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ABSTRACT

OcCTO-TIGER is an astrophysics code to simulate the evolution of self-gravitating and rotat-
ing systems of arbitrary geometry based on the fast multipole method, using adaptive mesh
refinement. OCTO-TIGER is currently optimised to simulate the merger of well-resolved stars
that can be approximated by barotropic structures, such as white dwarfs or main sequence
stars. The gravity solver conserves angular momentum to machine precision, thanks to a “cor-
rection” algorithm. This code uses HPX parallelization, allowing the overlap of work and
communication and leading to excellent scaling properties, allowing for the computation of
large problems in reasonable wall-clock times. In this paper, we investigate the code perfor-
mance and precision by running benchmarking tests. These include simple problems, such as
the Sod shock tube, as well as sophisticated, full, white-dwarf binary simulations. Results are
compared to analytic solutions, when known, and to other grid based codes such as FLASH. We
also compute the interaction between two white dwarfs from the early mass transfer through
to the merger and compare with past simulations of similar systems. We measure OCTO-
TIGER’s scaling properties up to a core count of ~80 000, showing excellent performance for
large problems. Finally, we outline the current and planned areas of development aimed at

tackling a number of physical phenomena connected to observations of transients.
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1 INTRODUCTION

Approximately two thirds of observed stars are members of binary
or multiple stellar systems (Duquennoy & Mayor 1991). While the
evolution of single stars is predictable given the initial mass and
composition, the evolution of the components of a binary or multi-
ple system can be dramatically altered if they are close enough to
become interacting through mass transfer and mutual irradiation.
The most consequential interactions in binary systems occur when
the components are so close that one (or both) of the stars fill their
Roche lobes and mass is transferred from one star to the other. In
some cases, the transfer proceeds steadily for a long time; in oth-
ers mass and energy are exchanged in a common envelope; while
in the most dynamic and interesting cases the interaction leads to a
merger giving birth to a single star of unusual properties that can-
not be produced by the evolution of a single star. We know that

all of these processes do occur in nature yielding observable out-
comes such as contact binaries (Smith 1984; Rucinski 2010), he-
lium white dwarfs (WD) (Kippenhahn et al. 1967, 1968), R Coro-
nae Borealis stars (Clayton 2012), Type Iax supernovae (Jha 2017;
Solheim 2010), and dwarf novae (Warner 2003; Frank et al. 2002).
At least a fraction of all Type Ia supernovae, which are some of
the most energetic explosion in the Universe, are likely caused by
the Roche-Lobe-overflow induced merger of two WDs (Hillebrandt
& Niemeyer 2000). This particular type of supernova is used as a
“standard candle” for measuring distances to other galaxies. Be-
cause of this, understanding Type la supernovae is important for
understanding the origins of the universe and its eventual fate.

Common envelope binary interactions (Ivanova et al. 2013)
play a crucial role in the formation of close binaries of all types
including X-ray binaries (Tauris & van den Heuvel 2014), cat-
aclysmic variables (Meyer & Meyer-Hofmeister 1979; Webbink



2 Marcello et al.

1992), close binaries in planetary nebulae (De Marco et al. 2015)
and possibly even massive stellar double black hole binaries
(Ricker et al. 2019). Clearly, common envelope interactions are
close cousins of mergers, the main differences being the final out-
comes, which in turn depend on the types of stars involved, their
mass ratios, and the energetics of mass loss through unbinding and
ejection of the envelope.

Important observational developments in the past decade or so
have lent further credence to the theoretical ideas involving binary
mergers and given further impetus to the development of accurate
and efficient numerical tools for investigating binary mergers and
common envelope evolution. For example, in September 2008, the
contact binary, V1309 Sco, merged to form a luminous red nova
(Tylenda et al. 2011). When the merger occurred, the system in-
creased in brightness by a factor of approximately 10*. Mason
et al. (2010) observed the outburst spectroscopically, confirming
it as a luminous red nova. Because the Optical Gravitational Lens-
ing Experiment (OGLE) observed V1309 Sco prior to its merger
for six years, this provided the rare opportunity to observe a stel-
lar merger both before and after the event, prompting Tylenda to
refer to V1309 Sco as the “Rosetta Stone” of contact-binary merg-
ers. More recently, the Zwicky Transient Factory discovery of an
eclipsing double white dwarf binary with an orbital period of 8.8
minutes which is destined to merge and become a hot subdwarf
or an R Coronae Borealis star, makes it clear that such progenitor
binaries do exist and provides further motivation for investigating
stellar mergers and their outcomes (Burdge et al. 2020). Discover-
ies of close-binary systems have multiplied in number due to sur-
veys such as the Zwicky Transient Factory, and are due to increase
exponentially with the arrival on the Vera Rubin Observatory in
2022 (Ivezi¢ et al. 2007).

Ultimately, one would want a high resolution 3D magneto-
and radiation-hydrodynamic simulation with nuclear energy pro-
duction, full chemistry, and resolution down to the dynamical
timescale while also being able to follow the system over thermal
timescales, but those capabilities are well beyond the horizon at this
time. In lieu of such simulations, studies have used all manner of
hybrid approaches. For example, 3D smooth particle hydrodynam-
ics (SPH) simulations of merging WD binaries with 1.8 million
particles are then mapped into grid codes to model SN detonations
(Pakmor et al. 2012) and the output is then used to study the light
and polarisation signals (Bulla et al. 2016). In a different simula-
tion, two core-hydrogen burning massive stars are merged using the
moving mesh code, AREPO, with a resolution of 400 000 to 4 mil-
lion cells and the merged stars were then mapped into a 1D code
to study the evolution of the remnant (Schneider et al. 2019). A
simulation of the V1309 Sco merger was carried out using 100 000
SPH particles (Nandez et al. 2014), and then used as a starting point
for a detailed discussion aided by analytical physics. A number of
3D hydrodynamic simulations were also used to model other bi-
nary interactions such as the mass transfer preceding coalescence
(e.g., Pejcha et al. 2016; MacLeod & Loeb 2020). Also, Kashyap
et al. (2018) carried out 200 000 particle SPH simulations of WD
mergers that then were mapped into a grid code to investigate the
detonation properties.

Much of the research in 3D hydrodynamic simulations of WD
mergers is aimed at understanding the dynamics of detonation with
a goal to understand Type la supernovae. In their detailed review of
3D, WD merger simulations, Katz et al. (2016) described several
efforts, most of which concentrate on the details of the properties
at the time of merger but do not necessarily model the early mass-
transfer and merger phase. This review cites the early pioneering

efforts to model the entire merger by Motl et al. (2002), D’Souza
et al. (2006) and Motl et al. (2007). In a recent counterpart to those
papers, Motl et al. (2017), carried out simulations of merging WD
stars, using a finite difference technique code with up to 4 million
cells and an SPH code with up to 1 million particles. Aside from the
importance of code comparison, that publication explicitly shows
the resolution and wall clock time constraints of this type of simu-
lations.

In this paper, we present OCTO-TIGER, a code that aims at im-
proving 3D simulations of interactions using a number of compu-
tational techniques that increase accuracy and scalability. This will
allow us to calculate full mergers with reasonably high resolution,
and reasonable wall clock times and has the capacity to include a
greater amount of physics without moving the computation into the
realm of impossibility. OCTO-TIGER also conserves energy and an-
gular momentum to excellent precision. OCTO-TIGER’s main ap-
plication currently is simulating the merger of well resolved stars
that can be represented via polytropes, such as main sequence stars
or WDs. Marcello et al. (2016) presented OCTO-TIGER, with a de-
scription of the governing equations along with some preliminary
tests. Staff et al. (2018) and Kadam et al. (2018) used OCTO-TIGER
in parallel with a suite of other codes to simulate WD binary merg-
ers leading to R Coronae Borealis stars and contact binaries. These
studies provided a test of sorts for OCTO-TIGER, but the scope of
those papers was such that a systematic verification and validation
of OCTO-TIGER was not carried out, and neither was a scaling test
aimed at measuring its speed. In the meantime, several improve-
ments have been implemented in the code. It is therefore appropri-
ate and timely to test and document OCTO-TIGER in a systematic
way, by carrying out a suite of standard benchmark simulations, a
comparison to other codes, complete with scaling tests of the latest
code version.

This paper is structured in the following way. In Section 2
we describe OCTO-TIGER’s underlying equations. In Section 3 we
present the benchmarks, starting with the shock tube (Section 3.2),
the Sedov blastwave (Section 3.3), a uniform static sphere (Sec-
tion 3.4) and continuing with a static pulsating polytrope (Sec-
tion 3.5), a translating polytrope (Section 3.6) and a rotating poly-
trope (Section 3.7). We conclude with a binary simulation with a
mass ratio of 0.5 in Section 4, and an assessment of the scaling
properties of OCTO-TIGER in Section 5. We conclude in Section 6.

2 THE AMR CODE OCTO-TIGER

OCTO-TIGER is an Eulerian AMR code, optimised for the simu-
lation of inviscid, compressible fluids. Below we fully describe its
governing equations and numerical methods.

2.1 Hydrodynamic Evolution Equations

Octo-Tiger evolves Euler’s inviscid equations of motion for a self-
gravitating fluid on a rotating mesh. The evolution equations are:
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where p,, is the mass density of the m'" species, v is the velocity
in the rotating frame, s is the inertial frame momentum density, p
is the gas pressure, u is the inertial frame velocity, g is the grav-
itational acceleration, € is the rotational frequency of the grid, £
is the gas internal plus bulk kinetic energy density in the inertial
frame, p = Y pm, is the total mass density, x is the position vector
on the grid, ¢ is the gravitational potential and G is the gravita-
tional constant. The rotating frame velocity is related to the inertial
frame momentum density by

s=p(v+Qxx). 3)

The gravitational potential is related to the gravitational accelera-
tion by g = —V ¢. The time derivatives are taken in the rotating
frame. These are related to time derivatives in the inertial frame by
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A previous version of OCTO-TIGER used a hydro-solver that
conserved linear and angular momentum to machine precision.
This was based on the work by Després & Labourasse (2015). We
successfully adapted this method to OCTO-TIGER for use when
velocities are reconstructed in the inertial frame. However, our
methodologies could not be applied to when velocities are recon-
structed in the rotating frame. The rotating frame is a better choice
when dealing with binary interactions, because equilibrium rotat-
ing stars retain their initial profiles much better. We thus abandoned
the development of the hydrodynamics angular momentum conser-
vation feature. A legacy of this development work is a separately
evolved angular momentum field, 1, described by the following
equation:

%1+V-vl+V><xp:px><g—Q><l. @)

In the current version, this quantity is evolved passively, meaning
the evolution of the other variables does not depend on the value of
1. It is initialized to x X s at t = 0. Although our gravity solver ex-
actly conserves angular momentum to machine precision, because
of numerical viscosity in the hydrodynamics solver, angular mo-
mentum is not exactly conserved. The difference between x X s
and 1 after ¢t = O gives a measure of the error in angular momen-
tum conservation.

The source terms on the righthand side (RHS) of Equation 2
include a gravitational and a rotational term. The rotational term
accounts for the rotation of the momentum vector relative to the
rotating mesh. Because we evolve inertial frame quantities on a ro-
tating mesh, as opposed to rotating frame quantities on a rotating
mesh, this term is half the Coriolis force (only half because veloc-
ities are taken with respect to the rotating grid, but momenta are
calculated in the inertial frame). Note that if fv s = 0, this term
does not violate momentum conservation.

Rather than solving Equation 4 using an iterative approach,
OCTO-TIGER uses the fast multipole method (FMM; described be-
low). To calculate the the first term on the RHS of Equation 3, we
solve for %q& using the FMM with the numerically computed value
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of %p as the source term. This results in the two parts of this term
cancelling when summed over the entire grid.

Equation 3 is derived from the usual form of the energy equa-
tion:

0
aE+V-vE+V-up:—pu~V¢J, 8)

along with Equation 1. Equation 3 is written in a form that empha-
sizes that the conserved quantity is the gas energy, E (internal plus
bulk kinetic), plus the potential energy or £ + % po. The first term
on the RHS of Equation 3 vanishes globally because ¢ is linearly
related to p, while the second term vanishes globally because the
total change in angular momentum due to gravity over all space
is zero. As discussed by Marcello & Tohline (2012), evolving the
energy equation in this form prevents violation of energy conser-
vation due to matter moving up or down a potential well because
of numerical viscosity. Because our gravity solver conserves lin-
ear and angular momenta to machine precision, using this form of
the energy equation conserves total energy to machine precision. In
practice, we actually evolve E instead of E + % po, by taking the
discretized evolution equation for Equation 3 and solving it for E.

Following the dual energy formalism of Bryan et al. (1995),
OCTO-TIGER evolves a second variable for the energy. While they
used the internal energy density as the second energy variable, we
use the “entropy tracer” (Motl et al. 2002), defined as

T=(pe)7, ©)

where ¢ is the specific internal gas energy and v = g is the ratio
of specific heats. When there are no shocks, 7 is conserved and
evolves as

0
aT—FV'TV—O. (10)

The specific internal energy, ¢, is computed according to

1 1
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where the default value of e; = 0.001. Once we have the inter-
nal energy density we can compute the pressure with the ideal gas
equation:

p=(y—1)pe. (12)

At the end of every update of the evolution variables, the entropy
tracer is then reset using Equation 9 in computational cells which
satisfy

E- %qu > eF (13)
for at least one of the adjacent cells or the cell itself, where the
default value of e = 0.1. Otherwise it is left alone. We use the
values for €; and €2 chosen by Bryan et al. (1995) .

This treatment allows for the proper evolution of shocks while
simultaneously retaining numerical accuracy of the internal en-
ergy in high mach flows, where the kinetic energy dominates. It
is roughly analogous to adding extra digits of precision to the in-
ternal energy. This method also guarantees positive values for the

. 1
internal energy even when E — 3 pu? < 0.

OcCTO-TIGER evolves the gas using an ideal gas equation of
state (EoS), but by setting €1 = €2 = 1, shock heating is elim-
inated and effectively OCTO-TIGER evolves the gas with a poly-
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tropic EoS. If

1
Ppoly = KPH_TH (14)

initially, where K and n are constants, this condition will continue
to hold as the system evolves.

2.2 Gravity Update and the Angular Momentum Correction

OCTO-TIGER uses a variant of the Cartesian FMM described by
Dehnen (2000). This method conserves linear momentum to ma-
chine precision. The FMM adapts naturally to an oct-tree based
adaptive mesh refinement (AMR) scheme such as that used by
OcCTO-TIGER. The multipoles of each cell are composed of the
multipoles of its child cells, and the expansion in each child cell is
derived from the expansion of its parent cell. Both multipole and
expansions are relative to cell centres.

OCTO-TIGER has an extension, detailed by Marcello et al.
(2016), which allows its gravity solver to conserve both angular
and linear momentum to machine precision. Based on the FMM
described by Dehnen (2000), which conserves linear momentum to
machine precision, the OCTO-TIGER extension works by adding
an additional higher order multipoles which is used to calculate a
correction to the calculated force. This angular momentum correc-
tion cancels the angular momentum conservation violation while
preserving linear momentum conservation of the original method.
As a result of angular momentum conservation, the last term in the
RHS of Equation 3 also sums to zero over all space, enabling con-
servation of energy to machine precision in the rotating frame.

Conservation of angular momentum and energy is important
for the self-consistent accurate modelling of near equilibrium as-
trophysical systems such as binary stars in the early phases of mass
transfer. Violations in energy conservation can cause stars in equi-
librium to “evaporate”, while the balance of angular momentum
may affect the ultimate merger if one occurs.

The FMM requires the specification of an opening criterion.
Given two cells, A and B, at grid locations x4 and xp, respec-
tively, the opening angle is

Az

o =20
Ixa —xp|’

15)
where Az is the width of a grid cell. If §” < 0, where @ is a critical
value less than unity, then two cells are well separated. Two well
separated cells interact through the multipole interaction when they
are well separated from each other, but their respective parents are
not well separated. In the models presented in this paper, 6 = 0.5
or 0.34, the latter being used for the interacting binary models.

