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Abstract
While numerous attempts have been made
to jointly parse syntax and semantics, high
performance in one domain typically comes
at the price of performance in the other. This
trade-off contradicts the large body of re-
search focusing on the rich interactions at the
syntax–semantics interface. We explore multi-
ple model architectures that allow us to exploit
the rich syntactic and semantic annotations
contained in the Universal Decompositional
Semantics (UDS) dataset, jointly parsing
Universal Dependencies and UDS to obtain
state-of-the-art results in both formalisms. We
analyze the behavior of a joint model of syn-
tax and semantics, finding patterns supported
by linguistic theory at the syntax–semantics
interface. We then investigate to what degree
joint modeling generalizes to a multilingual
setting, where we find similar trends across 8
languages.

1 Introduction

Given their natural expression in terms of hier-
archical structures and their well-studied interac-
tions, syntax and semantics have long been treated
as parsing tasks, both independently and jointly.
One would expect joint models to outperform sep-
arate or pipelined ones; however, many previous
attempts have yielded mixed results, finding that
while one level can be used as an additional signal
to benefit the other (Swayamdipta et al., 2017,
2018; Johansson and Nugues, 2008), obtaining
high performance in both syntax and semantics
simultaneously is difficult (Krishnamurthy and
Mitchell, 2014; Hajič et al., 2009).

A variety of tree- and graph-based representa-
tions have been devised for representing syntactic
structure (e.g., varieties of constituency and
dependency parse trees) as well as semantic struc-
ture, for example, Abstract Meaning Represen-
tation (AMR; Banarescu et al., 2013), Universal

Conceptual Cognitive Annotation (UCCA; Abend
and Rappoport, 2013), and Semantic Dependency
Parsing formalisms (SDP; Oepen et al., 2014,
2016). These semantic representations have vary-
ing degrees of abstraction from the input and
syntax, ranging from being directly tied to the
input tokens (e.g., SDP formalisms) to being
heavily abstracted away from it (e.g., AMR,
UCCA). Universal Decompositional Semantics
(UDS; White et al., 2020) falls between these
extremes, with a semantic graph that is closely
tied to the syntax while not being constrained to
match the input tokens. Crucially, UDS graphs
not only represent the predicate-argument rela-
tionships in the input, but also host scalar-valued
crowdsourced annotations encoding a variety of
semantic inferences, described in §3. These pro-
vide another level for linguistic analysis and make
UDS unique among meaning representations.
Furthermore, as UDS graphs build on Universal
Dependency (UD) parses, UDS is naturally posi-
tioned to take full advantage of the extensive and
linguistically diverse set of UD annotations.

We extend the transductive sequence-to-graph
UDS parser proposed by Stengel-Eskin et al.
(2020) to simultaneously perform UD and UDS
parsing, finding that joint modeling offers con-
comitant benefits to both tasks. In particular, after
exploring several multitask learning objectives
and model architectures for integrating syntactic
and semantic information, we obtain our best
overall results with an encoder-decoder semantic
parsing model, where the encoder is shared with
a biaffine syntactic parser (Dozat and Manning,
2017). Because the UDS dataset is annotated on
an existing UD corpus, our experiments isolate
the effect of adding a semantic signal without the
confound of additional data: All our monolingual
systems are trained on the same set of sentences.

In contrast to previous work on joint syntax-
semantics parsing, we are able to achieve high
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performance in both domains with a single, unified
model; this is particularly salient to UDS parsing,
as the UD parse is a central part of a complete UDS
analysis. Our best joint model’s UDS performance
beats the previous best by a large margin, while
also yielding SOTA scores on a semantically valid
subset of English Web Treebank (EWT). We intro-
duce a model optimized for UD, which can obtain
competitive UDS performance while matching the
current SOTA UD parser on the whole of EWT.1

We analyze these objectives and architec-
tures with LSTM encoders and decoders as
well as novel Transformer-based sequence-to-
graph architectures, which outperform the LSTM
variants. While previous work suggests that con-
textualized encoders largely obviate the need
for an explicit syntactic signal in semantic tasks
(Swayamdipta et al., 2019; Glavaš and Vulić,
2020), we find that syntactic (and semantic) anno-
tations provide consistent performance gains even
when such encoders are used. This suggests that
the UD and UDS signals are complementary to
the signal encoded by a pretrained encoder, and
so we tune the encoder at various depths, further
improving performance.

