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a b s t r a c t 

We propose a novel integrated framework that jointly models complementary information from resting-state 

functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers 

of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics 

data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized 

Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a 

collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to 

regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep 

component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr- 

DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively 

estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We 

validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) 

database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism 

Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of- 

the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain 

organization. 
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. Introduction 

Functional magnetic resonance imaging (fMRI) quantifies the

hanges in blood flow and oxygenation in the regions associated with

euronal activity. More specifically, resting state fMRI (rs-fMRI) is ac-

uired in the absence of a task paradigm, thus allowing us to probe the

pontaneous co-activation patterns in the brain. It is believed that the

o-activations reflect the intrinsic functional connectivity between brain

egions ( Fox and Raichle, 2007 )]. In contrast to fMRI, Diffusion Tensor

maging (DTI) ( Assaf and Pasternak, 2008 ) assesses structural connec-

ivity by measuring the diffusion of water molecules across neuronal

bres in the brain. Going one step further, we can use tractography to

onstruct detailed 3 𝐷 maps of anatomical pathways within the brain

ased on the diffusion tensors. There is strong evidence in literature of

he correspondence between functional and structural pathways within
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he brain ( Skudlarski et al., 2008 ), with several studies suggesting that

his functional connectivity may be mediated by either direct or indi-

ect anatomical connections ( Atasoy et al., 2016; Bowman et al., 2012;

ukushima et al., 2018; Honey et al., 2009 ). Thus, rs-fMRI and DTI data

rovide complementary information about function and structure re-

pectively, which when integrated together can be used to construct a

ore comprehensive view of brain organization both in health and dis-

ase. As a result, multimodal integration has become an important topic

f study for the characterization of neuropsychiatric disorders such as

utism Spectrum Disorder (ASD) ( Vissers et al., 2012 ), Attention Deficit

yperactivity Disorder (ADHD) ( Weyandt et al., 2013 ), and Schizophre-

ia ( Niznikiewicz et al., 2003 ). 

Traditional multimodal analyses of rs-fMRI and DTI data have largely

ocused on post-hoc statistical comparisons of features extracted from

he data. For example, simple statistical differences in rs-fMRI and DTI

onnectivity between subjects have been used to discover disrupted pat-
021 
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Fig. 1. Top: For the fMRI data, we group voxels in the brain into ROIs defined by a standard atlas and compute the average time courses for each ROI. The correlation 

matrix captures the synchrony in the average time courses. Bottom Tractography is performed on the raw DWI data to track the path of neuronal fibers in the brain. 

Based on the parcellation scheme, we construct a map of the fibre tracts between ROIs in the brain. The same parcellation scheme is used for both modalities. 
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erns of brain organization in Alzheimer’s disease ( Hahn et al., 2013 )

nd Progressive Supranuclear Palsy (PSP) ( Whitwell et al., 2011 ). On a

opulation level, classical multivariate analysis ( Andrews-Hanna et al.,

007; Goble et al., 2012 ) or random effects models ( Propper et al., 2010 )

re employed to independently compute and then combine features

rom both modalities. Despite their past success at biomarker discovery,

hese techniques often fail to generalize at a patient-specific level. Fur-

hermore, they often ignore higher-order interactions between multiple

ubsystems in the brain, which is known to be critical for understanding

omplex neuropsychiatric disorders ( Kaiser et al., 2010; Koshino et al.,

005 ). These shortcomings have paved the way for the development of

he network based view of brain connectivity that simultaneously ac-

ounts for both inter-subject and intra-subject variability. 

In the case of fMRI, network-based models often group voxels in the

rain into regions of interest (ROIs) using a standard anatomical or func-

ional atlas. Next, the functional relationships between these regions are

etermined based on the synchrony between representative (often av-

rage) regional time series. This information is typically represented in

erms of a static functional connectivity matrix as shown in Fig. 1 (top).

n case of DTI, tractography is used to estimate the fiber tracts between

he ROIs in the brain from the voxel-level diffusion tensors, from which

eatures such as the anisotropy or the number of fibers can be extracted.

imilar to the functional connectome, the structural connectivity matrix

aptures the strength of the pairwise anatomical connection between

ifferent ROIs, as seen in Fig. 1 (bottom). 

Some of the simplest approaches to analyzing network properties

orrow heavily from the field of graph theory. For example, the works

f ( Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Sporns et al.,

004 ) use aggregate network measures, such as node degree, between-

ess centrality, and eigenvector centrality to study the organization of

he brain. These measures compactly summarize the connectivity in-

ormation onto a restricted set of nodes that can be mapped back to the

rain. A more global network property is small-worldedness ( Bassett and

ullmore, 2006 ), which describes an architecture of sparsely connected

lusters of nodes. Complementary changes in small-worldedness in both

natomical and functional networks have been well documented across

he literature ( Park et al., 2008; Sun et al., 2014 ), with concurrent dis-

uptions of functional networks ( Wang et al., 2009 ) or structural net-
2 
orks ( Wang et al., 2012 ) implicated in neuropsychiatric disorders such

s schizophrenia. The main limitation of these approaches is that they

ndependently analyze the fMRI and DTI data, and as such, draw heuris-

ic conclusions about the relationship between the two modalities. 

Community detection techniques have been widely used for

nderstanding the organization of complex systems such as the

rain ( Bardella et al., 2016 ). Other examples include the work of

enkataraman et al. (2013) that identifies abnormal connectivity in

chizophrenia, and ( Venkataraman et al., 2016 ), which character-

zes the social and communicative deficits associated with autism.

n alternative network topology is the hub-spoke model, used

y Venkataraman et al. (2013) , Venkataraman et al. (2012) and

enkataraman et al. (2015) , that targets regions associated with a large

umber of altered rs-fMRI connections. These methods, however, exclu-

ively focus on functional connectivity and do not incorporate structure.

n this light, the work of Venkataraman et al. (2011) proposes a proba-

ilistic framework that jointly models latent anatomical and functional

onnectivity to discover population-level differences in schizophrenia.

imilarly, the work of Higgins et al. (2018) uses a unified Bayesian

ramework to identify gender-differences in multimodal connectivity

atterns across different age groups. While successful at combining

ulti-modal information for group differentiation, these techniques do

ot directly address inter-individual variability. 

Data-driven methods integrating structural and functional connec-

ivity focus heavily on groupwise discrimination from the static connec-

omes. These methods usually follow a two-step approach where fea-

ure selectors and discriminators are trained sequentially in a pipeline.

or example, the authors in Wee et al. (2012) combine graph theoretic

eatures computed from rs-fMRI and DTI graphs with Support Vector

achines (SVMs) to identify individuals with Mild Cognitive Impair-

ent. Another example is the work of Sui et al. (2013) , which employs

 pipeline consisting of joint-Independent Component Analysis (j-ICA)

n the two modalities followed by Canonical Correlation Analysis (CCA)

o combine them and distinguish schizophrenia patients from controls.

n contrast to the pipelined approaches, end-to-end deep learning meth-

ds combining feature selection and prediction are becoming ubiquitous

n neuroimaging studies. These are highly successful due to their ability

o learn complex abstractions directly from input data. As an example,
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Fig. 2. First, the ROI’s defined by a standard atlas are used to compute regional time series. Then, a sliding window protocol defined by window length and stride 

is applied to extract the dynamic patient correlation matrices. As in the static case, the dynamic matrices measure the synchrony between regional time series, but 

as a function of time. 
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he work of Aghdam et al. (2018) uses a Deep Belief Network (DBN)

n multimodal data to disambiguate patients with Autism Spectrum

isorder from healthy controls. However, none of the above methods

ackle continuous-valued prediction, for example, quantifying a contin-

ous level o deficit. 

In the continuous prediction realm, our previous works in

’Souza et al. (2018) and D’Souza et al. (2019a) combine dictionary

earning on rs-fMRI correlation matrices with linear and non-linear re-

ression models respectively to predict a single measure of clinical

everity. These methods combine the rs-fMRI representation with the

rediction in a coupled optimization framework. Unfortunately, they

ail to generalize to predicting multiple deficits (i.e. multi-score pre-

iction) While they use a similar coupled optimization strategy, they

ail to generalize to predicting multiple deficits (i.e. multi-score predic-

ion). On the other hand, recent works of Kawahara et al. (2017) and

’Souza et al. (2019b) have demonstrated the power of deep neural net-

orks to map to multiple clinical/cognitive outcomes from rs-fMRI and

TI data separately. While promising, all of these methods focus on a

ingle neuroimaging modality and do not exploit complementary inter-

ctions between structural and functional connectivity. In addition, the

forementioned techniques rely on static rs-fMRI correlation matrices

s input. Consequently, they largely ignore the dynamics of evolution

f the functional scan. 

There is now growing evidence that functional connectivity is a

ynamic process that toggles between different intrinsic states evolv-

ng over a static structural connectome ( Cabral et al., 2017 ). These

tates manifest over short time windows that are typically of the or-

er of a tens of seconds to a few minutes. Several studies such as

ashid et al. (2014) and Price et al. (2014) indicate the importance of

odeling this evolution for characterizing neuropsychiatric disorders

uch as schizophrenia and Autism Spectrum Disorder (ASD). The dy-

amic connectivity among ROIs in the brain is typically captured via

 sliding window protocol, defined by the window length and stride,

s illustrated in Fig. 2 . The window length defines the length of the

ime sequence considered by each dynamic correlation matrix, while

he stride controls the overlap in successive sliding windows. Recently,

odel based alternatives that detect dynamic changes in correlation

etween large-scale brain networks such as the Default Mode Net-

ork, Somatosensory Network etc have been developed. An example

s the Dynamic Conditional Correlation (DCC) protocol that was ini-

ially developed in the econometrics and finance literature ( Engle, 2002 )

nd later adapted to the study of brain organization using rs-fMRI

 Lindquist, 2016 ). It poses a time-varying matrix estimation problem to

xplicitly model the evolution of connectivity patterns in the brain, and

as shown robustness in the test-retest setting ( Lindquist et al., 2014 )

ith rs-fMRI. Unfortunately, this method is unstable when scaled up

 Aielli, 2013; Caporin and McAleer, 2013 ), for example to a whole brain
 (  

3 
OI-level analysis of dynamic connectivity, likely due to ill condition-

ng of the correlation matrices in the absence of additional regulariza-

ion. Consequently, most dynamic connectivity studies continue to rely

n sliding-window correlations as inputs. Examples include ( Cai et al.,

017 ), where the authors use a sparse decomposition of the rs-fMRI con-

ectomes, or Rabany et al. (2019) , which employs a temporal clustering

or ASD/control discrimination. Nevertheless, these approaches focus

xclusively on rs-fMRI and completely ignore structural information. 

We propose a deep-generative hybrid model, i.e. the deep sr-DDL,

hat integrates structural and dynamic functional connectivity with be-

avior into a unified optimization framework. 

.1. Our contribution 

The contributions of this work are two-fold. From an application

tandpoint, we develop a unified framework to integrate structural (DTI)

nd dynamic rs-fMRI connectivity together with behavior. From a tech-

ical standpoint, we propose a unique alternative to black-box deep

earning methods by combining the interpretability of classical tech-

iques with the representational power of strategically-designed deep

eural networks. As a starting point, we leverage the dictionary learning

rameworks of Eavani et al. (2015) , D’Souza et al. (2018) and D’Souza

t al. (2019a,b) , which extract group-level subnetworks from static rs-

MRI correlation matrices. Our deep sr-DDL carries this method further

ia two main components: 

• A generative dictionary learning component to represent the multi-

modal and dynamic data 
• A deep network to model the temporal trends and predict behavioral

scores. 

Our generative component is a structurally regularized Dynamic Dic-

ionary Learning (sr-DDL), which uses a DTI tractography prior to regu-

arize a matrix factorization of the dynamic rs-fMRI correlation matrices.

he sr-DDL decomposes dynamic rs-fMRI correlation matrices into a col-

ection of shared bases, and time-varying subject specific loadings. These

oadings are input to a deep network which is comprised of a Long-Short

erm Memory (LSTM) module to model temporal trends and an ANN

hat predicts clinical scores. The key to this generative-deep hybrid is

ur coupled optimization procedure, which jointly estimates the bases,

oadings, and neural network weights most predictive of the individual

ehavioral profile. 

A preliminary version of our work was published in MICCAI 2020

 D’Souza et al., 2020b ). In this journal, we provide a detailed anal-

sis of our framework where we validate on both synthetic data and

wo separate real-world datasets. The first of these includes a subset of

ealthy adults from the publicly available Human Connectomme Project

HCP) ( Van Essen et al., 2012 ). This helps us evaluate the efficacy of our
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Fig. 3. Framework to integrate structural and dynamic functional connectivity for clinical severity prediction Green Box: The generative sr-DDL module. The 

rs-fMRI dynamic correlation matrices are decomposed into the subnetwork basis and time-varying subject-specific loadings. The DTI connectivity regularizes this 

decomposition. Purple Box: Deep LSTM-ANN module for multi-score prediction. The sr-DDL coefficients are input into the LSTM to generate a hidden representation. 