We also define the quantity, Omin, to refer to the lowest 6 al-
lowed by OCTO-TIGER. This is determined at compile time and its
value depends on the size of the sub-grids, with larger sub-grids al-
lowing for smaller values of Op,in. For 8 X 8 x 8 sub-grids, as used
in this paper, Omin = 0.34.

It should be noted the current version of OCTO-TIGER does
not conserve angular momentum in the hydrodynamics module. We
have experimented with extending an angular momentum conserv-
ing hydrodynamics method described by Després & Labourasse
(2015) for use in OCTO-TIGER. While we have had success when
the grid is not rotating, the method fails in the rotating frame. The
reconstruction of face values are computed in the rotating frame,
eliminating the degree of freedom in the reconstruction required
for Després & Labourasse (2015) to work.

2.3 Hydrodynamic Update

The hydrodynamic update begins by reconstructing cell averaged
values on the surface of the cells. OCTO-TIGER reconstructs values
at the geometric centres of the the 6 cell faces, 12 cell edges, and 8
cell vertices, for a total of 26 quadrature points. Note this results in
each face having 9 quadrature points, 1 at the cell face centre, and
4 each for the cell face’s edges and vertices. This allows OCTO-
TIGER to compute the flux through a face as the integral of the
fluxes at 9 points on the face.

Rather than reconstructing the vector of conserved quantities,
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and then transform back to U. The reconstruction of velocities is
done in the rotating frame. In OCTO-TIGER the rotating frame is
defined as rotating around the z-axis, and the frequency can be
specified by the user. For the binary simulations in this paper the
rotating frame frequency is the same as the initial orbital frequency
of the binary. Reconstructing the velocities in the inertial frame is
also a valid choice. However, we have found that single stars in
initial equilibrium retain their original density profiles better when
reconstructing the rotating frame velocities.

The the total energy, defined as the sum of the potential and
gas energy, is a conserved quantity, but it is not a purely hydro-
dynamic quantity. The local potential plays virtually no role in the
formation of discontinuities in the gas energy. When applying a
central advection scheme we want the averaging of left and right
states to occur over hydrodynamic variables. Furthermore, discon-
tinuities in the potential energy are caused solely by the local mass
density, the specific potential energy itself being smooth. For these
reasons we treat the two quantities as separate when computing the
reconstruction and fluxes.

The lefthand side of Equation 3 is evolved as the sum of two
parts,

%E—l—V-Ev—}—V-Eup:O, (16)
and
01
§§p¢+ V -vpop =0. (17)

Below we show how we combine these two parts to form a single
energy equation for the gas energy.

There are left and right values for each interface, and here we
denote those with R and L superscripts, respectively. For a quantity
u and for every i, j, and k there are eight vertex values,

RRR RRL RLR 18
Uit 1/254+1/2k+1/2) Wit 1/2541/2k+1/2) Yit1/2541/2k+1/25 (18)
RLL LRR LRL
Uit 1/2541/2k+1/25 Wit 1/2j41/2k+1/2) Wit1/2541/2k+1/2>

LLR d uLEL
Uiy 1/2j41/2k+1/2, ONA Uip1/2541/2k+1/2,



twelve edge values,
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and six face values,

R L
Uit 1/25ks Wit1/25k>
R L
WUijt1/2ks Wij41/2k> (20)
R L
Uijk+1/25 and Uijk4+1/2-

Note that the u used here is not the inertial frame velocity used else-
where in this paper. We use the piecewise parabolic method (PPM)
of Colella & Woodward (1984, with contact discontinuity detec-
tion) to compute these values. The five cell stencil required for PPM
is taken along the line from the cell centre to each face, edge, or ver-
tex. For example, the reconstructed values at uiLJr 17255 and ult 27k
are computed by applying PPM to the five cell stencil formed
by Ui—2,5,k>Wi—1,5,k>Wi,j k>WUit1,5,k» and Uit2,5,k> while the recon-
structed values at uf_ﬁ J2j—1/25 and uf_Ll /2j+1/21 are computed with
the stencil formed by wi—2 j42,k,Wi—1,j+1,k>Wi,j,k-Wit1,j—1,k-and
Uit2,5—2,k- Reconstructing the primitive variables at 26 points
across the cell’s surface, using PPM, results in multi-dimensional
third order convergence. Without this feature, the atmospheres of
equilibrium stars turn into box like structures.

Once a cell’s evolved quantities are reconstructed at each of
the 26 quadrature points on the cells’ surfaces, OCTO-TIGER com-
putes the fluxes at each of the 9 quadrature points for each cell’s
face. We use the central-upwind scheme described by Kurganov
et al. (2000). This scheme was originally chosen because it was
straightforward to adapt it for use with OCTO-TIGER’s hydrody-
namics angular momentum conservation feature, as described in
Section 2.1. It can be defined in terms of left and right face values,

tTE(UL) —a” F(Ug) n ata”

H (UL, Ur) = P

[UR - UL] )

2D
where H is the numerical flux, F' is the physical flux, and at and
a~ are the positive and negative signal speeds. OCTO-TIGER ob-

tains H for each dimension using the physical flux,
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and the signal speeds

at = max (cs,r + Va,R: Cs,L + Va,1,0) ,
az = min (¢s,r — Vz,R, Cs,L. — Vz,L,0),
a;r:max(csR—ﬁ—vyR,csL—i—vyL, 0), 23)
ay = min (¢s,r — Vy,R, Cs,L — Vy,L,0),

¥ =max (cs,r + Vz,R, Cs,L + V2,1, 0),
a; = min (¢s,r — V,R, Cs,, — Vz,L,0),

where the c; are the sound speeds,

co =2, 24)
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The total flux through a face is then obtained by summing the
fluxes taken at each quadrature point on the face. For the x-face, for
instance, we have

Heiv1/2jk = (25)
16 L R

36 [Hz(Ui+1/zjk:Ui+l/2jk)] +

4

36 [Hz(UiLfl/zHlpm UzﬁLl/zj+l/2k) +
HI(UiLJF}?/Qj—l/Qka Uililf/ijl/Zk) +
HI(UZ'L:FLl/ij+1/27 Uinlll/ij‘Fl/Q) +

HI(UiLJg/zjkfl/m Uililf/zjkflh)] +

1

36 [HI(UiL+L1;:2j+1/2k+1/27 Uit fajsrjakrse) +
HI(Uia»Llf;thl/zkfl/zv Uz'}illl/lzj+1/2k71/2) +

Ho (Ui vob 1o Uit s —1angaye) +
Ha;(Ui{f?/%jfl/Qkfl/za Uz'}?klf/};j—l/Qk—l/Z)} )

where H;. i11/25k s the total numerical flux through the x-face.
The semi-discrete form of the evolution equations then be-
comes
%U ik T+
Hyiv1paie — Heio1pagi
+
Ax (26)
Hyijyayon = Hyig—aon |
Ax
H. ijevis — Haijr—172 g
Az = Oijk,
where we have added the source term S;; (defined below).
We still need to re-combine the gas energy and potential en-
ergy parts of the flux to form a single equation for the gas energy.
This is accomplished through the transformation

Hg — HE+H¢

Hy — 0, @n

where Hg refers to the gas energy flux and H 4 refers to the poten-
tial energy flux.

The source term, S, is equal to the RHS of the evolution Equa-
tions 1, 2, 3, 4 and 10,

0
P+ xs
(050 — p59) + QU x (px x g) (28)
0
0

s— |1
2

Equations 26 and 27 account for all terms of Equations 1 through 3
. 1

and Equation 10 except for the % §p¢ term on the LHS of Equa-

tion 3. This term is accounted for by updating the total energy every

time the FMM solver is called to update the potential,

1
Eafter = Ebefore + ap (¢before - ¢after) 5 (29)

where the “before” and “after” subscripts refer to before and after
the FMM solver is called.

The ; operator from Equation 26 is discretized using the third
order Total Variation Diminishing Runge Kutta integrator of Shu &
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Osher (1989). The time step size, At, is chosen by the Courant-
Friedrichs-Lewy (CFL) condition

A
At = ncFL, maxan {j] ) (30)

Azly|=

where the maximum is taken over all the computational cells in the
domain and ncrr, is a positive dimensionless constant less than %
For the binary simulations presented below, ncrr, = %.

A schematic representation of the execution of the steps is
shown in Algorithm 1.

Set initial conditions;
Do initial output;
while do
for : < 1to 3 do
if i == 1 then
Uo — U 5
Compute At;
end
Compute %U due to advection only;
Compute g, ¢, and %(b using the FMM,;
Add the source terms to %U R
Update U from %U and Uy using the 3rd order
R-K method;
Update the entropy tracer using the dual energy
formalism;
if using floors then
‘ Apply floor values for density and entropy;
end
end
if time to check refinement then
refine and de-refine the AMR mesh as needed;
redistribute the work-load;

end

if time to output then
output to SILO file;

end

end
Algorithm 1: The algorithm Octo-Tiger uses for evolution

2.4 Adaptive Mesh Refinement

OCTO-TIGER uses an oct-tree based AMR. Each node of the oct-
tree has associated with it a single N x N x N sub-grid and is
either fully refined with eight child nodes (an interior node) or not
refined at all (a leaf node). For the simulations in this paper, the
sub-grids’ interior size is 8 X 8 X 8. PPM requires a 3 cell boundary
for a total sub-grid size of 14 x 14 x 14. OCTO-TIGER properly
nests the sub-grids, meaning there can be no more than one jump
in refinement levels across sub-grid boundaries.

We define an “AMR boundary” as a sub-grid boundary across
which the refinement level changes. Because of proper nesting, this
involves only two refinement levels, which we refer to here as the
“fine” and “coarse” level. The fine sub-grid at an AMR boundary
cannot get its boundary cells from a neighboring sub-grid of the
same refinement level, so it must interpolate its boundary from
the coarse sub-grid sharing the same boundary. To describe our
AMR boundary interpolation scheme, we use an indexing system,
which is aligned such that x£1/2j71/2k71/2 = X3 1.92j_12k_1s

where the superscripts "C” and “F” refer to the coarse and fine
levels, respectively. The coarse sub-grid has cell centres at Xk
while the fine sub-grid has cell centres at half integer locations,
X5 /2,2j41/2,2k+1/2- The slopes for our interpolation scheme for
a variable u (note, the u variable used here is not the inertial frame
velocity used everywhere else in this paper) are

c . c c c
Ug,ijk = mland[Uigljk»uz‘ 'kauifljk]
uycuk = mland[ui i+1k> Ug 'k>ui'—1k]
Uz ijk = mland[é'Liijrlvuijm U%kfﬂ
aéy,ijk = mmmOd[uic+1j+1k»Ui 'kaug—lj—lk} (31
uaéz,ijk = mland[ui+1jk+17 U; 'k’uifljk—l]
Uyz,ijk = mland[uij+1k+17ui'ka Ui 1k—1]
Ugyz,ijk = miand[uicjklj+1k+lvuijk7 ui—ljflkfl]‘

u

where minmod is zero if the signs are opposite, or the minimum
absolute value is taken if the signs are the same. The interpolation
scheme is then

F c 9 c c
U2itq,2j+r,2k+s = Uijk + = (Sgn[q]uz,i,j,k + sgn[r]uy i jk

64

c c
+Sgn[3]uz,i,j,k) + (Sgn[Q]Sgn[r]ny,i,j,k

3
64
+ sgn[q]sgns]uy- i .k

+ sgn[r]sgn[s]ufz,i,jk)
1
+ o smnlalsgnlrisenlsluS) .y
(32)

where ¢ = £1/2, 7 = +1/2, and s = £!/2 and we emphasise that
the variable s does not mean the inertial frame momentum density
of Equation 5 and is used only here. The string “sgn” means the
sign of ¢, r and s.

To ensure conservation across the AMR boundary, coarse
fluxes on AMR boundaries are taken to be the sum of the fine fluxes
through the cell face:

1

H£i+l/2jk = ZH£2i+l,2j+1/2,2k+1/2
1 1
+ ZH£2i+1,2j+1/2,2k—1/2 + 1Hf,2i+1,2]‘—1/2,2k+1/2 (33)
1
+ ZH£21+1,2J'71/2,21@71/2-
The refinement criteria for a cell to be refined is either
Az d
2L S 0., (34)
p dz;
or
Az d
28T S 0., 35)
T dxi

for any 7 direction, where p is the density and 7 is the entropy tracer
of Equation 9.

2.5 Boundary Conditions

OCTO-TIGER has three boundary conditions available. With “in-
flow” boundary conditions, the ghost cells at the edge of the phys-
ical domain are copied from the closest interior cell. “Outflow”
boundary conditions are the same as inflow except that the momen-
tum is set to zero in the case where the momentum in the closest
interior cell points inwards. This prevents the artificial creation of
inflows. For our binary simulations we generally use the outflow



boundary condition. These boundary conditions are meant to sim-
ulate isolated systems, and do not need to be accounted for by the
FMM gravity solver.

A reflecting boundary condition is available for pure hydro-
dynamics runs with no gravity. Although it is certainly feasible to
incorporate reflecting boundary conditions into the FMM and peri-
odic boundary conditions into both the FMM and the hydrodynam-
ics solver, to incorporate these boundary conditions into the FMM
solver is a non-trivial task. Since OCTO-TIGER does not use these
types of boundary conditions to simulate binary systems they were
not implemented at this time.

2.6 Minimum Values for Density and Entropy

Both the mass density and entropy tracers should be always posi-
tive. This condition is difficult to maintain numerically when there
is a large range of densities present. For our the polytropic binary
simulation detailed in Section 4, we fill the regions around the stars
with a density equal to 107 !° times the maximum density on the
grid. The density can drop below this value, because the star’s grav-
ity is constantly pulling matter from the near-vacuum region onto
the stars. OCTO-TIGER also uses a third order Runge Kutta scheme,
so even without the presence of gravity, it is not possible to know a
priori the maximum time step size needed to guarantee positivity.
For these reasons, OCTO-TIGER includes options to set minimum
values for the mass density and entropy tracer. These floor values
are denoted py and 7y, respectively.

Imposing a density floor, results in imposing values on other
variables that depend on density. We thus define the density floor
scaling parameter,

f, =1 — max {1—w,0] (36)

Pr

allowing us to transform the variables according to

s — sfp

E — Ef,+71/(1-fp)
T = ot —fp)
pm = max[p, ps] P2

(37

This deteriorates the strict machine precision conservation of the
affected variables, however it only occurs in the near-vacuum re-
gions.

2.7 AMR Refinement Criteria

OCTO-TIGER checks for refinement every (2/ncrr) time steps,
where 7crr, is from Equation 30. A window of two cells is used
for refinement. This condition prevents waves from propagating
through an AMR boundary before the relevant cells are checked
for refinement. If a sub-grid contains one or more cells flagged for
refinement, the sub-grid is refined, converting its leaf node to an
interior node with 8 children. Conversely, interior nodes whose 8
children are all leaf nodes are de-refined if none of their cells and
none of the children’s cells are flagged for refinement. Sub-grids
are also flagged for refinement as needed to ensure the difference
in refinement levels across grid boundaries is no greater than one.

For the binary simulations in this paper, we use a density based
refinement criterion. If [max 1S the maximum allowed refinement
level and p, is the refinement density cut-off, a cell is flagged for
refinement if the maximum level / for which

p>8mlp, (38)

OCTO-TIGER: a new, HPX-powered, hydro code 1

holds true is greater than the cell’s level of refinement. For the bi-
nary simulations p is held constant initially. Once material ejected
from the binary begins to fill the grid, p, is adjusted dynamically
in a manner that attempts to keep the total number of sub-grids at a
specified level. After every refinement,

Nris 2
mﬁcii>m (39)

Ntargct

where Ngriqs is the total number of sub-grids and Niarget is the
desired number.

The CFL factor (Equation 30) typically used by simulations
is ~0.4. Technically there is a limit to the maximum CFL number
one should use. In three dimensions with PPM, it is 1/7. This is
because the maximum ratio between the density reconstructed at
the cell’s face and the cell averaged density is 7/3. As a result, the
limit should be 3/7 in one dimension or 3/(3 X 7) in three dimen-
sions. This limit is stringent, in that it prevents any sharp transition
in density from emptying a cell of its content possibly resulting in
zero or negative densities. In OCTO-TIGER negative densities are
corrected by introducing a “floor” density value in that cell (see
Section 2.6), which in turn results in mass non-conservation. Pre-
empting the results of Section 3.6, this can result in mass growth
at the level of 0.0001 percent from one time step to the next when
highly supersonic motions are present. It is therefore important to
critically appraise the value of the CFL factor to be used in each
simulations, particularly if strong shocks are present. We discuss
these choices and their impacts further in Section 3.6.