Building on this result, we leverage the shared
multilingual representation space of XLM-R
(Conneau et al., 2020) to examine UD parsing in 8
languages across 5 families and varying typologi-
cal settings, where we demonstrate a cross-lingual
benefit of UDS parsing on UD parsing.

2 Background and Related Work

In both language production and comprehension,
syntax and semantics play complementary roles.
Their close relationship has also been noted in
language acquisition research, with the ‘‘semantic
bootstrapping’’ hypothesis proposing that infants
use semantic role information as an inductive bias
for acquiring syntax (Pinker, 1979, 1984),2 while
Landau and Gleitman (1985), Gleitman (1990),
and Naigles (1990) present evidence that infants
use syntactic information when acquiring novel
word meanings. Their connection was codified
in Montague’s (1970) seminal work formalizing
the link between syntactic structures and formal
semantics. Broadly, their interactions can be split
into ‘‘bottom–up’’ constraints on the semantics

1Models/code: github.com/esteng/miso uds.
2Abend et al. (2017) present an implementation of the

semantic bootsrapping hypothesis.

of an utterance from its syntax, and ‘‘top–down’’
constraints on the syntax, based on the semantics.
Despite their close empirical and theoretical ties,
work on predicting syntax and semantic structures
jointly has often struggled to attain high perfor-
mance in one domain without compromising on
performance in the other.

CCG-based Parsing Following in the Mon-
tagovian tradition, several computational formal-
isms and models have focused on the syntax–
semantics interface, including the Head-Driven
Phrase Structure Grammar (Pollard and Sag, 1994)
and Combinatory Categorical Grammar (CCG)
(Steedman, 2000). In particular, CCG syntactic
types can be paired with functional semantic
types (e.g., λ calculus strings) to composition-
ally construct logical forms. Krishnamurthy and
Mitchell (2014) model this process with a linear
model over both syntactic derivations and logical
forms, trained with a discriminative objective
that combines direct syntactic supervision with
distant supervision from the logical form, finding
that while joint modeling is feasible, it slightly
lowers the syntactic performance. By way of
contrast, Lewis et al. (2015) find that a joint
CCG and Semantic Role Labeling (SRL) depen-
dency parser outperforms a pipeline baseline. The
semantic signal can also be used to induce syntax
without using syntactic supervision.

AMR Parsing CCG approaches have also been
applied to semantics-only AMR parsing Artzi
et al., 2015; Misra and Artzi, 2016; Beschke,
2019). Jointly modeling AMR and syntax, Zhou
et al. (2020) induce a soft syntactic structure
with a latent variable model, obtaining slight
improvements over semantics-only models in
low-resource settings.

SRL Parsing SRL dependency parsing—the
task of labeling an utterance’s predicates and their
respective arguments in a possibly non-projective
directed acyclic graph (DAG)—is more akin to
the UDS parsing task than CCG parsing and has
an equally robust foundation of empirical results,
having been the focus of several CoNLL shared
tasks—most relevantly the 2008 and 2009 shared
tasks, which were on joint syntactic and SRL
dependency parsing (Surdeanu et al., 2008; Hajič
et al., 2009). The upshot of these tasks was that
a joint syntactic and semantic analysis could pro-
vide benefits over a separated system (Johansson
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and Nugues, 2008) but that in a multilingual
setting, SRL-only systems slightly outperformed
joint systems on average (Hajič et al., 2009).
While the systems presented in these challenges
used hand-crafted features, Swayamdipta et al.
(2016) replicated many of their results in a neural
setting. For SRL tagging, Strubell et al. (2018)
introduce an end-to-end neural model that also
uses UD parsing as a multitask intermediate task,
akin to our intermediate model.

Syntactic Scaffolds Like our models, work on
syntactic scaffolds introduces a multitask learning
(Caruana, 1997) framework, where a syntactic
auxiliary task is introduced for the benefit of a
semantic task; in contrast to the systems presented
here, the syntactic task is treated as a purely
auxiliary signal, with the model evaluation com-
ing solely from the semantic task. Swayamdipta
et al. (2017) first introduce the notion of a syn-
tactic scaffold for frame-semantic parsing, where
a lightweight syntactic task (constituent label-
ing) is used as an auxiliary signal in a multitask
learning setup to the benefit of the semantic task.
Swayamdipta et al. (2018) introduce a similar
syntactic scaffolding objective for three semantic
tasks. However, Swayamdipta et al. (2019) find
that the benefits of shallow syntactic objectives
are largely eclipsed by the implicit information
captured in contextualized encoders.