The predictor ANN (P-ANN) generates a time varying estimate for the scores, while the attention ANN (A-ANN) weights the predictions across time to generate the 

final clinical severity estimate. 
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ramework at predicting cognitive outcomes from the rs-fMRI and DTI

cans. Next, we examine a clinical dataset consisting of children diag-

osed with Autism Spectrum Disorder (ASD). The presentation of ASD

s known to be heterogeneous with individuals exhibiting a wide spec-

rum of behavioral impairments in terms of social reciprocity, commu-

icative functioning, and repetitive/restrictive behaviours ( Spitzer and

illiams, 1980 ), quantified via clinical severity measures. We observed

hat our method outperforms several state-of-the-art approaches at pre-

icting behavioral performance in unseen individuals from their con-

ectomics data for both datasets. This illustrates that our method is

eproducible. Furthermore, we provide a detailed presentation of our

linical results, especially the subnetworks identified by the model in

oth datasets. We conclude with a discussion on the generalizability,

nd robustness and potential directions of future work. 

In summary, our joint objective balances generalizability with inter-

retability, bridging the representational gap between structure, func-

ion and behavior. Our experiments highlight the potential of our deep

r-DDL framework for providing a more holistic view of neuropsychi-

tric diseases. 

. Materials and methods 

.1. A deep generative hybrid model to integrate multimodal and dynamic 

onnectivity with behavior 

Fig. 3 presents a graphical overview of our framework. We have two

ets of inputs to the model for each individual namely, the dynamic

ndividual-specific correlation matrices, and the DTI structural connec-

ome graph (upper left). Our outputs are the scalar clinical scores (bot-

om right). We use the sliding window approach in Fig. 2 to extract

ynamic rs-fMRI correlation matrices and tractography to extract the

TI connectomes as shown in Fig. 1 . The DTI input to our model is the
4 
raph Laplacian obtained from a binary DTI adjacency matrix capturing

he presence/absence of a fiber between regions. Finally, the behavioral

cores for each individual are obtained from an expert assessment. This

core can correspond to either cognitive outcomes or severity of symp-

oms in case of neurodevelopmental diseases. 

The green box in Fig. 3 describes the generative component of our

ramework. Here, the dynamic rs-fMRI correlation matrices are decom-

osed using a structurally regularized dynamic dictionary learning (sr-

DL). The columns in the bases subnetworks capture representative

atterns common to the cohort. The loading coefficients differ across

ubjects, and evolve over time. At each timepoint/observation, they

etermine the contribution of each basis to the dynamic functional

onnectivity profile of the individual. Finally, the DTI Graph Lapla-

ians re-weight the decomposition to focus on the functional connec-

ivity between anatomically linked regions. The gray box denotes the

eep networks part of our model. This network combines a Long Short

erm Memory (LSTM) module with an Artificial Neural Network (ANN)

o predict multiple behavioral scores. The LSTM models the temporal

rends in the subject-specific loading coefficients giving rise to a hid-

en representation. The ANN then uses this representation to predict

he corresponding behavioral outcomes. 

Dynamic Dictionary Learning for rs-fMRI data: 

We denote the set of time varying functional correlation matrices for

ndividual 𝑛 by the set { 𝚪𝑡 𝑛 } 
𝑇 𝑛 
𝑡 =1 ∈  

𝑃×𝑃 . Here, 𝑇 𝑛 denotes the number of

liding windows applied to the rs-fMRI scan, and 𝑃 is the number of ROIs

n the parcellation scheme. As seen in Fig. 3 (green box), we model this

nformation using a group average basis, and subject-specific tempo-

al loadings. The dictionary 𝐁 ∈  

𝑃×𝐾 is a concatenation of 𝐾 elemen-

al bases vectors 𝐛 𝑘 ∈  

𝑃×1 , i.e. 𝐁 ∶= [ 𝐛 1 𝐛 2 … 𝐛 𝐾 , where 𝐾 ≪ 𝑃 .

his basis captures representative brain states which each subject cycles

hrough over the course of the scan. We further constrain the basis vec-

ors to be orthogonal to each other. This constraint acts as an implicit
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egularizer, ensuring that the learned subnetworks are uncorrelated, yet

xplain the rs-fMRI data well. While the bases are shared across the co-

ort, the strength of their combination differs across individuals and

aries over time. These loadings are denoted by the set { 𝐜 𝑡 𝑛 } 
𝑇 𝑛 
𝑡 =1 and com-

ine the basis subnetworks uniquely to best explain each subject’s func-

ional connectivity. We introduce an explicit non-negativity constraint

 

𝑡 
𝑛𝑘 

to ensure that the positive semi-definiteness of 𝚪𝑡 𝑛 is preserved. The

omplete rs-fMRI data representation takes the following form: 

𝑡 
𝑛 ≈

∑
𝑘 

𝐜 𝑡 
𝑛𝑘 
𝐛 𝑘 𝐛 𝑇 𝑘 𝑠.𝑡. 𝐜 𝑛𝑘 ≥ 0 , 𝐁 

𝑇 𝐁 =  𝐾 , (1)

here  𝐾 is the 𝐾 ×𝐾 identity matrix. As seen in Eq. (1) , the subject-

pecific loading vector at time 𝑡 , 𝐜 𝑡 𝑛 ∶= [ 𝐜 𝑡 
𝑛 1 … 𝐜 𝑡 

𝑛𝐾 
] 𝑇 ∈  

𝐾×1 models

he heterogeneity in the cohort. Denoting diag ( 𝐜 𝑡 𝑛 ) as a diagonal matrix

ith the 𝐾 subject-specific coefficients on the diagonal and off-diagonal

erms set to zero, Eq. (1) can be re-written in the following matrix form:

𝑡 
𝑛 ≈ 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 𝑠.𝑡. 𝐜 𝑡 
𝑛𝑘 

≥ 0 , 𝐁 

𝑇 𝐁 =  𝐾 (2)

inally, this matrix factorization serves to reduce the dimensionality

f the rs-fMRI data, while simultaneously modeling group-level and

ubject-specific information. 

Structural Regularization from DTI data: Let 𝐀 𝑛 ∈  

𝑃×𝑃 be a binary

djacency matrix derived from the structural connectome of subject 𝑛 .

or example, 𝐀 𝑛 can be constructed by thresholding the number of fibers

stimated between two regions via tractography. Let  denote the set of

dges in this graph. We compute the corresponding Normalized Graph

aplacian [Banerjee and Jost (2008)] as 𝐋 𝑛 = 𝐕 

− 1 2 
𝑛 ( 𝐕 𝑛 − 𝐀 𝑛 ) 𝐕 

− 1 2 
𝑛 , where

 𝑛 = 𝐝𝐢𝐚𝐠 ( 𝐀 𝑛 𝟏 ) is the degree matrix and 𝟏 is the vector of all ones. Intu-

tively, the Graph Laplacian is a discrete analog of the Laplace difference

perator in Euclidean space. The Laplace difference operator has been

sed to characterize local properties of functions in Euclidean space (for

xample, to easily identify and characterize local optima). The Graph

aplacian generalizes this notion to discrete graphs and functions that

re defined on graphs. Specifically, the Graph Laplacian has become a

opular spatial regularizer in computer vision ( Pang and Cheung, 2017 ),

enetics ( Feng et al., 2017 ) and neuroimaging ( Atasoy et al., 2016; Cu-

ngnet et al., 2012 ). This regularization implicitly assumes that there

s a data signal associated with each node of the graph, and it encour-

ges these signals to be similar for nodes of the graph that have an edge

etween them. 

We use a matrix analog to Graph Laplacian regularization via the

eighted Frobenius norm i.e. ||. ||𝐋 𝑛 ( Manton et al., 2003; Schnabel and

oint, 1983 ), which we use in place of the isotropic 𝓁 2 penalty in Eq. (2) .

n this case, the graph “signal ” corresponds to the vector (i.e., profile)

f approximation errors given in Eq. (2) between the node in question

nd all other nodes in the graph. The underlying anatomical connec-

ivity graph is defined by the DTI Graph Laplacian 𝐋 𝑛 for each patient.

athematically, our dictionary learning loss takes the following form: 

|𝚪𝑡 𝑛 − 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ||𝐋 𝑛 
= Tr 

[
( 𝚪𝑡 𝑛 − 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ) 𝐋 𝑛 ( 𝚪𝑡 𝑛 − 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ) 
]

(3)

ere, Tr [ 𝐌 is the trace operator, which sums the diagonal elements

f the argument matrix 𝐌 . For convenience, let 𝐄 

𝑡 
𝑛 = 𝚪𝑡 𝑛 − 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 

enote the element-wise approximation error of the correlation matrix

𝑡 
𝑛 . Similarly, we define 𝐄̃ 

𝑡 
𝑛 = 𝐕 

− 1 2 
𝑛 𝐄 

𝑡 
𝑛 as a weighted version of this error

ased on the degree matrix. As detailed in Appendix A, Eq. (3) can be

xpanded as follows: 

|𝚪𝑡 𝑛 − 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ||𝐋 𝑛 
= 

∑
( 𝑖,𝑘 )∈ 

||𝐄̃ 

𝑡 
𝑛 ( 𝑖, ∶) − 𝐄̃ 

𝑡 
𝑛 ( 𝑘, ∶) ||2 2 

= 

∑
( 𝑖,𝑘 )∈ 

||[ 𝐕 𝑛 ( 𝑖, 𝑖 )] 
− 1 2 𝐄 

𝑡 
𝑛 ( 𝑖, ∶) − [ 𝐕 𝑛 ( 𝑘, 𝑘 )] 

− 1 2 𝐄 

𝑡 
𝑛 ( 𝑘, ∶) ||2 2 (4)
a

5 
otice that for terms where ( 𝑖, 𝑘 ) ∉  , i.e. there is no anatomical connec-

ion between nodes 𝑖 and 𝑘 , the corresponding error term in the sum-

ation drops out. Said another way, this construction minimizes the

um of the square difference between the rs-fMRI reconstruction pro-

les ( ̃𝐄 

𝑡 
𝑛 ( 𝑖, ∶) and 𝐄̃ 

𝑡 
𝑛 ( 𝑘, ∶) ) between nodes ( 𝑖 and 𝑘 ) that are adjacent

ia the DTI graph. This effectively re-weights the rs-fMRI reconstruc-

ion profiles of anatomically connected nodes according to their rela-

ive degrees ( 𝐕 𝑛 ( 𝑖, 𝑖 ) and 𝐕 𝑛 ( 𝑘, 𝑘 ) ) in the DTI graph pairwise. Thus, the

unctional connectivity at a particular node is directly influenced by its

natomical connections with other nodes in the graph. At a high level,

his construction implicitly regularizes the rs-fMRI reconstruction loss

ccording to the underlying anatomical connectivity prior. 

Finally, based on the formulation in Eq. (3) , the final sr-DDL objec-

ive  ( . ) can be expressed as follows: 

 ( 𝐁 , { 𝐜 𝑡 𝑛 }; { 𝚪
𝑡 
𝑛 } , 𝐋 𝑛 ) 

= 

∑
𝑡 

1 
𝑇 𝑛 

||𝚪𝑡 𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ||𝐋 𝑛 
𝑠.𝑡. 𝐜 𝑡 

𝑛𝑘 
≥ 0 , 𝐁 

𝑇 𝐁 =  𝐾 (5)

Deep Multiscore Prediction: As seen in the gray box in Fig. 3 , the

ubject-specific coefficients { 𝐜 𝑡 𝑛 } are input to an LSTM-ANN to predict

he clinical scores, as parametrized by the weights 𝚯. The 𝑀 clin-

cal scores for each individual are concatenated into a vector 𝐲 𝑛 ∶=
 𝐲 𝑛 1 … 𝐲 𝑇 

𝑛𝑀 

∈  

𝑀×1 . The LSTM models the temporal variations in

he coefficients { 𝐜 𝑡 𝑛 } to generate a hidden representation { 𝐡 𝑡 𝑛 } 
𝑇 𝑛 
𝑡 =1 . From

ere, the Predictor ANN (P-ANN) generates a time varying estimates

f the scores { ̂𝐲 𝑡 𝑛 } 
𝑇 𝑛 
𝑡 =1 ∈  

𝑀×1 . At the same time, the Attention ANN (A-

NN) generates 𝑇 𝑛 scalars from the hidden representation. These are

hen softmax across time to obtain the attention weights: { 𝑎 𝑡 𝑛 } 
𝑇 𝑛 
𝑡 =1 . The

nal prediction is an attention-weighted average across the time esti-

ates, which takes the following form: 

̂
 𝑛 = 

∑
𝑡 

𝐲̂ 𝑡 𝑛 𝑎 
𝑡 
𝑛 (6) 

ffectively, the attention weights determine which time points for each

ubject are most relevant for behavioral prediction. Additionally, they

llow us to handle rs-fMRI scans of varying durations. Mathemati-

ally, we compute the multi-score prediction error  ( . ) using the Mean

quared Error (MSE) loss function as follows: 

 

({
𝐜 𝑡 𝑛 
}
, 𝐲 𝑛 ; 𝚯

)
= ‖𝐲̂ 𝑛 − 𝐲 𝑛 ‖2 𝐹 = ||

𝑇 𝑛 ∑
𝑡 =1 

𝐲̂ 𝑡 𝑛 𝑎 
𝑡 
𝑛 − 𝐲 𝑛 ‖2 𝐹 (7)

t a high level, the deep network distills the temporal information to

est predict each subject’s clinical profile. 