2.8 Code Units

There are no physical constants present in the hydrodynamic equa-
tions, therefore the simulations without gravity enabled are unit-
less. With gravity we have a single physical constant, G. In the
code the value of this constant is set to unity. We convert between
code units and physical units in the cgs system using three conver-
sion factors, Mecgs, lcgs, and tegs for mass, length, and time, respec-
tively. Because the value of G is fixed at unity, we may specify two
of these conversion factors, with the third being determined by the
relation

3
g _ G 40
72 - cgsy ( )
mcgstcgs
where Ggs is the value of G in cgs units. In OCTO-TIGER the
user specifies lcgs and mcgs and OCTO-TIGER calculates tcgs us-
ing Equation 40. When outputting the grid to file, OCTO-TIGER
converts all quantities to their cgs equivalents using these unit con-
version factors.

2.9 The Temperature in OCTO-TIGER

OcCTO-TIGER evolves the density, p, total gas energy density (inter-
nal and bulk kinetic energy density), E, and velocities, and derives
all the other physical quantities based on these values and the EoS.
The evolution equations, Equations 1 to 4, do not require knowl-
edge of the temperature. For post processing purposes, the temper-
ature can be computed by assigning atomic mass and atomic num-
bers to each mass density species and assuming a fully ionized gas
according to

T_ (v = 1)pe @

- p7n(1+NZ,m) ’
2D maNAm
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where N4 m,m and Nz, are the atomic mass and atomic numbers
of the m'™ species and the specific internal energy e, comes from
Equation 11.

2.10 The C++ Standard Library for Concurrency and
Parallelism (HPX)

OCTO-TIGER is parallelized for distributed systems using the C++
Standard Library for Concurrency and Parallelism (HPX, Kaiser
et al. 2020; Heller et al. 2019a; Daif} et al. 2019). HPX is an open
source C++ Standard Library for Concurrency and Parallelism and
is within the class of the so-called asynchronous many-task AMT
runtime systems.

Another AMT utilized in astrophysics simulation, e.g.,
ChaNGa (Jetley et al. 2008) or Enzo-P (Bordner & Norman 2012),
is Charm++ (Kale & Krishnan 1993). We focus on the comparison
of these two AMTs in this paper, for a more comprehensive re-
view for various AMTs we refer to Thoman et al. (2018). The com-
monality if HPX and Charm++ is the usage of the same concepts
for “parallelism” and “concurrency”. The distinctness of HPX is
that it fully conforms to the C++17 ISO standard (The C++ Stan-
dards Committee 2017) and implements proposed features of the
upcoming C++20 ISO standard (The C++ Standards Committee
2020). This means that HPX’s features that are available in the
C++ standard can be replaced without changing the function ar-
guments. From a programmer’s perspective, HPX is more an ab-
straction of the C++ language while Charm++ is more a standalone
library. The requirement for OCTO-TIGER (distributed, task-based,
asynchronous) are met by only few AMTs and HPX has the highest
technology readiness level according to this review (Thoman et al.
2018).

OcCTO-TIGER takes advantage of four main features of HPX:
(i) fine grained, (ii) task based parallelism through light weight user
space threads, (iii) the use of C++ futures to encapsulate both local
and remote work, and (iv) an active global address space (AGAS),
whereby global objects are remotely and locally accessible (Amini
& Kaiser 2019; Kaiser et al. 2014). These global objects reside in
the memory on a given node but can be accessed remotely from any
node.

Through HPX futures, OCTO-TIGER is able to overlap work
with communication in a straightforward and efficient manner. For
a given sub-grid, the hydrodynamic and gravity computations are
performed by an HPX thread. This thread spawns threads send-
ing boundary data to sibling sub-grids. HPX threads (Kaiser et al.
2009) are lightweight and OCTO-TIGER may spawn hundreds or
even thousands of threads per system thread. The sub-grid thread
also creates a set of futures encapsulating the boundary data it ex-
pects from its siblings. This allows the sub-grid thread to sleep
while waiting for its boundary data. When this data becomes avail-
able, HPX automatically wakes the thread, allowing computation
to begin. The use of HPX futures in this manner allows OCTO-
TIGER to overlap work with communication in a natural way.
AGAS allows each node of the OCTO-TIGER oct-tree to be dis-
tributed across the system in a relatively simple manner, and each
oct-tree node can access its children or its siblings using the same
constructs regardless of whether a particular child or sibling resides
locally or on a remote processor. Another benefit of HPX is that a
unified application programmer interface (API) for local and re-
mote functionality is provided. Thus, there is some simplification
for the application programmer, since there is no need to deal with
two different interfaces, like combining the two hybrid parallel ap-
proaches such as MPI and OpenMP. Note that HPX utilises MPI for

the communication, but provides an abstraction to the application
programmer to hide the direct interaction with the MPI APL

To integrate acceleration cards, like GPUs, HPX provides
two approaches: hpx: :compute (Copik & Kaiser 2017) and
hpx: :cl (Diehl et al. 2018) to overlap GPU kernel execution with
CPU work and networking. The GPU kernel execution returns a
future allowing asynchronous integration of the GPU work into the
overall asynchronous execution flow. hpx: : c1 provides features
to integrate existing CUDA kernels and texttthpx::compute auto-
matically generates CUDA kernels from C++ code. OCTO-TIGER
extends texttthpx::compute to launch hand-written CUDA kernels.
For more implementation details, we refer to (Daif} et al. 2019).

3 BENCHMARKING OCTO-TIGER

Below we carry out a number of simulations aimed at verifying and
validating OCTO-TIGER. In doing so, we sometimes compare our
benchmark test results with a similar test performed with FLASH
(Fryxell et al. 2000) a well used hydrodynamic code often used for
astronomical applications including binary interactions.

3.1 Benchmark Design

We start testing the code by running pure hydrodynamic problems,
namely, the shock tube problem (Section 3.2), and the blastwave
problem (Section 3.3). The purpose is to validate and examine the
performance of the hydrodynamic solver of OCTO-TIGER in iso-
lation. This is an important task as this current version of OCTO-
TIGER has an extended, more accurate (and more computationally
demanding) hydrodynamic solver, which includes reconstruction
of the cell averaged values not only on the cell faces and edges but
also on the cell vertices (see Section 2.3).

To test our gravity solver in isolation we utilize the grid with
the mass distribution of a uniform density sphere and let the code
compute the gravitational potential without evolving it dynami-
cally. The sphere is surrounded by a negligible amount of gas (see
Section 3.4). OCTO-TIGER’s gravity solver uses an opening angle
parameter to modulate the accuracy of the gravity solution (see Sec-
tion 2.2). We examine the accuracy of the computed potential with
different values of this parameter as well with different resolutions.

The next test is a simulation of a polytropic structure (which
could model certain types of stars) evolved over a number of dy-
namical timescales. We check the structure stability over several
dynamical timescales, for different resolutions, values of the grav-
ity solver opening angle and EoS (see Section 3.5).

Next, we test the polytrope in a wind tunnel to check how the
star behaves as it moves through a hot, low density medium (see
Section 3.6). We also test a rotating polytrope and we check for
diffusion of the stellar rotation profile over time (see Section 3.7).

Finally, in Section 4, we simulate two polytropic stars orbiting
one another in a detached configuration and then merging, with a
mass ratio of 0.5. We check stability of the two structures over a
number of orbits with a number of resolutions.

We compare some of these tests with equivalent ones using the
code FLASH (Fryxell et al. 2000). We also carry out scaling tests in
Section 5.

3.2 Shock Tube

To test the hydrodynamic solver we run the Sod shock tube prob-
lem (Sod 1978). We use the conventional initial configuration of
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Figure 1. Comparison in density and velocity between the numerical results with higher resolution of OCTO-TIGER simulations and the exact solution for the
shock tube at ¢ = 0.2. Top row: The density and velocity are plotted in the x direction, respectively, at the end of the simulation, along a line perpendicular to
the discontinuity and through the centre of the grid. Bottom row: The density and the parallel component of the velocity are plotted along the line that starts

from the bottom left corner and ends at the upper right corner (in the xy plane)

this problem: p; = 1, pr = 1, vy = 0; pr, = 0.125, p, =
0.1, v, = 0, where [ denotes the left side of the discontinuity, and
r the right side. The variables p, p, and v are the gas mass density,
pressure and velocity, respectively. The gas is taken to be an ideal
gas with an adiabatic index of v = 7/5 (this value is historical
as it pertained to molecular gas typical of air). Although the prob-
lem is one-dimensional in nature, we run it in three dimensions for
testing. We simulated two configurations: in the first the disconti-
nuity plane is x = 0, and in the second the discontinuity plane is
x + y = 0. From the problem symmetry, planes parallel to the xy
plane are identical. We discuss the results of the simulations in the
next two subsections.

3.2.1 Shock front aligned along the x-axis

In this simulation we set the initial discontinuity plane to be x = 0.
As the simulation evolves in time, a shock wave propagates to the
right of the box, along the positive x-axis, while a rarefaction wave
propagates at the sound speed of the unperturbed denser gas to the
left, along the negative x-axis. Between them the density disconti-
nuity moves to the right. To show the convergence of the numeric
solution to the analytic one, we run four simulations in which the

grid is uniform and have a growing resolution of 643, 1283, 2563,
and 5123 cells. We stop the simulation at time ¢ = 0.2, when the
shocks fronts have not yet reached the grid boundary. In Figure 1,
top row, we plot the density and velocity in the x direction, respec-
tively, at the end of the simulation, along a line perpendicular to the
discontinuity and through the centre of the grid and compare it to
the analytic solution.

The simulations, even with low resolution, nicely fit the rar-
efaction wave. Around the discontinuity, there are cells that under-
estimate the density behind the shock and overestimate the density
in front of the shock. This discrepancy diminishes with higher res-
olution. We ran, in addition, two simulations in which the shock
is aligned to the y-axis and the z-axis. We find the same behaviour
along the direction of the shock. The velocities perpendicular to the
normal direction of the plane of discontinuity vanish everywhere as
they should.

Overall, the Sod problem with a shock aligned to an axis
shows agreement between the OCTO-TIGER simulation and the an-
alytical solution. As expected, the numerical solution approaches
the analytic one with higher resolution.
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3.2.2  Shock front aligned diagonally

To check the effect of a discontinuity that is not aligned along as
axis we fixed the discontinuity plane at an angle of 45 degrees from
the x-axis (the z + y = 0 plane). A strong shock front propagates
towards the higher = and y values, to the less dense upper right cor-
ner on the xy plane. A discontinuity propagates in this direction as
well but with lower speed. A rarefaction wave propagates toward
the bottom-left corner at the sound speed. In this configuration the
wavefronts do cross the grid boundary. As the simulation evolves,
an increasingly larger part of the waves encounters the grid bound-
ary. In principle, the analytic solution is only valid in the regions
where the wavefronts did not reach the boundaries, e.g., diagonally
from the bottom-left corner towards the upper-right corner.

In Figure 1, bottom row, we plot the density and the parallel
component of the velocity along the line that starts from the bottom
left corner and ends at the upper right corner (on the xy plane) of
four OCTO-TIGER simulations that differ only in their resolutions.
Across this line, we notice similar behaviour to when the shock was
aligned along the x axis. The simulations reproduce accurately the
rarefaction wave. Around the discontinuity, some cells underesti-
mate the density behind the shock and overestimate the density in
front of it, a discrepancy that diminishes with higher resolution.

It is, however, interesting to understand the features that ap-
pear at the opposite corners as a function of particular boundary
conditions. For this test, we run two OCTO-TIGER simulations
with 2562 cell resolution that differ only in their boundary con-
ditions. We also compare the OCTO-TIGER simulations to an iden-
tical FLASH (version 4.6) simulation. We run FLASH with the split
hydro solver that uses the PPM method. The first boundary con-
dition termed “outflow” in FLASH and “inflow” in OCTO-TIGER
(see Section 2.5), means gas can inflow back to the grid. The sec-
ond boundary condition, called “diode” in FLASH and “outflow” in
OcTO-TIGER means no inflow is allowed.

In Figure 2, we present slices along the xy plane (2 = 0) of
the difference in the x components of the velocity between the sim-
ulations and the analytic solution, which assumes that there is no
boundary. Despite the excellent agreement with the analytical solu-
tions (convergence is first order near the shock front and second or-
der at the rarefaction wave), both FLASH and OCTO-TIGER simu-
lations show similar boundary features at the upper left and bottom
right corners. At those corners the density is smaller than the ana-
lytical solution due to gas that escapes from the grid. The gas in the
upper left corner escapes easily through the y = 0.5 boundary and
accelerates in the negative x-direction, but it also encounters the gas
to its right and decelerates in the positive x-direction. The exact op-
posite happens at the bottom right corner. For the same reason, the
differences in the y-velocities have exactly the same mirror picture.
The diode boundary, by virtue of setting to zero the momentum
parallel to the boundary component, does not allow velocities in
the boundary direction to evolve. The rarefaction wavefront diverts
near the boundary and propagates in a perpendicular direction to
the boundary. This creates a square pattern at the corners.

3.3 Sedov-Taylor Blast Wave

The Sedov-Taylor blast wave test (Sedov 1946) has an analytic so-
lution in three dimensions. The shock wave it produces is much
stronger than that produced by the usual Sod shock tube and its
spherical geometry provides a stringent test of the hydrodynamics.
The initial conditions are a constant density medium with a value
of 1 code unit. The internal energy density is setup so as to be de-

scribed by a delta function: we approximate this in OCTO-TIGER,
in a manner similar to FLASH, namely by setting the internal energy
density to Ey/(160Axz>) for the 160 computational cells satisfying
|x| < 3.5, and setting its value to 1 x 1072 for all other cells. We
ran this model using AMR with 2, 3, 4, 5, 6, and 7 levels of re-
finement and the usual 8% base grid. The finest grid cell size of the
model with 2 levels is 3.1 x 10™2 code units and the finest grid cell
size of the model with 7 levels is 9.8 x 10™* code units.

Density slices at ¢ = 0.25 code units are shown for the mod-
els with 6 and 7 levels in Figure 3. We also show the AMR grid
structure for the run with 7 levels. In Figure 3(d) we show the dif-
ference between the computed density and the analytic solution as
a function of fine grid cell size. The blast wave is a difficult prob-
lem to obtain convergence as it requires high resolution to resolve
the shock front. OCTO-TIGER obtains slightly better than 1st order
convergence from the run with 6 level of refinement to that with 7
levels.

3.4 Uniform Static Sphere

To test the performance of the gravity solver that solves the Poisson
equation we initiate a problem with a static uniform density sphere.
This problem has a simple analytic solution and is widely used to
test solvers for self-gravitating fluids (Motl et al. 2002).

In this test, we place a sphere with a radius of 0.25 code units
at the centre of a cubic grid with a length of 1 code units. The to-
tal mass inside this sphere is 1 code unit. We fill the grid outside
the sphere with a low density of 1 x 107'° code units. We used a
uniform grid with four resolutions: 643, 1283, 2563, and 5122. To
demonstrate the effect of changing 6, the opening-angle parameter
(see Section 2.2), we carried out two additional simulations with
resolution of 1283, and 2562, where & = 0.35 instead of the de-
fault value of 0.5. The OCTO-TIGER simulations reproduce very
accurately the analytic gravitational potential. The residuals of the
potential on the equatorial plane

QZS - ¢analytic

¢analytic

(42)

€ =

are plotted in Figure 4 for four of the OCTO-TIGER simulations.
A square pattern is apparent for the residuals in the OCTO-TIGER
simulations with the maximum residuals appearing at the corners
of a square that encloses the sphere. These larger residuals do not
decrease with higher resolution, something that is expected of the
FMM method. The FMM computes the multipole expansion of the
potential between grid cells at the same refinement level as each
other. Adding extra refinement to those levels only increases the
quality of the solution between cells at the extra refinement level.
The cells at the coarser levels still interact with each other in the
same way, and the same expansions are passed to the more refined
levels. The only way to cause cells to interact with each other at
finer levels of refinement is to decrease the opening criterion.