3 Data

A number of factors make the UDS representation
(White et al., 2020) particularly well-suited to
our purposes, especially the existence of paral-
lel manually annotated syntactic and semantic
data. In UDS, a semantic graph is built on top
of existing EWT (Bies et al., 2012) UD parses,
which are mapped to nodes and edges in a seman-
tic DAG via a set of deterministic rules (White
et al., 2016; Zhang et al., 2017). This semantic
graph, which represents the predicate-argument
relationships in the text, is then annotated with
crowdsourced scalar-valued attributes falling into
the following categories: factuality (how likely
a predicate is to have occurred), genericity (how
general or specific a predicate/argument is), time
(how long an event took), word sense (which
word senses apply to a predicate/argument), and
semantic proto-roles, which break the traditional
SRL ontologies into simpler ‘‘proto-agent’’ pro-
perties (e.g., volition, awareness, sentience) and

Figure 1: A UDS graph with syntactic and semantic
parses, as well as node- and edge-level properties.

‘‘proto-patient’’ properties (e.g., change of state,
change of location, being used). Note that while
the semantic graph structure is tied to the syn-
tax, the attribute values, encoding fine-grained,
abstracted semantic inferences, are not. These
attributes are unique among graph-based semantic
representations. All of these properties are anno-
tated on a scale of −3 to 3; for more details on
the dataset, we refer the reader to White et al.
(2020) and Stengel-Eskin et al. (2020), as well as
Figure 1. We train and evaluate on a semantically
valid subset of EWT.3 We similarly limit our
baselines to these examples for our UD analysis,
and release our cleaned UD dataset, for which we
report state-of-the-art parsing performance.

Arborescence Following Zhang et al. (2019a)
and Stengel-Eskin et al. (2020), we convert the
UDS graph into an arborescence, or tree. Re-
entrant semantic nodes are copied and co-indexed,
so that a DAG can be recovered via a deterministic
post-processing step. Each node is assigned a
token label, taken from the token corresponding
to the syntactic head of the semantic node (instance
edges in Figure 1). All syntactic nodes not assigned
as labels to semantic nodes are included as nodes
dominated by their corresponding semantic node
(pink edges in Figure 2).4 An example conversion
of the UDS graph in Figure 1 can be found in
Figure 2. In the ‘‘semantics only’’ setting, only

3This excludes roughly 20% of the EWT data; excluded
sentences include forms of address (e.g., ‘‘Dear Nina,’’),
URLs, and discourse markers (e.g., ‘‘( Applause.)’’) which
lack predicate-argument structures.

4‘‘and’’ is assigned to ‘‘caught’’ based on it being the
head of the cc relation in the UD parse.
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Figure 2: Conversion of Figure 1 to an arborescence.

the semantic nodes are included in the graph.
A pre-order traversal linearizes the arborescence
into a sequence of nodes, indices, edge heads
and labels, and the corresponding node and edge
attributes.

4 Models

We build on the transductive parsing model
presented by Stengel-Eskin et al. (2020), which
itself builds on the broad-coverage semantic
parsing model of Zhang et al. (2019b) and relies
heavily on AllenNLP (Gardner et al., 2018).
The transductive parsing paradigm recasts graph-
based parsing as a sequence-to-graph problem,
using an attentional sequence-to-sequence model
to transduce the input sentence into a set of
nodes while incrementally predicting edge and
edge labels for those nodes. The UDS semantic
parser consists of 7 modules:
The encoder module embeds the input features
(type-level GloVe and contextualized word
embeddings, POS tags, charCNN features) into a
latent space, producing one vector per input token.
BERT representations are pooled over subword
units.5

The decoder embedding module embeds the
categorical information of the previous timestep
(e.g., the token identity and index, the head token
identity and index, the edge type) into a real space.
The target node module builds node represen-
tations from the decoder embedding module’s
output.
The target label module extends the Pointer-
Generator network (See et al., 2017), which
supports both generating new token labels from a

