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We propose a novel integrated framework that jointly models complementary information from resting-state
functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers
of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics
data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized
Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a
collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to
regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep
component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr-
DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively
estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We
validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP)
database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism
Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of-
the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain
organization.

the brain (Skudlarski et al., 2008), with several studies suggesting that
this functional connectivity may be mediated by either direct or indi-

1. Introduction

Functional magnetic resonance imaging (fMRI) quantifies the
changes in blood flow and oxygenation in the regions associated with
neuronal activity. More specifically, resting state fMRI (rs-fMRI) is ac-
quired in the absence of a task paradigm, thus allowing us to probe the
spontaneous co-activation patterns in the brain. It is believed that the
co-activations reflect the intrinsic functional connectivity between brain
regions (Fox and Raichle, 2007)]. In contrast to fMRI, Diffusion Tensor
Imaging (DTI) (Assaf and Pasternak, 2008) assesses structural connec-
tivity by measuring the diffusion of water molecules across neuronal
fibres in the brain. Going one step further, we can use tractography to
construct detailed 3D maps of anatomical pathways within the brain
based on the diffusion tensors. There is strong evidence in literature of
the correspondence between functional and structural pathways within
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rect anatomical connections (Atasoy et al., 2016; Bowman et al., 2012;
Fukushima et al., 2018; Honey et al., 2009). Thus, rs-fMRI and DTI data
provide complementary information about function and structure re-
spectively, which when integrated together can be used to construct a
more comprehensive view of brain organization both in health and dis-
ease. As a result, multimodal integration has become an important topic
of study for the characterization of neuropsychiatric disorders such as
Autism Spectrum Disorder (ASD) (Vissers et al., 2012), Attention Deficit
Hyperactivity Disorder (ADHD) (Weyandt et al., 2013), and Schizophre-
nia (Niznikiewicz et al., 2003).

Traditional multimodal analyses of rs-fMRI and DTI data have largely
focused on post-hoc statistical comparisons of features extracted from
the data. For example, simple statistical differences in rs-fMRI and DTI
connectivity between subjects have been used to discover disrupted pat-
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Fig. 1. Top: For the fMRI data, we group voxels in the brain into ROIs defined by a standard atlas and compute the average time courses for each ROI. The correlation
matrix captures the synchrony in the average time courses. Bottom Tractography is performed on the raw DWI data to track the path of neuronal fibers in the brain.
Based on the parcellation scheme, we construct a map of the fibre tracts between ROIs in the brain. The same parcellation scheme is used for both modalities.

terns of brain organization in Alzheimer’s disease (Hahn et al., 2013)
and Progressive Supranuclear Palsy (PSP) (Whitwell et al., 2011). On a
population level, classical multivariate analysis (Andrews-Hanna et al.,
2007; Goble et al., 2012) or random effects models (Propper et al., 2010)
are employed to independently compute and then combine features
from both modalities. Despite their past success at biomarker discovery,
these techniques often fail to generalize at a patient-specific level. Fur-
thermore, they often ignore higher-order interactions between multiple
subsystems in the brain, which is known to be critical for understanding
complex neuropsychiatric disorders (Kaiser et al., 2010; Koshino et al.,
2005). These shortcomings have paved the way for the development of
the network based view of brain connectivity that simultaneously ac-
counts for both inter-subject and intra-subject variability.

In the case of fMRI, network-based models often group voxels in the
brain into regions of interest (ROIs) using a standard anatomical or func-
tional atlas. Next, the functional relationships between these regions are
determined based on the synchrony between representative (often av-
erage) regional time series. This information is typically represented in
terms of a static functional connectivity matrix as shown in Fig. 1 (top).
In case of DTI, tractography is used to estimate the fiber tracts between
the ROIs in the brain from the voxel-level diffusion tensors, from which
features such as the anisotropy or the number of fibers can be extracted.
Similar to the functional connectome, the structural connectivity matrix
captures the strength of the pairwise anatomical connection between
different ROIs, as seen in Fig. 1 (bottom).

Some of the simplest approaches to analyzing network properties
borrow heavily from the field of graph theory. For example, the works
of (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Sporns et al.,
2004) use aggregate network measures, such as node degree, between-
ness centrality, and eigenvector centrality to study the organization of
the brain. These measures compactly summarize the connectivity in-
formation onto a restricted set of nodes that can be mapped back to the
brain. A more global network property is small-worldedness (Bassett and
Bullmore, 2006), which describes an architecture of sparsely connected
clusters of nodes. Complementary changes in small-worldedness in both
anatomical and functional networks have been well documented across
the literature (Park et al., 2008; Sun et al., 2014), with concurrent dis-
ruptions of functional networks (Wang et al., 2009) or structural net-

works (Wang et al., 2012) implicated in neuropsychiatric disorders such
as schizophrenia. The main limitation of these approaches is that they
independently analyze the fMRI and DTI data, and as such, draw heuris-
tic conclusions about the relationship between the two modalities.

Community detection techniques have been widely used for
understanding the organization of complex systems such as the
brain (Bardella et al., 2016). Other examples include the work of
Venkataraman et al. (2013) that identifies abnormal connectivity in
schizophrenia, and (Venkataraman et al., 2016), which character-
izes the social and communicative deficits associated with autism.
An alternative network topology is the hub-spoke model, used
by Venkataraman et al. (2013), Venkataraman et al. (2012) and
Venkataraman et al. (2015), that targets regions associated with a large
number of altered rs-fMRI connections. These methods, however, exclu-
sively focus on functional connectivity and do not incorporate structure.
In this light, the work of Venkataraman et al. (2011) proposes a proba-
bilistic framework that jointly models latent anatomical and functional
connectivity to discover population-level differences in schizophrenia.
Similarly, the work of Higgins et al. (2018) uses a unified Bayesian
framework to identify gender-differences in multimodal connectivity
patterns across different age groups. While successful at combining
multi-modal information for group differentiation, these techniques do
not directly address inter-individual variability.

Data-driven methods integrating structural and functional connec-
tivity focus heavily on groupwise discrimination from the static connec-
tomes. These methods usually follow a two-step approach where fea-
ture selectors and discriminators are trained sequentially in a pipeline.
For example, the authors in Wee et al. (2012) combine graph theoretic
features computed from rs-fMRI and DTI graphs with Support Vector
Machines (SVMs) to identify individuals with Mild Cognitive Impair-
ment. Another example is the work of Sui et al. (2013), which employs
a pipeline consisting of joint-Independent Component Analysis (j-ICA)
on the two modalities followed by Canonical Correlation Analysis (CCA)
to combine them and distinguish schizophrenia patients from controls.
In contrast to the pipelined approaches, end-to-end deep learning meth-
ods combining feature selection and prediction are becoming ubiquitous
in neuroimaging studies. These are highly successful due to their ability
to learn complex abstractions directly from input data. As an example,
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Fig. 2. First, the ROI's defined by a standard atlas are used to compute regional time series. Then, a sliding window protocol defined by window length and stride
is applied to extract the dynamic patient correlation matrices. As in the static case, the dynamic matrices measure the synchrony between regional time series, but

as a function of time.

the work of Aghdam et al. (2018) uses a Deep Belief Network (DBN)
on multimodal data to disambiguate patients with Autism Spectrum
Disorder from healthy controls. However, none of the above methods
tackle continuous-valued prediction, for example, quantifying a contin-
uous level o deficit.

In the continuous prediction realm, our previous works in
D’Souza et al. (2018) and D’Souza et al. (2019a) combine dictionary
learning on rs-fMRI correlation matrices with linear and non-linear re-
gression models respectively to predict a single measure of clinical
severity. These methods combine the rs-fMRI representation with the
prediction in a coupled optimization framework. Unfortunately, they
fail to generalize to predicting multiple deficits (i.e. multi-score pre-
diction) While they use a similar coupled optimization strategy, they
fail to generalize to predicting multiple deficits (i.e. multi-score predic-
tion). On the other hand, recent works of Kawahara et al. (2017) and
D’Souza et al. (2019b) have demonstrated the power of deep neural net-
works to map to multiple clinical/cognitive outcomes from rs-fMRI and
DTI data separately. While promising, all of these methods focus on a
single neuroimaging modality and do not exploit complementary inter-
actions between structural and functional connectivity. In addition, the
aforementioned techniques rely on static rs-fMRI correlation matrices
as input. Consequently, they largely ignore the dynamics of evolution
of the functional scan.

There is now growing evidence that functional connectivity is a
dynamic process that toggles between different intrinsic states evolv-
ing over a static structural connectome (Cabral et al., 2017). These
states manifest over short time windows that are typically of the or-
der of a tens of seconds to a few minutes. Several studies such as
Rashid et al. (2014) and Price et al. (2014) indicate the importance of
modeling this evolution for characterizing neuropsychiatric disorders
such as schizophrenia and Autism Spectrum Disorder (ASD). The dy-
namic connectivity among ROIs in the brain is typically captured via
a sliding window protocol, defined by the window length and stride,
as illustrated in Fig. 2. The window length defines the length of the
time sequence considered by each dynamic correlation matrix, while
the stride controls the overlap in successive sliding windows. Recently,
model based alternatives that detect dynamic changes in correlation
between large-scale brain networks such as the Default Mode Net-
work, Somatosensory Network etc have been developed. An example
is the Dynamic Conditional Correlation (DCC) protocol that was ini-
tially developed in the econometrics and finance literature (Engle, 2002)
and later adapted to the study of brain organization using rs-fMRI
(Lindquist, 2016). It poses a time-varying matrix estimation problem to
explicitly model the evolution of connectivity patterns in the brain, and
has shown robustness in the test-retest setting (Lindquist et al., 2014)
with rs-fMRI. Unfortunately, this method is unstable when scaled up
(Aielli, 2013; Caporin and McAleer, 2013), for example to a whole brain

ROI-level analysis of dynamic connectivity, likely due to ill condition-
ing of the correlation matrices in the absence of additional regulariza-
tion. Consequently, most dynamic connectivity studies continue to rely
on sliding-window correlations as inputs. Examples include (Cai et al.,
2017), where the authors use a sparse decomposition of the rs-fMRI con-
nectomes, or Rabany et al. (2019), which employs a temporal clustering
for ASD/control discrimination. Nevertheless, these approaches focus
exclusively on rs-fMRI and completely ignore structural information.