We tested whether a smoother transition of the sphere to the
background density can lower the residuals by carrying out simula-
tions of two other density distributions (which have known analytic
solutions), one where the density of this sphere decreases to the
ambient value by a parabolic dependence with radius (continuous
but not differentiable), and a second where the density distribution
obeys an n = 1 polytropic profile (continuous and differentiable).
We find that regardless of the smoothness of the density decrease,
high residuals values remain at the corners. To decrease the high
residuals at the corners, a lower value of 6 needs to be set. We
also tried to simulate an off-centre sphere and a range of additional
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Figure 2. OCTO-TIGER vs. FLASH for a resolution of 256 and an angle of 45 deg for the shock tube. Difference in the x-velocities between simulations and
analytic solution at the end of the simulation, time ¢ = 0.2. The boundary condition in the top row is outflow without material inflow (diode), while in the
lower row it is an outflow condition that allows material to inflow back to the simulation domain (outflow)

sphere sizes. Changing the sphere location does not affect the resid-
uals. However, increasing the sphere radius does result in lower
maximum residual values. We conclude that the maximum values
are related to how much mass is concentrated in a given volume.

For comparison, in Figure 4, we present equatorial maps of
several 1283 and 256 cell FLASH simulations that used two grav-
ity solvers: multigrid, panel (¢) and BHTree, panel (f). Here we see
that each solver has a different residual shape.

In Figure 5, we plot histograms of the residuals by volume
(panels (a) and (c)) and by mass (panels (b) and (d)). Figure 5(a)
shows that the residuals’ maxima do not decrease by increasing
the resolution; however, the residuals’ mean and minimum val-
ues do. By increasing the resolution, the distribution is stretched
to lower residual values. The notable second peak of the histogram
for the lower resolution simulations practically disappears for the
two higher resolutions. The most common residual value is consis-
tently around 10~ % irrespective of resolution.

In Figure 5(c) and (d), we present the residuals’ histograms
and mass distributions of the FLASH simulations, where we used
three commonly-used FLASH gravity solvers: Multigrid, BHTree,
and Multipole. The FLASH Multipole gravity solver has the low-
est maximum residuals. The 128> simulation that used the multi-
pole solver has a lower mean value, ~ 2.23 x 10~*, than every
one of the other FLASH simulations (including the high resolution
simulations). Only the OCTO-TIGER simulations have lower mean
residuals: 1.93 x 107%, 1.67 x 10™* and 1.65 x 10" for the
128%, 2563 and 5123 simulations, respectively. The FLASH mul-
tipole solver easily produces an accurate solution to this problem
because it has a spherical symmetry. Including additional terms,
besides the monopole, does not contribute to the numeric solution
in the FLASH multipole solver. The maximum and mean values of
the residuals slightly increase in the high resolution FLASH simula-

tions. The OCTO-TIGER simulations show overall low mean resid-
uals and low most common residuals (the peak in the distributions
both with respect to volume and mass).

‘We summarize the residuals’ minimum, maximum, and mean
values for the OCTO-TIGER and FLASH simulations in Tables 1
and 2, respectively. Table 1 shows that in OCTO-TIGER, a higher
resolution decreases the mean residual value, up to a certain reso-
lution, where the mean residual value converges to some low value.
To decrease the mean residual further, one must set a lower 6 value.

From the mass distributions (Figure 5(b)), we see that the cells
which have the highest residual values actually contain a negligible
amount of mass. Namely, the cube corners which have high resid-
uals reside outside the uniform density sphere, where the density
is very low. In addition, increasing the resolution results in having
most of the mass in lower residuals. The residual value, that has the
maximum mass, shifts from 3 x 10~ in the 64> simulation to 10~*
in the 5122 simulation, and the mass distribution becomes flatter to-
wards smaller residuals with higher resolution. We infer that these
regions with high values of the potential residuals will have min-
imum effect on the evolution of a simulation, once we evolve it,
because of their low total mass.

As can be seen from Figures 4 and 5, by decreasing the
opening-angle parameter, 6, we can increase the level of accuracy
in the OCTO-TIGER simulations even more. The residuals alto-
gether are reduced, including the maximum residual values at the
corners. With such low value of 6, we get the lowest mean resid-
ual values among all the simulations even at the lower resolution
of the 128 cells. As with the simulations with = 0.5, improv-
ing the resolution does not reduce the residual maximum, but does
improve the minimum and mean values. By increasing the reso-
lution, the main peak is shifted to lower residual values of around
4x1075. The mean residual value in the high resolution simulation
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(a) Density slice, 6 levels of refinement (b) Density slice, 7 levels of refinement
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Figure 3. The Sedov-Taylor blast wave test. Density slices using OCTO-TIGER with 6 (a) and 7 (b) levels of refinement at ¢ = 0.25 code units. Panel (c): the
AMR grid structure of the simulation with 7 levels; Panel (d): the absolute deviation of the density from the analytic solution as a function of grid cell size for
6 simulations carried out with a maximum of 7 levels of refinement to a minimum of 2

Neells 643 1283 2563 5123 1283 256
6 0.5 0.5 0.5 0.5 0.35 0.35
max 266 x 1072 323x1072 349x10"2 3.61x10"2 082x10"2 0.90x 102
mean  3.13x10~% 1.93x107% 1.67x10"%* 1.65x107% 9.6 x 10~° 6.5 x 1075
min 3x 108 1x 1079 1x10-11 1x10~11 1x10-10 1x10-11

Table 1. Gravitational potential residuals of the static uniform sphere in OCTO-TIGER. OCTO-TIGER uses the fast mutipole method to solve for the gravity,
which has an opening angle parameter 6. Full distributions appear in Figure 5

Solver BHTree BHTree Multigrid Multigrid Multipole Multipole
Neells 1283 2563 1283 2563 1283 2563
max 0.18 x 1072 0.20x 102  1.81 x 10~2 1.96 x 10—2 2.6 x 101 2.3 x 101
mean 521 x107% 538x107% 7.691x 1073 8759 x 1073 223 x10~% 224 x10*
min 1x10°8 5x 1079 4x10~8 4%x10°7 1.1 x 1074 1.9 x 1074

Table 2. Gravitational potential residuals of the static uniform sphere in FLASH. Full distributions appear in Figure 5
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Figure 4. Uniform static sphere test. Maps of the residuals of the gravitational potential, €, at the equatorial plane z = 0 as a function of resolution, modelling

code and opening angle 6

indicates a deviation of 0.0065 percent from the analytical value.
We note, though, that the peak in the mass distribution of the resid-
uals remains approximately the same for the # = 0.35 simulations
and for the # = 0.5 simulations (compare the peaks of the purple
squares line and the yellow crosses line or the peaks of the green
circles line with the brown triangles line in Figure 5(b)). Reducing

0 has a higher computational cost (see Section 5). This compromise
between the accuracy of the simulation and the running time should
be taken into account when simulating a problem.
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Figure 5. Uniform static sphere test. Histograms and mass distributions of the potential’s residuals of OCTO-TIGER and FLASH simulations. The vertical lines

in panels (a) and (c) mark the residuals’ mean value for each simulation

3.5 Stationary Star

In this test, we set up a polytrope with an index of n = 3/2. The
stellar diameter is the same as we have used in the uniform static
sphere test, equal to half of the domain size, and the polytrope’s
centre coincides with the centre of the domain. A polytrope can be
scaled to model different types of stars. We show two such scalings
in Table 3, one for a low-mass, fully convective, main-sequence star
and a second one for a low-mass white dwarf. Outside the star we
fill the domain with gas with a density that is 10 orders of mag-
nitudes smaller than the star’s central density. While the star itself
is in good hydrostatic equilibrium, the outside medium is not in
equilibrium and it starts free falling onto the surface of the star
as the simulation starts. The falling of the gas together with the
diode boundary condition, which prevents inflow, create outer re-
gions with very low densities. To avoid the creation of a vacuum,
whenever cell densities become lower than the threshold floor den-
sity of 10715 times the central density, we set the density to be that
value. In addition, to reduce shocks due to supersonic in-falling
gas we give the ambient medium a high internal energy (and hence
temperature). We list the ambient medium’s properties in Table 3.
Any small perturbation from hydrostatic equilibrium will in-
duce an oscillation with polytrope eigenfrequencies and modes.
Hurley et al. (1966) computed numerically the fundamental modes,
as well as the first and second harmonic modes of several poly-
tropes with different adiabatic indices. They found that a pulsating

n = 3/2 polytrope has a fundamental frequency of

81Gpe

wi(n =3/2; Yaa = 5/3) = 0.3764 =

43)

The pulsation periods are of the order of the free-falling time of the
star. For the low mass main sequence star model, for example, the
fundamental period, T, is 24 minutes, while for the WD model
the fundamental period is 18 seconds.

‘We compare the oscillations observed in the simulations with
the analytical solutions. We also monitor the diffusion of the outer
layers of the star and the behaviour of the low-density medium that
surrounds the structure and we verify the conservation of some ba-
sic physical quantities.

We ran six simulations in total, two OCTO-TIGER uniform
grid simulations with resolutions of 128> and 256 cells and one
OCTO-TIGER AMR simulation with base resolution of 128> and
one level of refinement that increases linearly the resolution by a
factor of 2. We refine based on a criterion of density (see Sec-
tion 2.4). These three simulations use the OCTO-TIGER FMM
gravity solver, with an opening angle parameter 6 = 0.5. We also
ran a fourth uniform grid OCTO-TIGER simulation with resolution
128°, and 6 = 0.35.

These four simulations used an ideal gas EoS. The fifth sim-
ulation, a uniform grid of 1282 resolution and @ = 0.5, used a
polytropic EoS (see Equation 14). The sixth simulation is carried-
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model M R Pc Pc Te Cs,c Ts Cs,s Tmedium Cs,medium Tk K
Mgp) (gem™3)  (dyne/cm?) (K) (km/s) (K) (km/s) (K) (km/s) (sec/min)  (erg cm?/g®/3)

MS 0.27 0.25Rp 150 1.7 x 1077 1.8 x 107 430 6300 9.3 1.9 x 10 2300 24 min 4 x 1013

WD 0.35  10%cm 108 2.5 x10%2 6.1 x 108 2000 7.3 x 10% 44 4.3 x 10° 11000 18 sec 2.5 x 1012

Legend: MS = main sequence; WD = white dwarf; M = mass; R = radius; p. = central density; p. = central pressure; T, = central temperature; cs . = central sound speed;
T’s = surface temperature; cs,s = surface sound speed; Tinedium = medium temperature; ¢s medium = medium sound speed; Tt = fundamental period; K = polytropic constant.

Table 3. Examples of how our polytope model of Section 3.5 to 3.7 can be scaled to represent stars of different types. We assume piy5,+2 = 4/3, and
tco = 2, pu = 1, py+ = 1/2, and for calculating the temperature for the main sequence star center, WD centre, main sequence star surface, and WD
surface, respectively. To calculate the medium’s temperature we assume piyp+ = 1 /2. Note that T’y is the fundamental period, while T, Tc and Tiyedium are

temperatures
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Figure 6. Stationary star initial state. (a) AMR grid in a temperature slice at the equatorial plane of the AMR OCTO-TIGER simulation. Each cube represents
a sub-grid containing 82 equal volume cubic cells; (b) the initial density profile of the stars in OCTO-TIGER and FLASH. Small differences are present due to

different interpolation schemes

out with FLASH on a uniform grid resolution of 1283, using the
BH-tree gravity solver.

In OCTO-TIGER we solve for each cell in the domain of the
Lane-Emden equation to obtain the polytrope, while in FLASH we
interpolated a one-dimensional polytropic solution into the three-
dimensional grid. This results in small differences between the ini-
tial states of the OCTO-TIGER and FLASH simulations. In Fig-
ure 6(a), we show the AMR grid in a temperature slice at the equa-
torial plane of the AMR OCTO-TIGER simulation. Each cube rep-
resents a subgrid containing 8% equal volume cubic cells. As we
refined by the density criterion, only the inner region of the star
is refined to the maximum level. In Figure 6(b), we plot the initial
density profile of the stars in both OCTO-TIGER and FLASH.

In Figure 7(a), we plot the central density of the star, divided
by the initial central density, over time (in units of 7’7, the funda-
mental pulsation period of our polytope). As expected, in all sim-
ulations, the central density of the star shows clear oscillations. In
the OCTO-TIGER simulations, the central density oscillates around
some converging value, while in FLASH, there is a slow decrease
with time overlaid on the central density oscillations. By setting a
lower value for the opening angle parameter of the gravity solver
(6 = 0.35, red crosses in Figure 7), we can lower the amplitude for
these oscillations.

Although the oscillation amplitude might affect the amount of
noise in the solution, the clear-cut test is whether the oscillation fre-
quencies are aligned with the fundamental frequency predicted by
theory. The assumption is that both the initial state and the numer-
ical solving scheme inaccuracies will induce random noise which

will oscillate at the fundamental frequency of the polytrope. For
that, we plot the Fourier transform of the stars’ central density (Fig-
ure 7(b)), normalised by the initial pulsation amplitude, in units of
the fundamental frequency, fr. The vertical lines in Figure 7(b)
show the fundamental frequency and the first and second harmonic
frequencies, 2.15fr and 3.13 fF, respectively. The Fourier trans-
form of the densities of all the simulations notably peak close to
the fundamental frequency. Again, the star, that is evolved with a
0 = 0.35, reproduced most accurately the fundamental mode, with
a frequency peak that deviates by only 0.5 percent from the theo-
retical fundamental frequency. The other OCTO-TIGER simulations
deviate by 1.5 percent, while FLASH deviates by 3.8 percent. The
star that is evolved with a polytropic EoS, naturally suffers least
from low-frequency noise.

We next plot (Figure 7(c)), the deviation from conservation
of mass, AM/MO, in the OCTO-TIGER simulations. AM =
M (t) + Mouwy — Mo, where M (t) = fV pdV, Moy and M
are the mass inside the simulation domain, the mass that outflowed
from the grid and the initial mass, respectively. OCTO-TIGER cal-
culates automatically, for every time step, the outflow of quantities
such as mass, energy, and entropy, which simplify following of ev-
ery small change of those quantities. Therefore, we plot only the
conservation of mass in OCTO-TIGER simulations. We see conser-
vation at the 1073 level up to a time when the density flooring
adds mass to the grid. Even then the conservation, by the end of the
simulation is still at the level of a few x 10712,

In these simulations, we set a density floor which causes a de-
viation from conservation at a machine precision level. The floor
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Figure 7. The stationary polytrope benchmark test. (a) Central density over time divided by the initial central density. (b) The Fourier transform of the
central density pulsations normalised by the initial pulsation amplitude. The vertical lines show the fundamental frequency and the first and second harmonic
frequencies. (c) Conservation of mass (only for OCTO-TIGER simulations). (d) Total mass enclosed in a sphere with a radius of the initial polytropic radius.
(e) Conservation of energy (only for OCTO-TIGER simulations with ideal gas EoS). (f) Conservation of entropy (only for the polytropic EoS OCTO-TIGER
simulation). Tz is the fundamental period of a polytrope withn = 3/2 andy = 5/3
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density is 5 orders of magnitude less than the initial density of the
ambient medium, and usually will not affect mass conservation.
However, at machine precision level, a deviation that grows ap-
proximately linearly with time appears. This can be explained by
considering the following. As a consequence of ambient medium
gas falling onto the star surface, the density outside the star de-
creases with time. Eventually, the density will decrease below the
density floor threshold at the outer regions, which is then filled
with density at the floor value. This happens after approximately
20, 25, and 35 fundamental periods in the low-resolution atmo-
sphere with ideal gas EoS simulations, polytropic EoS simula-
tion, and the high-resolution simulation, respectively. If the re-
gion that is being filled with a floor density is a fraction o of
the domain volume, we will get a deviation from mass conserva-
tion of roughly &'V pacor/ Mo = apacor /Py, Where py is the ini-
tial mean density in the simulation’s domain. In our simulations
Prioor /P =~ 9 x 107, If only one layer of cells at the grid bound-
ary is being filled with the floor density then o ~ 0.05. If, in ad-
dition, the cells will be refilled every 5 time steps, after ~20 000
time steps a deviation of 2.2 x 10~ from conservation of mass
will occur. In the simulations themselves, fewer cells are refilled
less frequently so the deviations are smaller. Additionally, as shock
heating is eliminated in the polytropic EoS simulation, the ambient
gas continuously falls onto the star’s surface without disturbance,
which results in a bigger volume of flooring, and in a somewhat
higher deviation from conservation of mass (purple line).