5This input is augmented with a sinusoidal position
embedding for the Transformer models.

vocabulary and copying tokens from the input,
with a ‘‘target-copy’’ operation, additionally al-
lowing the model to predict a token label by
copying a previously predicted node, conditioned
on a target node. This three-operation approach
(i.e., generate, source-copy, target-copy) enables
the parser to seamlessly handle lexicalized and
non-lexicalized formalisms, while also natively
supporting re-entrancy through the target-copy
operation.
The relation module is a graph-based dependency
parser based on the parser presented by Dozat
and Manning (2017) which uses separate head
and dependency MLPs followed by a biaffine
transformation to predict the dependency scores
and labels between each node in a fully connected
graph. For semantic parsing, we follow a greedy
decoding strategy since the linearization of the
arborescence implicitly enforces a well-formed
output; this allows for single-step online decoding.
The node attribute module uses the node
representations to predict whether each attribute
applies to each node, and what its value should
be. Deciding whether the attribute applies and the
prediction of its value are performed by separate
MLPs.
The edge attribute module is similar to the
node attribute module, but passes a bilinear
transformation of two node representations to the
MLPs, which predict edge-level properties and
masks.

In this work, we make several modifications
to this model. Firstly, we replace the encoder
and target node modules with Transformer-based
architectures (Vaswani et al., 2017). Next, we
introduce a second biaffine parser on top of the
output of the encoder module, which is tasked with
performing dependency parsing on the UD data.
During training, we use greedy decoding, while
at test time the Chu-Liu-Edmonds Maximum
Spanning Tree algorithm (Chu, 1965; Edmonds,
1967) is used.

More specifically, the encoded input represen-
tations st in Stengel-Eskin et al. (2020) were
obtained from a stacked bidirectional LSTM.
While the input to this module remains the same
in our Transformer-based implementation, the
representation st is now given by the final layer
of a multi-head multi-layer Transformer model.
Crucially, following Nguyen and Salazar (2019)
we replace the layer normalization layer with a
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ScaleNorm layer and place it before the feed-
forward network. The syntactic biaffine parser
uses the encoder representations s to predict a
head and head label for each token. This task
is different from the semantic parsing task as
the graph is lexicalized (i.e., there is a bijection
between input tokens and graph nodes).

Similarly, the node representations zi are
computed by a Transformer decoder with both
self-attention (as in the encoder) and source-side
attention. The first layer of node representations
for the decoder is given by learned continuous
embeddings of the head token and current token
representation, their respective indices, and the
relationship between them. During training, the
gold nodes and heads are used (i.e., teacher
forcing), and the attention is computed with an
autoregressive mask, so that each token is only
able to attend to tokens in its left context. We
take zi = ScaleNorm(xL

i ), x
L
i being the output

of the final layer in a stack of L Transformer lay-
ers. We also follow Nguyen and Salazar in scaling
the attention head weight initialization by a factor
of k.

5 Experiment 1: Joint English Parsing

To determine the effect of jointly parsing the
syntax and semantics, we consider a number
of baselines and experimental settings. First,
we contrast our re-implementation of Stengel-
Eskin et al.’s (2020) LSTM-based model with
their results. We then report the results of our
Transformer-based model, described in §4. After
establishing these baselines, we consider different
methods of incorporating the syntactic signal into
the model:
Concat-before (CB): Here, we linearize the syn-
tactic UD parse, which is a tree, via a pre-order
traversal, yielding a sequence of nodes, edge
heads, and edge labels, which we prepend to the
corresponding sequences obtained by linearizing
the semantic parse, separated by a special separa-
tion token. At inference time, we use this token to
split the output into syntactic and semantic parses.
Concat-after (CA): This setting is identical to
the concat-before setting, except that the syntactic
graph is appended at the end of the semantic
sequence. These two settings incorporate some
syntactic signal into the semantic parse, but do not
exploit UD parsing’s lexicalization assumption;
thus we expect them to yield subpar UD results.