We propose a deep-generative hybrid model, i.e. the deep sr-DDL,
that integrates structural and dynamic functional connectivity with be-
havior into a unified optimization framework.

1.1. Our contribution

The contributions of this work are two-fold. From an application
standpoint, we develop a unified framework to integrate structural (DTI)
and dynamic rs-fMRI connectivity together with behavior. From a tech-
nical standpoint, we propose a unique alternative to black-box deep
learning methods by combining the interpretability of classical tech-
niques with the representational power of strategically-designed deep
neural networks. As a starting point, we leverage the dictionary learning
frameworks of Eavani et al. (2015), D’Souza et al. (2018) and D’Souza
et al. (2019a,b), which extract group-level subnetworks from static rs-
fMRI correlation matrices. Our deep sr-DDL carries this method further
via two main components:

e A generative dictionary learning component to represent the multi-
modal and dynamic data

o A deep network to model the temporal trends and predict behavioral
scores.

Our generative component is a structurally regularized Dynamic Dic-
tionary Learning (sr-DDL), which uses a DTI tractography prior to regu-
larize a matrix factorization of the dynamic rs-fMRI correlation matrices.
The sr-DDL decomposes dynamic rs-fMRI correlation matrices into a col-
lection of shared bases, and time-varying subject specific loadings. These
loadings are input to a deep network which is comprised of a Long-Short
Term Memory (LSTM) module to model temporal trends and an ANN
that predicts clinical scores. The key to this generative-deep hybrid is
our coupled optimization procedure, which jointly estimates the bases,
loadings, and neural network weights most predictive of the individual
behavioral profile.

A preliminary version of our work was published in MICCAI 2020
(D’Souza et al., 2020b). In this journal, we provide a detailed anal-
ysis of our framework where we validate on both synthetic data and
two separate real-world datasets. The first of these includes a subset of
healthy adults from the publicly available Human Connectomme Project
(HCP) (Van Essen et al., 2012). This helps us evaluate the efficacy of our
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Fig. 3. Framework to integrate structural and dynamic functional connectivity for clinical severity prediction Green Box: The generative sr-DDL module. The
rs-fMRI dynamic correlation matrices are decomposed into the subnetwork basis and time-varying subject-specific loadings. The DTI connectivity regularizes this
decomposition. Purple Box: Deep LSTM-ANN module for multi-score prediction. The sr-DDL coefficients are input into the LSTM to generate a hidden representation.
The predictor ANN (P-ANN) generates a time varying estimate for the scores, while the attention ANN (A-ANN) weights the predictions across time to generate the

final clinical severity estimate.

framework at predicting cognitive outcomes from the rs-fMRI and DTI
scans. Next, we examine a clinical dataset consisting of children diag-
nosed with Autism Spectrum Disorder (ASD). The presentation of ASD
is known to be heterogeneous with individuals exhibiting a wide spec-
trum of behavioral impairments in terms of social reciprocity, commu-
nicative functioning, and repetitive/restrictive behaviours (Spitzer and
Williams, 1980), quantified via clinical severity measures. We observed
that our method outperforms several state-of-the-art approaches at pre-
dicting behavioral performance in unseen individuals from their con-
nectomics data for both datasets. This illustrates that our method is
reproducible. Furthermore, we provide a detailed presentation of our
clinical results, especially the subnetworks identified by the model in
both datasets. We conclude with a discussion on the generalizability,
and robustness and potential directions of future work.

In summary, our joint objective balances generalizability with inter-
pretability, bridging the representational gap between structure, func-
tion and behavior. Our experiments highlight the potential of our deep
sr-DDL framework for providing a more holistic view of neuropsychi-
atric diseases.

2. Materials and methods

2.1. A deep generative hybrid model to integrate multimodal and dynamic
connectivity with behavior

Fig. 3 presents a graphical overview of our framework. We have two
sets of inputs to the model for each individual namely, the dynamic
individual-specific correlation matrices, and the DTI structural connec-
tome graph (upper left). Our outputs are the scalar clinical scores (bot-
tom right). We use the sliding window approach in Fig. 2 to extract
dynamic rs-fMRI correlation matrices and tractography to extract the
DTI connectomes as shown in Fig. 1. The DTI input to our model is the

Graph Laplacian obtained from a binary DTI adjacency matrix capturing
the presence/absence of a fiber between regions. Finally, the behavioral
scores for each individual are obtained from an expert assessment. This
score can correspond to either cognitive outcomes or severity of symp-
toms in case of neurodevelopmental diseases.

The green box in Fig. 3 describes the generative component of our
framework. Here, the dynamic rs-fMRI correlation matrices are decom-
posed using a structurally regularized dynamic dictionary learning (sr-
DDL). The columns in the bases subnetworks capture representative
patterns common to the cohort. The loading coefficients differ across
subjects, and evolve over time. At each timepoint/observation, they
determine the contribution of each basis to the dynamic functional
connectivity profile of the individual. Finally, the DTI Graph Lapla-
cians re-weight the decomposition to focus on the functional connec-
tivity between anatomically linked regions. The gray box denotes the
deep networks part of our model. This network combines a Long Short
Term Memory (LSTM) module with an Artificial Neural Network (ANN)
to predict multiple behavioral scores. The LSTM models the temporal
trends in the subject-specific loading coefficients giving rise to a hid-
den representation. The ANN then uses this representation to predict
the corresponding behavioral outcomes.

Dynamic Dictionary Learning for rs-fMRI data:

We denote the set of time varying functional correlation matrices for
individual n by the set {I", }’T="1 € RP*P_ Here, T, denotes the number of
sliding windows applied to the rs-fMRI scan, and P is the number of ROIs
in the parcellation scheme. As seen in Fig. 3 (green box), we model this
information using a group average basis, and subject-specific tempo-
ral loadings. The dictionary B € R”*K is a concatenation of K elemen-
tal bases vectors b, € R"*1 i.e. B :=[b;, b, by, where K < P.
This basis captures representative brain states which each subject cycles
through over the course of the scan. We further constrain the basis vec-
tors to be orthogonal to each other. This constraint acts as an implicit
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regularizer, ensuring that the learned subnetworks are uncorrelated, yet
explain the rs-fMRI data well. While the bases are shared across the co-
hort, the strength of their combination differs across individuals and
varies over time. These loadings are denoted by the set {c/, };T;[ and com-
bine the basis subnetworks uniquely to best explain each subject’s func-
tional connectivity. We introduce an explicit non-negativity constraint
¢! to ensure that the positive semi-definiteness of I, is preserved. The
complete rs-fMRI data representation takes the following form:

U a ) bl st ¢y >0, BTB=1Iy, )
k

where Iy is the K x K identity matrix. As seen in Eq. (1), the subject-
specific loading vector at time 7, ¢, := [/ d e RXXI models
the heterogeneity in the cohort. Denoting diag(c}) as a diagonal matrix
with the K subject-specific coefficients on the diagonal and off-diagonal

terms set to zero, Eq. (1) can be re-written in the following matrix form:

~ i T TR —
I' ~Bdiag(c))B” s1. ¢, >0, B'B=1; ®)

Finally, this matrix factorization serves to reduce the dimensionality
of the rs-fMRI data, while simultaneously modeling group-level and
subject-specific information.

Structural Regularization from DTI data: Let A,, € R"*P be a binary
adjacency matrix derived from the structural connectome of subject n.
For example, A,, can be constructed by thresholding the number of fibers
estimated between two regions via tractography. Let € denote the set of
edges in this graph. We compute the corresponding Normalized Graph

1 1

Laplacian [Banerjee and Jost (2008)] as L, =V, 2(V, — A,)V,, 2, where
V, = diag(A,1) is the degree matrix and 1 is the vector of all ones. Intu-
itively, the Graph Laplacian is a discrete analog of the Laplace difference
operator in Euclidean space. The Laplace difference operator has been
used to characterize local properties of functions in Euclidean space (for
example, to easily identify and characterize local optima). The Graph
Laplacian generalizes this notion to discrete graphs and functions that
are defined on graphs. Specifically, the Graph Laplacian has become a
popular spatial regularizer in computer vision (Pang and Cheung, 2017),
genetics (Feng et al., 2017) and neuroimaging (Atasoy et al., 2016; Cu-
ingnet et al., 2012). This regularization implicitly assumes that there
is a data signal associated with each node of the graph, and it encour-
ages these signals to be similar for nodes of the graph that have an edge
between them.

We use a matrix analog to Graph Laplacian regularization via the
weighted Frobenius norm i.e. ||.| |, (Manton et al., 2003; Schnabel and
Toint, 1983), which we use in place of the isotropic #, penalty in Eq. (2).
In this case, the graph “signal” corresponds to the vector (i.e., profile)
of approximation errors given in Eq. (2) between the node in question
and all other nodes in the graph. The underlying anatomical connec-
tivity graph is defined by the DTI Graph Laplacian L, for each patient.
Mathematically, our dictionary learning loss takes the following form:

|IT, — Bdiag(c;)B" ||y,
= Tr|(T" - Bdiag(c, )BT )L, (", - Bdiag(c;)BT)] 3)
Here, Tr[M is the trace operator, which sums the diagonal elements

of the argument matrix M. For convenience, let E! = I'! — Bdiag(c/, BT
denote the element-wise approximation error of the correlation matrix
1

I’} . Similarly, we define EL = V;EE; as a weighted version of this error
based on the degree matrix. As detailed in Appendix A, Eq. (3) can be
expanded as follows:

|IT", - Bdiag(c))B" ||y,
= D IIELG, ) - B, Ol

(i,k)e&

= IV, GO TEL L ) = [V, DT TE DI @)
(iReE
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Notice that for terms where (i, k) & &, i.e. there is no anatomical connec-
tion between nodes i and k, the corresponding error term in the sum-
mation drops out. Said another way, this construction minimizes the
sum of the square difference between the rs-fMRI reconstruction pro-
files (E! (i, :) and E! (k, :)) between nodes (i and k) that are adjacent
via the DTI graph. This effectively re-weights the rs-fMRI reconstruc-
tion profiles of anatomically connected nodes according to their rela-
tive degrees (V,(i,i) and V,(k, k)) in the DTI graph pairwise. Thus, the
functional connectivity at a particular node is directly influenced by its
anatomical connections with other nodes in the graph. At a high level,
this construction implicitly regularizes the rs-fMRI reconstruction loss
according to the underlying anatomical connectivity prior.