In Figure 7(d), we show the total mass enclosed in a sphere
with a radius of the initial star’s radius. Here we see that FLASH
loses 1 percent of the stellar mass in 40 pulsations, while the OCTO-
TIGER simulations lose at most 0.2 percent of the mass flowing out.
The lower resolution, polytropic EoS as well as the higher resolu-
tion simulations perform best.

In Figure 7(e), we show the deviation from conservation of
energy AE/Ey, where AE = E (t) + Eout — Fo, and E (t) =
[ (E+ 3p¢) dV, Eou and Ey are the energy inside the simula-
tion domain, the energy that outflows from the grid and the initial
energy, respectively. In Figure 7(f), we show the deviation from
conservation of entropy AS/Sy, where AS = S (t) + Sout — So,
and S (t) = fv 7dV, Sout, and S are the entropy inside the sim-
ulation domain, the entropy that outflows from the grid and the ini-
tial entropy, respectively. Beside the small effect of the flooring,
the ideal gas EoS simulations conserve energy at machine preci-
sion, while the polytropic EoS simulation conserves entropy at a
machine precision.

Click on the link® to view a movie of the OCTO-TIGER, 2563, § =
0.5 simulation.

3.6 Star Moving Linearly in the Grid

We next simulate a star as in Section 3.5 except we initialize the
star with a non-zero bulk velocity, allowing it to translate at a given
constant velocity through the grid. This exercise tests the degree to
which the surface layers of our structure shear away due to inter-
action with the low density medium permeating the background. It
also tests how well a spherical star moves through our cubical grid
and how well our code conserves the total, non-zero linear momen-
tum.

We test three velocities, (a) a subsonic velocity, vi = 5.2 X
10_4c37medium, where cs medium 1S the speed of sound of the

I https://youtu.be/4-ra6fY982Q

ambient hot medium (see Table 3); (b) an intermediate velocity,
v2 = 5.2 X 107%¢5 medium: and (c) a high, supersonic velocity,
v3 = 5.2Cs medium. We list these three velocities scaled to a main
sequence and WD models, as well as the simulation time (shorter
for the faster stars) and the distance the star travels in Table 4. The
distance the star travels equals to 1.1 times the star’s initial radius
for all simulations. We placed the star initially at (-0.125, -0.125, 0)
and gave it a velocity in the direction towards grid position (1,1,0).

Each velocity regime contains a set of six simulations (as we
have done for the stationary star): two uniform grid, 128* and 256>
cell simulations, one AMR simulation (1282 cells and one level of
refinement), with ideal gas EoS and § = 0.5; a uniform grid 1283
simulation with ideal gas EoS and # = 0.35; a uniform grid 128°
simulation with polytropic EoS and § = 0.5; and a FLASH uniform
grid 128° simulation. In Sections 3.6.1 — 3.6.3, we describe the
results of the simulations.

3.6.1 Star Translating at Low Velocity

In this regime, the star translates at a very low velocity, equivalent
to a Mach number of 5.2 x 10™*, not only with respect to the am-
bient medium speed of sound, but also with respect to the speed
of sound of the coldest regions at the star’s surface. Such low bulk
velocities are a challenge for hydrodynamic codes. Low level sub-
sonic noise that develops can advect the stellar momentum to the
surrounding low density gas, diminishing the star’s initial low ve-
locity. In addition, the star’s low velocity allows us to run this test
for over an hundred fundamental pulsations periods, the longest
time we have run a polytrope simulation. During this time, the star
should keep pulsating at its Eigenmodes as it translates through the
grid.

The star in the OCTO-TIGER simulations slowly moves from
the bottom left corner to the upper right corner (in the xy plane).
As in the stationary star simulations, the star remains in hydro-
static equilibrium, while the ambient medium is free falling onto
the stellar surface. This slowly cools the ambient medium and cre-
ates shocks on the star’s surface that heat the gas for ideal gas sim-
ulations. We performed the same analysis as we did for the sta-
tionary star. We find that the star’s movement does not affect the
star’s pulsations. Almost identically to the stationary star in Fig-
ure 7(a), the central density oscillates at the fundamental frequency
in all OCTO-TIGER simulations, while the mean central density of
the star simulated with FLASH decreases with time. Additionally,
the star’s mass (M) remarkably decreases at the same rate as for
the stationary star in Figure 7(d), decreasing by 2 percent in the
FLASH simulation and by less than 0.4 percent with OCTO-TIGER,
after 100 pulsations.

In Figure 8(a), we plot the centre of mass position as a func-
tion of time, while in panel (b) we show the deviation of the centre
of mass velocity from its initial value. The star in the OCTO-TIGER
simulations moves through the grid at a constant velocity, while in
the FLASH simulations, the star slows down, starts moving in the
opposite direction and then oscillates around the star’s initial posi-
tion. The OCTO-TIGER simulations deviate from the initial veloc-
ity by less than 1 percent throughout the entire evolution.

We exploited OCTO-TIGER’s capability to track the prove-
nance of gas, to calculate the diffusion of linear momentum from
the star to its environment. In Figure 8(c), we plot the x-momentum
of the diffuse medium divided by the initial fotal x-momentum in
the OCTO-TIGER simulation. The initial oscillation is due to the
sharp density gradient at the star’s surface. Soon after the value set-
tles at values close to zero. We mention though, that the mass ratio
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Figure 8. The translating star benchmark test with the star moving at Mach 5.2 x 10~% (with respect to the diffuse medium). We plot various physical
quantities of interest over time. Time is in units of 7', the fundamental pulsation period

Model v1 v2 v3 tsim1 tsim2 tsim3 Rtravel
(kms~1)  (kms~!) (kms1) (sec/min/hr) Rpe)

MS 1.20 120 12000 44hr  27min 16 sec 0.28

WD 5.6 560 56000  33min  20sec  0.2sec  0.016

Table 4. Translating polytrope benchmark test. Scaled quantities: motion velocities, total simulation times and displacement. For other scaled quantities refer

to Table 3

between the ambient medium gas and the star is of the order of
1078, No comparison with FLASH is possible due to FLASH not
tagging gas provenance.

We find, similarly to the stationary star test, that mass, energy,
and entropy are conserved in the OCTO-TIGER simulations to ex-
cellent precision, except for small deviations due to adding mass
when a cell’s density drops below the minimum floor value (see
Sec. 2.6). We additionally follow the conservation of x-linear mo-
mentum (Figure 8(d)), finding a machine precision level until floor-
ing starts operating at which point we observe a slow linear growth.
The deviation, though, is minimal, less than 10~ after 100 pul-
sation periods for all simulations except the polytropic EoS. The
polytropic simulations suffers more from flooring (because shock
heating is absent) and the deviation settles on a value of 8 x 107°.

Click on the link? to view a movie of the low velocity translating
star.

3.6.2  Star Translating at Intermediate Velocity

With a speed of Mach 5.2 x 1072 with respect to the outside
medium, the star translates at a subsonic velocity, but at a super-
sonic speed with respect to the star’s surface. The simulation time
is comparable to the star’s fundamental period. This allows the star
to pulsate only once while it translates at a higher speed than the
previous test.

The star’s gas diffuses out in the wake of the star, but then

2 https://youtu.be/8ArzgP9r93Y
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Figure 9. The translating star benchmark test with the star moving at Mach 5.2 x 10~2 (with respect to the diffuse medium). We plot various physical
quantities of interest over time. Time is in units of 7', the fundamental pulsation period

reverses motion and trails the star moving in a flow that resembles
accretion. Shocks are apparent at this wake in the ideal EoS which
increases the diffusing out of material from the star.

In Figure 9, we plot only the salient quantities that demon-
strate the level of accuracy of the simulations. In panel (a) we
demonstrate how the simulation time is approximately the time of
the fundamental period of pulsation and the amplitude is similar
to the stationary star simulations of Figure 7(a). The error on the
star’s velocity is less than 10~ for all simulations (Figure 9(b)),
where OCTO-TIGER simulations have an error that is about 10
times smaller than the OCTO-TIGER simulations in the case of the
slow moving star of Figure 8(b) (Section 3.6.1). In Figure 9(c) we
see that the ambient medium momentum in OCTO-TIGER simula-
tions remains negligible. After an oscillatory period, we expect it
to converge to a value that is of the order of 10~°, which is over 10
times smaller than for the equivalent, slow moving test. Finally, in
Figure 8(d) the mass in the original polytrope is also retained with
a precision that is 10 times that of the slow moving polytrope. An
amount that is relatively high if we consider the short simulation
time.

Click on the link® to view a movie of the intermediate velocity
translating star.

3.6.3  Star Translating at a High Velocity

For the highest velocity simulation, at Mach 5.2 with respect to the
sound speed of the ambient medium, the running time is shorter
than the dynamical time of the star so the star does not relax. There
is a slight overall mass increase in the two unigrid simulations, but
not for the AMR one (Figure 10(a)) between the first and fifth time
steps in the simulation. This is due to more mass leaving a cell
than the mass in that cell at the sharp stellar edges of the polytrope.
Since the mass in a cell is not allowed to be zero nor negative, mass
is added to reach the density floor value, hence introducing mass
in the grid. At subsequent time steps when numerical diffusion has
softened all edges, this does not happen. This is not a large problem
and can be resolved with a reduction of the Courant time to values
~ 0.14 (see justification in Section 2.7).

In Figure 10(b-d) we see that the velocity error, ambient x-
momentum and mass in sphere retain their values to a precision
that is comparable to that of the polytrope moving at intermediate

3 https://youtu.be/b3MMyDCPY60
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Figure 10. The translating star benchmark test with the star moving at Mach 5.2 (with respect to the diffuse medium). We plot various physical quantities of

interest over time. Time is in units of T, the fundamental pulsation period

speed (Section 3.6.2). The best simulation is the high resolution
unigrid with § = 0.5 (yellow line), something that is also true but
to a lesser extent for the other two velocity tests.

Click on the link? to view a movie of the high velocity translating
star.

3.7 Star Rotating in the Grid

Here we simulate a rotating star in equilibrium with OCTO-TIGER
and FLASH. Its rotation profiles, Q(r), should remain flat whether
the simulation is run in the inertial frame or in a rotating frame of
reference, over a certain amount of time.

We constructed an equilibrium profile of a rotating polytrope
using the Self Consistent Field method that will be described in
Section 4.1. We then interpolated the profile in the OCTO-TIGER
and FLASH grids using the same method. The fast-spinning star
has an oblate shape with a ratio of 2/3 between polar and equatorial
radii. The angular velocity is 0.52 in code units (0.0023 rad s™*
and 0.19 rad s~ for the MS and the WD models, respectively),
and the rotational period is =~ 12 code units (45 min and 32.3 sec
for the MS and the WD models, respectively).

4 https://youtu.be/rzilMJ6Cxc4

We carry out simulations in the inertial frame (both with
OcCTO-TIGER and FLASH) and in the rotating frame (only with
OCTO-TIGER). For each of these frames of reference, we carry out
six simulations with the same combinations of resolution, § param-
eter and EoS as done for the stationary star in Section 3.5.

In Figures 11(a) and (b) we plot the familiar evolution of the
core density scaled to the initial value. With an exception of the
FLASH simulation that has a declining trend, reaching 85 percent of
its initial values over 25 rotation periods, all the OCTO-TIGER sim-
ulations retain the initial core density value within 5 percent with
no noticeable difference between rotating and inertial frame. In Fig-
ure 11(c), we plot the diffusion of the stellar mass out of the original
boundary in the inertial frame. Once again FLASH performs worse
with a loss of 0.5 percent of the mass over 25 rotation periods, but
most of the OCTO-TIGER profiles are a close second with the poly-
tropic EoS simulation performing distinctly better. Comparing this
with panel (d) we see how all OCTO-TIGER simulations perform
much better in the rotating frame, losing at most 0.05 percent of
the mass. Similarly, Figure 11(e) shows that in the inertial frame,
the high density inner star diffuses out moving to twice its origi-
nal radius. The polytropic EoS simulation is by far the best, with
FLASH also performing well. In this case the rotating frame, panel
(f), does not perform a great deal better than the inertial frame.

The acid test is the evolution of the rotation profile. All simu-
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Figure 11. The rotating star test with Q¢ = 0.52 code units (0.0023 rad s~ ! and 0.19 rad s~ for the MS and the WD models, respectively). Several
quantities are compared. The vertical lines in panels (g) and (h) are the maximum distance of high density gas at the end of the simulation (rightmost values of

the curves in panel e and f, respectively)
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Figure 12. The rotating star test with 29 = 0.52 code units (0.0023 rad/s and 0.19 rad/s for the MS and the WD models, respectively). Conservation of
energy and angular momentum. All simulations used an ideal gas equation of state except the simulation shown in purple squares, which used a polytropic

equation of state

lations in the inertial frame (Figure 11(g)) do not retain a flat profile
(with the notable exception of the polytropic EoS one), while those
in the rotating frame (Figure 11 (h)) systematically do. However, in
the inertial frame, by the end of the simulations, the spin of the gas
that has diffused out of the original volume is distinctly less for all
simulations than in the rotating frame. The FLASH simulation (in
the inertial frame) does not retain a flat profile, but it has the least
diffusion of gas out of the boundary of the sphere of all simulations.

Finally, in Figure 12 we show the degree of conservation we
achieve in the OCTO-TIGER simulations. This highlights the im-
portance of including the angular momentum correction (AMC)
of the gravity solver for the conservation of energy (upper pan-
els) as outlined in Section 3. In the lower panels we plot the
deviation from angular momentum conservation AJ,/.J S , where
AJ. =J.(t)—J2,and J. (t) = [, (wsy — yss) dV and J_ are
the z-angular momentum inside the simulation domain, and the ini-
tial z-angular momentum, respectively, and where s, and s, are the
x and y components of the inertial momenta, respectively. As we
do not take into account outflows we can compare between OCTO-
TIGER and FLASH, showing OCTO-TIGER outperforms FLASH in
ideal gas simulations. Additionally, by comparing between simula-
tions with outflow (blue circles) and reflect (gray downward point-
ing triangles) boundary conditions, we find that outflows only very
slightly affect angular momentum conservation. Overall, the AMR
simulation conserves angular momentum the best, and simulations
that include AMC conserve angular momentum better than the sim-
ulation without this correction.

In conclusion this test gives an excellent idea of the type of
numerical diffusion we can expect. The rotating frame outperforms
the inertial frame, and the polytropic EoS seems to be doing best
in almost all cases. FLASH performs the worst except in retaining a
stable high density sphere inside the star and it can also be seen that
a higher gravity accuracy (@ = 0.35) improves the performance.
Click on the link® to view a movie of the rotating star in the rotating
frame.

4 BINARY MERGER BETWEEN TWO POLYTROPES
WITH A MASS RATIO OF 0.5

Here we present the results of two binary merger simulations per-
formed in the rotating frame, starting from identical initial condi-
tions, but differing in the adopted EoS. The donor star is half the
mass of the accretor and initially fills its Roche lobe. Both stellar
spins are synchronized to the orbital frequency. In the first simula-
tion, the two stars are constructed using the same polytropic EoS
(e1 = e2 = 1), with polytropic index n = % In the second
simulation, we use an ideal gas EoS (with dual energy parameters
€1 = 0.001 and e2 = 0.1 from Equations 11 and 13).