We would like to highlight that our choice of the LSTM over a Recur-

ent Neural Network (RNN) allows us to track the temporal evolution

f connectivity over longer horizons, while avoiding issues with con-

ergence ( Chung et al., 2014 ). Our two branched ANN in conjunction

ith the LSTM directly pools together time-varying estimates of clinical

everity by focusing on the portions of the rs-fMRI scan most relevant to

rediction. We notice that this construction naturally allows us to han-

le scans of varying length, while at same time obviating the need for

dditional sequence padding as would be required by a competing 1 𝐷
NN. 

In Section 2.2 , we will develop a coupled optimization procedure to

ointly estimate our unknowns { 𝐁 , { 𝐜 𝑡 𝑛 } , 𝚯} . We will show that our esti-

ation procedure for the coefficients and neural network weights only

elies on backpropagated gradients from the neural network loss and

he parametric gradients from the dictionary learning. From the joint

bjective in Eq. (8) , we can see that the choice of neural network archi-

ecture does not directly affect the dictionary learning gradients. So long

s we can backpropagate the deep network loss to the coefficients 𝐜 𝑡 𝑛 , we

an effectively adopt our optimization strategy to handle an alternative

rchitecture. Said another way, our coupled optimization procedure is

gnostic to the specific neural network choice. 
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Architectural Details: Our proposed ANN architecture is highlighted

n the white box to the bottom left of Fig. 3 . Our modeling choices care-

ully control for representational capacity and convergence of our cou-

led optimization procedure. Since the input to the network, i.e. the

oefficient vector 𝐜 𝑡 𝑛 is essentially low dimensional, we opt for a two

ayered LSTM with the hidden layer width as 40. Both the P-ANN and

he A-ANN are fully connected neural networks with two hidden layers

f width 40. Since the A-ANN outputs a scalar, the width of its output

ayer is one, while that of the P-ANN is of size 𝑀 , i.e. the number of be-

avioral scores. We use a Rectified Linear Unit (ReLU) as the activation

unction for each hidden layer, as we found that this choice is robust to

ssues with vanishing gradients and saturation that commonly confound

he training of deep neural networks ( Glorot et al., 2011 ). 

Joint Objective for Multimodal Integration: We combine the com-

lementary viewpoints in Eqs. (5) and (7) into a single joint objective

elow: 

 ( 𝐁 , { 𝐜 𝑡 𝑛 } , 𝚯; { 𝚪𝑡 𝑛 } , 𝐋 𝑛 , { 𝐲 𝑛 }) 

= 

∑
𝑛 

 ( 𝐁 , { 𝐜 𝑡 𝑛 }; { 𝚪
𝑡 
𝑛 } , 𝐋 𝑛 ) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
sr-DDL loss 

+ 𝜆
∑
𝑛 

 ( 𝚯, { 𝐜 𝑡 𝑛 }; 𝐲 𝑛 ) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
deep network loss 

= 

∑
𝑛 

∑
𝑡 

1 
𝑇 𝑛 

||𝚪𝑡 𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ||𝐋 𝑛 
+ 𝜆

∑
𝑛 

 ( 𝚯, { 𝐜 𝑡 𝑛 }; 𝐲 𝑛 ) 𝑠.𝑡. 𝐜 𝑡 
𝑛𝑘 

≥ 0 , 𝐁 

𝑇 𝐁 =  𝐾 (8)

ere, 𝜆 is a hyperparameter than balances the tradeoff between the rep-

esentation loss  ( . ) and the prediction loss  ( . ) . { 𝐁 , { 𝐜 𝑡 𝑛 } , 𝚯} are the

ariables to optimize. 

.2. Coupled optimization strategy 

We employ the alternating minimization technique in order to infer

he set of hidden variables { 𝐁 , { 𝐜 𝑡 𝑛 } , 𝚯} . Namely, we optimize Eq. (8) for

ach output variable, while holding the other unknowns constant. 

We utilize the fact that there is a closed-form Procrustes solution for

uadratic objectives of the form ||𝐌 − 𝐁 ||2 
𝐹 

( Everson, 1998 ). However,

q. (8) is bi-quadratic in 𝐁 , so it cannot be directly applied. Therefore,

e adopt the strategy in D’Souza et al. (2020a, 2019a, 2019b) of intro-

ucing 
∑
𝑛 𝑇 𝑛 constraints of the form 𝐃 

𝑡 
𝑛 = 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) . These constraints

re enforced via the Augmented Lagrangian algorithm with correspond-

ng constraint variables { 𝚲𝑡 𝑛 } . Thus, our objective from Eq. (8) now be-

omes: 

 𝑐 = 

∑
𝑛,𝑡 

1 
𝑇 𝑛 

||𝚪𝑡 𝑛 − 𝐃 

𝑡 
𝑛 𝐁 

𝑇 ||𝐋 𝑛 + 𝜆
∑
𝑛 

 ( 𝚯, { 𝐜 𝑡 𝑛 }; 𝐲 𝑛 ) 

+ 

∑
𝑛,𝑡 

𝛾

𝑇 𝑛 

[
Tr 
[
( 𝚲𝑡 𝑛 ) 

𝑇 ( 𝐃 

𝑡 
𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) ) 

]]

+ 

∑
𝑛.𝑡 

𝛾

𝑇 𝑛 

[1 
2 
||𝐃 

𝑡 
𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) ||2 𝐹 

]

𝑠.𝑡. 𝐜 𝑡 
𝑛𝑘 

≥ 0 , 𝐁 

𝑇 𝐁 =  𝐾 (9) 

The Frobenius norm terms ||𝐃 

𝑡 
𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) ||2 𝐹 regularize the trace

onstraints during the optimization. Observe that Eq. (9) is convex in

he set { 𝐃 

𝑡 
𝑛 } , which allows us to optimize this variable via standard

rocedures. The constraint parameter is fixed at 𝛾 = 20 , based on the

uidelines in the literature ( Nocedal and Wright, 2006 ). 

Fig. 4 depicts our alternating minimization strategy. We describe

ach individual block in detail below. We refer the interested reader

o Appendix B, which systematically delineates the supporting calcula-

ions from this section: 

tep 1: Closed form solution for 𝐁 : Notice that Eq. (9) reduces to the

ollowing quadratic form in 𝐁 : 

 

∗ = arg min 𝐁 ∶ 𝐁 𝑇 𝐁 =  ||𝐌 − 𝐁 ||2 
𝐹 

(10)

𝐾 

6 
iven the singular value decomposition 𝐌 = 𝐔𝐒𝐕 

𝑇 , we have the follow-

ng closed form solution : 

 

∗ = 𝐔𝐕 

𝑇 

here 𝐌 is computed as follows: 

 = 

∑
𝑛 

1 
𝑇 𝑛 

∑
𝑡 

( 𝚪𝑡 𝑛 𝐋 𝑛 + 𝐋 𝑛 𝚪𝑡 𝑛 ) 𝐃 

𝑡 
𝑛 + 

∑
𝑛 

1 
𝑇 𝑛 

[∑
𝑡 

𝛾

2 
𝐃 

𝑡 
𝑛 𝐝𝐢𝐚𝐠 ( 𝐜 

𝑡 
𝑛 ) + 𝛾𝚲𝑡 𝑛 𝐝𝐢𝐚𝐠 ( 𝐜 

𝑡 
𝑛 ) 
]

(11) 

ssentially, 𝐁 spans the anatomically weighted space of subject-specific

ynamic correlation matrices. 

Step 2: Updating the sr-DDL loadings { 𝐜 𝑡 𝑛 } : The objective  𝑐 in

q. (9) decouples across subjects. Additionally, we can also incorporate

he non-negativity constraint 𝐜 𝑡 
𝑛𝑘 

≥ 0 by passing an intermediate vec-

or 𝐜̂ 𝑡 𝑛 through a ReLU. The ReLU pre-filtering allows us to optimize an

nconstrained version of Eq. (9) , which can be done via the stochastic

DAM algorithm ( Kingma and Ba, 2015 ). In essence, this optimization

ouples the parametric gradient from the augmented Lagrangians with

he backpropagated gradient from the deep network (defined by fixed

). After convergence, the thresholded loadings 𝐜 𝑡 𝑛 = 𝑅𝑒𝐿𝑈 ( ̂𝐜 𝑡 𝑛 ) are used

n subsequent steps. 

Step 3: Updating the Deep Network weights- 𝚯: We backpropagate

he loss  ( ⋅) to solve for the unknowns 𝚯. Notice that by dropping the

ontributions of the unknown value of 𝐲 𝑛𝑚 to the network loss during

ackpropagation using the ADAM ( Kingma and Ba, 2015 ) algorithm, we

an handle missing clinical data as well. 

Step 4: Updating the Constraint Variables { 𝐃 

𝑡 
𝑛 , 𝚲

𝑡 
𝑛 } : We perform par-

llel primal-dual updates for the constraint pairs { 𝐃 

𝑡 
𝑛 , 𝚲

𝑡 
𝑛 } . Here, we cy-

le through the closed form update for 𝐃 

𝑡 
𝑛 and gradient ascent for 𝚲𝑡 𝑛 

ntil convergence. 

Step 5: Prediction on Unseen Data : In our cross-validated setting,

e need to compute the sr-DDL loadings { ̄𝐜 𝑡 } 𝑇̄ 
𝑡 =1 for a new patient based

n the training 𝐁 

∗ . Since we do not know the score 𝐲̄ for this patient,

e remove the contribution  ( ⋅) from Eq. (8) and assume the constraints
̄
 

𝑡 = 𝐁 

∗ 𝐝𝐢𝐚𝐠 ( ̄𝐜 𝑡 ) hold with equality, thus removing the Lagrangian terms.

ssentially, the optimization for { ̄𝐜 𝑡 } reduces to decoupled quadratic

rogramming (QP) objectives  𝑡 across time: 

̄
 

∗ 𝑡 = arg min 𝐜̄ 𝑡 
1 
2 
( ̄𝐜 𝑡 ) 𝑇 𝐇̄ ̄𝐜 𝑡 + ̄𝐟 𝑇 𝐜̄ 𝑡 𝑠.𝑡. 𝐀̄ ̄𝐜 𝑡 ≤ ̄𝐛 

𝐇̄ = 2( 𝐁 

∗ 𝑇 𝐋̄ 𝐁 

∗ ); 

𝐟 = −[  𝐾 ◦( 𝐁 

∗ 𝑇 ( ̄𝚪𝑡 𝐋̄ + ̄𝐋 ̄𝚪𝑡 ) 𝐁 

∗ )] 𝟏 ; 
𝐀̄ = −  𝐾 𝐛̄ = 𝟎 

here, ◦ denotes the Hadamard product. Finally, we estimate 𝐲̄ via a

orward pass through the LSTM-ANN. 

Overall, our alternating minimization training procedure explicitly

ouples the Dictionary Learning (sr-DDL) and Deep Network (LSTM-

NN) blocks within the optimization. In contrast, the setup at test time

onsists of two steps, namely the coefficient update followed by a for-

ard pass through the LSTM-ANN. We will demonstrate via our experi-

ents (i.e. Section 3.2 ) that the coupled training is key to generalization.

inally, we discuss the effect of this difference between the training and

esting procedures further in Section 4.1 

.2.1. Implementation details 

Parameter Settings: In order to fix the hyperparameters for our

odel and the baselines, we make use of a second subset of 130 indi-

iduals from the HCP database (hereby referred to as HCP-2). Note that

hese individuals have no overlap with those used characterize the per-

ormance in Section 3.2 to avoid biasing the results. First, we set aside

0 of these patients as a validation set to determine appropriate learn-

ng rates for our method and baselines. Recall that our deep-generative

ybrid has two free parameters: namely the penalty 𝜆, which controls

he tradeoff between data representation and clinical prediction, and 𝐾,
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Fig. 4. Alternating minimization strategy for joint optimization of Eq. (9 ). 

Fig. 5. Scree Plot of the correlation matrices to corroborate the selected values 

for 𝐾. (L) KKI Dataset (R) HCP Dataset. The thick line denotes the mean eigen- 

value, while the shaded area indicates the standard deviation across subjects 

and time points. 
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he number of networks. For our experiments, we chose 𝐾 = 15 for both

atasets based on the knee point of the eigenspectrum of the correlation

atrices { 𝚪𝑡 𝑛 } (See Fig. 5 ). Based on the results of a 5 fold cross valida-

ion and grid search on HCP-2, we fix 𝜆 = 2 . 5 . We will further discuss

he robustness to 𝜆 in Section 4.2 . Along similar lines, our Section 3.5 in-

ludes a discussion on emerging subnetwork patterns in 𝐁 upon varying

he model order, i.e. 𝐾. 

Additionally, our sliding window protocol is defined by two param-

ters, namely the window length and stride. Although these are not hy-

erparameters for the sr-DDL per se, they affect the predictive perfor-

ance by controlling the information overlap between successive dy-

amic rs-fMRI correlation matrices. Again, these are set based on the

ross validation performance on HCP-2. We will further discuss the ro-

ustness to these parameters in Section 4.2 . 

Initialization: Our coupled optimization strategy requires us to ini-

ialize the basis 𝐁 , coefficients { 𝐜 𝑡 𝑛 } , the deep network weights 𝚯 and the

onstraint variable pairs { 𝐃 

𝑡 
𝑛 , 𝚲

𝑡 
𝑛 } . We randomly initialize the deep net-

ork weights at the first main iteration. We employ a soft-initialization

or { 𝐁 , { 𝐜 𝑡 𝑛 }} by solving the dictionary objective in Eq. (5) without the

STM-ANN loss terms for 20 iterations. We then initialize 𝐃 

𝑡 
𝑛 = 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 )

nd 𝚲𝑡 𝑛 = 𝟎 which lie in the feasible set for our constraints. We empiri-

ally observed that this soft initialization helps stabilize the optimization

o provide improved predictive performance in fewer main iterations

hen compared with a completely random initialization. 