Finally, based on the formulation in Eq. (3), the final sr-DDL objec-
tive D(.) can be expressed as follows:

D(B, {c, }; {T}},L,)

1 .
= Z F”r; - Bdlag(c;)BTlan
t

n
st. ¢, >0, BTB=1Iy (5

Deep Multiscore Prediction: As seen in the gray box in Fig. 3, the
subject-specific coefficients {c] }are input to an LSTM-ANN to predict
the clinical scores, as parametrized by the weights ®. The M clin-
ical scores for each individual are concatenated into a vector y, :=
Y1 - ¥, €RM*I. The LSTM models the temporal variations in

the coefficients {c]} to generate a hidden representation {h’, }21. From
here, the Predictor ANN (P-ANN) generates a time varying estimates
of the scores {y;}zl € RMx1_ At the same time, the Attention ANN (A-
ANN) generates T, scalars from the hidden representation. These are
then softmax across time to obtain the attention weights: {d/, }L" p The

final prediction is an attention-weighted average across the time esti-
mates, which takes the following form:

$u= D ¥.d, ©)
t

Effectively, the attention weights determine which time points for each
subject are most relevant for behavioral prediction. Additionally, they
allow us to handle rs-fMRI scans of varying durations. Mathemati-
cally, we compute the multi-score prediction error £(.) using the Mean
Squared Error (MSE) loss function as follows:

Tn
£({c}y,:0) =15, = y,lI% = 11 Y. 90, = y,lI% %)
=1

At a high level, the deep network distills the temporal information to
best predict each subject’s clinical profile.

We would like to highlight that our choice of the LSTM over a Recur-
rent Neural Network (RNN) allows us to track the temporal evolution
of connectivity over longer horizons, while avoiding issues with con-
vergence (Chung et al., 2014). Our two branched ANN in conjunction
with the LSTM directly pools together time-varying estimates of clinical
severity by focusing on the portions of the rs-fMRI scan most relevant to
prediction. We notice that this construction naturally allows us to han-
dle scans of varying length, while at same time obviating the need for
additional sequence padding as would be required by a competing 1D
CNN.

In Section 2.2, we will develop a coupled optimization procedure to
jointly estimate our unknowns {B, {c!},®}. We will show that our esti-
mation procedure for the coefficients and neural network weights only
relies on backpropagated gradients from the neural network loss and
the parametric gradients from the dictionary learning. From the joint
objective in Eq. (8), we can see that the choice of neural network archi-
tecture does not directly affect the dictionary learning gradients. So long
as we can backpropagate the deep network loss to the coefficients ¢/, we
can effectively adopt our optimization strategy to handle an alternative
architecture. Said another way, our coupled optimization procedure is
agnostic to the specific neural network choice.



N.S. D’Souza, M.B. Nebel, D. Crocetti et al.

Architectural Details: Our proposed ANN architecture is highlighted
in the white box to the bottom left of Fig. 3. Our modeling choices care-
fully control for representational capacity and convergence of our cou-
pled optimization procedure. Since the input to the network, i.e. the
coefficient vector ¢/ is essentially low dimensional, we opt for a two
layered LSTM with the hidden layer width as 40. Both the P-ANN and
the A-ANN are fully connected neural networks with two hidden layers
of width 40. Since the A-ANN outputs a scalar, the width of its output
layer is one, while that of the P-ANN is of size M, i.e. the number of be-
havioral scores. We use a Rectified Linear Unit (ReLU) as the activation
function for each hidden layer, as we found that this choice is robust to
issues with vanishing gradients and saturation that commonly confound
the training of deep neural networks (Glorot et al., 2011).

Joint Objective for Multimodal Integration: We combine the com-
plementary viewpoints in Egs. (5) and (7) into a single joint objective
below:

J(B,{c,},0;{T%},L,, {y,})
= Y D(B,{c}}; {T}},L,)+4 ) L(O, {c,};y,)

sr-DDL loss deep network loss

1 .
= Z Z F”F; — Bdiag(c!)B” ||
n t n "

+4) LO,(c )y, st ¢, >0, BTB=I; (8
n

Here, A is a hyperparameter than balances the tradeoff between the rep-
resentation loss D(.) and the prediction loss £(.). {B.{c},®} are the
variables to optimize.

2.2. Coupled optimization strategy

We employ the alternating minimization technique in order to infer
the set of hidden variables {B, {c’ },®}. Namely, we optimize Eq. (8) for
each output variable, while holding the other unknowns constant.

We utilize the fact that there is a closed-form Procrustes solution for
quadratic objectives of the form ||[M — B| |2F (Everson, 1998). However,
Eq. (8) is bi-quadratic in B, so it cannot be directly applied. Therefore,
we adopt the strategy in D’Souza et al. (2020a, 2019a, 2019b) of intro-
ducing Y, T, constraints of the form D! = Bdiag(c}). These constraints
are enforced via the Augmented Lagrangian algorithm with correspond-
ing constraint variables {A! }. Thus, our objective from Eq. (8) now be-
comes:

1
J=) F||F;—DLBT||LN+/1 > L£®,{c,};y,)
n

nt n

+ "z; Tl [Tr [(ADHT D! - Bdiag(c;))]]

v [1 . 2
X~ [5 1D’ — Bdlag(c;)nF]
n.t hn
st. ¢ >0,B"B=1Ty 9)

The Frobenius norm terms ||D! — Bdiag(c;)lli. regularize the trace
constraints during the optimization. Observe that Eq. (9) is convex in
the set {D!}, which allows us to optimize this variable via standard
procedures. The constraint parameter is fixed at y = 20, based on the
guidelines in the literature (Nocedal and Wright, 2006).

Fig. 4 depicts our alternating minimization strategy. We describe
each individual block in detail below. We refer the interested reader
to Appendix B, which systematically delineates the supporting calcula-
tions from this section:

Step 1: Closed form solution for B: Notice that Eq. (9) reduces to the
following quadratic form in B:

B* = argming. prp_z, |IM -~ B2 10)
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Given the singular value decomposition M = USV?, we have the follow-
ing closed form solution :

B* = UV’

where M is computed as follows:
1
M=) 7 Y ('L, +L,I)D+
n not
1 4 . .
; F” [ Z ED;dlag(cz) + yA:ldlag(cz)] (11)

Essentially, B spans the anatomically weighted space of subject-specific
dynamic correlation matrices.

Step 2: Updating the sr-DDL loadings {c!} : The objective J,. in
Eq. (9) decouples across subjects. Additionally, we can also incorporate
the non-negativity constraint ¢/, > 0 by passing an intermediate vec-
tor & through a ReLU. The ReLU pre-filtering allows us to optimize an
unconstrained version of Eq. (9), which can be done via the stochastic
ADAM algorithm (Kingma and Ba, 2015). In essence, this optimization
couples the parametric gradient from the augmented Lagrangians with
the backpropagated gradient from the deep network (defined by fixed
0). After convergence, the thresholded loadings ¢! = ReLU (€!) are used
in subsequent steps.

Step 3: Updating the Deep Network weights-©: We backpropagate
the loss £(-) to solve for the unknowns ©. Notice that by dropping the
contributions of the unknown value of y,, to the network loss during
backpropagation using the ADAM (Kingma and Ba, 2015) algorithm, we
can handle missing clinical data as well.

Step 4: Updating the Constraint Variables {D!, A! }: We perform par-
allel primal-dual updates for the constraint pairs {D’,A! }. Here, we cy-
cle through the closed form update for D! and gradient ascent for Al
until convergence.

Step 5: Prediction on Unseen Data: In our cross-validated setting,
we need to compute the sr-DDL loadings {¢’ }T:l for a new patient based
on the training B*. Since we do not know the score ¥ for this patient,
we remove the contribution £(-) from Eq. (8) and assume the constraints
D' = B*diag(¢’) hold with equality, thus removing the Lagrangian terms.
Essentially, the optimization for {¢'} reduces to decoupled quadratic
programming (QP) objectives Q, across time:

& = argmin@% @RS + 7 s1. AT <b
H=2B*"LB*);
f = —[ZxoB*T ('L + LI")B*)|1;

A=-Iyb=0

Where, o denotes the Hadamard product. Finally, we estimate y via a
forward pass through the LSTM-ANN.

Overall, our alternating minimization training procedure explicitly
couples the Dictionary Learning (sr-DDL) and Deep Network (LSTM-
ANN) blocks within the optimization. In contrast, the setup at test time
consists of two steps, namely the coefficient update followed by a for-
ward pass through the LSTM-ANN. We will demonstrate via our experi-
ments (i.e. Section 3.2) that the coupled training is key to generalization.
Finally, we discuss the effect of this difference between the training and
testing procedures further in Section 4.1

2.2.1. Implementation details

Parameter Settings: In order to fix the hyperparameters for our
model and the baselines, we make use of a second subset of 130 indi-
viduals from the HCP database (hereby referred to as HCP-2). Note that
these individuals have no overlap with those used characterize the per-
formance in Section 3.2 to avoid biasing the results. First, we set aside
30 of these patients as a validation set to determine appropriate learn-
ing rates for our method and baselines. Recall that our deep-generative
hybrid has two free parameters: namely the penalty 4, which controls
the tradeoff between data representation and clinical prediction, and K,
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Fig. 4. Alternating minimization strategy for joint optimization of Eq. (9).
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Fig. 5. Scree Plot of the correlation matrices to corroborate the selected values
for K. (L) KKI Dataset (R) HCP Dataset. The thick line denotes the mean eigen-
value, while the shaded area indicates the standard deviation across subjects
and time points.

the number of networks. For our experiments, we chose K = 15 for both
datasets based on the knee point of the eigenspectrum of the correlation
matrices {I‘;} (See Fig. 5). Based on the results of a 5 fold cross valida-
tion and grid search on HCP-2, we fix 4 =2.5. We will further discuss
the robustness to 4 in Section 4.2. Along similar lines, our Section 3.5 in-
cludes a discussion on emerging subnetwork patterns in B upon varying
the model order, i.e. K.

Additionally, our sliding window protocol is defined by two param-
eters, namely the window length and stride. Although these are not hy-
perparameters for the sr-DDL per se, they affect the predictive perfor-
mance by controlling the information overlap between successive dy-
namic rs-fMRI correlation matrices. Again, these are set based on the
cross validation performance on HCP-2. We will further discuss the ro-
bustness to these parameters in Section 4.2.