We are motivated to model such a system for two reasons.
First, by appropriate choice of units, this system approximates a

5 https://youtu.be/72rxGIW2J_Y
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binary consisting of two low mass WDs. We have set the unit con-
version factors so that the accretor has a mass of 0.6 M, the donor
a mass of 0.3 M (1 code mass unit is 1 solar mass). The compu-
tational domain is 40 code length units on a side, or 1.7 x 10'* cm
(1 length units is 4.36 x 10° cm). With this scaling the separation
between the two stars is 6 x 10~2 Rg, and the period is 2.7 min-
utes. The second reason is that a similar system was modelled by
Motl et al. (2017) providing us with a comparison simulation as a
further verification of OCTO-TIGER.

We use 9 levels of refinement, with the highest level having a
grid spacing of 4.2 x 107 cm. The accretor is 50 cells across along
its longest axis (the spinning stars have slightly larger equatorial
than polar radii) and the donor is 79 cells.

Following Motl et al. (2017), we initially drive the stars into
deep contact by systematically removing angular momentum. This
is accomplished by adding source terms to the evolution equations
for the x and y components of the momentum (Equation 2),

= _ﬁ (Iuy - yuz) fdriving
Ssy,driving = +ﬁ (-’ruy - yuz) fdriving

Ssm ,driving

(44)

where x and y are the x and y components of the position vector x,
uz and u, are the x and y component of the inertial frame velocity,
u, and fariving is the driving rate in units of inverse time. This
has the effect of reducing the z-angular momentum component of
a given cell at a logarithmic rate of fariving. It does not affect the
cylindrical radial or z linear momenta. Similarly to what was done
by Motl et al. (2017), we drive the system together at a rate of 1
percent per orbit for the first 2.7 orbits.

4.1 The Initial Stellar Model

The initial conditions for our binary simulations were produced us-
ing our own variant of the “Self Consistent Field” (SCF) method
(Hachisu (1986a,b); Even & Tohline (2009); Kadam et al. (2016)).
Given a barotropic EoS, p = p(p), the SCF method allows one
to construct an equilibrium model of a binary system with syn-
chronously rotating stars. OCTO-TIGER’s SCF can be used to con-
struct systems with a polytropic or bi-polytropic EoS or a cold
white dwarf EoS. The user selects the masses of each star and the
Roche lobe filling factor for the donor. When each star has a dif-
ferent EoS, the Roche lobe filling factor for the accretor must also
be specified. Here we document OCTO-TIGER’s SCF as it pertains
to the construction of the initial conditions for the binary models
in this paper. These models use the same structural polytropic EoS
for each star. One of the models is evolved with the same polytropic
EoS, and the other with an ideal gas EoS.
The effective potential is defined as
L Qpnr?, 45)

¢eff:¢_2

where ¢ is the gravitational potential, (2,1, is the rotational fre-
quency of the binary, and r is the distance to the axis of rotation.
Using the effective potential, the hydrostatic equilibrium equation
in the rotating frame can be written

1
;Vp + e = 0. (46)
For the EoS we use:

1
Ppoty = Kp' 47

where K is the polytropic constant and n is the polytropic index.
Combining Equations 46 and 47 and integrating we arrive at:

K (14n) p7 + ot = Chja, (48)

where the constant on the RHS is either C; for the primary, ac-
creting star or C'y for the secondary, donor star. While in general
the polytropic constant, K, may be different for each star, in this
paper, they are the same.

The SCF solves for the initial conditions iteratively. The user
selects the mass of each star, the polytropic index, the initial sep-
aration, and the Roche filling factor of the donor. (Note that while
the user specifies the initial separation, it is the orbital angular mo-
mentum that is held constant.) The Roche filling factor is defined
as

¢edge - ¢C
¢r1 — ¢’
where ¢eqge is the effective potential at the edge of the donor ¢¢ is
the effective potential at the centre of mass of the donor, and ¢ 1.1
is the effective potential at L1, the first Lagrange point.

For the initial iteration we place two polytropic stars in the
grid at the desired separation and small enough that they are within
their respective Roche lobes. The gravity solver is also called be-
fore the iterations begin. For each iteration we: (1) multiply the
densities of each star by a constant factor for each star, such that
the result yields the desired mass of each star; (2) advect the entire
grid such that the centre of mass lies at the centre of coordinates;
(3) set the new value for (o1, using

JO,orb(Ml + MQ)

M 1 M- 2 a2 ’
where Jo orb, is the initial orbital angular momentum, M; and Mo
are the fixed masses of the accretor and donor, and a is the orbital
separation for the current iteration; (4) compute the integration con-
stants C and Cs,

= 49)

Qorb — (50)

1
Ci =K1 +n)p + ¢, (51
and

Co=(1-f)oc+ fora, (52)

where p; is the maximum density of the accretor and ¢ is the
effective potential at the centre of the accretor; (5) compute a new
value for K,

Ca2
1
(n+1)pg

where po is the density at the centre of the donor, and ¢2 is the
effective potential at the centre of the donor (¢2 = ¢¢); (6) compute
a new density value at each point on the grid using

_ ¢eﬁ - C’1\2 "
p_<7K(n+1)> ; (54)

K= : (53)

for the accretor or donor region as appropriate; (7) solve for the
potential and repeat the process from step (1).

4.2 Simulation Results

In each model, mass transfer begins within the first couple of or-
bits. The transfer rate grows and the donor is tidally disrupted at
approximately 21.2 P, for the polytropic and 19.6F, for the ideal
gas model. Here P is the initial orbital period, which is the same
for each model. The merged remnant is then evolved for a couple
of additional F,.

In Figure 13, we show various images at ¢ = 11.7F; for the
polytropic simulation and ¢t = 12.6F, for the ideal gas simulation.
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(a) Orbital density slice, polytropic EoS (b) Orbital density slice, ideal gas EoS
(c) Orbital donor fraction slice, polytropic EoS (d) Orbital donor fraction slice, ideal gas EoS
(e) Vertical density slice, polytropic EoS (f) Vertical density slice, ideal gas EoS

Figure 13. Snapshots from our ¢ = 0.5 simulations with a polytropic EoS (left column, at time 11.7 x Py, where P is the initial orbital period) or an ideal
gas simulation (right column, at time 12.6 X Pp). The box size is 11 x 10 cm in all cases. The density scale is logarithmic and runs from 1.5 g/cm? to
1.5 x 108 g/cm?®
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(a)t = 7.3 X Py, polytropic EoS

(c)t = 21.2 X Py, polytropic EoS

(b) t = 6.7 X Pp, ideal gas EoS

(d)t = 19.6 x Py, ideal gas EoS

Figure 14. Density slices on the orbital plane for our ¢ = 0.5 simulations with a polytropic EoS (left column) or an ideal gas EoS (right column). The box
size is 11 x 102 cm (top row) or 16 x 10° cm (bottom row). The density scale is logarithmic and runs from 1.5 g/cm3 to 1.5 x 108 g/cm3. The snapshots
are taken at times 7.3 (a), 6.7 (b), 21.2 (c¢) and 19.6 x Py (d). See Table 1 for description

Panels (a) and (b) show density slices in the equatorial plane for the
two EoS choices. OCTO-TIGER is able to track the material that
was originally part of the donor, and the donor mass fraction is dis-
played in panels (c) and (d). The polytropic model clearly exhibits
the same polygonal resonances at high mass transfer rates that were
first reported in D’Souza et al. (2006) and were later confirmed
in the SPH simulations reported in Motl et al. (2017). As in Motl
et al. (2017), these resonance patterns do not appear in the ideal gas
model because the accretion structure is thicker due to shock heat-
ing. In Figure 13(e)—(f) we show a density cut at the same times,
showing that while the ideal gas EoS simulation produces Lo and
L3 outflow, the polytropic EoS simulation only shows a hint of L2
outflow by that time. The level of detail clearly visible near L is
consistent with the Roche geometry.

Figure 14(a)—(b) are from earlier in the evolution at approxi-
mately ¢ = 7Fp in each model. The resonance patterns in the poly-
tropic model progress from pentagonal shaped, to box shaped, to
triangular shaped (clearly seen in in Figure 14(a)). Figure 14(c)—
(d) show the system as tidal disruption is occurring. As the donor
is disrupted, significant mass flows through the L2 Lagrange point,
resulting in the “tails” seen in the figure.

The images in Figure 15 are taken from two orbits after tidal
disruption and merger has occurred. Panels (a) and (b) show equa-
torial density slices, while panels (c) and (d) show the donor frac-
tion. The triangular shaped resonance pattern is still evident near
the core in the polytropic model. In the ideal gas model, there is
still a remnant of the donor above and just to the left of centre. The
bottom images are shown with a larger spatial and density range
to reveal the large scale low density structures that form from the
merger.

4.2.1 Simulation Diagnostics

In order to measure the simulated properties of each star in the bi-
nary, we must first establish how to locate the stellar surface of each
star. OCTO-TIGER accomplishes this iteratively. For each iteration
OcCTO-TIGER updates the centres of mass of each star and the or-
bital frequency. Summations are done over the grid cells within the
regions defined for each star, and indices ¢, j, and k referring to
grid cells are implied on the RHS of the next two equations. We
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(a) Density, t = 25.0 X Py, polytropic EoS (b) Density, t = 23.2 x Py, ideal gas EoS

(c) Donor fraction, t = 25.0 X Pp, polytropic EoS  (d) Donor fraction, t = 23.2 X Pp, ideal gas EoS

(e) Density, t = 25.0 X Py, polytropic EoS (f) Density, t = 23.2 X Py, ideal gas EoS

Figure 15. Slices on the orbital plane for our ¢ = 0.5 simulations with a poytropic EoS (left column) or an ideal gas EoS (right column). The box size is
20 x 109 cm (top two rows; top row: logarithmic density scale with range 1.5 — 1.6 x 108 g/cm?®) or 200 x 10° cm (bottom row; logarithmic density scale
with range 1.5 X 1073 — 1.6 x 106 g/cm3). The snapshots are taken at times 25.0 (a, ¢, ), and 23.2 X Py (b, d, f). See Table 1 for description.
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Figure 16. Diagnostic plots from the ¢ = 0.5 polytropic and ideal gas
simulations. Orbital separation is given as a function of the initial value.

thus define the centres of mass of each star as

12 5 x Ag®
X1p2 = Zﬂjim (55)
The velocity of the centre of mass of each star is
12 juAz?
Uiz = % (56)

Given X1 and uy|2, we define the orbital angular frequency as

Qory = (1 = Xa) X (W —wa)] - (57)

1 — xa|?

where e is the unit vector in the z direction, out of the orbital
plane.

For the first iteration, we compute the centres of mass and or-
bital frequency based on an initial guess for the bounding surface of
each star. OCTO-TIGER evolves the original accretor and original
donor mass densities as passive scalars, allowing it to track donor
material within the accretor. We use the volumes defined by these
densities to seed the first iteration, with cells containing majority
accretor (donor) material flagged for the accretor (donor).

With the stellar volumes defined, we can then calculate the
centres of mass and orbital frequency. Beginning with the second
iteration (out of a total of five), we use the acceleration from the
effective potential to find the regions of each star. This acceleration
is,

et = g + Q0 (58)

where r is the radial vector distance to the axis of rotation. We
define the quantities

X — X1|2

q1]2 = 8eff - (59)

x — xqp2|”
If min(qg1,0) < min(gz,0), the cell belongs to the accretor. If
min(g1,0) > min(ge,0), the cell belongs to the donor. For the
case where g1 > 0 and g2 > 0, the cell is in neither star. This
definition by itself may miss some cells in the centres of each star
where the effective gravitational force is not guaranteed to point
towards the centre of mass. For this reason, any material within a
certain critical radius of the centre of mass of a star is included as
part of that star regardless of the values of gy 2. This critical radius
is %R L,1|2> Where Ry, 12 is the Roche lobe radius of each star taken
from the point mass approximation.

With the stellar volumes defined, we can measure the proper-
ties of each star. The mass of each star is thus defined as

1]2
Mip =3 ps’. &
The orbital separation is,
a=|x2 —x1]|. 61)

We show the separation of each model in Figure 16. Once the driv-
ing phase is over, the orbital separation of the two simulations in-
creases with time up until the final merger. This shows the donor
does not plunge into the accretor but instead is tidally disrupted
(e.g., Figure 14(c)—(d)). The matter from the disrupted donor then
falls onto the accretor. Our diagnostic plots that measure properties
of the individual stars do not extend to this phase because there is
no longer a clearly defined donor.

Computing the time rate of change of the two stars’ masses,
Mm, requires filtering out high frequency noise, here defined
as anything greater than (%Qorb). The regions defining each star
change with time and can vary slightly from one time step to the
next. The high frequency part of this signal needs to be filtered out
to measure a meaningful M”z. We apply a windowed sinc filter
using an exact Blackman window with frequencies of %me,o and
%Qorb,O- We apply this filter to M2 and then compute the time-
derivatives with nearest neighbors by a first order discrete scheme.

In Figure 17 (top left panel) we show the donor mass loss rate,
normalised to the donor’s mass. The time derivative is in units of
initial orbital periods. The donor initially loses less than one percent
per orbit, increasing to ~1 percent, and then ramping up towards
the time when the donor is tidally shredded. In Figure 17 (top right
panel) we show the amount of mass that is no longer a part of either
star. The two star system loses only a small fraction of the donor’s
mass throughout most of the evolution. This can be mass unbound
from the system or mass in a common envelope, but still bound to
the system. The ideal gas model loses mass at a higher rate. This is
because the accreted gas is shock heated and therefore has higher
pressure. It builds up a thicker layer around the accretor, and some
of this gas is able to escape.

In Figure 17 (bottom panels) we plot the mass that is outside
the surface of either stars, and the mass that is unbound from the
system. Unbound mass is that for which the inertial frame kinetic
energy density exceeds the inertial frame potential energy. Further
from the system centre of mass, where most of the unbound mate-
rial is likely to be located, this indicator is more reliable than using
rotating frame quantities. Most of the mass remains bound. In the
case of the ideal gas model, about 10 percent of the mass leaves
the stellar boundaries, but only about 1 percent of the mass actually
becomes unbound from the system. In the case of the polytropic
model these figures are even lower due to lack of shock heating.

The orbital angular momentum is

My M2 2

Jorb = 7Qorba .

62
M+ M ©2)

We show J,,1, for both models in the top left panel of Figure 18
as a function of the initial orbital angular momentum (1.5 X
10°! g m? s™1). As expected, both simulations lose orbital angular
momentum throughout their evolution.

Each star has a spin angular momentum

12
Jij2 = Zp (x — Xl‘g) X (u — ul‘g) AazS, (63)
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Figure 17. Diagnostic plots from the ¢ = 0.5 polytropic and ideal gas simulations. Upper left: donor mass loss rate; upper right: mass loss rate from the both
stars (M = My + Ma, My is the initial mass of the system); lower left: mass outside the boundary of the two stars; lower right: mass unbound from the

binary

Figure 18. Diagnostic plots from the ¢ = 0.5 polytropic and ideal gas simulations. Top left: the orbital angular momentum; top middle: the accretor angular
momentum; top right: the donor angular momentum. All angular momenta are normalised to the initial value of the orbital angular momentum. Bottom left:
the orbital frequency; bottom middle: the spin frequency of the accretor; bottom right: the spin frequency of the donor. All frequencies are normalised to the

orbital frequency at ¢t = 0

and an angular frequency assuming rigid body rotation
J12
2 o )

S o (R = Rap)|" A
where Ry s is the projection of x> on the xy-plane. We show J; |2
in the middle right and lower right panels of Figure 18. In each
model, the accretor gains angular momentum from the donor. We
show €2y, along with Q¢,1, in Figure 18.

Q2 =

(64)

The gravitational torques exerted on each star are

1|2
Tio=» (X —X12) X pg. (65)

The gravitational torque exerted on the orbit is

1 2
Torm = x1 X Zpg + X2 X Zpg. (66)
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The z-component of T, plays an important role in whether or not
the binary survives mass transfer. This represents the rate at which
the tidal interaction can restore the orbital angular momentum lost
to mass transfer (Figure 19 (a) to (c)).