Finally, the meta-data and code used in this study are available on a

ublic repository hosted on Github 1 . 

.3. Baseline comparison techniques 

We evaluate the performance of our framework against three differ-

nt classes of baselines, each highlighting the benefit of specific model-

ng choices made by our method. 
1 https://github.com/Niharika- SD/Deep- sr- DDL 

A  

p  

t

7 
Our first baseline class is a two stage configuration as illustrated in

ig. 6 that combines feature extraction on the dynamic rs-fMRI and DTI

ata, with a deep learning predictor. These feature engineering tech-

iques are drawn from a set of well established statistical (Independent

omponent Analysis in Section 2.3.2 ) and graph theoretic techniques

Betweenness Centrality in Section 2.3.1 ), known to provide rich fea-

ure representations. The learned features are then input to the same

eep LSTM-ANN network used by our method. This network is trained

eparately to predict the clinical outcomes. Note that these baselines

ncorporate multimodal and dynamic information, but do not directly

perate on the network structure of the connectomes. Our second base-

ine class omits the two step approach in lieu of an end-to-end convolu-

ional neural network based on the work of Kawahara et al. (2017) . We

rain this model on the static rs-fMRI and DTI connectomes in tandem

o predict the clinical scores. This baseline operates directly on the cor-

elation and connectivity matrices, but ignores the dynamic evolution

f functional connectivity. Next, we present the comparison of our deep

r-DDL by omitting the structural regularization. This helps us evaluate

he benefit provided by the multimodal integration of DTI and rs-fMRI

ata. Our final baseline highlights the benefit of our joint optimization

rocedure. In this experiment, we decouple the optimization of the dy-

amic matrix factorization and deep network in Fig. 3 similar to the two

tage pipelines. 

.3.1. Graph theoretic feature selection 

Notice that the subject-specific correlation rs-fMRI matrices { 𝚪𝑡 𝑛 }
nd the corresponding binary DTI adjacency matrices 𝐀 𝑛 indicate time-

arying functional and anatomical connectivity between the ROIs re-

pectively. Therefore, we multiply the two to generate the time-varying

ultimodal graphs whose nodes are the brain ROIs and edges are de-

ned by the temporal connectivity between these ROIs. We denote the

orresponding adjacency matrices for these graphs by { 𝚿𝑡 
𝑛 = 𝐀 𝑛 ◦𝚪𝑡 𝑛 ∈

 

𝑃×𝑃 } , where we threshold each 𝚿𝑡 
𝑛 to remove negative values. Each

lement [ 𝚿𝑡 
𝑛 ] 𝑖𝑗 gives the strength of association between two communi-

ating sub-regions 𝑖 and 𝑗 in individual 𝑛 at time 𝑡 . We summarize the

opology of these graphs via Betweenness Centrality ( 𝐶 𝐵 ) to obtain a

ime-varying estimate of brain connectivity for each ROI [ Bassett and

ullmore (2006) ; Sporns et al. (2004) ]. 𝐂 𝐵 ( 𝑣 ) for region 𝑣 is calculated

s: 

 

𝑡 
𝐵 
( 𝑣 ) = 

∑
𝑠 ≠𝑣 ≠𝑢 ∈𝑉 

𝛔𝑡 𝑠𝑢 ( 𝑣 ) 
𝛔𝑡 𝑠𝑢 

(12)

𝑡 
𝑠𝑢 is the total number of shortest paths from node 𝑠 to node 𝑢 at time 𝑡 ,

nd 𝛔𝑡 𝑠𝑢 ( 𝑣 ) is the number of those paths that pass through 𝑣 . This measure

uantifies the number of times a node acts as a bridge along the shortest

ath between two other nodes and has found wide usage in characteriz-

ng small-worlded networks in brain connectivity ( Sporns et al., 2004 ).

e effectively reduce the dimensionality of the connectivity features.

gain, the collection of features { 𝐂 

𝑡 
𝐵 
} are used to train an LSTM-ANN

redictor from Fig. 3 with two hidden layers having width 200 due to

he higher input feature dimensionality. 

https://github.com/Niharika-SD/Deep-sr-DDL
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Fig. 6. A typical two stage baseline. We input the dynamic correlation matrices and DTI connectomes to Stage 1, which performs Feature Extraction. This step could 

be a technique from machine learning, graph theory or a statistical measure. Stage 2 is a deep network that predicts the clinical scores. 

Fig. 7. The BrainNet CNN baseline ( Kawahara et al., 2017 ) for severity prediction from multimodal data. 
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.3.2. ICA feature selection 

This baseline employs Independent Component Analysis (ICA)

ombined an the LSTM-ANN predictor. ICA is a statistical technique that

xtracts representative spatial patterns from the rs-fMRI time series. It

as now become ubiquitous in fMRI analysis for its ability to identify

roup level differences as well as model individual-specific connectivity

ignatures. Essentially, ICA decomposes multivariate signals into ‘inde-

endent’ non-Gaussian components based on the data statistics. 

This algorithm can be extended to the multi-subject analysis setting

ia Group ICA (G-ICA). Specifically, we extract independent spatial pat-

erns common across patients, by combining the contribution of the in-

ividual time courses. For this baseline, we first perform G-ICA using

he GIFT toolbox ( Calhoun et al., 2009 ), and derive independent spatial

aps for each subject from their raw rs-fMRI scans. We then compute the

verage time courses for each spatial map considering the constituent

oxels. This provides us with a feature representation of reduced dimen-

ion equal to the number of specified maps ( 𝑑 << 𝐿 ) for each individual.

or our experiments, we extract 15 ICA components. These time courses

re input into the LSTM-ANN network in Fig. 3 with two hidden layers

f width 40 to predict the clinical outcomes. 

.3.3. BrainNet convolutional neural network 

The BrainNet CNN ( Kawahara et al., 2017 ) relies on specialized fully

onvolutional layers for feature extraction, and was originally used to

redict cognitive and motor outcomes from DTI connectomes. Fig. 7

rovides a pictorial overview of the original architecture adapted for

linical outcome prediction from multimodal data. Each branch of the

etwork accepts as input a 𝑃 × 𝑃 connectome, to which it applies a cas-

ade of two edge-edge (E-E) convolutional operations. This E-E opera-
8 
ion combines individual convolutions acting on the row and column to

hich the input element belongs. It is followed by a series of edge-node

E-N) blocks that reduce the dimensionality of the intermediate outputs,

ollowed by a node-graph (N-G) operation for pooling. Finally, the out-

ut clinical scores are predicted via a fully connected artificial neural

etwork for regression. 

We feed the rs-fMRI static connectomes ( ̂𝚪𝑛 ) and DTI Laplacians 𝐋 𝑛 

nto two disjoint fully convolutional branches with the architecture de-

cribed above. We integrate the learned features via concatenation and

nput them into the fully connected layers described in Fig. 7 , but with

he number of outputs equal to the dimensionality of the clinical sever-

ty vector 𝐲 𝑛 . We set the learning rate, momentum and weight decay

arameters according to the guidelines in Kawahara et al. (2017) . 

.3.4. Deep sr-DDL without DTI regularization 

In this baseline, we examine the effect of excluding the structural reg-

larization provided by the DTI data from the joint objective in Eq. (8) .

he resulting objective function takes the following form: 

 𝑤 ( 𝐁 , { 𝐜 𝑡 𝑛 } , 𝚯; { 𝚪𝑡 𝑛 } , { 𝐲 𝑛 }) 

= 

∑
𝑛 

∑
𝑡 

1 
𝑇 𝑛 

||𝚪𝑡 𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ||2 
𝐹 

+ 𝜆
∑
𝑛 

 ( 𝚯, { 𝐜 𝑡 𝑛 }; 𝐲 𝑛 ) 𝑠.𝑡. 𝐜 𝑡 
𝑛𝑘 

≥ 0 , 𝐁 

𝑇 𝐁 =  𝐾 . (13)

otice that amounts to replacing the Weighted Frobenius Norm formu-

ation by a regular 𝓁 2 penalty. This allows us to adopt the alternating

inimization procedure in Section 2.2 to optimize Eq. (13) with a few

inor modifications. Specifically, instead of 𝑇 𝑛 constraints per subject,

e use a single constraint of the form 𝐃 = 𝐁 , enforced via a single Aug-
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ented Lagrangian 𝚲. This effectively ensures that the new objective

as a quadratic form in 𝐁 , along with a closed form update for 𝐃 . As

efore, we cycle through four individual steps, namely: 

• Closed form Procrustes solution for the basis 𝐁 

• Updating the temporal loadings { 𝐜 𝑡 𝑛 } (ADAM) 
• Updating the Neural Network Parameters 𝚯 (ADAM) 
• Augmented Lagrangian updates for the constraint variables { 𝐃 , 𝚲} 

Similar to the Deep sr-DDL, we use 𝐾 = 15 networks as inputs to the

STM-ANN network with two hidden layers of width 40 to predict the

linical outcomes. 

.3.5. Decoupled deep sr-DDL 

Our final baseline examines the efficacy of our coupled optimiza-

ion procedure in Section 2.2 with regards to generalization onto unseen

ubjects. Here, we first run the feature extraction using the sr-DDL opti-

ization to extract the basis 𝐁 and temporal loadings { 𝐜 𝑡 𝑛 } . We then use

he { 𝐜 𝑡 𝑛 } as inputs to train the LSTM-ANN network in Fig. 3 to predict

he scores 𝐲 𝑛 . This is akin to the two-stage baselines delineated in Fig. 6 .

Again, we use 𝐾 = 15 networks with an a two layered LSTM-ANN

aving hidden layer width 40 

. Experimental results 

.1. Validation on synthetic data 

As a sanity check, we first validate our optimization in Section 2.2

n synthetic data generated from the equivalent generative process. This

xperiment allows us to assess the behavior of our algorithm under var-

ous noise scenarios. Specifically, we evaluate the robustness of our esti-

ation procedure under varying levels of noise in the correlation matri-

es and the scores, and under increasing deviations from orthogonality

n our generating basis. Our simulations indicate that the optimization

rocedure is robust in the noise regime ( 0 . 01 − 0 . 2 ) estimated from the

eal-world rs-fMRI data. In addition, these experiments help us identify

he stable parameter settings ( 𝜆 = 1 − 10 ) which guide our real world ex-

eriments. We refer the interested reader to the Supplementary Results

or the details from this section. 

.2. Real-world experiments: population studies of connectomics and 

ehavior 

We evaluate our deep-generative hybrid on two separate cohorts.

he first dataset is a cohort of 150 healthy individuals from the Human

onnectome Project (HCP) database ( Van Essen et al., 2013 ) having

oth the rs-fMRI and DTI scans. We refer to this as the HCP dataset.

ognitive outcomes such as fluid intelligence are believed to be closely

onnected to structural (SC) and function connectivity (FC) in the hu-

an brain ( Zimmermann et al., 2018 ). Thus, jointly modeling multi-

odal neuroimaging and cognitive data helps exploit this fundamental

nterweave and uncover the neural underpinnings of cognition. Finally,

e chose to focus on a modest sized dataset ( 𝑁 = 150 ) to demonstrate

hat our framework is suitable for clinical rs-fMRI applications, many of

hich have limited sample sizes. 

Our second dataset consists of 57 children with high functioning

utism Spectrum Disorder (ASD) acquired at the Kennedy Krieger Insti-

ute in Baltimore, USA. Henceforth, we refer to this as the KKI dataset.

he age of the subjects from this cohort is 10 . 06 ± 1 . 26 with an IQ of

10 ± 14 . 03 . Social and communicative deficits in ASD are believed to

rise from aberrant interactions between regions of the brain that are

inked by structural and functional connectivity ( Rudie et al., 2013 ).

hus, identifying these patterns plays a crucial role in illuminating the

tiological basis of the disorder. 

Neuroimaging Data: As described in Van Essen et al. (2013) , the

CP S1200 dataset was acquired on a Siemens 3T scanner (TR/TE =
 . 72 𝑚𝑠 ∕0 . 33 𝑚𝑠 , spatial resolution = 2 × 2 × 2 mm). The rs-fMRI scans
9 
ere processed according to the standard pre-processing pipeline de-

cribed in Smith et al. (2013) , which includes additional processing to

ccount for confounds due to motion and physiological noise. We opted

o use a 15 min interval (typical of clinical rs-fMRI studies of neurode-

elopmental disorders) from the second scan of each subject’s first visit

or our analysis. 

The DTI data from the HCP dataset was processed using the standard

eurodata MR Graphs package (ndmg) ( Kiar et al., 2016 ). This consists

f co-registration to anatomical space via FSL ( Jenkinson et al., 2012 ),

ollowed by tensor estimation in the MNI space and probabilistic trac-

ography to compute the fibre tracking streamlines. 

For the KKI dataset, rs-fMRI acquisition was performed on a Phillips

 𝑇 Achieva scanner with a single shot, partially parallel gradient-

ecalled EPI sequence with TR/TE = 2500∕30 ms, flip angle 70 ◦, res

 3 . 05 × 3 . 15 × 3 mm, having 128 or 156 time samples. The children

ere instructed to relax with eyes open and focus on a central cross-

air while remaining still. We used an in-house pre-processing pipeline

re-validated across several studies ( D’Souza et al., 2020a; Nebel et al.,

016; Venkataraman et al., 2017 ). This consists of slice time correc-

ion, rigid body realignment, and normalization to the EPI version of

he MNI template using SPM ( Penny et al., 2011 ), followed by tempo-

al detrending of the time courses to remove gradual trends in the data.