Initialization: Our coupled optimization strategy requires us to ini-
tialize the basis B, coefficients {c! }, the deep network weights © and the
constraint variable pairs {D/, Al }. We randomly initialize the deep net-
work weights at the first main iteration. We employ a soft-initialization
for {B, {c}}} by solving the dictionary objective in Eq. (5) without the
LSTM-ANN loss terms for 20 iterations. We then initialize D! = Bdiag(c!)
and A! = 0 which lie in the feasible set for our constraints. We empiri-
cally observed that this soft initialization helps stabilize the optimization
to provide improved predictive performance in fewer main iterations
when compared with a completely random initialization.

Finally, the meta-data and code used in this study are available on a
public repository hosted on Github!.

2.3. Baseline comparison techniques
We evaluate the performance of our framework against three differ-

ent classes of baselines, each highlighting the benefit of specific model-
ing choices made by our method.

1 https://github.com/Niharika-SD/Deep-sr-DDL

Our first baseline class is a two stage configuration as illustrated in
Fig. 6 that combines feature extraction on the dynamic rs-fMRI and DTI
data, with a deep learning predictor. These feature engineering tech-
niques are drawn from a set of well established statistical (Independent
Component Analysis in Section 2.3.2) and graph theoretic techniques
(Betweenness Centrality in Section 2.3.1), known to provide rich fea-
ture representations. The learned features are then input to the same
deep LSTM-ANN network used by our method. This network is trained
separately to predict the clinical outcomes. Note that these baselines
incorporate multimodal and dynamic information, but do not directly
operate on the network structure of the connectomes. Our second base-
line class omits the two step approach in lieu of an end-to-end convolu-
tional neural network based on the work of Kawahara et al. (2017). We
train this model on the static rs-fMRI and DTI connectomes in tandem
to predict the clinical scores. This baseline operates directly on the cor-
relation and connectivity matrices, but ignores the dynamic evolution
of functional connectivity. Next, we present the comparison of our deep
sr-DDL by omitting the structural regularization. This helps us evaluate
the benefit provided by the multimodal integration of DTI and rs-fMRI
data. Our final baseline highlights the benefit of our joint optimization
procedure. In this experiment, we decouple the optimization of the dy-
namic matrix factorization and deep network in Fig. 3 similar to the two
stage pipelines.

2.3.1. Graph theoretic feature selection

Notice that the subject-specific correlation rs-fMRI matrices {I"}
and the corresponding binary DTI adjacency matrices A, indicate time-
varying functional and anatomical connectivity between the ROIs re-
spectively. Therefore, we multiply the two to generate the time-varying
multimodal graphs whose nodes are the brain ROIs and edges are de-
fined by the temporal connectivity between these ROIs. We denote the
corresponding adjacency matrices for these graphs by {¥! = A, oI, €
RPxP} where we threshold each W' to remove negative values. Each
element [W!];; gives the strength of association between two communi-
cating sub-regions i and j in individual » at time t. We summarize the
topology of these graphs via Betweenness Centrality (Cy) to obtain a
time-varying estimate of brain connectivity for each ROI [Bassett and
Bullmore (2006); Sporns et al. (2004)]. Cg(v) for region v is calculated
as:

0!, (®)

o= ¥ —2— (12)

stvrueV  Csu

¢!, is the total number of shortest paths from node s to node u at time ¢,
and ¢’ (v) is the number of those paths that pass through v. This measure
quantlﬁes the number of times a node acts as a bridge along the shortest
path between two other nodes and has found wide usage in characteriz-
ing small-worlded networks in brain connectivity (Sporns et al., 2004).
We effectively reduce the dimensionality of the connectivity features.
Again, the collection of features {C’B} are used to train an LSTM-ANN
predictor from Fig. 3 with two hidden layers having width 200 due to
the higher input feature dimensionality.
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Fig. 6. A typical two stage baseline. We input the dynamic correlation matrices and DTI connectomes to Stage 1, which performs Feature Extraction. This step could
be a technique from machine learning, graph theory or a statistical measure. Stage 2 is a deep network that predicts the clinical scores.
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Fig. 7. The BrainNet CNN baseline (Kawahara et al., 2017) for severity prediction from multimodal data.

2.3.2. ICA feature selection

This baseline employs Independent Component Analysis (ICA)
combined an the LSTM-ANN predictor. ICA is a statistical technique that
extracts representative spatial patterns from the rs-fMRI time series. It
has now become ubiquitous in fMRI analysis for its ability to identify
group level differences as well as model individual-specific connectivity
signatures. Essentially, ICA decomposes multivariate signals into ‘inde-
pendent’ non-Gaussian components based on the data statistics.

This algorithm can be extended to the multi-subject analysis setting
via Group ICA (G-ICA). Specifically, we extract independent spatial pat-
terns common across patients, by combining the contribution of the in-
dividual time courses. For this baseline, we first perform G-ICA using
the GIFT toolbox (Calhoun et al., 2009), and derive independent spatial
maps for each subject from their raw rs-fMRI scans. We then compute the
average time courses for each spatial map considering the constituent
voxels. This provides us with a feature representation of reduced dimen-
sion equal to the number of specified maps (d << L) for each individual.
For our experiments, we extract 15 ICA components. These time courses
are input into the LSTM-ANN network in Fig. 3 with two hidden layers
of width 40 to predict the clinical outcomes.

2.3.3. BrainNet convolutional neural network

The BrainNet CNN (Kawahara et al., 2017) relies on specialized fully
convolutional layers for feature extraction, and was originally used to
predict cognitive and motor outcomes from DTI connectomes. Fig. 7
provides a pictorial overview of the original architecture adapted for
clinical outcome prediction from multimodal data. Each branch of the
network accepts as input a P x P connectome, to which it applies a cas-
cade of two edge-edge (E-E) convolutional operations. This E-E opera-

tion combines individual convolutions acting on the row and column to
which the input element belongs. It is followed by a series of edge-node
(E-N) blocks that reduce the dimensionality of the intermediate outputs,
followed by a node-graph (N-G) operation for pooling. Finally, the out-
put clinical scores are predicted via a fully connected artificial neural
network for regression.

We feed the rs-fMRI static connectomes (f‘,,) and DTI Laplacians L,
into two disjoint fully convolutional branches with the architecture de-
scribed above. We integrate the learned features via concatenation and
input them into the fully connected layers described in Fig. 7, but with
the number of outputs equal to the dimensionality of the clinical sever-
ity vector y,. We set the learning rate, momentum and weight decay
parameters according to the guidelines in Kawahara et al. (2017).

2.3.4. Deep sr-DDL without DTI regularization

In this baseline, we examine the effect of excluding the structural reg-
ularization provided by the DTI data from the joint objective in Eq. (8).
The resulting objective function takes the following form:

JuB. (¢}, 0:{T}}. {y, })
1 . 2
= Z z F“r; — Bdiag(c,)B" ||,
n ot n
+4 ) LO,(c}y,) st ¢, >0, BTB=1I;. (13)

Notice that amounts to replacing the Weighted Frobenius Norm formu-
lation by a regular ¢, penalty. This allows us to adopt the alternating
minimization procedure in Section 2.2 to optimize Eq. (13) with a few
minor modifications. Specifically, instead of 7,, constraints per subject,
we use a single constraint of the form D = B, enforced via a single Aug-
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mented Lagrangian A. This effectively ensures that the new objective
has a quadratic form in B, along with a closed form update for D. As
before, we cycle through four individual steps, namely:

¢ Closed form Procrustes solution for the basis B

e Updating the temporal loadings {c!,} (ADAM)

e Updating the Neural Network Parameters ® (ADAM)

¢ Augmented Lagrangian updates for the constraint variables {D, A}

Similar to the Deep sr-DDL, we use K = 15 networks as inputs to the
LSTM-ANN network with two hidden layers of width 40 to predict the
clinical outcomes.

2.3.5. Decoupled deep sr-DDL

Our final baseline examines the efficacy of our coupled optimiza-
tion procedure in Section 2.2 with regards to generalization onto unseen
subjects. Here, we first run the feature extraction using the sr-DDL opti-
mization to extract the basis B and temporal loadings {c,}. We then use
the {c!} as inputs to train the LSTM-ANN network in Fig. 3 to predict
the scores y,,. This is akin to the two-stage baselines delineated in Fig. 6.

Again, we use K = 15 networks with an a two layered LSTM-ANN
having hidden layer width 40

3. Experimental results
3.1. Validation on synthetic data

As a sanity check, we first validate our optimization in Section 2.2
on synthetic data generated from the equivalent generative process. This
experiment allows us to assess the behavior of our algorithm under var-
ious noise scenarios. Specifically, we evaluate the robustness of our esti-
mation procedure under varying levels of noise in the correlation matri-
ces and the scores, and under increasing deviations from orthogonality
in our generating basis. Our simulations indicate that the optimization
procedure is robust in the noise regime (0.01 — 0.2) estimated from the
real-world rs-fMRI data. In addition, these experiments help us identify
the stable parameter settings (4 = 1 — 10) which guide our real world ex-
periments. We refer the interested reader to the Supplementary Results
for the details from this section.

3.2. Real-world experiments: population studies of connectomics and
behavior

We evaluate our deep-generative hybrid on two separate cohorts.
The first dataset is a cohort of 150 healthy individuals from the Human
Connectome Project (HCP) database (Van Essen et al., 2013) having
both the rs-fMRI and DTI scans. We refer to this as the HCP dataset.
Cognitive outcomes such as fluid intelligence are believed to be closely
connected to structural (SC) and function connectivity (FC) in the hu-
man brain (Zimmermann et al., 2018). Thus, jointly modeling multi-
modal neuroimaging and cognitive data helps exploit this fundamental
interweave and uncover the neural underpinnings of cognition. Finally,
we chose to focus on a modest sized dataset (N = 150) to demonstrate
that our framework is suitable for clinical rs-fMRI applications, many of
which have limited sample sizes.

Our second dataset consists of 57 children with high functioning
Autism Spectrum Disorder (ASD) acquired at the Kennedy Krieger Insti-
tute in Baltimore, USA. Henceforth, we refer to this as the KKI dataset.
The age of the subjects from this cohort is 10.06 + 1.26 with an IQ of
110 + 14.03. Social and communicative deficits in ASD are believed to
arise from aberrant interactions between regions of the brain that are
linked by structural and functional connectivity (Rudie et al., 2013).
Thus, identifying these patterns plays a crucial role in illuminating the
etiological basis of the disorder.