D’Souza et al. (2006) gives an expression relating the time rate
of change of the separation to systematic sources of orbital angular
momentum, gravitational torque, and the mass transfer rate. This is

a J Mo

The first term on the RHS, (%) , 18 due to systematic changes
sys

orb
in orbital angular momentum due to losses through Ls. In addition,
there is a loss of orbital angular momentum during the first 2.7 or-
bits because of our artificial driving that needs to be accounted for
when using this expression. The second term represents the contri-
bution due to the gravitational torque on the orbit. The final term
includes, 7, the effective “circularization” radius. This is the ra-
dius from the accretor’s centre of mass, which has the same spe-
cific angular momentum as the material at the L, Lagrange point,
normalised to the orbital separation. While the first part of the final
Mo

term, 772 (1 — ), accounts for the change in orbital angular mo-

mentum due to the transfer of mass from one star to the other, the

My
> My
lar momentum that is converted to spin angular momentum in the
accretor.

Frank et al. (2002) provide an analytical approximation to rp,

Thoanatytic = (1 + ¢) (0.500 — 0.227log,, q)*.  (68)

second part (— (1+ q)rh>, accounts for the orbital angu-

A more accurate expression that includes the torquing of the stream
of accreting gas by the donor is that of Verbunt & Rappaport
(1988). However, for the current purpouse the expression in Equa-
tion 68 is sufficiently accurate. The orbital separation, angular mo-
mentum driving rate, gravitational torque on the orbit, the mass
transfer rate, and mass ratio are all known or can be calculated from
the data set, allowing us to compute a value for 7, using Equa-
tion 67. We show this quantity compared with 7y, analytic for the
polytropic model, in the bottom right panel of Figure 19. In the be-
ginning the value of 7y, varies wildly. This is during the initial pe-
riod of angular momentum driving. For the majority of the run, ry, is
slightly less than 71, analytic, indicating the spin angular momentum
actually transferred to the accretor is slightly less than predicted by
the analytic theory. Toward the end, the computationally-derived
rh begins to exceed the analytical value 74 analytic. This is because
angular momentum is now flowing through the L2 point, making
Equation 67 no longer valid.
The internal, kinetic, and potential energies of the stars are

1|2
Erye = pe, (69)
1]2 1
EK,1|2 = Z 50“27 (70)
and
1)2 1
iz =) 50, (D

respectively. Here the internal energy density, pe, is obtained from
the dual energy formalism. We show these energies in Figure 20.
The donor loses internal and kinetic energy to the accretor. Al-
though the ideal gas model includes shock heating, since the energy

of the shock heated material around the accretor is very small com-
pared to the total internal energy of the star, shock heating makes
little apparent difference in the plots of total internal energy. As the
accretor gains mass, its gravitational well deepens as its potential
energy is lowered. The opposite is true of the accretor.

Grid based codes are subject to centre of mass drift, both phys-
ical, from the flow of matter out of the grid (which, by the end of
the simulations, is 2.0 x 10?° g and 1.0 x 10%® g for the ideal gas
and polytropic EoS, respectively), and numerical. The latter effect
is greatly reduced by using a gravity solver that conserves linear
momentum, as OCTO-TIGER does. There are still numerical vis-
cosity effects that can push matter one way or another. In addition,
the SCF code does not render initial conditions with the centre of
mass perfectly at the coordinate centre. Figure 21 (top left panel)
shows the magnitude of cylindrical radial location of the system’s
centre of mass,

‘Rcom| =V Igom + ygom (72)

in length units normalised to the finest cell width.

As discussed in Section 2.1, OCTO-TIGER evolves the angu-
lar momentum (Equation 7) for the purposes of obtaining the error
in the angular momentum conservation. The evolved angular mo-
menta, 1, can be compared with the angular momenta obtained from
the evolved linear momenta, x X pu, (Equation 2) to obtain the er-
ror. We define the global angular momentum conservation violation
error, leyy, as:

v

lerr = Z (1 — xs X piuy), (73)

where the ¢ index refers to a given computational cell and the sum-
mation is over the entire computational domain. We show this value
over time in Figure 21 (top right panel). In Figure 21, bottom left
panel, we plot the total angular momentum non-conservation in the
computational domain, scaled to the initial total angular momen-
tum. Here we see that the polytropic EoS conserves momentum to
approximately 1 percent over the entire simulation, while for the
ideal gas EoS this is considerably worse at 7 percent (the initial
drop in angular momentum in the right panel is due to the artifi-
cial driving phase and should be ignored). The reason for the dif-
ference is that the ideal gas EoS simulation expands more due to
shock heating moving gas into the outskirts of the domain where
lower resolution dominates with a worse performance of angular
momentum conservation. Poorly resolved, sharp momentum den-
sity gradients, such as those seen in the outskirts of the simulations
(see Figure 15, bottom panels, where we plot density slices) will
always disfavour good conservation.

In Figure 21, bottom right panel, we show the energy con-
servation. The value in the y-axis is scaled to the energy after the
driving, at 2.7 orbits. Hence data points before x = 2.7 are not
meaningful. After that x value, however, we see that the energy
conservation is excellent, going from 10™** to 10! for the ideal
gas EoS, or to 1075 for the polytropic EoS.

Without doubt the polytropic EoS simulation is superior in
general, because the ideal gas EoS with more heating results is an
inflated gas distribution, a higher rate of mass transfer from donor
to accretor, and any quantities that derive from that, such as angular
momentum transfer or the speed of the merger are also affected.

These simulations were run on 400 cores over 20 nodes, of
QueenBee?2 (see Section 5) and took approximately 200 hours of
wall-clock time, or just over 8 days for a total modest cost of ap-
proximately 80 000 CPU-hours. They have between 2 and 8 million
cells. If the scaling test in Section 5 are consulted, we would con-
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Figure 19. Diagnostic plots from the ¢ = 0.5 polytropic and ideal gas simulations. Top left: the gravitational torque on the accretor; top right: the gravitational
torque on the donor; bottom left: the gravitational torque on the orbit; bottom right: the circularization radius for the polytropic simulation calculated using

Equation 67 and for the analytical approximation using Equation 68

Figure 20. Diagnostic plots from the ¢ = 0.5 polytropic and ideal gas simulations. Top left: the accretor’s internal energy; top middle: the accretor’s kinetic
energy; top right: the accretor’s potential energy. Bottom left: the donor’s internal energy; bottom middle: the donor’s kinetic energy; bottom right: the donor’s
potential energy. All energies are normalised to the absolute value of the total potential energy at ¢ = 0

clude that a doubling of the number of cores would reduce the wall
clock time between 40 and 60 percent, while any further increase
of the number of cores would not be particularly advantageous.

Naturally, this run could be repeated with substantially larger
resolution (and larger number of cores), likely leading to an expan-
sion of discovery space. However, increasing resolution with the
aim of determining convergence is not straightforward because it is
not clear what quantities can be reasonably expected to converge.
An increase in resolution automatically lowers the mass transfer
rate in the early interaction and lengthens the pre-merger time be-
yond what can be simulated (see for instance Motl et al. (2017)
who compared a 4-million cell WD merger cell simulation to a

47-million cell one, or Reichardt et al. (2019) who compared the
early mass transfer before a common envelope interaction between
a ~100000 SPH particle simulation to one with 1.3 million par-
ticles). What quantities, then, should we expect to converge to a
given value with increasing resolution? It is possible that, for ex-
ample, the increase in mass transfer rate over one orbital period,
measured at a specific initial separation may be a quantity that is
expected to converge. The determination of how to measure the ac-
curacy of simulation results of this level of complexity is an urgent,
on-going area of research.
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Figure 21. Diagnostic plots from the ¢ = 0.5 polytropic and ideal gas simulations. Top left: the location of the system centre of mass (Equation 72) in units
of the finest grid cell; top right: the relative angular momentum error (Equation 73); bottom left: the total angular momentum loss from the computational
domain (the initial decrease corresponds to the angular momentum that is artificially subtracted from the system during the driving phase); bottom right: the
total energy conservation error of the system (the values before x = 2.7 orbits are meaningless because of the driving)

Click on the 1ink® to view a movie of the ¢ = 0.5 ideal gas simula-
tion. Click on the link” to view a movie of the ¢ = 0.5 polytropic
EoS simulation.

5 CODE PERFORMANCE AND SCALING

In this section, we present a series of scaling tests to demonstrate
the performance of OCTO-TIGER and we make comparisons with
equivalent tests carried out with FLASH. In order to compare the
two codes, we set the CFL coefficient to be the same in both
(ncrL = 0.4).

We carried out two types of scaling tests. The first one was per-
formed by executing a number of time steps (Nsteps ) in the simula-
tion of a stationary star. The second test included a binary system of
stars and was designed to stimulate some level of regridding. Tests
were performed on three supercomputers, BigRed3 (BR3), Queen-
Bee2 (QB2) and Gadi, with variable resolutions (128, 256, 512°,
and 1024%) and variable values of 6 (0.35 and 0.5), the gravity res-
olution parameter. We describe the supercomputer hardware in Ta-
ble 5. The code and its dependencies’ versions used with the three
sets of scaling runs are reported in Table 6.

In Figures 22 and 23, we present two measures of code speed:
the computational time per time step and the wall-clock time per
time step. We show this including and excluding the initialization
time, regridding time, and the time to write out the output. While
the computational time is a feature of the code, the time to write out
the output is a feature of the machine and file system used and can

6 https://www.youtube.com/watch?v=0JD5E7DUImw
7 https://www.youtube.com/watch?v=MfArAQPPHss

therefore vary among otherwise similar computers. These quanti-
ties are a measure of the strong scaling properties of OCTO-TIGER.
We also show the number of time steps (Vsteps) times the number
of cells (Ncenis) processed per second, which measures the amount
of work that the cores have available to do. If we had perfect scal-
ing, these curves should be horizontal, indicating the cores have
sufficient work, but they tend instead to curve downwards as the
addition of more cores results in cores not having sufficient work
to do. The reason why the curves tilt downwards is also the intro-
duction of additional overheads, such as message sending, due to
the addition of nodes. Note that above a certain high number of
cores, each core has computational work of only several subgrids,
in which case the communication between cores dominates the per-
formance, and the scaling of the computational time becomes flat
as well.

The values used for the figures are reported in Tables 7-9, or-
ganised by computer. In brackets, next to the values used for the
plots, we calculate the “speedup” (S» = (tn/tn)/(Niore/Neore ),
where ty and )y are the time step lengths for runs that use Neore
and N/, cores, respectively). These efficiencies are calculated
with respect to the run that uses an entire node in each machine
(48 cores on Gadi, 20 cores on QB2 and 24 cores on BR3), when
available or with the run with the least number of cores (Ncores),
when not. On the RHS panels of Figures 22 and 23, we mark the
value of 0.5 efficiency by short horizontal segments over plotted on
each curve.

In the tables, we have reported on the fotal time also known as
wall-clock time, which includes the initialization, regridding and
the writing to disk part of the computation. If we had reported only
the computational time the efficiencies would increase.

We start by comparing the code performance for different val-
ues of the gravity solver parameter 6. This comparison was made
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Cluster CPU Memory Interconnect # nodes # of cores
QB2 2 x 10 Intel E5-2680v2 Xeon processors (+2 GPUs!) 64 GB 56 Gb/sec (FDR) InfiniBand 504 10800
BR3 2 x 12 Intel Xeon Processort E5-2690 v3 64 GB Cray Aries 930 22464
Gadi 2 X 24 core Intel Xenon Scalable ‘Cascade Lake’ 190 GB 200 Gb/sec (HDR) InfiniBand 3024 145152

1 The GPUs are NVIDIA Tesla K20; NVIDIA-SMI 450.51.05, driver version: 450.51.05, CUDA version: 11.0 with 6GB of memory per device.

Table 5. Computational infrastructure used in this work. QB2 is Louisiana’s Optical Network Infrastructure’s QueenBee2; BR3 is the University of Indiana
BigRed3, while Gadi is the Australian National Computational Infrastructure peak machine

Software QB2 BR3 Gadi
HPX 1.4 1.4 1.4

Ve 1.4.1 1.4.1 1.4.1
Boost 1.69/1.68 1.68 1.72
hwloc 1.11.1 1.11.12 1.11.12
jemalloc  5.1.0 5.1.0 5.1.0
gcc 8.3/7.4 8.3 8.3
hdf5 1.12/1.8 1.8.12 1.8.12
silo 4.10.2 4.10.2 4.10.2
cmake 3.13 3.13.2 3.16.2
CUDA 10.2 - -

MPI MVAPICH2 2.3.2/ OpenMP1 4.0  cray-mpich 7.7.10  intel-mpi 2019.8.254

Table 6. Software dependencies of OCTO-TIGER (version 0.8). Note that we used a customized version of Vc. Note that we used the pre-compiled MPI version
on the cluster and therefore have some variation there. If the gcc compiler was recent enough to compile HPX and OCTO-TIGER we used the pre-compiled

version on the cluster

with OCTO-TIGER with 2 million (solid lines) and 17 million cells
(dashed lines) using BR3, QB2, QB2+GPUs, and Gadi (red, blue,
black and magenta lines, respectively, Figure 22). As expected, the
smaller the value of 6 (the more precise the gravity solver solution)
the longer the simulations take. At 2 million cells, the QB2 tests
show an increase in the computational time by increasing the num-
ber of cores between 1280 and 2560, while this is less pronounced
for the other two computers. This is due to a node-communication
problem. The § = 0.35 simulations are doing more communica-
tion between sub-grids and hence nodes. The use of CPU+GPU
improves the wall clock time, but also displays the upturn. This be-
haviour is less pronounced for tests with more than 17 million cells
(Figure 23).

Next we compare the total time taken for the test for any code
on any machine. For the 2 and 17-million cell simulations, the Gadi
simulations are the fastest, although we note that for a range of core
number between ~30 and ~300 it is the QB2 with GPU that is the
fastest. This is particularly evident at 17 million cells, looking at
the work per core per time plots (Figure 23, RHS panels). Whether
runs with GPUs are faster depends on whether the run is domi-
nated by computation or by communication. GPU are computa-
tionally faster, but Gadi has a 4-time faster network communication
than any other network used in this paper. Further information on
OCTO-TIGER runs with GPUs can be found in Daif} et al. (2019),
and will be the subject of future papers.

We now come to the actual scaling properties. For the 2-
million cell simulations, the efficiency of increasing the number
of cores drops once we move past 1536 cores: on Gadi from 768
to 1546 to 3072 cores the efficiency drops from 34, to 19 to 10
percent. This is similar on QB2 and BR3 (note that on QB2 we
are comparing slightly different number of cores: 640, 1280 and
2560). At 17 million cells, the same three steps show efficiencies
of 99, 86, and 72 percent on Gadi, while for the other computers,
they are markedly smaller, with, for instance, 47, 37, 26 percent

on BR3, and slightly better but similar values for QB2, making the
runs on Gadi the fastest and most scalable.

Using GPUs with the 2- and 17-million cell simulations re-
duces the time per step between a factor of 1.5 and 2; the scalabil-
ity of the hybrid CPU+GPU runs is slightly inferior to those of the
pure CPU runs for the 2-million cell simulations, for which proces-
sors have less work to do, but almost identical to the non-GPU runs
for the 17-million cell simulations.

Next, we look at scalability vs. problem size by comparing
runs with 2, 17, 134 million and 1 billion cells on Gadi. Looking
at the efficiencies when increasing the number of cores between
1536 and 3072, we find 10, 72, and 75 percent for 2, 17, and 134
million cells, respectively which would imply that increasing the
size of the problem from 17 to 134 million has not afforded us a
much improved scaling. On the other hand, going from 6144 to
12736 to 20735 to 41472 cores and finally to 82944 cores, the
efficiencies improve markedly upon doubling the number of cores
for the 1 billion cell run compared to the 17-million cell run. In fact,
it is remarkable that our 1 billion cell run is still scaling very well
once we move to ~80 000 cores, giving hope that we can carry out
very high resolution simulations with reasonable wall-clock times
(though the actual cost of the simulation in terms of CPU-hours
would remain very high).

The scalability properties of FLASH were tested on QB2 at 2-
and 17-million cell resolutions. They are very comparable to those
of OCTO-TIGER. The computational time per step is intermediate
between the 6 = 0.35 and 0.5, but tends to be longer than even the
more accurate § = 0.35 OCTO-TIGER simulations when using a
higher number of cores.

