢 or 𝑣, and the Hamiltonians) were preserved to
within eight or more places. Increasing the spatial or temporal resolution does not
lead to a significant improvement in the preservation of the conserved quantities
or a notable difference in the surface displacement predictions. This is likely due
to the fact that the condition number of the matrix 𝒞 increases from roughly 200
when 𝑀 = 𝑁 = 2048 to roughly 60, 000 when 𝑀 = 𝑁 = 4096 which leads to more
error in computing 𝒞−1.

The Hamiltonian for the system given in equation (1.4) was preserved only to
three places, while the other two conserved quantities were preserved to within
10 places. Increasing the spatial resolution to 𝑁 = 𝑀 = 4096 led to numerical
instabilities that destroyed the solution before the waves traveled over the entire
seamount. (Recall that our code included no filtering nor dissipation.) The diffi-
culty preserving the Hamiltonian and the numerical instabilities may be related
to the possible ill-posedness of the system.

Figures 3, 4, and 5 include the results from the systems given in equations
(1.13), (1.10), and (1.4) respectively. These plots show that system (1.4) provides
the best approximation of the experimental data by far. This may be surprising be-
cause this system is thought to be ill-posed when the surface displacement is some-
times negative (as it is here). The three models provide similar predictions for the
surface displacement at the first three gauges (i.e. before the bathymetry). They
accurately reproduce the experimental measurements at the first three gauge loca-
tions. This suggests that all three models are accurate in the flat-bottom regime.
The model predictions start to deviate at the fourth gauge and this deviation in-
creases as the waves travel over the seamount. Setting the coefficient of surface
tension to zero leads to plots that are indistinguishable to the naked eye from the
plots shown. This suggests that capillarity did not play a significant role in the
experiments considered here. However, it is well known that capillarity may be
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Fig. 2 A zoomed-in plot of the initial conditions for the simulations. The thick solid curve
represents the initial surface displacement, 𝜂(𝑥, 𝑡 = 0), and the thin dashed curve represents
the initial horizontal velocity, 𝑢(𝑥, 𝑡 = 0). Both 𝜂(𝑥, 𝑡 = 0) and 𝑢(𝑥, 𝑡 = 0) are zero everywhere
outside of this interval.

important in different settings (see for example [29, 30]). Regarding the nonlinear
terms, we can report that predictions obtained from the linearized versions of all
three models, including system (1.4), provide poor reproductions of the experi-
mental data (plots omitted for brevity). Indeed, these considerations motivated us
to aim for a versatile model which incorporates not only bathymetric effects, but
also nonlinearity and capillarity.

Over the time intervals we considered, none of these systems exhibited the
oscillatory instabilities found in [17, 18, 31]. Additional simulations (not shown)
suggest that there may be a ratio between the amount of negative surface displace-
ment and the length of the computational domain that determines the instability’s
onset time and/or existence. It remains unclear why the accuracy of these models
varies so much, though it must be said that the model which performs best by far
is (1.4) which is given directly in terms of the Hamiltonian structure of the fully
nonlinear water-wave problem.

For comparative purposes, we developed an alternative code using up to three
of the terms in the series approximation to 𝐿 given in equation (4.3). These compu-
tations are faster than the computations of the full systems because the operators
𝐿𝑗 can be computed entirely with FFTs while applying the complete 𝐿 opera-
tor requires a convolution which takes 𝒪(𝑀2/4) operations. On the other hand,
increasing the number of 𝐿𝑗 included in the approximation (4.3) also requires a
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Fig. 3 Plots of the experimental time series and the predictions from the system given in
equation (1.13) at the eleven gauges ordered by distance from the wave maker. The solid
curves are the experimental time series and the dashed curves are the model’s predictions.

larger number of FFTs in the computation, so three terms appear to be a reason-
able compromise. Figure 6 shows that as the number of terms in the approximation
of the system given in equation (1.4) increases, the results approach those shown
in Figure 5. The other two models produce similar results.

To summarize, the system (1.4) which is obtained from a direct approximation
of the Hamiltonian of the water-wave systems performs best of the three models
tested here. The other models are also Hamiltonian, but use either different canon-
ical variables or a different Hamiltonian structure, and this is a potential reason
why the system (1.4)performs best. One might note that good agreement with the
data of Dingemans has been found by other authors based on Boussinesq codes
(see [28] for example). However, these higher-order models generally have many
parameters which need to be tuned. On the other hand, the model proposed here
needs no tuning at all.
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Fig. 4 Plots of the experimental time series and the predictions from the system given in
equation (1.10) at the eleven gauges ordered by distance from the wave maker. The solid
curves are the experimental time series and the dashed curves are the model’s predictions.

For future work, it would be interesting to extend the systems studied here to
more highly nonlinear situations. Indeed in some cases large wave heights occur due
to storms, and especially near the surf zone, and in this case, Boussinesq models
may cease to be applicable. For larger wave heights, it is possible to use higher-
order Boussinesq or Serre-Green-Naghdi models, such as detailed in [32, 33]. In
order to capture breaking waves in the surf zone, some models transition to a non-
dispersive shallow-water system based on a breaking parameter, such as explained
in [34–38]. However, so far we do not know of a system combining fully dispersive
properties with a fully or even moderately nonlinear approximation.
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Fig. 5 Plots of the experimental time series and the predictions from the system given in
equation (1.4) at the eleven gauges ordered by distance from the wave maker. The solid curves
are the experimental time series and the dashed curves are the model’s predictions.
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