Encoder-side (EN): We do make use of this
assumption here, adding a biaffine parser to the
encoder states s1:T . We introduce an additional
syntactic parsing objective, which allows us to
take advantage of the strong lexicalized bias.
However, the syntactic signal only enters the
model implicitly via backprop, i.e., during the
forward pass, the model has no access to syntactic
information.
Intermediate (IN): We incorporate the syntactic
information by re-encoding the predicted syntac-
tic parse and passing it to the decoder. Due to
the close syntactic correspondence of the UDS
semantic graph, we would expect that allowing
the decoder to access the predicted dependency
parse would benefit both the semantic parse as
well as the syntactic parse. We enable this by con-
catenating edge information to s1:T and linearly
projecting it. Specifically, given edge head scores
E ∈ R

T×T , where each row i is a distribution
over possible heads for token i, the output of the
parser’s head MLP H ∈ R

T×dh , and the output
of the parser’s edge type MLP T ∈ R

T×dt , we
compute the new encoder representations s′ as:

H′ = HTE , T′ = TTE

s′i = [si;H
′
i;T

′
i]
TWI ,WI ∈ R

(ds+dh+dt)×ds

Transformer Hyperparameters Unlike the
LSTM-based model, which is fairly robust to
hyperparameter changes, the Transformer-based
architecture was found to be sensitive to such
changes. We use a random search strategy
(Bergstra and Bengio, 2012) with 40 replicants,
tuning the number of layers l ∈ [6, 8, 12], the
initialization scaling factor k ∈ [4, 32, 128, 512],
the number of heads H ∈ [4, 8], the dropout factor
d ∈ [0.20, 0.33], and the number of warmup steps
for the optimizer w ∈ [1000, 4000, 8000]. This
was performed with the base model, with the best
hyperparameters used in all other models.

5.1 Evaluation Metrics

UAS/LAS: Unlabeled Attachment Score (UAS)
computes the fraction of tokens with correctly
assigned heads in a dependency parse. Labeled
Attachment Score (LAS) computes the frac-
tion with correct heads and arc labels. Both are
standard metrics for UD parsing.
Pearson’s ρ: For UDS attributes, we compute
the Pearson correlation between the predicted
attributes at each node and the gold annotations
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Figure 3: Contrasting LSTM and TFMR performance
on graph structure with syntax nodes as well as
Pearson’s ρ and binarized attribute F1.

in the UDS corpus. This is obtained under an
‘‘oracle’’ setting, where the gold graph structure
is provided.
Attribute F1: Following the original descrip-
tion of semantic proto-roles as binary attributes
(Dowty, 1991), we also measure whether the
direction of the attributes matches that of
the gold annotations, for example, whether a
predicate is likely factual (factuality-factual >
θ) or not (factuality-factual < θ).6 We tune θ per
attribute type on validation data. It is abbreviated
as F1 (attr), and along with ρ, measures per-
formance on the attribute prediction task. S-
score: Following the Smatch metric (Cai and
Knight, 2013), which uses a hill-climbing ap-
proach to find an approximate graph matching
between a reference and predicted graph, S-score
(Zhang et al., 2017) provides precision, recall,
and F1 score for nodes, edges, and attributes.
Note that while S-score enables us to match scalar
attributes jointly with nodes and edges, for the
sake of clarity we have chosen to bifurcate the
evaluations: S-score for nodes and edges only
(functionally equivalent to Smatch), and ρ and
F1 (attr) for attributes. We use two variants of
S-score: One evaluates against full UDS arbores-
cences with linearized syntactic subtrees included
as children of semantic heads (abbreviated as F1
(syn)), while the semantics-only setting evaluates
only on semantics nodes (F1 (sem)). This metric
measures performance on the semantic graph
structure prediction task.

6 Experiment 1: Results and Analysis

The Transformer outperforms the LSTM on
UDS parsing. We first observe that, with modi-
fications and tuning, the Transformer architecture
strictly outperforms the LSTM despite the rela-
tively low number of training examples (12.5K).
Figure 3, which corresponds to Table 1 rows 2 and

6Like ρ, we use an oracle decode of the structure here.

Figure 4: LSTM and TFMR performance on English
EWT UD parsing, contrasted with Chen and Manning
(2014) and Dozat and Manning (2017) baselines.
Models with semantic information (+ EN) outperform
their syntax-only baselines (+ BI).

Figure 5: LSTM and TFMR attribute ρ and binarized
F1 score.