Neuroimaging Data: As described in Van Essen et al. (2013), the
HCP S1200 dataset was acquired on a Siemens 3T scanner (TR/TE=
0.72ms/0.33ms, spatial resolution =2 x2x2mm). The rs-fMRI scans
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were processed according to the standard pre-processing pipeline de-
scribed in Smith et al. (2013), which includes additional processing to
account for confounds due to motion and physiological noise. We opted
to use a 15 min interval (typical of clinical rs-fMRI studies of neurode-
velopmental disorders) from the second scan of each subject’s first visit
for our analysis.

The DTI data from the HCP dataset was processed using the standard
Neurodata MR Graphs package (ndmg) (Kiar et al., 2016). This consists
of co-registration to anatomical space via FSL (Jenkinson et al., 2012),
followed by tensor estimation in the MNI space and probabilistic trac-
tography to compute the fibre tracking streamlines.

For the KKI dataset, rs-fMRI acquisition was performed on a Phillips
3T Achieva scanner with a single shot, partially parallel gradient-
recalled EPI sequence with TR/TE = 2500/30ms, flip angle 70°, res
=3.05x3.15x 3mm, having 128 or 156 time samples. The children
were instructed to relax with eyes open and focus on a central cross-
hair while remaining still. We used an in-house pre-processing pipeline
pre-validated across several studies (D’Souza et al., 2020a; Nebel et al.,
2016; Venkataraman et al., 2017). This consists of slice time correc-
tion, rigid body realignment, and normalization to the EPI version of
the MNI template using SPM (Penny et al., 2011), followed by tempo-
ral detrending of the time courses to remove gradual trends in the data.
A CompCorr50 (Ciric et al., 2018; Muschelli et al., 2014) strategy was
used to estimate and remove spatially coherent noise from the white
matter and ventricles, along with the linearly detrended versions of the
six rigid body realignment parameters and their first derivatives, fol-
lowed by spatial smoothing using a 6mm FWHM Gaussian kernel and
temporal smoothing via a band pass filter (0.01 — 0.1Hz). Lastly, the data
was despiked using the AFNI package (Cox, 1996).

The DTT acquisition for the KKI dataset was collected on a 3T Philips
scanner (EPI, SENSE factor= 2.5, TR= 6.356s, TE= 75ms, res = 0.8 X 0.8 X
2.2mm, and FOV= 212). We collected two identical runs, each with a
single b0 and 32 non-collinear gradient directions at b = 700s/mm?>. The
data was pre-processed using the standard FDT (Jenkinson et al., 2012)
pipeline in FSL consisting of susceptibility distortion correction, fol-
lowed by corrections for eddy currents, motion and outliers. From here,
tensor model fitting was performed to generate the transformation ma-
trices and extract atlas based metrics. We used the BEDPOSTx tool in FSL
(Behrens et al., 2007) to perform a bayesian estimation of the diffusion
parameters at each voxel, followed by tractography using PROBTRACKx
(Behrens et al., 2007).

Our experiments rely on the Automatic Anatomical Labelling (AAL)
atlas (Tzourio-Mazoyer et al., 2002) parcellation for the rs-fMRI and
DTI data. AAL consists of 116 cortical, subcortical and cerebellar re-
gions. We employ a sliding window protocol as shown in Fig. 2 using
the parameters learned in Section 2.2.1. Due to the different TR, we set
the sliding window parameters to window length = 156 and stride = 17
for the HCP dataset, and window length = 45 and stride = 5 for the KKI
dataset to extract dynamic correlation matrices from the 116 average
time courses. We discuss the sensitivity to this choice in Section 4.2.
Thus, for each individual, we have correlation matrices of size 116 x 116
based on the Pearson’s Correlation Coefficient between the average re-
gional time-series. Empirically, we observed a consistent noise compo-
nent with nearly unchanging contribution from all brain regions and
low predictive power for both datasets. Therefore, we subtracted out
the first eigenvector contribution from each of the correlation matri-
ces and used the residuals as the inputs {I',} to the algorithm and the
baselines.

Each DTI connectivity matrix A, is binary, where [A,];; = | corre-
sponds to the presence of at least one tract between the regions i and
Jj, 116 in total for AAL. For the KKI dataset, we impute the DTI connec-
tivity for the 11 individual, who do not have DTI based on the training
data in each cross validation fold.

Behavioral Data: For the HCP database, we examine the Cogni-
tive Fluid Intelligence Score (CFIS) described in Duncan (2005) and
Bilker et al. (2012), adjusted for age. This is scored based on a battery of
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Fig. 8. A five-fold cross validation for evaluating performance.

tests measuring cognitive reasoning, considered a nonverbal estimate of
fluid intelligence in subjects. The dynamic range for the score is 70-150,
with higher scores indicating better cognitive abilities.

We analyzed three independent measures of clinical severity for the
KKI dataset. These include:

1 Autism Diagnostic Observation Schedule, Version 2 (ADOS-2) total
raw score

2 Social Responsiveness Scale (SRS) total raw score

3 Praxis total percent correct score

The ADOS consists of several sub-scores which quantify the
social-communicative deficits in individuals along with the restric-
tive/repetitive behaviors (Lord et al., 2000). The test evaluates the child
against a set of guidelines and is administered by a trained clinician.
We compute the total score by adding the individual sub-scores. The
dynamic range for ADOS is between 0 and 30, with higher score indi-
cating greater impairment.

The SRS scale quantifies the level of social responsiveness of a subject
(Bolte et al., 2008). Typically, these attributes are scored by parent/care-
giver or teacher who completes a standardized questionnaire that as-
sess various aspects of the child’s behavior. Consequently, SRS report-
ing tends to be more variable across subjects, as compared to ADOS,
since the responses are heavily biased by the parent/teacher attitudes.
The SRS dynamic range is between 70 and 200 for ASD subjects, with
higher values corresponding to higher severity in terms of social respon-
siveness.

Finally, Praxis is assessed using the Florida Apraxia Battery (modi-
fied for children) (Mostofsky et al., 2006). It assesses the ability to per-
form skilled motor gestures on command, by imitation, and with ac-
tual tool use. Several studies (Dowell et al., 2009; Dziuk et al., 2007;
Mostofsky et al., 2006; Nebel et al., 2016) reveal that children with ASD
show marked impairments in Praxis a.k.a., developmental dyspraxia,
and that impaired Praxis correlates with impairments in core autism
social-communicative and behavioral features. Performance is video-
taped and later scored by two trained research-reliable raters, with total
percent correctly performed gestures as the dependent variable of inter-
est. Scores therefore range from 0 — 100, with higher scores indicating
better Praxis performance. This measure was available for only 48 of
the 57 subjects in the KKI dataset.

3.3. Evaluating predictive performance

We characterize the performance of each method using a five-fold
cross validation strategy, as illustrated in Fig. 8.

We report three quantitative measures of performance. The first is
the Median Absolute Error (MAE) between the outputs §, and the true
scores y,, computed as :

MAE = median(|§. ,, = ¥. |, (14)

10
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The MAE quantifies the absolute distance between the measured and
predicted scores across individuals. We report MAE along with the corre-
sponding standard deviation of the errors to quantify robustness. Lower
MAE indicates better testing performance.

The second metric is the Normalized Mutual Information (NMI),
which assesses the similarity in the distribution of the predicted and
observed score distributions across subjects. NMI for the score m is com-
puted as:

H(y;’m) + H(i’:,m) - H(yigm’y%'")
min {H(y. ), HF. )}

Here, H(y. ,) is the entropy of y. ,, and H(y. ,,.¥. ) is the joint entropy
between y. , and §. ,. NMI ranges between 0 — 1 with a higher value
indicating better agreement between predicted and measured score dis-
tributions, and thus characterizing improved performance.

Finally, we report the R? metric or the coefficient of determination
evaluated on the predicted and true scores. Intuitively, the R? is a sta-
tistical measure that helps us assess the amount of variance in the true
scores, i.e. y,, (for the m™) score that is explained by the corresponding
¥,, as predicted by the method. This is mathematically reported as

Zi (YM(I) - ym)2
2 V(D) = §,,()?
where, §,, indicates the mean value of the true scores y,,. Larger values
of R? indicate better agreement between the true and predicted scores.

NMI(Y. - §: m) = 15)

R (Y, §) =1 -

NMI NMI
Score Method MAE Train MAE Test Train Test R? Test
CFIS  Median N/A 13.51£9.97 N/A 0 le2!
BC & LSTM-ANN 7.23 + 6.24 16.50 +13.60 0.53 0.72  0.013
ICA & 487 +4.84 1645+147 058 077 0.013
LSTM-ANN
BrainNet CNN 350 +2.1 16.89 +12.20 0.79 0.73  0.0017
Decoupled 3.72+4.33 18.10 + 14.04 0.78 0.70 0.011
Without DTI reg- 0.77 + 0.66 20.02 + 15.04 0.88 0.74 0.0089
ularization
Deep sr-DDL 0.44 + 0.15 14.76 + 12.77 0.86 0.77 0.071

3.4. Multi-Score prediction on real world data

Similarly, Fig. 9 illustrates the performance comparison of our deep
sr-DDL framework against the baselines in Section 2.3 on the HCP
dataset for predicting the CFIS. Fig. 10 presents the same comparison
on the KKI dataset for multi-score prediction. In each figure, the scores
predicted by the algorithm are plotted on the y-axis against the mea-
sured ground truth score on the x-axis. The bold x =y line represents
ideal performance. The red points represent the training data, while the
Purple points indicate the held out testing data for all the cross valida-
tion folds.