An additional scaling test was carried out using the first 30
time steps of a binary interaction simulation similar to that of Sec-
tion 4. The tests was to determine code scalability in view of AMR
regridding. We performed a series of simulations on QB2, with in-
creasing resolution by virtue of adding additional levels of refine-
ment, see Table 10 and Figure 24. The code performance is aligned
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Figure 22. Scaling test carried out on the pulsating polytrope problem of a small size. QB2 refers to QueenBee2, BR3 refers to the BigRed3. The simulations
contain 1283 ~ 2M cells or 163 = 4096 subgrids. The short horizontal segments mark the 0.5 efficiency

with that we have observed for the static polytrope on the same
computer cluster (Table 8), although a side by side comparison is
not possible in virtue because the number of cells was not exactly
the same.

We finally carried out a last scaling test, where twelve regrid-
ding events took place in 100 time stpes, and where we started the
simulation from an intermediate stage of the ¢ = 0.5 simulation in
order to trigger substantial regridding (Table 7, last column). This
scaling runs were carried out on Gadi. Although the number of
AMR boundaries varied by ~ 30 percent in these runs, the scal-
ing was similar to a uniform grid with no regridding taking place

(see red-dotted triangle line in Figure 23 and the last column in Ta-
ble 7). We conclude that our regridding scheme scales well to high
number of cores.

6 SUMMARY AND CONCLUSIONS

We have presented a thorough suite of benchmark tests and a
comprehensive and detailed description of the AMR hydrodynam-
ics code OCTO-TIGER. Although OCTO-TIGER has been used in
tandem with other codes in previous publications in astrophysics
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Figure 23. Scaling test carried out on the pulsating polytrope problem of big sizes. QB2 refers to QueenBee2, BR3 refers to the BigRed3. The simulations
contain 2563 (17M), 5123 (134M), and 10243 (1B) cells or 4096, 32768, 262144, subgrids, respectively. One subgrids per core of the 17M cells
simulations (top axis on left panels) is 8 subgrids per core of the 134M cells, and 64 subgrids per core of the 1B cells simulations. The short horizontal
segments mark the 0.5 efficiency

(Kadam et al. 2016; Staff et al. 2018) as well as in computer sci- elling the earlier, pre-merger phase. OCTO-TIGER is designed to be
ence (e.g. Pfander et al. 2018; Daif} et al. 2019; Heller et al. 2019b), a scalable, accurate code that is able to exploit CPU and GPU com-
there has never been an actual “method paper”. puter architectures. It is currently optimised to model stellar merg-
ers for similar-sized stars that can be modelled using a star setup

OCTO-TIGER joins a small suite of codes specifically de- via a barotropic EoS, although for the evolution one can choose

signed to study the merger of white dwarf stars while also mod-
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Code OCTO-TIGER  OCTO-TIGER FLASH OCTO-TIGER  OCTO-TIGER  OCTO-TIGER  OCTO-TIGER  OCTO-TIGER®
Neells M 2M 1M 17M 1M 134M 1000M 40M

0 0.5 0.35 - 0.5 0.35 0.35 0.35 0.34
Ncores

4 27.7 35.0 - - - - - -

8 15.3 19.7 - - - - - -

16 9.06 10.5 - 72.1 94.7 - - -

24 6.45 8.26 - 57.7 77.1 - - -

48 5.83 () 6.58 (-) - 58.7 (-) 83.5(-) - - -

96 3.32 (88%) 3.74 (88%) - 27.6 (125%) 33.3 (125%) - - -

192 1.87 (78%) 2.10 (78%) 10.7 () 13.7 (126%) 16.6 (125%) 165 (-) - -

384 1.47 (50%) 1.36 (60%) 5.64 (95%) 7.48 (117%) 8.90 (117%) 81.8 (101%) - 30.1 (-)
768 1.08 (34%) 1.09 (38%) 3.13 (85%) 4.47 (99%) 5.27 (99%) 45.3 (91%) - 15.3 (98%)
1024 - - 2.57 (78%) - - - - -
1536 0.951 (19%) 0.988 (21%) - 2.60 (86%) 3.03 (86%) 23.0 (90%) - 8.37 (90%)
3072 0.955 (10%) 1.03 (10%) - 1.71 (72%) 1.80 (72%) 13.6 (75%) - 4.77 (79%)
6144 - - - - 1.20 (55%) 8.36 (62%) 77.7 (=) 2.78 (68%)
12288 - - - - 0.915 (36%) 4.47 (58%) 38.0 (102%) 1.88 (50%)
20736 - - - - 0.829 (23%) 3.20 (48%) 25.3 (91%) 1.40 (40%)
41472 - - - - 0.745 (13%) 2.24 (34%) 17.1 (67%) 1.19 (23%)
82944 - - - - - 1.97 (19%) 10.6 (54%) -

@ Test using a binary simulation with ¢ = 0.5.

Table 7. Wall clock time per time step in seconds for different scaling tests carried out on Gadi. In parenthesis we report the speedup of a given calculation
with respect to the calculation that uses one node (48 cores), interpreted as the fractional reduction of the time step compared to the fractional increase in core

count
Code FLASH OCTO OCTO OCTO OCTO FLASH OCTO OCTO OCTO OCTO
Neens  2M M M M M 17M 17M 17M 17M 17M
0 - 0.5 0.35 0.5 0.35 - 0.5 0.35 0.5 0.35
GPUs - - - v v - - - v v
Ncores
2 - 88.7 144 - - - - - - -
4 55.1 476 78.1 33.7 37.7 - 388 637 272 308
8 30.5 27.4 43.6 20.6 24.9 - 231 356 175 207
16 16.7 15.1 234 122 16.0 - 131 193 107 132
20 135 () 12.7(-) 19.1 () 10.7 (=) 14.0 () 128 (-) 100 (-) 152 (-) 83.9 (-) 106 (-)
40 7.54 (90%) 6.80 (93%) 103 (93%)  5.61(95%) 7.89 (89%) 67.9 (94%) 50.8(98%) 79.2(96%)  42.6 (99%)  54.7 (97%)
80 4.19(81%) 3.70(86%) 5.67 (84%)  3.05(87%) 421 (83%) 36.6 (87%) 25.6(98%) 39.2(97%) 21.0(100%) 27.9 (95%)
160 228 (74%) 226 (70%) 3.37(71%)  1.85(72%) 248 (71%) 19.0(84%) 13.8(90%) 21.2(90%) 11.6(91%) 15.2 (87%)
320 142 (59%)  1.62(49%) 230 (52%) 141 (47%)  1.63 (54%) 10.1(79%) 8.39(75%) 12.6(75%) 7.11(74%)  8.98 (74%)
640 1L1537%) 123(32%) 1.66 (36%)  1.14(29%)  120(37%) 551 (73%) 528 (59%) 7.87(60%) 4.48 (59%)  5.49 (60%)
1280 1.19(18%) 1.01 (20%) 1.26 (24%) 0.975(17%) 1.04 21%) 3.66 (55%) 3.40 (46%) 4.99 (48%)  2.93 (45%)  3.48 (48%)
2560 246 (4%)  1.0509%)  240(6%)  1.00(8%)  2.03(5%) 3.54(28%) 2.58(30%) 3.57(33%) 236 (28%)  2.63 (32%)

Table 8. Wall clock time per time step in seconds for different scaling tests carried

out on one stationary polytrope on QueenBee?2. In parenthesis we report the

speedup of a given calculation with respect to the calculation that uses one node (20 cores), interpreted as the fractional reduction of the time step compared

to the fractional increase in core count

among a number of analytical EoS options. It does not currently in-
clude nuclear reactions such as for example the code CASTRO (Katz
et al. 2016). OCTO-TIGER’s gravity accuracy outperforms FLASH,
with overall smaller residuals in the constant density sphere test
(Section 3.4), although the comparison may not be with exactly
the same parameters. The static and translating polytrope tests also
show OCTO-TIGER’s superior conservation of the peak density and
overall mass of the structure, as well as the centre of mass position
and overall velocity (for the translating polytropes; Sections 3.5 and
3.6).

In the rotating polytrope test, simulations in the rotating frame
distinctly outperform those calculated in the inertial frame, al-
though even in the inertial frame the polytrope retains its mass,
position and radius to excellent precision. OCTO-TIGER demon-
strates a superior conservation of angular momentum and energy in

this test, although the hydrodynamics is not well exercised in single
grid tests where there is little gas motion (Section 3.7).

We have carried out scaling tests using a static polytrope,
where the entire grid is fully refined with resolutions from 2 million
to 1 billion cells. We have used three different computer clusters,
two university-based mid-tier computers, QueenBee2 (Louisiana
State University) and BigRed3 (Indiana University) and one peak
facility, Gadi, at the Australian Government’s National Computa-
tional Infrastructure Centre. Strong scaling properties of the code
are excellent up to ~ 82 000, the largest number of cores tested, but
only for the largest problems of 1 billion cells. With smaller prob-
lems of 134 million cells, performance improvement is obtained up
to a maximum of ~20 000 cores (after which the speedup is mod-
est). For the 17 million cell test, similar to the number used in the
binary simulation in Section 4, the optimum number of cores is
~6000.
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Code OCTO-TIGER  OCTO-TIGER  OCTO-TIGER  OCTO-TIGER
Neells 2M 2M 1™ 1™

[ 0.5 0.35 0.5 0.35
Ncores

1 122 165 987 1390

2 62.7 84.8 521 694

4 34.3 46.5 2938 382

8 19.5 25.2 177 219

16 11.7 15.0 107 132

24 8.57 (-) 11.0 (- 86.11 (-) 101 (-)
48 6.01 (71%) 7.48 (74%) 49.4 (87%) 57.5 (88%)
96 3.81 (56%) 4.72 (58%) 26.6 (81%) 30.7 (82%)
192 2.36 (45%) 2.81 (49%) 13.8 (79%) 17.0 (74%)
384 1.69 (32%) 2.03 (34%) 9.25 (58%) 10.7 (59%)
768 1.15 23%) 1.38 (25%) 5.77 (47%) 6.61 (48%)
1536 0.834 (16%) 0.980 (18%) 3.60 (37%) 4.21 (38%)
3072 0.785 (9%) 0.872 (10%) 2.59 (26%) 3.07 (26%)

Table 9. Wall clock time per time step in seconds for different scaling tests carried out on one stationary polytrope on BigRed3. In parenthesis we report the
speedup of a given calculation with respect to the calculation that uses one node (24 cores), interpreted as the fractional reduction of the time step compared

to the fractional increase in core count

Code OCTO-TIGER  OCTO-TIGER  OCTO-TIGER  OCTO-TIGER  OCTO-TIGER
Neells 0.51M 1.5M 3.0M 10.5M 45M

0 0.34 0.34 0.34 0.34 0.34
Ncores

20 6.73 18.3 34.18 103 -

40 3.98 (85%) 9.89 (92%) 18.1 (95%) 53.1 (97%) -

80 2.50 (67%) 5.53 (83%) 9.76 (88%) 27.4 (94%) 128
160 1.86 (45%) 3.47 (66%) 5.67 (76%) 15.0 (86%) 65.1 (98%)
320 1.53 (27%) 2.50 (46%) 3.93 (54%) 9.04 (71%) 37.9 (84%)
640 1.31 (16%) 1.91 (30%) 2.77 (30%) 5.83 (55%) 21.4 (75%)
1280 1.19 (9%) 1.56 (18%) 2.11 (25%) 4.02 (40%) 12.6 (63%)

Table 10. Wall clock time per time step in seconds for different scaling tests carried out on QueenBee?2 on a binary interaction simulation similar to the one of
Section 4. In parenthesis we report the speedup of a given calculation with respect to the calculation that uses one node (20 cores), except for the 45 million
cell run, which is given with respect to the smallest number of cores tested (80 cores)

We have also carried out somewhat limited scaling tests of a
binary problem using QueenBee2 and Gadi to measure the perfor-
mance when regridding takes place and found that the scaling prop-
erties of the code are similar to those assessed using the stationary
polytrope with no AMR regridding.

While the emphasis in this paper is not OCTO-TIGER’s ability
to use mixed CPU-GPU architectures, we have carried out a small
test that showed that the use of 2 GPU units per node improves
the step time by a factor of 1.5-2. Given the increased emphasis
on the use of GPUs for this type of computation (see references in
Section 2.10) and we will further address this capability in future
work.

Finally, we have used OCTO-TIGER to carry out intermediate
resolution WD merger simulations with an ideal gas and a poly-
tropic EoS and compared the results to a similar simulations car-
ried out by Motl et al. (2017) using two different codes, the grid
code FLOWER, and the SPH code SNSPH (Fryer et al. 2006). The
total run time of this 2-8 million cell simulation was approximately
8 days and it used 80 000 CPU-hours on 400 cores of the computer
cluster QueenBee2. By comparison the high resolution cylindrical
simulation in Motl et al. (2017), with an approximately similar res-
olution, ran for over a year. Because of the relatively small wall-
clock times achieved by OCTO-TIGER thanks to its excellent scal-
ability, higher resolution runs are possible.

Our improvements to OCTO-TIGER include (i) applying high
resolution only to the binary through adaptive mesh refinement (ii)

exploiting the more favorable Courant condition from Cartesian co-
ordinates while maintaining acceptable conservation and (iii) lever-
aging a parallel framework that enables simulations on a very large
number of computing elements. We have effectively reduced the
wall clock time for a merger simulation to complete from over a
year to essentially one day. These developments enable a wide va-
riety of numerical experiments that would not be possible or con-
clusive if run only at lower resolution.

An interesting question is how to best exploit resolution im-
provements. We know from Motl et al. (2017) that simply in-
creasing the resolution will lower the initial mass-transfer rate and
greatly increase the early, pre-merger phase of the simulation. This
would extend enormously the pre-merger time, making the sim-
ulation impossibly long. Under such circumstances we would be
forced to increase the artificial angular momentum extraction (the
driving) to speed up the simulation to a time when the mass-transfer
rate is high enough that the merger takes place. As such, the mass
transfer rate and the pre-merger timescale cannot be measured with
this type of simulation. On the other hand, there are other parame-
ters of interest that would benefit from higher resolution. An exam-
ple is the actual structure of the flow during the low mass-transfer
rate time, or the details of the flow at or after the time of merger,
including the determination of dredged-up elements.

In future papers we will implement a number of additions.
First we will experiment with increasing the photospheric reso-
lution, while at the same time implementing a radiation transport
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Figure 24. Scaling results for the first 30 time steps of a binary simulation on LONI’s QB2. The left panel shows the total wall-clock time per time step as a
function of core count, while the right panel shows the total throughput per core in terms of Neelis Ntimesteps/ (Ewallclock Neores)

algorithm. With this the immediate aim is to model the light sig-
nature, something that would greatly benefit from sufficient reso-
lution at the photosphere as thoroughly explained by Galaviz et al.
(2017). After that, the following improvement will be to use model
stars imported from 1D stellar structure simulations, instead of be-
ing constructed using barotropic solutions, and that can use a tab-
ulated EoS. A follow-up study is already underway to simulate a
q = 0.1 binary which mimics the V1309 Sco system - this would
be only the second simulation of this system, after the 100 000 SPH
particle hydrodynamic simulation of Nandez et al. (2014), and a
q = 0.7 WD binary thought to be a typical progenitor system for
the R Coronae Borealis stars (e.g., Clayton et al. 2011).
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DATA AVAILABILITY

The source code of OCTO-TIGER (Marcello et al. 2021) is avail-
able on GitHub® released under the Boost Software License Ver-
sion 1. The build scripts to build OCTO-TIGERand its dependen-

8 https://github.com/STE11AR-GROUP/octotiger

cies are available on GitHub® as well. The input files to run the
OCTO-TIGER simulations are available on Zenodo (Marcello et al.
2020). Table 6 lists the software version used on the different clus-
ters. Note that we used the pre-compiled MPI version on the cluster
and therefore have some variation there. If the gcc compiler was
recent enough to compile HPX and OCTO-TIGER we used the pre-
compiled version on the cluster.

For movies of the simulations and download of selected sim-
ulation data see our YouTube channel*°.

9 https://github.com/diehlpk/PowerTiger
10 https://youtube.com/playlist?list=
PL7vEgTL3FalalHjQQH5UtgEVRI-WkFeZp
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