3, shows that the Transformer outperforms the
LSTM on the S-score metric (with syntactic nodes
included, following Stengel-Eskin et al. [2020])
as well as attribute F1 and Pearson’s ρ. Note that
in this figure, as well as the others in this section,
the vertical axis is scaled to highlight relevant
contrasts. Joint Transformer model slightly
outperforms syntax-only model on syntactic
parsing. Figure 4, corresponding to rows 4–6
and 11 in Table 1, shows that an LSTM encoder
with a biaffine parser and no semantic decoder
(LSTM + BI) outperforms both baselines (Chen
and Manning, 2014; Dozat and Manning, 2017,
C+M and D+M, respectively). Note that this
model has no semantic signal, and is trained
only on UD parsing. In the LSTM case, the
addition of the UDS semantic signal via the
encoder-side model described in §5 slightly low-
ers performance. However, this is not the case
for the Transformer; the syntax-only Transformer
(TFMR + BI) model outperforms the LSTM
model, and is slightly outperformed by the joint
syntax-semantics Transformer model.

Joint training has little impact on attribute
metrics for non-baseline models. Figure 5 shows
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Model P (syn) R (syn) F1 (syn) P (sem) R (sem) F1 (sem) Attr. ρ Attr. F1 UAS LAS

SE 2020 84.97 78.52 81.62 91.28 87.23 89.21 0.34 50.66 — —
LSTM 89.90 85.85 87.83 89.24 87.47 88.34 0.46 60.41 — —
TFMR 90.04 87.98 89.19 92.26 91.09 91.67 0.56 67.89 — —
C+M 84.83 75.22 79.74 84.72 88.51 86.57 — — 83.41 78.60
D+M — — — — — — — — 90.54 88.58
LSTM + BI — — — — — — — — 91.51 88.83
LSTM + CB 88.16 88.01 88.09 92.26 90.67 91.46 0.45 59.20 54.44 52.75
LSTM + CA 88.58 87.67 88.12 92.36 91.30 91.83 0.43 57.67 50.89 49.33
LSTM + EN 87.44 86.47 86.47 92.52 90.90 91.70 0.46 61.28 91.44 88.80
LSTM + IN 86.80 86.49 86.64 91.50 90.35 90.92 0.44 60.02 91.00 88.31
TFMR + BI — — — — — — — — 92.29 89.95
TFMR + CB 92.87 78.62 85.15 93.66 85.42 89.35 0.53 65.96 58.05 56.75
TFMR + CA 91.31 87.94 89.59 93.15 91.94 92.54 0.53 65.71 51.13 50.07
TFMR + EN 91.09 89.01 90.04 93.76 91.50 92.61 0.56 66.85 92.40 89.96
TFMR + IN 91.50 87.09 89.24 93.26 91.25 92.24 0.56 66.63 92.16 89.52

Table 1: Syntactic and semantic metrics across all models. Note that binarized semantic attribute
F1 and ρ are computed w.r.t. to the models trained with linearized syntactic yields, while the (sem)
S-score metrics are reported on models trained on semantics nodes alone (on the decoder side).

Pearson’s ρ and binarized attribute F1 (with θ
tuned on the development set); this corresponds to
the second two rows and final 10 rows of Table 1.

We see that both for the LSTM and the
Transformer, the encoder-side model has about
the same performance for ρ and attribute F1
as the UDS-only model, and the Transformer
variants consistently out-perform their LSTM
counterparts. In contrast, the addition of syntac-
tic information through concatenation (CB, CA)
seems to diminish the performance on these met-
rics. For the LSTM, the intermediate model has
lower performance than the encoder-side variant,
while for the Transformer it is almost identical.

Joint parsing slightly improves semantic
structural performance. Figure 6 shows the
structural F1 computed by S score, where we
observe that the LSTM’s performance, which
is lower than the Transformer’s in the baseline
setting, benefits most from the concatenation
settings, while suffering under the encoder and
intermediate settings.

By way of contrast, the Transformer, whose
baseline performance is higher, benefits most
from the encoder-side biaffine parsing setting,
which also boasts the best UD performance (cf.
Figure 4).

While the concat-after setting offers S score
improvements for both encoder/decoder types, the
syntactic performance in this setting is very poor

Figure 6: LSTM and TFMR S-score F1 (with syntax
nodes included).

(< 60 UAS). The Transformer encoder-side mul-
titask model is able to improve structural perfor-
mance for the encoder-side while simultaneously
boosting UAS and LAS (see Figure 4).