We observe that the training performance of the baselines is good
(i.e. the red points follow the x =y line) in all cases for both datasets.
However, in case of testing performance, our method outperforms the
baselines in all cases. This performance gain is particularly pronounced
in the case of multiscore prediction (KKI dataset). Empirically, we are
able to tune the baseline hyperparameters to obtain good testing perfor-
mance on the KKI dataset for a single score (ADOS for ICA + LSTM-ANN),
but the prediction of the remaining scores (SRS and Praxis for the KKI
dataset) suffers. Notice that the prediction on one or more of scores (KKI
dataset) and CFIS (HCP dataset) hovers around the population median
of the score in several cases. In fact, in some of the multi-score prediction
cases, it performs worse than predicting the median. This is testament
to the inherent difficulty of the prediction task at hand. Finally, we no-
tice that omitting the structural regularization from the deep sr-DDL
performs worse than our method.
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Fig. 9. HCP dataset: Prediction performance for the Cognitive Fluid Intelligence Score by the (a) Red Box: Deep sr-DDL. (b) Black Box: Deep sr-DDL model without
DTI regularization (c) Light Purple Box: Betweenness Centrality on DTI + dynamic rs-fMRI multimodal graphs followed by LSTM-ANN predictor (d) Green Box:
ICA timeseries followed by LSTM-ANN predictor (e) Purple Box: Branched BrainNet CNN (Kawahara et al., 2017) on DTI and rs-fMRI static graphs (f) Blue Box:

Decoupled DDL factorization followed by LSTM-ANN predictor.

In contrast to the baselines, the testing predictions of our frame-
work follow the x =y more closely. The machine learning, statistical
and graph theoretic techniques we selected for a comparison are well
known in literature for being able to robustly provide compact charac-
terizations for high dimensional datasets. However, we see that ICA is
unable to estimate a reliable projection of the data that is particularly
useful for behavioral prediction. Similarly, the betweenness centrality
measure is unable to extract informative topologies for brain-behavior
integration. We conjecture that the aggregate nature of this measure is
useful for capturing group-level commonalities, but falls short of mod-
eling subject-specific differences. Furthermore, even the BrainNet CNN,
which directly exploits the graph structure of the connectomes falls short
of generalizing to multi-score prediction. Additionally, it ignores the dy-
namic information in the rs-fMRI data. In case of the baseline where we
omit the structural regularization, i.e. deep sr-DDL without DTI, we no-
tice that the method learns a representation of the rs-fMRI data that
generalizes beyond the training set, but still falls short of the perfor-
mance when anatomical information is included. This clearly demon-
strates the benefit of supplementing the functional data with structural
priors. Finally, the failure of the decoupled dynamic matrix factoriza-
tion and deep-network makes a strong case for jointly optimizing the
neuroimaging and behavioral representations. The basis estimated in-
dependently of behavior are not indicative of clinical outcomes, due to
which the regression performance suffers. We also quantify the perfor-
mance indicated in these figures in Table 1 (HCP dataset) and Table 2
(KKI dataset) based on the MAE and NMI/R2. For reference, we have
added an additional row as a ‘baseline’ in our tables where for each test
subject, we simply predict the median of each score.

Our deep sr-DDL framework explicitly optimizes for a viable trade-
off between multimodal and dynamic connectivity structures and behav-
ioral data representations jointly. The dynamic matrix decomposition si-
multaneously models the group information through the basis, and the
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subject-specific differences through the time-varying coefficients. The
DTI Laplacians streamline this decomposition to focus on anatomically
informed functional pathways. The LSTM-ANN directly models the tem-
poral variation in the coefficients, with its weights encoding represen-
tations closely interlinked with behavior. The limited number of basis
elements help provide compact representations explaining the connec-
tivity information well. The regularization and constraints ensure that
the problem is well posed, yet extracts clinically meaningful represen-
tations.

3.5. Clinical interpretation

Subnetwork Identification: In this section, we investigate the sub-
networks learned in the basis B by the sr-DDL model when trained on
both datasets. Recall that each column of the basis consists of a set of co-
activated AAL subregions. In order to robustly identify these patterns,
we first train the model on 10 randomly sampled subsets of each dataset.
Then, we match the obtained subnetworks based on their absolute co-
sine similarity. Since we have 15 subnetworks, we then illustrate the
mean co-activations across the brain regions for each of them individu-
ally in Fig. 11 (HCP) and Fig. 12 (KKI). Here, the colorbar in the figure
indicates subnetwork contribution to the AAL regions. Regions storing
negative values (cold colors) are anticorrelated with regions storing pos-
itive ones (hot colors). Alongside, we represent the corresponding stan-
dard deviations across different regions for each of the 15 subnetworks.

Examining the subnetworks in Fig. 11, we notice that Subnetworks 1
& 2, and 11 exhibits positive and competing contributions from regions
of the Default Mode Network (DMN), which has been widely inferred in
the resting state literature (Raichle, 2015) and is believed to play a crit-
ical role in consolidating memory (Sestieri et al., 2011), as also in self-
referencing and in the theory of mind (Andrews-Hanna, 2012). At the
same time, Subnetworks 2 and 11 have competing and positive contribu-
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KKI Dataset: Performance evaluation on the KKI dataset against our prior work according to Median
Absolute Error (MAE), Normalized Mutual Information (NMI), and R?>. We also report the standard
deviation for the MAE Lower MAE and higher NMI/R? score indicate better performance. Best performance

is highlighted in bold.
Score  Method MAE Train MAE Test NMI Train  NMI Test  R® Test

ADOS Median N/A 2.33 +2.01 N/A 0 le™3!
BC & LSTM-ANN 0.68 + 0.57 4.36 + 3.36 0.89 0.29 0.01
ICA & LSTM-ANN 0.9 + 0.54 2.47 + 2.04 0.91 0.41 0.25
BrainNet CNN 1.90 + 0.086 3.50 +2.20 0.96 0.25 0.17
Decoupled 1.34 £ 0.51 3.93 £ 210 0.68 0.29 0.06
Without DTI regularization 0.25 + 0.099 3.50 + 3.09 0.99 0.17 0.02
Deep sr-DDL 0.2 + 0.09 2.99 +1.99 0.99 0.37 0.23

SRS  Median N/A 16.81 +12.8 N/A 0 1e™30
BC & LSTM-ANN 5.10 + 4.61 18.05 + 14.22 0.92 0.83 0.09
ICA & LSTM-ANN 5.27 + 3.32 13.64 + 12.69 0.76 0.59 0.008
BrainNet CNN 5.25 + 2.5 18.96 + 15.65 0.83 0.75 0.018
Decoupled 2.10 £ 2.98 21.45 +13.73 0.76 0.78 0.002
Without DTI regularization ~ 0.72 + 0.61 22.20 + 14.78 0.95 0.65 0.08
Deep sr-DDL 1.21 + 0.66 18.70 + 13.51 0.98 0.85 0.12

Praxis Median N/A 10.53 + 8.81 N/A 0 e
BC & LSTM-ANN 6.61 + 3.30 17.49 £ 9.08 0.86 0.70 0.01
ICA & LSTM-ANN 4.56 + 1.26 15.02 + 11.80 0.82 0.60 0.0122
BrainNet CNN 3.78 + 0.59 15.15 + 11.49 0.95 0.19 0.009
Decoupled 1.57 £ 1.12 21.67 +12.02 0.75 0.25 0.003
Without DTI regularization ~ 0.61 + 0.29 18.56 + 14.32 0.96 0.65 0.08
Deep sr-DDL 0.62 + 0.36 14.99 + 10.17 0.95 0.82 0.10

Table 2

Testing performance (5-fold CV) of the sr-DDL frame-
work for single-target and multi-target prediction on the
KKI dataset according to Median Absolute Error (MAE),
Normalized Mutual Information (NMI), and R?. We
also report the standard deviation for the MAE. Lower
MAE and higher NMI/R? scores indicate better perfor-

mance.
Score  Method MAE NMI  R?

ADOS Single-target 291 +2.71 0.44 0.041
Multi-target 2.99 +1.99 0.37  0.23

SRS  Single-target  14.78 + 14.24  0.87  0.13
Multi-target 18.70 + 13.51 0.85 0.12

Praxis Single-target 12.40 + 11.60 0.85 0.06
Multi-target 1499 +10.17 0.82 0.10

tions from regions in the Frontoparietal Network (FPN) respectively. The
FPN is known to be involved in executive function and goal-oriented,
cognitively demanding tasks (Uddin et al., 2019). Subnetworks 1, 6, 7,
11 and 13 are comprised of regions from the Medial Frontal Network
(MFN). The MFN and FPN are known to play a key role in decision
making, attention and working memory (Euston et al., 2012; Menon,
2011), which are directly associated with cognitive intelligence. Subnet-
works 1, 3, and 9 include contributions from the subcortical and cerebel-
lar regions, while Subnetworks 10, 2, 14 and 11 include contributions
from the Somatomotor Network (SMN). Taken together, these networks
are believed to be important functional connectivity biomarkers of cog-
nitive intelligence and consistently appear in previous literature on the
HCP dataset (Chén et al., 2019; Hearne et al., 2016).

For the KKI dataset, in Fig. 12, Subnetwork 1 includes regions from
the DMN, and the SMN. Similarly, Subnetwork 6 includes competing
contributions from the SMN and DMN regions. Aberrant connectivity
within the DMN and SMN regions have previously been reported in
ASD (Lynch et al., 2013; Nebel et al., 2016). Subnetworks 7, 3, and 6
exhibit contributions from higher order visual processing areas in the oc-
cipital and temporal lobes along with competing sensorimotor regions.
At the same time, Subnetwork 9 exhibits competing contributions from
the visual network. These findings concur with behavioral reports of
reduced visual-motor integration in autism (Nebel et al., 2016). Subnet-
works 11 and 8 exhibit contributions from the central executive control
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network (CEN) and insula. Subnetwork 10 also exhibits anticorrelated
CEN contributions. These regions are believed to be essential for switch-
ing between goal-directed and self-referential behavior (Sridharan et al.,
2008). Subnetwork 5 and Subnetwork 3 includes prefrontal and DMN re-
gions, along with subcortical areas such as the thalamus, amygdala and
hippocampus. The hippocampus is known to play a crucial role in the
consolidation of long and short term memory, along with spatial mem-
ory to aid navigation. Altered memory functioning has been shown to
manifest in children diagnosed with ASD (Williams et al., 2006). The
thalamus is responsible for relaying sensory and motor signals to the
cerebral cortex in the brain and has been implicated in autism-associated
sensory dysfunction, a core feature of ASD (Cascio et al., 2008). Along
with the amygdala, which is known to be associated with emotional re-
sponses, these areas may be crucial for social-emotional regulation in
ASD. Pouw et al. (2013).

Finally, we notice that the standard deviations for a majority of the
regions in each of the subnetworks are small compared to the mean coac-
tivation. Additionally, we observed an average similarity of 0.79 + 0.13
and 0.81 = 0.12 for these subnetworks across the runs on subsets of the
HCP and KKI datasets respectively. These results suggests that our deep-
generative framework is able to capture stable underlying mechanisms
which robustly explain the different sets of deficits in ASD as well as
robustly extract signatures of cognitive flexibility in neurotypical indi-
viduals.