 CompCorr50 ( Ciric et al., 2018; Muschelli et al., 2014 ) strategy was

sed to estimate and remove spatially coherent noise from the white

atter and ventricles, along with the linearly detrended versions of the

ix rigid body realignment parameters and their first derivatives, fol-

owed by spatial smoothing using a 6mm FWHM Gaussian kernel and

emporal smoothing via a band pass filter ( 0 . 01 − 0 . 1 Hz). Lastly, the data

as despiked using the AFNI package ( Cox, 1996 ). 

The DTI acquisition for the KKI dataset was collected on a 3T Philips

canner (EPI, SENSE factor = 2 . 5 , TR = 6 . 356 s, TE = 75 𝑚𝑠 , res = 0 . 8 × 0 . 8 ×
 . 2 mm, and FOV = 212 ). We collected two identical runs, each with a

ingle b0 and 32 non-collinear gradient directions at 𝑏 = 700 𝑠 ∕ 𝑚𝑚 

2 . The

ata was pre-processed using the standard FDT ( Jenkinson et al., 2012 )

ipeline in FSL consisting of susceptibility distortion correction, fol-

owed by corrections for eddy currents, motion and outliers. From here,

ensor model fitting was performed to generate the transformation ma-

rices and extract atlas based metrics. We used the BEDPOSTx tool in FSL

 Behrens et al., 2007 ) to perform a bayesian estimation of the diffusion

arameters at each voxel, followed by tractography using PROBTRACKx

 Behrens et al., 2007 ). 

Our experiments rely on the Automatic Anatomical Labelling (AAL)

tlas ( Tzourio-Mazoyer et al., 2002 ) parcellation for the rs-fMRI and

TI data. AAL consists of 116 cortical, subcortical and cerebellar re-

ions. We employ a sliding window protocol as shown in Fig. 2 using

he parameters learned in Section 2.2.1 . Due to the different TR, we set

he sliding window parameters to window length = 156 and stride = 17
or the HCP dataset, and window length = 45 and stride = 5 for the KKI

ataset to extract dynamic correlation matrices from the 116 average

ime courses. We discuss the sensitivity to this choice in Section 4.2 .

hus, for each individual, we have correlation matrices of size 116 × 116
ased on the Pearson’s Correlation Coefficient between the average re-

ional time-series. Empirically, we observed a consistent noise compo-

ent with nearly unchanging contribution from all brain regions and

ow predictive power for both datasets. Therefore, we subtracted out

he first eigenvector contribution from each of the correlation matri-

es and used the residuals as the inputs { 𝚪𝑛 } to the algorithm and the

aselines. 

Each DTI connectivity matrix 𝐀 𝑛 is binary, where [ 𝐀 𝑛 ] 𝑖𝑗 = 1 corre-

ponds to the presence of at least one tract between the regions 𝑖 and

, 116 in total for AAL. For the KKI dataset, we impute the DTI connec-

ivity for the 11 individual, who do not have DTI based on the training

ata in each cross validation fold. 

Behavioral Data: For the HCP database, we examine the Cogni-

ive Fluid Intelligence Score (CFIS) described in Duncan (2005) and

ilker et al. (2012) , adjusted for age. This is scored based on a battery of
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Fig. 8. A five-fold cross validation for evaluating performance. 
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ests measuring cognitive reasoning, considered a nonverbal estimate of

uid intelligence in subjects. The dynamic range for the score is 70–150,

ith higher scores indicating better cognitive abilities. 

We analyzed three independent measures of clinical severity for the

KI dataset. These include: 

1 Autism Diagnostic Observation Schedule, Version 2 (ADOS-2) total

raw score 

2 Social Responsiveness Scale (SRS) total raw score 

3 Praxis total percent correct score 

The ADOS consists of several sub-scores which quantify the

ocial-communicative deficits in individuals along with the restric-

ive/repetitive behaviors ( Lord et al., 2000 ). The test evaluates the child

gainst a set of guidelines and is administered by a trained clinician.

e compute the total score by adding the individual sub-scores. The

ynamic range for ADOS is between 0 and 30, with higher score indi-

ating greater impairment. 

The SRS scale quantifies the level of social responsiveness of a subject

 Bölte et al., 2008 ). Typically, these attributes are scored by parent/care-

iver or teacher who completes a standardized questionnaire that as-

ess various aspects of the child’s behavior. Consequently, SRS report-

ng tends to be more variable across subjects, as compared to ADOS,

ince the responses are heavily biased by the parent/teacher attitudes.

he SRS dynamic range is between 70 and 200 for ASD subjects, with

igher values corresponding to higher severity in terms of social respon-

iveness. 

Finally, Praxis is assessed using the Florida Apraxia Battery (modi-

ed for children) ( Mostofsky et al., 2006 ). It assesses the ability to per-

orm skilled motor gestures on command, by imitation, and with ac-

ual tool use. Several studies ( Dowell et al., 2009; Dziuk et al., 2007;

ostofsky et al., 2006; Nebel et al., 2016 ) reveal that children with ASD

how marked impairments in Praxis a.k.a., developmental dyspraxia,

nd that impaired Praxis correlates with impairments in core autism

ocial-communicative and behavioral features. Performance is video-

aped and later scored by two trained research-reliable raters, with total

ercent correctly performed gestures as the dependent variable of inter-

st. Scores therefore range from 0 − 100 , with higher scores indicating

etter Praxis performance. This measure was available for only 48 of

he 57 subjects in the KKI dataset. 

.3. Evaluating predictive performance 

We characterize the performance of each method using a five-fold

ross validation strategy, as illustrated in Fig. 8 . 

We report three quantitative measures of performance. The first is

he Median Absolute Error (MAE) between the outputs 𝐲̂ 𝑛 and the true

cores 𝐲 𝑛 , computed as : 

AE = median ( |𝐲̂ ∶ ,𝑚 − 𝐲 ∶ ,𝑚 |) , (14)
10 
he MAE quantifies the absolute distance between the measured and

redicted scores across individuals. We report MAE along with the corre-

ponding standard deviation of the errors to quantify robustness. Lower

AE indicates better testing performance. 

The second metric is the Normalized Mutual Information (NMI),

hich assesses the similarity in the distribution of the predicted and

bserved score distributions across subjects. NMI for the score 𝑚 is com-

uted as: 

MI ( 𝐲 ∶ ,𝑚 , ̂𝐲 ∶ , 𝐦 

) = 

𝐻( 𝐲 ∶ ,𝑚 ) + 𝐻( ̂𝐲 ∶ , 𝐦 

) − 𝐻( 𝐲 ∶ ,𝑚 , ̂𝐲 ∶ ,𝑚 ) 
min { 𝐻( 𝐲 ∶ ,𝑚 ) , 𝐻( ̂𝐲 ∶ ,𝑚 )} 

(15)

ere, 𝐻( 𝐲 ∶ ,𝑚 ) is the entropy of 𝐲 ∶ ,𝑚 and 𝐻( 𝐲 ∶ ,𝑚 , ̂𝐲 ∶ ,𝑚 ) is the joint entropy

etween 𝐲 ∶ ,𝑚 and 𝐲̂ ∶ ,𝑚 . NMI ranges between 0 − 1 with a higher value

ndicating better agreement between predicted and measured score dis-

ributions, and thus characterizing improved performance. 

Finally, we report the 𝑅 

2 metric or the coefficient of determination

valuated on the predicted and true scores. Intuitively, the 𝑅 

2 is a sta-

istical measure that helps us assess the amount of variance in the true

cores, i.e. 𝐲 𝑚 (for the 𝑚 

𝑡ℎ ) score that is explained by the corresponding

̂
 𝑚 as predicted by the method. This is mathematically reported as 

 

2 ( 𝐲 𝑚 , ̂𝐲 𝑚 ) = 1 − 

∑
𝑖 ( 𝐲 𝑚 ( 𝑖 ) − ̄𝐲 𝑚 ) 2 ∑
𝑖 ( 𝐲 𝑚 ( 𝑖 ) − ̂𝐲 𝑚 ( 𝑖 )) 2 

here, 𝐲̄ 𝑚 indicates the mean value of the true scores 𝐲 𝑚 . Larger values

f 𝑅 

2 indicate better agreement between the true and predicted scores. 

Score Method MAE Train MAE Test 

NMI 

Train 

NMI 

Test 𝑅 2 Test 

CFIS Median N/A 13.51 ± 9.97 N/A 0 1 𝑒 −21 

BC & LSTM-ANN 7.23 ± 6.24 16.50 ± 13.60 0.53 0.72 0.013 

ICA & 

LSTM-ANN 

4.87 ± 4.84 16.45 ± 14.7 0.58 0.77 0.013 

BrainNet CNN 3.50 ± 2.1 16.89 ± 12.20 0.79 0.73 0.0017 

Decoupled 3.72 ± 4.33 18.10 ± 14.04 0.78 0.70 0.011 

Without DTI reg- 

ularization 

0.77 ± 0.66 20.02 ± 15.04 0.88 0.74 0.0089 

Deep sr-DDL 0.44 ± 0.15 14.76 ± 12.77 0.86 0.77 0.071 

.4. Multi-Score prediction on real world data 

Similarly, Fig. 9 illustrates the performance comparison of our deep

r-DDL framework against the baselines in Section 2.3 on the HCP

ataset for predicting the CFIS. Fig. 10 presents the same comparison

n the KKI dataset for multi-score prediction. In each figure, the scores

redicted by the algorithm are plotted on the 𝐲-axis against the mea-

ured ground truth score on the 𝐱-axis. The bold 𝐱 = 𝐲 line represents

deal performance. The red points represent the training data, while the

urple points indicate the held out testing data for all the cross valida-

ion folds. 

We observe that the training performance of the baselines is good

i.e. the red points follow the 𝐱 = 𝐲 line) in all cases for both datasets.

owever, in case of testing performance, our method outperforms the

aselines in all cases. This performance gain is particularly pronounced

n the case of multiscore prediction (KKI dataset). Empirically, we are

ble to tune the baseline hyperparameters to obtain good testing perfor-

ance on the KKI dataset for a single score (ADOS for ICA+LSTM-ANN),

ut the prediction of the remaining scores (SRS and Praxis for the KKI

ataset) suffers. Notice that the prediction on one or more of scores (KKI

ataset) and CFIS (HCP dataset) hovers around the population median

f the score in several cases. In fact, in some of the multi-score prediction

ases, it performs worse than predicting the median. This is testament

o the inherent difficulty of the prediction task at hand. Finally, we no-

ice that omitting the structural regularization from the deep sr-DDL

erforms worse than our method. 
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Fig. 9. HCP dataset: Prediction performance for the Cognitive Fluid Intelligence Score by the (a) Red Box: Deep sr-DDL. (b) Black Box: Deep sr-DDL model without 

DTI regularization (c) Light Purple Box: Betweenness Centrality on DTI + dynamic rs-fMRI multimodal graphs followed by LSTM-ANN predictor (d) Green Box: 

ICA timeseries followed by LSTM-ANN predictor (e) Purple Box : Branched BrainNet CNN ( Kawahara et al., 2017 ) on DTI and rs-fMRI static graphs (f) Blue Box: 

Decoupled DDL factorization followed by LSTM-ANN predictor. 
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In contrast to the baselines, the testing predictions of our frame-

ork follow the 𝐱 = 𝐲 more closely. The machine learning, statistical

nd graph theoretic techniques we selected for a comparison are well

nown in literature for being able to robustly provide compact charac-

erizations for high dimensional datasets. However, we see that ICA is

nable to estimate a reliable projection of the data that is particularly

seful for behavioral prediction. Similarly, the betweenness centrality

easure is unable to extract informative topologies for brain-behavior

ntegration. We conjecture that the aggregate nature of this measure is

seful for capturing group-level commonalities, but falls short of mod-

ling subject-specific differences. Furthermore, even the BrainNet CNN,

hich directly exploits the graph structure of the connectomes falls short

f generalizing to multi-score prediction. Additionally, it ignores the dy-

amic information in the rs-fMRI data. In case of the baseline where we

mit the structural regularization, i.e. deep sr-DDL without DTI, we no-

ice that the method learns a representation of the rs-fMRI data that

eneralizes beyond the training set, but still falls short of the perfor-

ance when anatomical information is included. This clearly demon-

trates the benefit of supplementing the functional data with structural

riors. Finally, the failure of the decoupled dynamic matrix factoriza-

ion and deep-network makes a strong case for jointly optimizing the

euroimaging and behavioral representations. The basis estimated in-

ependently of behavior are not indicative of clinical outcomes, due to

hich the regression performance suffers. We also quantify the perfor-

ance indicated in these figures in Table 1 (HCP dataset) and Table 2

KKI dataset) based on the MAE and NMI/ 𝑅 

2 . For reference, we have

dded an additional row as a ‘baseline’ in our tables where for each test

ubject, we simply predict the median of each score. 