These results demonstrate that explicitly incor-
porating a syntactic signal into a transductive
semantic parsing model can be done without
damaging semantic performance, both for UDS
attributes and structure. Perhaps more surpris-
ingly, the semantic signal coming from the UDS
attributes and structure improves the syntactic
performance of the model when the syntactic
model is able to take advantage of the lexical-
ized nature of UD. Note that due to the parallel
nature of the UD and UDS data, we can con-
clude that the improvements here result from
the additional structural signal, and not merely
from the addition of more sentences. We see that
for the concatenation settings, while the semantic
structural performance may increase, the syntactic
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parsing results are dismal. This is true whether we
concatenate the syntactic graph before or after the
semantic one. This may be explained by the fact
that, by using a transductive model for a lexical-
ized parsing task like UDS, we are complicating
what the model needs to learn. Rather than simply
labeling existing nodes, the model must reproduce
these nodes via source-side copying.

While prima facie, we would expect the
intermediate model to outperform the multitask
encoder-side model, as its decoder has explicit
access to the syntactic parse, we see that this is not
the case; it shows lower structural and attribute
performance. This represents a direction for future
work.

The Role of the Encoder The results in Figure 5
show that the Transformer-based model has a
heavy advantage over the LSTM-based model in
terms of attribute prediction. This might be due to
an improved ability by the Transformer encoder
to incorporate signals from across the input, since
the self-attention mechanism has equal access
to all positions, while the BiLSTM has only
sequential access which may become corrupted
or washed out over longer distances. Given the
highly contextual nature of UDS inferences, we
would expect a model that better captures context
to have a distinct advantage, as the crucial tokens
for correctly inferring an attribute value may be
found in a distant part of the input sentence: for
example, if we wish to infer the factuality of
‘‘left’’ in the sentence ‘‘Bill eventually confessed
to the officers that, contrary to his previous state-
ments, Joan had left the party early,’’ most of the
signal would come from the token ‘‘confessed,’’
producing a high score. The construction of UDS
and its attributes’ scalar nature allow us to test this
hypothesis by examining the Pearson correlation
between predicted and true attributes at different
positions in the input.7 In order to compare the
correlations across sentences, we group the pre-
dicted and reference attributes into 10 percentile
ranges, based on the ratio of the node position and
the sentence length, that is, what percentage into
the sentence the node occurs. We then average all
Pearson ρ values across all attribute types in each
bin, obtaining average ρ values by sentence com-
pletion percentile. With this data, we can compare
two models on a very fine-grained level, asking

7We use the syntactic head nodes of each semantic node
to propagate positional information to the semantic nodes.

Figure 7: Δ in mean ρ for each sentence position
between (left) LSTM and BiLSTM and between (right)
TFMR and BiLSTM. The TFMR’s gains in ρ come
mainly from the middle percentiles.

questions such as, ‘‘how much better does the
Transformer model do than the BiLSTM on nodes
that are between 0% and 10% into the sentence?’’
Figure 7 shows such comparisons between a uni-
directional left-to-right LSTM encoder and the
bidirectional LSTM, and between the bidirectional
LSTM and the Transformer. While the unidirec-
tional LSTM actually outperforms the BiLSTM in
the central percentiles, it struggles near the edges.
This could be explained on the left edge by a lack
of right context, and on the right edge by difficul-
ties with long-range dependencies. Furthermore,
the Transformer outperforms the BiLSTM at all
positional percentiles, but particularly in the cen-
tral regions, suggesting that, while the BiLSTM is
able to incorporate contextual information well at
the edges of a sentence, the information is diluted
in the central region, while the Transformer’s
self-attention mechanism is equally able to draw
from arbitrary positions at all timesteps.

7 Experiment 2: Tuning BERT

The results in Figure 4 and Figure 6 not only
demonstrate that the addition of one structural
modality (i.e., syntax, semantics) can benefit the
other, but also suggest that these signals are com-
plementary to the signal already given by the input
features, which include contextualized features
obtained from BERT. This stands in contrast to
previous results by Swayamdipta et al. (2019) that
the benefits to be gained from multitask learn-
ing with shallow syntactic objectives are largely
eclipsed by contextualized encoders. However, we
note that our models require full UD parses in the
multitask settings rather than a light scaffolding.