Study of Emerging Patterns:

In this experiment, we study the overlap in the subnetworks in the
basis B across different scales of subnetworks, i.e. varying the number of
networks K. Recall from Section 2.2.1, that the knee point of the eigen-
spectrum of {I"} for both datasets is between 8 — 20. Namely, we re-run
the sr-DDL model on both the datasets steadily increasing the number
of networks from 8 — 20. In each case, we repeat the experiment using
10 random subsets of the data and look for subnetworks that appear
most often. Figs. 11 and 12 illustrate the top ten networks that appear
most frequently across different data subsets and choice of K for the HCP
dataset and KKI dataset respectively. Alongside, we also report the mean
and standard deviation of the absolute cosine similarity (S) for each indi-
vidual subnetworks across the multiple runs. Networks which are most
consistent exhibit higher similarity across runs with group 1 being the
top five subnetworks (S > 0.95), group 2 being the next five subnetworks
(.S > 0.85). Finally, a visual inspection and comparison with our results
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in Section 3.5 suggest a considerable overlap between the subnetworks
in Figs. 11 and 13 for the HCP dataset and between Figs. 12 and 14
for the KKI dataset. These results suggest that our Deep sr-DDL robustly
extracts representative neural signatures indicative of behavior in both
healthy and autistic populations.

Decoding rs-fMRI networks dynamics:

Our deep sr-DDL allows us to map the evolution of functional net-
works in the brain by probing the LSTM-ANN representation. Recall that
our model does not require the rs-fMRI scans to be of equal length.
Fig. 15 (left) illustrates the learned attentions output by the A-ANN
for the 150 subjects from the HCP dataset on the top and the 57 KKI
subjects at the bottom during testing. For the KKI dataset, the patients
with shorter scans have been grouped in the top of the figure. These
time-points have been blackened at the beginning of the scan. The col-
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orbar indicates the strength of the attention weights. Higher attention
weights denote intervals of the scan considered especially relevant for
prediction. Notice that the network highlights the start of the scan for
several individuals, while it prefers focusing on the end of the scan for
some others, especially pronounced in case of the KKI dataset. The pat-
terns are comparatively more diffused for subjects in the HCP dataset,
although several subjects manifest selectivity in terms of relevant atten-
tion weights. This is indicative of the underlying individual-level het-
erogeneity in both the cohorts.

Next, we illustrate the variation of the network strength for a rep-
resentative subject from the HCP dataset and KKI dataset over the scan
duration in Fig. 15 (right) at the top and bottom respectively. Each solid
colored line corresponds to one of the 15 sub-networks in Fig. 12. No-
tice that, over the scan duration, each network cycles through phases
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orange regions are anti-correlated with the Purple and green regions. Std. Dev.: Standard deviations of regional co-activation patterns. A majority of regions exhibit
small deviations from the mean. Both sets of plots have been computed across cross-validation folds

of activity and relative inactivity. Consequently, only a few networks at
each time step contribute to the patient’s dynamic connectivity profile.
This parallels the transient brain-states hypothesis in dynamic rs-fMRI
connectivity (Allen et al., 2014), with active states as corresponding
sub-networks in the basis matrix B.

4. Discussion

Our deep-generative hybrid cleverly exploits the intrinsic structure
of the rs-fMRI correlation matrices through the dynamic dictionary rep-
resentation to simultaneously capture group-level and subject-specific
information. At the same time, the LSTM-ANN network models the tem-
poral evolution of the rs-fMRI data to predict behavior. The compactness
of our representation serves as a dimensionality reduction step that is
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related to the clinical score of interest, unlike the pipelined treatment
commonly found in the literature. Our structural regularization helps us
fold in anatomical information to guide the functional decomposition.
Overall, our framework outperforms a variety of state-of-the-art graph
theoretic, statistical and deep learning baselines on two separate real
world datasets.

We conjecture that the baseline techniques fail to extract representa-
tive patterns from structural and functional data. These techniques are
quite successful at modelling group level information, but fail to gener-
alize to the entire spectrum of cognitive, symptomatic or connectivity
level differences among subjects. Consequently, they overfit the training
data.
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subsets and model orders. Subnetworks in group 2 exhibit between 0.85 and 0.95 average similarity across data subsets and model orders.

4.1. Examining generalizability

Notice that the training examples (red points) in Figs. 9 and 10 fol-
low the x =y line perfectly, which may suggest overfitting. This phe-
nomenon can be explained by the difference between our training pro-
cedure, where we optimize our joint objective in Eq. (8) assuming the
scores are known, and our testing procedure. Recall that Section 2.2 de-
scribes the procedure for calculating the temporal sr-DDL loadings for an
unseen patient i.e. ¢, from the basis B* obtained during training. Since
the subject is not a part of the training set, the corresponding value of
§ is unknown. Effectively, we must set the contribution from the data
term, i.e., the deep network loss £L(-) in Eq. (8) to 0. Here, we examine
the effect of employing the same strategy to calculate the coefficients for
the training patients. In essence, we estimate the corresponding severity
Y now excluding the deep network loss. Accordingly, Fig. 16 highlights
the differences in training fit with and without this term included in
estimating {c! } for the HCP dataset. Notice that in the latter, the train-
ing accuracy for the CFIS score has the same distribution as the testing
points in Fig. 9. In contrast, inclusion of the deep network loss in our
Fig. 15. (Left) Learned attention weights (Right) Variation of network strength coupled optimization overparamterizes the search space of solutions for
over time on the (Top) HCP dataset (Bottom) KKI dataset. {¢},} to yield a near perfect fit.
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To further probe the generalization capabilities of our Deep sr-DDL,
we examine the effect of training the models on different sized datasets.
For this experiment, we first set aside 50 individuals from the HCP
database as a test set on which we evaluate the generalization perfor-
mance. We then sweep the training set size from N = 50 — 200 in incre-
ments of 25 subjects. To avoid biasing the results, none of these sub-
jects overlap with the HCP-2 validation set used for parameter tuning
in Section 2.2.1. For each training set size, we randomly sample the
subjects 10 times and compute the generalization performance on the
held-out set.

Fig. 17 displays the MAE of the CFIS score prediction on the test
set as a function of the training set size. As expected, we observe that
with increasing training data, the performance on the test set improves
at first but eventually saturates for all methods. This is evinced by a
lowering of the MAE in the initial parts of the curve followed by a sub-
sequent plateau at roughly 150-200 samples. Based on these results, we
conjecture that further addition of training data does not substantially
improve the generalization capabilities of our model or the baselines.
We also note that the deep sr-DDL outperforms the baselines across the
entire regime. In conjunction with our results from Section 3.2, we con-
clude that the deep sr-DDL model performs reasonably well for small to
moderately sized datasets. This is especially important against the back-
drop of potential clinical applications, many of which have datasets of
modest sizes.

4.2. Assessing model robustness

Our deep sr-DDL framework has only two free hyperparameters. The
first is the number of subnetworks in B. As described in Section 2.2.1,
we use the eigen-spectrum of {I'}} to fix this at 15 for both datasets.
The second is the penalty parameter A, which controls the trade-off be-
tween representation and prediction. Recall that our data pre-processing
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includes a sliding window protocol in Fig. 2, which is defined by two
parameters, i.e. the sliding window length and the stride. From a math-
ematical perspective, our deep sr-DDL formulation as such is agnostic to
these parameters, as they are simply folded into the input data dimen-
sion. However, empirically, they balance the context size and informa-
tion overlap within the rs-fMRI correlation matrices {I",} and affects the
prediction performance.

In this section, we evaluate the performance of our framework under
three scenarios. Specifically, we sweep A, the window length and the
stride parameter independently, keeping the other two values fixed. We
use five fold cross validation with the MAE metric to quantify the multi-
score prediction performance, which as shown in Section 3.2, is more
challenging than single score prediction. Fig. 18 plots the performance
for the three scores on the KKI dataset with MAE value for each score
on the y axis and the parameter value on the x axis.

We observed that our method gives stable performance for fairly
large ranges of each parameter settings. As expected, low values of 4
(0.01-1) result in higher MAE values, likely due to underfitting. Simi-
larly, higher values >6 result in overfitting to the training dataset, de-
grading the generalization performance. Additionally, lower values of
window lengths result in higher variance among the correlation values
due to noise, and hence less reliable estimates of dynamic connectiv-
ity (Lindquist, 2016). On the other hand, very large context windows
tend to miss nuances in the dynamic evolution of the scan. Empirically,
we observe that a mid-range of window length 100 — 125s yields a good
tradeoff between representation and prediction. The training of LSTM
networks with very long sequence lengths is known to be particularly
challenging owing to vanishing/exploding gradient issues during back-
propagation. However, having too short a sequence confounds a reliable
estimation of the LSTM weights from limited data. The stride parameter
helps mitigate these issue by compactly summarizing the information in
the sequence while simultaneously controlling the overlap across subse-
quent samples. Our experiments found a stride length between 10 — 20s
to be suitable for our application.

In summary, the guidelines we identified for each of the parameters
are- A € (2—5), window length € (100 — 125)s, and stride € (10 — 20)s.
Additionally, our experiments on the HCP dataset using the same set-
tings indicate that the results of our method are reproducible across
different populations. It is also interesting to note that previous exper-
iments on the HCP dataset in literature have found similar window
lengths to be stable in classification (Gadgil et al., 2020) and various
test-retest settings (Savva et al., 2019).

4.3. Clinical relevance

Our experiments on the KKI dataset evaluate the ability of our Deep
sr-DDL framework to simultaneously explain multiple clinical impair-
ments of ASD. This multi-target prediction is a challenging task, and
in fact, the baseline methods fail to generalize all three scores. At the
same time, one could evaluate the performance of predicting each score
independently via three single-target regression tasks. Accordingly,
Table 2 compares the performance of our Deep sr-DDL framework in
the single-target and multi-target settings. Empirically, we observe that
the single-target prediction is slightly better than the multi-target pre-
diction. Indeed, a possible counter perspective would be to optimize for
prediction accuracy of individual measures explained by potentially dif-
ferent brain bases, for example, as in the work of D’Souza et al. (2019a).
This comparison poses a more philosophical question about the benefits
of a multi-target setup given a possible decline in predictive performance
and the difficultly of the task itself.