Our deep sr-DDL framework explicitly optimizes for a viable trade-

ff between multimodal and dynamic connectivity structures and behav-

oral data representations jointly. The dynamic matrix decomposition si-

ultaneously models the group information through the basis, and the
 s  

11 
ubject-specific differences through the time-varying coefficients. The

TI Laplacians streamline this decomposition to focus on anatomically

nformed functional pathways. The LSTM-ANN directly models the tem-

oral variation in the coefficients, with its weights encoding represen-

ations closely interlinked with behavior. The limited number of basis

lements help provide compact representations explaining the connec-

ivity information well. The regularization and constraints ensure that

he problem is well posed, yet extracts clinically meaningful represen-

ations. 

.5. Clinical interpretation 

Subnetwork Identification: In this section, we investigate the sub-

etworks learned in the basis 𝐁 by the sr-DDL model when trained on

oth datasets. Recall that each column of the basis consists of a set of co-

ctivated AAL subregions. In order to robustly identify these patterns,

e first train the model on 10 randomly sampled subsets of each dataset.

hen, we match the obtained subnetworks based on their absolute co-

ine similarity. Since we have 15 subnetworks, we then illustrate the

ean co-activations across the brain regions for each of them individu-

lly in Fig. 11 (HCP) and Fig. 12 (KKI). Here, the colorbar in the figure

ndicates subnetwork contribution to the AAL regions. Regions storing

egative values (cold colors) are anticorrelated with regions storing pos-

tive ones (hot colors). Alongside, we represent the corresponding stan-

ard deviations across different regions for each of the 15 subnetworks.

Examining the subnetworks in Fig. 11 , we notice that Subnetworks 1

 2, and 11 exhibits positive and competing contributions from regions

f the Default Mode Network (DMN), which has been widely inferred in

he resting state literature ( Raichle, 2015 ) and is believed to play a crit-

cal role in consolidating memory ( Sestieri et al., 2011 ), as also in self-

eferencing and in the theory of mind ( Andrews-Hanna, 2012 ). At the

ame time, Subnetworks 2 and 11 have competing and positive contribu-
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Fig. 10. KKI dataset: Multiscore prediction performance for the (L) ADOS, (M) SRS, and (R) Praxis by the (a) Red Box: Deep sr-DDL (b) Black Box: Model without 

DTI regularization (c) Light Purple Box: Betweenness Centrality on DTI + dynamic rs-fMRI multimodal graphs followed by LSTM-ANN predictor (d) Green Box: 

ICA timeseries followed by the LSTM-ANN predictor (e) Purple Box : Branched BrainNet CNN ( Kawahara et al., 2017 ) on DTI Laplacian and rs-fMRI static graphs 

(f) Blue Box: Decoupled DDL factorization followed by LSTM-ANN predictor. 

12 
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Table 1 

KKI Dataset: Performance evaluation on the KKI dataset against our prior work according to Median 

Absolute Error (MAE), Normalized Mutual Information (NMI) , and 𝑅 2 . We also report the standard 

deviation for the MAE Lower MAE and higher NMI/ 𝑅 2 score indicate better performance. Best performance 

is highlighted in bold. 

Score Method MAE Train MAE Test NMI Train NMI Test 𝑅 2 Test 

ADOS Median N/A 2.33 ± 2.01 N/A 0 1 𝑒 −31 

BC & LSTM-ANN 0.68 ± 0.57 4.36 ± 3.36 0.89 0.29 0.01 

ICA & LSTM-ANN 0.9 ± 0.54 2.47 ± 2.04 0.91 0.41 0.25 

BrainNet CNN 1.90 ± 0.086 3.50 ± 2.20 0.96 0.25 0.17 

Decoupled 1.34 ± 0.51 3.93 ± 2.10 0.68 0.29 0.06 

Without DTI regularization 0.25 ± 0.099 3.50 ± 3.09 0.99 0.17 0.02 

Deep sr-DDL 0.2 ± 0.09 2.99 ± 1.99 0.99 0.37 0.23 

SRS Median N/A 16.81 ± 12.8 N/A 0 1 𝑒 −30 

BC & LSTM-ANN 5.10 ± 4.61 18.05 ± 14.22 0.92 0.83 0.09 

ICA & LSTM-ANN 5.27 ± 3.32 13.64 ± 12.69 0.76 0.59 0.008 

BrainNet CNN 5.25 ± 2.5 18.96 ± 15.65 0.83 0.75 0.018 

Decoupled 2.10 ± 2.98 21.45 ± 13.73 0.76 0.78 0.002 

Without DTI regularization 0.72 ± 0.61 22.20 ± 14.78 0.95 0.65 0.08 

Deep sr-DDL 1.21 ± 0.66 18.70 ± 13.51 0.98 0.85 0.12 

Praxis Median N/A 10.53 ± 8.81 N/A 0 1 𝑒 −29 

BC & LSTM-ANN 6.61 ± 3.30 17.49 ± 9.08 0.86 0.70 0.01 

ICA & LSTM-ANN 4.56 ± 1.26 15.02 ± 11.80 0.82 0.60 0.0122 

BrainNet CNN 3.78 ± 0.59 15.15 ± 11.49 0.95 0.19 0.009 

Decoupled 1.57 ± 1.12 21.67 ± 12.02 0.75 0.25 0.003 

Without DTI regularization 0.61 ± 0.29 18.56 ± 14.32 0.96 0.65 0.08 

Deep sr-DDL 0.62 ± 0.36 14.99 ± 10.17 0.95 0.82 0.10 

Table 2 

Testing performance (5-fold CV) of the sr-DDL frame- 

work for single-target and multi-target prediction on the 

KKI dataset according to Median Absolute Error (MAE), 

Normalized Mutual Information (NMI) , and 𝑅 2 . We 

also report the standard deviation for the MAE. Lower 

MAE and higher NMI/ 𝑅 2 scores indicate better perfor- 

mance. 

Score Method MAE NMI 𝑅 2 

ADOS Single-target 2.91 ± 2.71 0.44 0.041 

Multi-target 2.99 ± 1.99 0.37 0.23 

SRS Single-target 14.78 ± 14.24 0.87 0.13 

Multi-target 18.70 ± 13.51 0.85 0.12 

Praxis Single-target 12.40 ± 11.60 0.85 0.06 

Multi-target 14.99 ± 10.17 0.82 0.10 
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ions from regions in the Frontoparietal Network (FPN) respectively. The

PN is known to be involved in executive function and goal-oriented,

ognitively demanding tasks ( Uddin et al., 2019 ). Subnetworks 1, 6, 7,

1 and 13 are comprised of regions from the Medial Frontal Network

MFN). The MFN and FPN are known to play a key role in decision

aking, attention and working memory ( Euston et al., 2012; Menon,

011 ), which are directly associated with cognitive intelligence. Subnet-

orks 1, 3, and 9 include contributions from the subcortical and cerebel-

ar regions, while Subnetworks 10, 2, 14 and 11 include contributions

rom the Somatomotor Network (SMN). Taken together, these networks

re believed to be important functional connectivity biomarkers of cog-

itive intelligence and consistently appear in previous literature on the

CP dataset ( Chén et al., 2019; Hearne et al., 2016 ). 

For the KKI dataset, in Fig. 12 , Subnetwork 1 includes regions from

he DMN, and the SMN. Similarly, Subnetwork 6 includes competing

ontributions from the SMN and DMN regions. Aberrant connectivity

ithin the DMN and SMN regions have previously been reported in

SD ( Lynch et al., 2013; Nebel et al., 2016 ). Subnetworks 7, 3, and 6

xhibit contributions from higher order visual processing areas in the oc-

ipital and temporal lobes along with competing sensorimotor regions.

t the same time, Subnetwork 9 exhibits competing contributions from

he visual network. These findings concur with behavioral reports of

educed visual-motor integration in autism ( Nebel et al., 2016 ). Subnet-

orks 11 and 8 exhibit contributions from the central executive control
13 
etwork (CEN) and insula. Subnetwork 10 also exhibits anticorrelated

EN contributions. These regions are believed to be essential for switch-

ng between goal-directed and self-referential behavior ( Sridharan et al.,

008 ). Subnetwork 5 and Subnetwork 3 includes prefrontal and DMN re-

ions, along with subcortical areas such as the thalamus, amygdala and

ippocampus. The hippocampus is known to play a crucial role in the

onsolidation of long and short term memory, along with spatial mem-

ry to aid navigation. Altered memory functioning has been shown to

anifest in children diagnosed with ASD ( Williams et al., 2006 ). The

halamus is responsible for relaying sensory and motor signals to the

erebral cortex in the brain and has been implicated in autism-associated

ensory dysfunction, a core feature of ASD ( Cascio et al., 2008 ). Along

ith the amygdala, which is known to be associated with emotional re-

ponses, these areas may be crucial for social-emotional regulation in

SD. Pouw et al. (2013) . 

Finally, we notice that the standard deviations for a majority of the

egions in each of the subnetworks are small compared to the mean coac-

ivation. Additionally, we observed an average similarity of 0 . 79 ± 0 . 13
nd 0 . 81 ± 0 . 12 for these subnetworks across the runs on subsets of the

CP and KKI datasets respectively. These results suggests that our deep-

enerative framework is able to capture stable underlying mechanisms

hich robustly explain the different sets of deficits in ASD as well as

obustly extract signatures of cognitive flexibility in neurotypical indi-

iduals. 

Study of Emerging Patterns: 

In this experiment, we study the overlap in the subnetworks in the

asis 𝐁 across different scales of subnetworks, i.e. varying the number of

etworks 𝐾. Recall from Section 2.2.1 , that the knee point of the eigen-

pectrum of { 𝚪𝑡 𝑛 } for both datasets is between 8 − 20 . Namely, we re-run

he sr-DDL model on both the datasets steadily increasing the number

f networks from 8 − 20 . In each case, we repeat the experiment using

0 random subsets of the data and look for subnetworks that appear

ost often. Figs. 11 and 12 illustrate the top ten networks that appear

ost frequently across different data subsets and choice of 𝐾 for the HCP

ataset and KKI dataset respectively. Alongside, we also report the mean

nd standard deviation of the absolute cosine similarity (S) for each indi-

idual subnetworks across the multiple runs. Networks which are most

onsistent exhibit higher similarity across runs with group 1 being the

op five subnetworks (S ≥ 0 . 95 ), group 2 being the next five subnetworks

 𝑆 > 0 . 85 ). Finally, a visual inspection and comparison with our results
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Fig. 11. Complete set of subnetworks identified by the deep sr-DDL model for the HCP database. Mean : Mean regional co-activation patterns in basis 𝐁 The red and 

orange regions are anti-correlated with the Purple and green regions. Std. Dev. : Standard deviations of regional co-activation patterns. A majority of regions exhibit 

small deviations from the mean. Both sets of plots have been computed across cross-validation folds 
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n Section 3.5 suggest a considerable overlap between the subnetworks

n Figs. 11 and 13 for the HCP dataset and between Figs. 12 and 14

or the KKI dataset. These results suggest that our Deep sr-DDL robustly

xtracts representative neural signatures indicative of behavior in both

ealthy and autistic populations. 

Decoding rs-fMRI networks dynamics: 

Our deep sr-DDL allows us to map the evolution of functional net-

orks in the brain by probing the LSTM-ANN representation. Recall that

ur model does not require the rs-fMRI scans to be of equal length.

ig. 15 (left) illustrates the learned attentions output by the A-ANN

or the 150 subjects from the HCP dataset on the top and the 57 KKI

ubjects at the bottom during testing. For the KKI dataset, the patients

ith shorter scans have been grouped in the top of the figure. These

ime-points have been blackened at the beginning of the scan. The col-
14 
rbar indicates the strength of the attention weights. Higher attention

eights denote intervals of the scan considered especially relevant for

rediction. Notice that the network highlights the start of the scan for

everal individuals, while it prefers focusing on the end of the scan for

ome others, especially pronounced in case of the KKI dataset. The pat-

erns are comparatively more diffused for subjects in the HCP dataset,

lthough several subjects manifest selectivity in terms of relevant atten-

ion weights. This is indicative of the underlying individual-level het-

rogeneity in both the cohorts. 

Next, we illustrate the variation of the network strength for a rep-

esentative subject from the HCP dataset and KKI dataset over the scan

uration in Fig. 15 (right) at the top and bottom respectively. Each solid

olored line corresponds to one of the 15 sub-networks in Fig. 12 . No-

ice that, over the scan duration, each network cycles through phases
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Fig. 12. Complete set of subnetworks identified by the deep sr-DDL model for the KKI database. Mean : Mean regional co-activation patterns in basis 𝐁 The red and 

orange regions are anti-correlated with the Purple and green regions. Std. Dev. : Standard deviations of regional co-activation patterns. A majority of regions exhibit 

small deviations from the mean. Both sets of plots have been computed across cross-validation folds 
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data. 
f activity and relative inactivity. Consequently, only a few networks at

ach time step contribute to the patient’s dynamic connectivity profile.

his parallels the transient brain-states hypothesis in dynamic rs-fMRI

onnectivity ( Allen et al., 2014 ), with active states as corresponding

ub-networks in the basis matrix 𝐁 . 

. Discussion 

Our deep-generative hybrid cleverly exploits the intrinsic structure

f the rs-fMRI correlation matrices through the dynamic dictionary rep-

esentation to simultaneously capture group-level and subject-specific

nformation. At the same time, the LSTM-ANN network models the tem-

oral evolution of the rs-fMRI data to predict behavior. The compactness

f our representation serves as a dimensionality reduction step that is
15 
elated to the clinical score of interest, unlike the pipelined treatment

ommonly found in the literature. Our structural regularization helps us

old in anatomical information to guide the functional decomposition.

verall, our framework outperforms a variety of state-of-the-art graph

heoretic, statistical and deep learning baselines on two separate real

orld datasets. 

We conjecture that the baseline techniques fail to extract representa-

ive patterns from structural and functional data. These techniques are

uite successful at modelling group level information, but fail to gener-

lize to the entire spectrum of cognitive, symptomatic or connectivity

evel differences among subjects. Consequently, they overfit the training
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Fig. 13. HCP dataset: Set of top 10 consistent subnetworks across different model orders. Subnetworks in group 1 exhibit above 0.95 average similarity across data 

subsets and model orders. Subnetworks in group 2 exhibit between 0 . 85 − 0 . 95 average similarity across data subsets and model orders. 

Fig. 14. KKI dataset: Set of top 10 consistent subnetworks across different model orders. Subnetworks in group 1 exhibit above 0.95 average similarity across data 

subsets and model orders. Subnetworks in group 2 exhibit between 0.85 and 0.95 average similarity across data subsets and model orders. 

Fig. 15. (Left) Learned attention weights (Right) Variation of network strength 

over time on the (Top) HCP dataset (Bottom) KKI dataset. 
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.1. Examining generalizability 

Notice that the training examples (red points) in Figs. 9 and 10 fol-

ow the 𝐱 = 𝐲 line perfectly, which may suggest overfitting. This phe-

omenon can be explained by the difference between our training pro-

edure, where we optimize our joint objective in Eq. (8) assuming the

cores are known, and our testing procedure. Recall that Section 2.2 de-

cribes the procedure for calculating the temporal sr-DDL loadings for an

nseen patient i.e. 𝐜̄ 𝑡 𝑛 from the basis 𝐁 

∗ obtained during training. Since

he subject is not a part of the training set, the corresponding value of

̂
 is unknown. Effectively, we must set the contribution from the data

erm, i.e., the deep network loss  ( ⋅) in Eq. (8) to 0. Here, we examine

he effect of employing the same strategy to calculate the coefficients for

he training patients. In essence, we estimate the corresponding severity
̂
 now excluding the deep network loss. Accordingly, Fig. 16 highlights

he differences in training fit with and without this term included in

stimating { 𝐜 𝑡 𝑛 } for the HCP dataset. Notice that in the latter, the train-

ng accuracy for the CFIS score has the same distribution as the testing

oints in Fig. 9 . In contrast, inclusion of the deep network loss in our

oupled optimization overparamterizes the search space of solutions for

 𝐜 𝑡 } to yield a near perfect fit. 
𝑛 
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Fig. 16. Prediction Performance of the Deep sr-DDL for the CFIS score on train- 

ing data when (L) The data term is included in computing { 𝐜 𝑡 
𝑛 
} (R) The data 

term is excluded from the computation of { 𝐜 𝑡 
𝑛 
} . 

Fig. 17. Median Absolute Error on the Test Set varying the number of samples 

used for training. The vertical bars indicate standard errors for each setting. 
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To further probe the generalization capabilities of our Deep sr-DDL,

e examine the effect of training the models on different sized datasets.

or this experiment, we first set aside 50 individuals from the HCP

atabase as a test set on which we evaluate the generalization perfor-

ance. We then sweep the training set size from 𝑁 = 50 − 200 in incre-

ents of 25 subjects. To avoid biasing the results, none of these sub-

ects overlap with the HCP-2 validation set used for parameter tuning

n Section 2.2.1 . For each training set size, we randomly sample the

ubjects 10 times and compute the generalization performance on the

eld-out set. 

Fig. 17 displays the MAE of the CFIS score prediction on the test

et as a function of the training set size. As expected, we observe that

ith increasing training data, the performance on the test set improves

t first but eventually saturates for all methods. This is evinced by a

owering of the MAE in the initial parts of the curve followed by a sub-

equent plateau at roughly 150–200 samples. Based on these results, we

onjecture that further addition of training data does not substantially

mprove the generalization capabilities of our model or the baselines.

e also note that the deep sr-DDL outperforms the baselines across the

ntire regime. In conjunction with our results from Section 3.2 , we con-

lude that the deep sr-DDL model performs reasonably well for small to

oderately sized datasets. This is especially important against the back-

rop of potential clinical applications, many of which have datasets of

odest sizes. 

.2. Assessing model robustness 

Our deep sr-DDL framework has only two free hyperparameters. The

rst is the number of subnetworks in 𝐁 . As described in Section 2.2.1 ,

e use the eigen-spectrum of { 𝚪𝑡 𝑛 } to fix this at 15 for both datasets.

he second is the penalty parameter 𝜆, which controls the trade-off be-

ween representation and prediction. Recall that our data pre-processing
17 
ncludes a sliding window protocol in Fig. 2 , which is defined by two

arameters, i.e. the sliding window length and the stride. From a math-

matical perspective, our deep sr-DDL formulation as such is agnostic to

hese parameters, as they are simply folded into the input data dimen-

ion. However, empirically, they balance the context size and informa-

ion overlap within the rs-fMRI correlation matrices { 𝚪𝑡 𝑛 } and affects the

rediction performance. 

In this section, we evaluate the performance of our framework under

hree scenarios. Specifically, we sweep 𝜆, the window length and the

tride parameter independently, keeping the other two values fixed. We

se five fold cross validation with the MAE metric to quantify the multi-

core prediction performance, which as shown in Section 3.2 , is more

hallenging than single score prediction. Fig. 18 plots the performance

or the three scores on the KKI dataset with MAE value for each score

n the 𝐲 axis and the parameter value on the 𝐱 axis. 

We observed that our method gives stable performance for fairly

arge ranges of each parameter settings. As expected, low values of 𝜆

0.01–1) result in higher MAE values, likely due to underfitting. Simi-

arly, higher values > 6 result in overfitting to the training dataset, de-

rading the generalization performance. Additionally, lower values of

indow lengths result in higher variance among the correlation values

ue to noise, and hence less reliable estimates of dynamic connectiv-

ty ( Lindquist, 2016 ). On the other hand, very large context windows

end to miss nuances in the dynamic evolution of the scan. Empirically,

e observe that a mid-range of window length 100 − 125 s yields a good

radeoff between representation and prediction. The training of LSTM

etworks with very long sequence lengths is known to be particularly

hallenging owing to vanishing/exploding gradient issues during back-

ropagation. However, having too short a sequence confounds a reliable

stimation of the LSTM weights from limited data. The stride parameter

elps mitigate these issue by compactly summarizing the information in

he sequence while simultaneously controlling the overlap across subse-

uent samples. Our experiments found a stride length between 10 − 20 s
o be suitable for our application. 

In summary, the guidelines we identified for each of the parameters

re- 𝜆 ∈ (2 − 5) , window length ∈ (100 − 125) s, and stride ∈ (10 − 20) s.
dditionally, our experiments on the HCP dataset using the same set-

ings indicate that the results of our method are reproducible across

ifferent populations. It is also interesting to note that previous exper-

ments on the HCP dataset in literature have found similar window

engths to be stable in classification ( Gadgil et al., 2020 ) and various

est-retest settings ( Savva et al., 2019 ). 

.3. Clinical relevance 

Our experiments on the KKI dataset evaluate the ability of our Deep

r-DDL framework to simultaneously explain multiple clinical impair-

ents of ASD. This multi-target prediction is a challenging task, and

n fact, the baseline methods fail to generalize all three scores. At the

ame time, one could evaluate the performance of predicting each score

ndependently via three single-target regression tasks. Accordingly,

able 2 compares the performance of our Deep sr-DDL framework in

he single-target and multi-target settings. Empirically, we observe that

he single-target prediction is slightly better than the multi-target pre-

iction. Indeed, a possible counter perspective would be to optimize for

rediction accuracy of individual measures explained by potentially dif-

erent brain bases, for example, as in the work of D’Souza et al. (2019a) .

his comparison poses a more philosophical question about the benefits

f a multi-target setup given a possible decline in predictive performance

nd the difficultly of the task itself. 

To weigh in on this trade off, we note the growing consensus in clin-

cal psychiatry that complex disorders, such as autism and schizophre-

ia, are inherently multidimensional ( Havdahl et al., 2016 ). Further-

ore, there is considerable patient heterogeneity within a single diag-

ostic umbrella that reflect subtle differences in the underlying etiol-

gy ( Hong et al., 2018 ). In fact, the National Institute of Mental Health
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Fig. 18. Performance of the Deep sr-DDL upon varying (L): the penalty parameter 𝜆 (B): window length (R): stride. Our operating point is indicated by the Purple 

arrow. 
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NIHM) in the United States has released the RDoc research framework

 Insel, 2014 ), which advocates for a multidimensional characterization

o understand the full spectrum of mental health and illness. In this con-

ext, our Deep sr-DDL approach provides a flexible tool to map multiple

easures via a consistent and stable brain basis (as shown by the re-

ults in Section 3.5 ). Thus, we view it as an important foundation to

arse complex spectrum disorders that may even spur new analytical

irections in brain connectomics. 

Finally, our Deep sr-DDL framework is carefully designed to extract

ubject-level dynamic information. Namely, the attention mechanism

utomatically highlights portions of the rs-fMRI scan that are important

or clinical prediction ( Fig. 15 ). In fact, a comparison of the attention

eights in Fig. 15 suggests considerable inter-patient variability of the

ntervals used for multi-target prediction in the KKI dataset, as opposed

o the relatively consistent attention weights in the HCP dataset. This

attern may be linked to the heterogeneity of ASD described above. In

onjunction, we observe the subnetwork contributions phasing in and

ut prominence over the course of the scan, which is consistent with the

ransient brain state hypothesis ( Allen et al., 2014 ) 

In summary, the blend of classical generative modeling and deep

earning prediction in our Deep sr-DDL framework allows for a finer-

rained characterization of connectivity and behavior. Overall, we be-

ieve that the robustness, stability, clinical interpretability, and flexi-

ility of our Deep sr-DDL render it a novel and valuable tool for the

esearch community. 

.4. Applications, limitations and future scope 

As seen in our experiments in Section 3.4 , our method is able to ex-

ract key predictive resting state biomarkers from healthy and autistic

opulations. Additionally, our deep sr-DDL makes minimal assumptions.

rovided we have access to a set of consistently defined structural and

unctional connectivity measures and clinical scores, this analysis can be

asily adapted to other neurological disorders and even predictive net-

ork models outside the medical realm. Overall, these findings broaden

he scope of our method for future applications. 

Although we outperform several baselines on two separate datasets,

ur prediction performance in Section 3.4 is far from perfect. This under-

cores that multi-score prediction is a challenging clinical problem. One

f the key reasons can be attributed to inherent noise in the clinical mea-

ures themselves. For example, SRS is based on a parent-teacher ques-

ionnaire, which tends to be more subjective than a clinical exam. This

enders the behavioral prediction task especially challenging, which par-

ially accounts for the poor performance of several baselines we com-

ared against. Keeping this in mind, a natural clinical direction of ex-

loration is to adopt our method to predicting measures more directly

elated to functional connectivity, as opposed to those relying on clinical

eports. Another avenue of exploration includes examining more coarse

ndicators of behavior, such as ordered levels of impairment instead of
18 
ontinuous measures (an ordinal regression problem), or the prevalence

f ASD sub-types. 

Another limitation to our method lies in the fact that our estimate of

ynamic functional connectivity relies on the availability of a reliable

liding-window protocol. As illustrated in Section 4.2 , an inappropriate

indow-length and stride choice has a direct bearing on the predictive

erformance. Moreover, this tradeoff is difficult to quantify and correct

or analytically. Keeping this in mind, we are motivated to explore alter-

atives to the sliding window for better estimating dynamic functional

onnectivity, which can at the same time be robustly integrated into

ultimodal data-analysis frameworks such as ours. 

From the methodological standpoint, we recognize that our model is

implistic in its assumptions, particularly in the sr-DDL formulation. The

TI priors guide a data-driven classical rs-fMRI matrix decomposition in

 regularization framework. This modeling choice was deliberately em-

loyed to preserve interpretability in the basis and simplify the inference

rocedure. A key limitation of this approach is that it does not directly

onsider multi-stage pathways, which may be an important mediator

f functional relationships between communicating sub-regions. To this

nd, graph neural networks have shown great promise in brain con-

ectivity research due to their ability to capture subtle and multi-stage

nteractions between communicating brain regions while exploiting the

nderlying hierarchy of brain organization. Consequently, these meth-

ds are emerging as important tools to probe complex pathologies in

rain functioning and diagnose neurodevelopmental disorders ( Anirudh

nd Thiagarajan, 2019; Parisot et al., 2018 ). In the future, we are explor-

ng end-to-end graph convolutional networks that model the evolution

f rs-fMRI signals on the anatomical DTI graphs. 

. Conclusion 

We have introduced a novel deep-generative framework to inte-

rate complementary information from the functional and structural

euroimaging domains, which simultaneously maps to behavior. Our

nique structural regularization elegantly injects anatomical informa-

ion into the rs-fMRI functional decomposition, thus providing us with

n interpretable brain basis. Our deep network (LSTM-ANN) not only

odels the temporal variation among individuals, but also helps isolate

ey dynamic resting-state signatures, indicative of clinical/cognitive im-

airments. Our coupled optimization procedure ensures that we learn

ffectively from limited training data while generalizing well to un-

een subjects. Finally, our framework makes very few assumptions and

an potentially be applied to study other neuropsychiatric disorders (eg.