To weigh in on this trade off, we note the growing consensus in clin-
ical psychiatry that complex disorders, such as autism and schizophre-
nia, are inherently multidimensional (Havdahl et al., 2016). Further-
more, there is considerable patient heterogeneity within a single diag-
nostic umbrella that reflect subtle differences in the underlying etiol-
ogy (Hong et al., 2018). In fact, the National Institute of Mental Health
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Fig. 18. Performance of the Deep sr-DDL upon varying (L): the penalty parameter A (B): window length (R): stride. Our operating point is indicated by the Purple
arrow.

(NIHM) in the United States has released the RDoc research framework continuous measures (an ordinal regression problem), or the prevalence
(Insel, 2014), which advocates for a multidimensional characterization of ASD sub-types.
to understand the full spectrum of mental health and illness. In this con- Another limitation to our method lies in the fact that our estimate of
text, our Deep sr-DDL approach provides a flexible tool to map multiple dynamic functional connectivity relies on the availability of a reliable
measures via a consistent and stable brain basis (as shown by the re- sliding-window protocol. As illustrated in Section 4.2, an inappropriate
sults in Section 3.5). Thus, we view it as an important foundation to window-length and stride choice has a direct bearing on the predictive
parse complex spectrum disorders that may even spur new analytical performance. Moreover, this tradeoff is difficult to quantify and correct
directions in brain connectomics. for analytically. Keeping this in mind, we are motivated to explore alter-
Finally, our Deep sr-DDL framework is carefully designed to extract natives to the sliding window for better estimating dynamic functional
subject-level dynamic information. Namely, the attention mechanism connectivity, which can at the same time be robustly integrated into
automatically highlights portions of the rs-fMRI scan that are important multimodal data-analysis frameworks such as ours.
for clinical prediction (Fig. 15). In fact, a comparison of the attention From the methodological standpoint, we recognize that our model is
weights in Fig. 15 suggests considerable inter-patient variability of the simplistic in its assumptions, particularly in the sr-DDL formulation. The
intervals used for multi-target prediction in the KKI dataset, as opposed DTI priors guide a data-driven classical rs-fMRI matrix decomposition in
to the relatively consistent attention weights in the HCP dataset. This a regularization framework. This modeling choice was deliberately em-
pattern may be linked to the heterogeneity of ASD described above. In ployed to preserve interpretability in the basis and simplify the inference
conjunction, we observe the subnetwork contributions phasing in and procedure. A key limitation of this approach is that it does not directly
out prominence over the course of the scan, which is consistent with the consider multi-stage pathways, which may be an important mediator
transient brain state hypothesis (Allen et al., 2014) of functional relationships between communicating sub-regions. To this
In summary, the blend of classical generative modeling and deep end, graph neural networks have shown great promise in brain con-
learning prediction in our Deep sr-DDL framework allows for a finer- nectivity research due to their ability to capture subtle and multi-stage
grained characterization of connectivity and behavior. Overall, we be- interactions between communicating brain regions while exploiting the
lieve that the robustness, stability, clinical interpretability, and flexi- underlying hierarchy of brain organization. Consequently, these meth-
bility of our Deep sr-DDL render it a novel and valuable tool for the ods are emerging as important tools to probe complex pathologies in
research community. brain functioning and diagnose neurodevelopmental disorders (Anirudh

and Thiagarajan, 2019; Parisot et al., 2018). In the future, we are explor-
ing end-to-end graph convolutional networks that model the evolution

4.4. Applications, limitations and future scope of rs-fMRI signals on the anatomical DTI graphs.

As seen in our experiments in Section 3.4, our method is able to ex- 5. Conclusion
tract key predictive resting state biomarkers from healthy and autistic
populations. Additionally, our deep sr-DDL makes minimal assumptions. We have introduced a novel deep-generative framework to inte-
Provided we have access to a set of consistently defined structural and grate complementary information from the functional and structural
functional connectivity measures and clinical scores, this analysis can be neuroimaging domains, which simultaneously maps to behavior. Our
easily adapted to other neurological disorders and even predictive net- unique structural regularization elegantly injects anatomical informa-
work models outside the medical realm. Overall, these findings broaden tion into the rs-fMRI functional decomposition, thus providing us with
the scope of our method for future applications. an interpretable brain basis. Our deep network (LSTM-ANN) not only

Although we outperform several baselines on two separate datasets, models the temporal variation among individuals, but also helps isolate
our prediction performance in Section 3.4 is far from perfect. This under- key dynamic resting-state signatures, indicative of clinical/cognitive im-
scores that multi-score prediction is a challenging clinical problem. One pairments. Our coupled optimization procedure ensures that we learn
of the key reasons can be attributed to inherent noise in the clinical mea- effectively from limited training data while generalizing well to un-
sures themselves. For example, SRS is based on a parent-teacher ques- seen subjects. Finally, our framework makes very few assumptions and
tionnaire, which tends to be more subjective than a clinical exam. This can potentially be applied to study other neuropsychiatric disorders (eg.
renders the behavioral prediction task especially challenging, which par- ADHD, Schizophrenia) as an effective diagnostic tool.
tially accounts for the poor performance of several baselines we com-
pared against. Keeping this in mind, a natural clinical direction of ex- Credit authorship contribution statement
ploration is to adopt our method to predicting measures more directly
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Appendix A

Here, we provide the detailed derivations for the Weighted Frobenius
Norm expression in Eq. (4). We begin with the formulation in Eq. (3) be-

low:
|IT", - Bdiag(c')B" ||y, = ||E! I, (A1)

Here, E/, represents the reconstruction error in the correlation matrix I
for patient n at time ¢. For the DTI graph ¢ = (V, &) for patient n, L, =
1 1

V;E(VW - AH)VF is the DTI Graph Laplacian, where V, = diag(A,1) is
the degree matrix and 1 is the vector of all ones. For notational conve-
nience, we will drop the subscripts » and ¢ from the following computa-
tion.

1 1
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Writing out the appropriate subscripts and superscripts we dropped
earlier, we obtain the expression in Eq. (4):
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Appendix B

In this section, we detail the calculations from Section 2.2. Thus, our
alternating minimization steps are explained as:
Step 1: Closed form solution for B: Notice that Eq. (9) reduces to the
following quadratic form in B:

B* = argming. prp_z, |[M - BJ|} B.1)

where M is computed as:
1
M=)y = > (L, +L,I)D +
n not
1 . .
> 7| X Losding(el) + yAjding(c))]  B2)
n n t

We know that B has a closed-form Procrustes solution (Everson, 1998)
computed as follows. Given the singular value decomposition M =
USVT, we have:

B* = UV’

In essence, B spans the anatomically weighted space of subject-specific
dynamic correlation matrices.

Step 2: Updating the sr-DDL loadings {c!}: The objective J,. in
Eq. (9) decouples across subjects. We can also incorporate the non-
negativity constraint ¢/, >0 by passing an intermediate vector &,
through a ReLU. Thus:

¢, = ReLU&) (B.3)

The ReLU pre-filtering allows us to optimize an unconstrained version
of Eq. (9), as follows:

Jp = ng((—), {c! };¥,)
+ Z TL [Tr [(ADT D!~ Bdiag(c;))]]

Y [1 ; 2
+ Z Fﬂ[z [ID}, —Bdlag(c;)IIF] (B.4)
n.i

This optimization can be performed via the stochastic ADAM algorithm
(Kingma and Ba, 2015) by backpropagating the gradients from the loss
in Eq. (B.4) upto the input {¢'}. Experimentally, we set the initial learn-
ing rate to be 0.02, scaled by 0.9 per 10 iterations. Essentially, this
optimization couples the parametric gradient from the Augmented La-
grangian formulation with the backpropagated gradient from the deep
network (parametrized by fixed ©). After convergence, the thresholded
loadings ¢/ = ReLU(¢) are used in the subsequent steps of the mini-
mization.

Step 3: Updating the Deep Network weights-®: We use backpropa-
gation on the loss £(-) to solve for the unknowns ©. Notice that we can
handle missing clinical data by dropping the contributions of the un-
known value of y,,, to the network loss during backpropagation. Again,
we use the ADAM optimizer (Kingma and Ba, 2015) with random ini-
tialization at the first main iteration of alternating minimization. We
employ a learning rate of 0.2¢7*, scaled by 0.95 every 5 epochs, and
batch-size 1. Additionally, we train the network only for 60 epochs to
avoid overfitting.

Step 4: Updating the Constraint Variables {D!, A! }: Each of the pri-
mal variables {D’ } has a closed form solution given by:

[D!F = KF (B.5)

where, K = (diag(c,)B” + I"L,B+L,I"B-yA,) and F = (yIx +2L,)™"!
We update the dual variables {A,} via gradient ascent:
[AT ! = (AT + , (ID! ¥ — Bdiag(c,)) (B.6)

We cycle through the primal-dual updates for {D/ } and {A!} in Egs. (B.5
and B.6) to ensure that the constraints D/, = Bdiag(c!) are satisfied with
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increasing certainty at each iteration. The learning rate parameter #, for
the gradient ascent step is selected to a guarantee sufficient decrease in
the objective for every iteration of alternating minimization. In practice,
we initialize 5, to 1073, and scale it by 0.75 at each iteration k.

Step 5: Prediction on Unseen Data: In our cross-validated setting,
we must compute the sr-DDL loadings {E’}?=1 for a new subject based
on the B* obtained from the training procedure and the new rs-fMRI
correlation matrices {I"} and DTI Laplacians L. As we do not know the
score y for this individual, we need remove the contribution £(-) from
Eq. (9) and assume that the constraints D’ = B*diag(¢') are satisfied with
equality. This effectively eliminates the Lagrangian terms. Essentially,
the optimization for {¢'} now reduces to T, decoupled quadratic pro-
gramming (QP) objectives Q,:

&= argminé,% @)THE +f7¢ sr. AT <D
H=2BTLB*);

f = —[Zgo®B*T ('L +LIMBY)1;
A=-Igb=0

Where o is the elementwise Hadamard product. Notice that decoupling
the objective across time allows us to parallelize this computation. Ad-
ditionally, since H is positive semi-definite, the formulation above is
convex, leading to an efficient QP solution. Finally, we estimate y via a
forward pass through the LSTM-ANN.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.neuroimage.2021.118388
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