DHD, Schizophrenia) as an effective diagnostic tool. 
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ppendix A 

Here, we provide the detailed derivations for the Weighted Frobenius

orm expression in Eq. (4) . We begin with the formulation in Eq. (3) be-

ow: 

|𝚪𝑡 𝑛 − 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ||𝐋 𝑛 = ||𝐄 

𝑡 
𝑛 ||𝐋 𝑛 (A.1)

ere, 𝐄 

𝑡 
𝑛 represents the reconstruction error in the correlation matrix 𝚪𝑡 𝑛 

or patient 𝑛 at time 𝑡 . For the DTI graph  = (  , ) for patient 𝑛 , 𝐋 𝑛 =

 

− 1 2 
𝑛 ( 𝐕 𝑛 − 𝐀 𝑛 ) 𝐕 

− 1 2 
𝑛 is the DTI Graph Laplacian, where 𝐕 𝑛 = 𝐝𝐢𝐚𝐠 ( 𝐀 𝑛 𝟏 ) is

he degree matrix and 𝟏 is the vector of all ones. For notational conve-

ience, we will drop the subscripts 𝑛 and 𝑡 from the following computa-

ion. 

|𝐄 ||𝐋 = Tr [ 𝐄 

𝑇 𝐋𝐄 = Tr [ 𝐄 

𝑇 𝐕 

− 1 2 ( 𝐕 − 𝐀 ) 𝐕 

− 1 2 𝐄 

= Tr [ ̃𝐄 

𝑇 ( 𝐕 − 𝐀 ) ̃𝐄 where 𝐄̃ = 𝐕 

− 1 2 𝐄 

= 

∑
𝑖 

∑
𝑗 

∑
𝑘 

𝐄̃ ( 𝑖, 𝑗)[ 𝐕 ( 𝑖, 𝑘 ) − 𝐀 ( 𝑖, 𝑘 )] ̃𝐄 ( 𝑘, 𝑗) 

= 

∑
𝑖,𝑗,𝑘 

𝐕 ( 𝑖, 𝑘 ) ̃𝐄 ( 𝑖, 𝑗) ̃𝐄 ( 𝑘, 𝑗) − 

∑
𝑖,𝑗,𝑘 

𝐀 ( 𝑖, 𝑘 ) ̃𝐄 ( 𝑖, 𝑗) ̃𝐄 ( 𝑘, 𝑗) 

= 

∑
𝑖,𝑗 

𝐕 ( 𝑖, 𝑖 ) ̃𝐄 ( 𝑖, 𝑗) ̃𝐄 ( 𝑖, 𝑗) − 

∑
𝑖,𝑗,𝑘 

𝐀 ( 𝑖, 𝑘 ) ̃𝐄 ( 𝑖, 𝑗) ̃𝐄 ( 𝑘, 𝑗) 

= 

∑
𝑗 

∑
( 𝑖,𝑘 )∈ 

2[ ̃𝐄 ( 𝑖, 𝑘 )] 2 − 

∑
𝑗 

∑
( 𝑖,𝑘 )∈ 

2[ ̃𝐄 ( 𝑖, 𝑗) ̃𝐄 ( 𝑘, 𝑗)] 

= 

∑
𝑗 

[ ∑
( 𝑖,𝑘 )∈ 

[ ̃𝐄 ( 𝑖, 𝑘 )] 2 + 

∑
( 𝑖,𝑘 )∈ 

[ ̃𝐄 ( 𝑘, 𝑗)] 2 
]

− 

∑
𝑗 

∑
( 𝑖,𝑘 )∈ 

2[ ̃𝐄 ( 𝑖, 𝑗) ̃𝐄 ( 𝑘, 𝑗)] 

= 

∑
𝑗 

∑
( 𝑖,𝑘 )∈ 

[
𝐄̃ ( 𝑖, 𝑗) − 𝐄̃ ( 𝑘, 𝑗) 

]2 

= 

∑
( 𝑖,𝑘 )∈ 

||𝐄̃ ( 𝑖, ∶) − 𝐄̃ ( 𝑘, ∶) ||2 2 

= 

∑
( 𝑖,𝑘 )∈ 

||[ 𝐕 ( 𝑖, 𝑖 )] − 
1 
2 𝐄 ( 𝑖, ∶) − [ 𝐕 ( 𝑘, 𝑘 )] − 

1 
2 𝐄 ( 𝑘, ∶) ||2 2 

Writing out the appropriate subscripts and superscripts we dropped

arlier, we obtain the expression in Eq. (4) : 

|𝚪𝑡 𝑛 − 𝐁 diag ( 𝐜 𝑡 𝑛 ) 𝐁 

𝑇 ||𝐋 𝑛 = 

∑
( 𝑖,𝑘 )∈ 

||𝐄̃ 

𝑡 
𝑛 ( 𝑖, ∶) − 𝐄̃ 

𝑡 
𝑛 ( 𝑘, ∶) ||2 2 

= 

∑
( 𝑖,𝑘 )∈ 

||[ 𝐕 𝑛 ( 𝑖, 𝑖 )] 
− 1 2 𝐄 

𝑡 
𝑛 ( 𝑖, ∶) 
19 
− [ 𝐕 𝑛 ( 𝑘, 𝑘 )] 
− 1 2 𝐄 ( 𝑘, ∶) ||2 2 

ppendix B 

In this section, we detail the calculations from Section 2.2 . Thus, our

lternating minimization steps are explained as: 

tep 1: Closed form solution for 𝐁 : Notice that Eq. (9) reduces to the

ollowing quadratic form in 𝐁 : 

 

∗ = arg min 𝐁 ∶ 𝐁 𝑇 𝐁 =  𝐾 ||𝐌 − 𝐁 ||2 
𝐹 

(B.1)

here 𝐌 is computed as: 

 = 

∑
𝑛 

1 
𝑇 𝑛 

∑
𝑡 

( 𝚪𝑡 𝑛 𝐋 𝑛 + 𝐋 𝑛 𝚪𝑡 𝑛 ) 𝐃 

𝑡 
𝑛 + 

∑
𝑛 

1 
𝑇 𝑛 

[∑
𝑡 

𝛾

2 
𝐃 

𝑡 
𝑛 𝐝𝐢𝐚𝐠 ( 𝐜 

𝑡 
𝑛 ) + 𝛾𝚲𝑡 𝑛 𝐝𝐢𝐚𝐠 ( 𝐜 

𝑡 
𝑛 ) 
]

(B.2) 

e know that 𝐁 has a closed-form Procrustes solution ( Everson, 1998 )

omputed as follows. Given the singular value decomposition 𝐌 =
𝐒𝐕 

𝑇 , we have: 

 

∗ = 𝐔𝐕 

𝑇 

n essence, 𝐁 spans the anatomically weighted space of subject-specific

ynamic correlation matrices. 

Step 2: Updating the sr-DDL loadings { 𝐜 𝑡 𝑛 } : The objective  𝑐 in

q. (9) decouples across subjects. We can also incorporate the non-

egativity constraint 𝐜 𝑡 
𝑛𝑘 

≥ 0 by passing an intermediate vector 𝐜̂ 𝑡 𝑛 
hrough a ReLU. Thus: 

 

𝑡 
𝑛 = 𝑅𝑒𝐿𝑈 ( ̂𝐜 𝑡 𝑛 ) (B.3)

he ReLU pre-filtering allows us to optimize an unconstrained version

f Eq. (9) , as follows: 

 𝑐 = 𝜆
∑
𝑛 

 ( 𝚯, { 𝐜 𝑡 𝑛 }; 𝐲 𝑛 ) 

+ 

∑
𝑛,𝑡 

𝛾

𝑇 𝑛 

[
Tr 
[
( 𝚲𝑡 𝑛 ) 

𝑇 ( 𝐃 

𝑡 
𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) ) 

]]

+ 

∑
𝑛.𝑡 

𝛾

𝑇 𝑛 

[1 
2 
||𝐃 

𝑡 
𝑛 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 𝑛 ) ||2 𝐹 

]
(B.4) 

his optimization can be performed via the stochastic ADAM algorithm

 Kingma and Ba, 2015 ) by backpropagating the gradients from the loss

n Eq. (B.4) upto the input { ̂𝐜 𝑡 } . Experimentally, we set the initial learn-

ng rate to be 0.02, scaled by 0.9 per 10 iterations. Essentially, this

ptimization couples the parametric gradient from the Augmented La-

rangian formulation with the backpropagated gradient from the deep

etwork (parametrized by fixed 𝚯). After convergence, the thresholded

oadings 𝐜 𝑡 𝑛 = 𝑅𝑒𝐿𝑈 ( ̂𝐜 𝑡 𝑛 ) are used in the subsequent steps of the mini-

ization. 

Step 3: Updating the Deep Network weights - 𝚯: We use backpropa-

ation on the loss  ( ⋅) to solve for the unknowns 𝚯. Notice that we can

andle missing clinical data by dropping the contributions of the un-

nown value of 𝐲 𝑛𝑚 to the network loss during backpropagation. Again,

e use the ADAM optimizer ( Kingma and Ba, 2015 ) with random ini-

ialization at the first main iteration of alternating minimization. We

mploy a learning rate of 0 . 2 𝑒 −4 , scaled by 0.95 every 5 epochs, and

atch-size 1. Additionally, we train the network only for 60 epochs to

void overfitting. 

Step 4: Updating the Constraint Variables { 𝐃 

𝑡 
𝑛 , 𝚲

𝑡 
𝑛 } : Each of the pri-

al variables { 𝐃 

𝑡 
𝑛 } has a closed form solution given by: 

 𝐃 

𝑡 
𝑛 ] 
𝑘 = 𝐊𝐅 (B.5)

here, 𝐊 = ( 𝐝𝐢𝐚𝐠 ( 𝐜 𝑛 ) 𝐁 

𝑇 + 𝚪𝑡 𝑛 𝐋 𝑛 𝐁 + 𝐋 𝑛 𝚪𝑡 𝑛 𝐁 − 𝛾𝚲𝑛 ) and 𝐅 = ( 𝛾 𝐾 + 2 𝐋 𝑛 ) −1
e update the dual variables { 𝚲𝑛 } via gradient ascent: 

 𝚲𝑡 𝑛 ] 
𝑘 +1 = [ 𝚲𝑡 𝑛 ] 

𝑘 + 𝜂𝑘 ([ 𝐃 

𝑡 
𝑛 ] 
𝑘 − 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑛 )) (B.6)

e cycle through the primal-dual updates for { 𝐃 

𝑡 
𝑛 } and { 𝚲𝑡 𝑛 } in Eqs. ( B.5

nd B.6 ) to ensure that the constraints 𝐃 

𝑡 = 𝐁 𝐝𝐢𝐚𝐠 ( 𝐜 𝑡 ) are satisfied with

https://doi.org/10.13039/100006445
https://doi.org/10.13039/100000025
https://doi.org/10.13039/100000065
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ncreasing certainty at each iteration. The learning rate parameter 𝜂𝑘 for

he gradient ascent step is selected to a guarantee sufficient decrease in

he objective for every iteration of alternating minimization. In practice,

e initialize 𝜂0 to 10 −3 , and scale it by 0.75 at each iteration 𝑘 . 

Step 5: Prediction on Unseen Data: In our cross-validated setting,

e must compute the sr-DDL loadings { ̄𝐜 𝑡 } 𝑇̄ 
𝑡 =1 for a new subject based

n the 𝐁 

∗ obtained from the training procedure and the new rs-fMRI

orrelation matrices { ̄𝚪𝑡 } and DTI Laplacians ̄𝐋 . As we do not know the

core 𝐲̄ for this individual, we need remove the contribution  ( ⋅) from

q. (9) and assume that the constraints 𝐃̄ 

𝑡 = 𝐁 

∗ 𝐝𝐢𝐚𝐠 ( ̄𝐜 𝑡 ) are satisfied with

quality. This effectively eliminates the Lagrangian terms. Essentially,

he optimization for { ̄𝐜 𝑡 } now reduces to 𝑇̄ 𝑛 decoupled quadratic pro-

ramming (QP) objectives  𝑡 : 

̄
 

∗ 𝑡 = arg min 𝐜̄ 𝑡 
1 
2 
( ̄𝐜 𝑡 ) 𝑇 𝐇̄ ̄𝐜 𝑡 + ̄𝐟 𝑇 𝐜̄ 𝑡 𝑠.𝑡. 𝐀̄ ̄𝐜 𝑡 ≤ ̄𝐛 

𝐇̄ = 2( 𝐁 

∗ 𝑇 𝐋̄ 𝐁 

∗ ); 

𝐟 = −[  𝐾 ◦( 𝐁 

∗ 𝑇 ( ̄𝚪𝑡 𝐋̄ + ̄𝐋 ̄𝚪𝑡 ) 𝐁 

∗ )] 𝟏 ; 
𝐀̄ = −  𝐾 𝐛̄ = 𝟎 

here ◦ is the elementwise Hadamard product. Notice that decoupling

he objective across time allows us to parallelize this computation. Ad-

itionally, since 𝐇̄ is positive semi-definite, the formulation above is

onvex, leading to an efficient QP solution. Finally, we estimate 𝐲̄ via a

orward pass through the LSTM-ANN. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2021.118388 
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