If indeed the combination of UDS and UD
signals provides information not yet encoded in
BERT, then fine-tuning BERT with these signals
should yield additional benefits. Following obser-
vations that syntax and semantics are encoded to
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Figure 8: Test metrics when freezing/tuning different
levels of BERT. The x-axis represents number of layers
tuned (from the top layer). Tuning the encoder provides
significant benefits over a frozen encoder (0 layers
tuned) but the optimal number of tuned layers is not
the full 12 layers.

varying degrees at different depths in contextual-
ized encoders (Hewitt and Liang, 2019; Tenney
et al., 2019; Jawahar et al., 2019) with syntactic
information typically lower in the network, we
explore the trade-off between freezing and tuning
various layers of the BERT encoder. Specifically,
we tune the topn layers, starting from a completely
frozen encoder and moving to tuning all 12 layers.8

Intuitively, one might expect to see a monotonic
increase as the number of tuned layers increases,
as each additional unfrozen layer provides the
model with more capacity. However, the results
presented in Figure 8 show a more nuanced
trend: while the performance across syntactic and
semantic metrics increases up to a point, they
begin to decrease again when additional layers
are unfrozen. This may be due to data sparsity;
given the relatively small size of the UDS cor-
pus, the addition of too many parameters may
encourage overfitting, resulting in decreased test
performance. Note that the encoder-side model all
three panels of Figure 8 is the same model, that
is, the best UAS, LAS, and S score performance
is obtained by the same model, and that the per-
formance of the joint model at any given tuning
depth typically falls above that of the baseline.

In contrast to the findings of Glavaš and Vulić
(2020), who conclude that the benefits of UD
pretraining for semantic language understand-
ing tasks are limited when using contextualized
encoders, our results in §6 show a small but con-
sistent positive effect of syntactic information on
semantic parsing, as well as improved syntactic
performance from a semantic signal. Furthermore,
our results here show that the UD signal can actu-
ally be used to fine-tune a contextualized encoder,

8As the BERT encoder is pretrained, a separate static learn
rate of 1e− 5 was used to optimize the BERT parameters.

which benefits not only the UD parsing perfor-
mance but also the UDS performance. In fact, after
training and evaluating their model (which, to our
knowledge, has the highest performance to date
on EWT) on our cleaned subset of EWT, we find
that our best performing UAS/LAS values, 93.42
and 91.22, outperform their values of 92.83 and
90.11. These values also slightly outperform the
syntax-only version of the same model, with the
same amount of tuning. The tuned encoder-side
model also provides the best semantic perfor-
mance, with a max score of 91.82, compared to
90.04 in the TFMR + EN setting (cf. Table 1).

Prepositional Phrase Attachment Ambiguity
Looking at the results in Figures 4 and 6, which
are mirrored in the tuned results visualized in
Figure 8, a natural question to ask is where the
syntactic performance gains are coming from in
the encoder-side model. One hypothesis, in line
with literature on semantic bootstrapping, is that
the semantic signal helps the model to discrim-
inate between ambiguous parses. Consider, for
example, the sentence ‘‘I shot an elephant in
my pyjamas.’’ Syntactically, there are two valid
heads for the prepositional phrase (PP) ‘‘in my
pyjamas’’, but the semantics of the phrase indi-
cates to us that it is less likely to be attached to
‘‘elephant’’. Perhaps adding an explicit semantic
signal, like that of UDS, would improve a syn-
tactic parser’s ability to disambiguate sentences
like this. In order to test this hypothesis, we use
a dataset introduced by Gardner et al. (2020),
consisting of 300 sentences with UD annotations.
One hundred fifty sentences were chosen from
a combination of English UD treebanks with
potential PP attachment ambiguities, 75 with PP
with nominal heads, and 75 with verbal heads.
Minimal semantic changes were then made to the
sentence to switch the head (i.e., nominal heads
were switched to verbal heads). For example, the
sentence, ‘‘They demanded talks with local US
commanders’’ becomes: ‘‘They demanded talks
with great urgency’’ (noun to verb).

A model’s performance on this dataset is mea-
sured not only it its raw performance on the
unaltered sentences, but, crucially, by its perfor-
mance on the altered ones. As the altered sentences
are constructed to be different from those seen in
the training set, we expect there to be a drop if the
model has learned simple heuristics (e.g., always
attach to a noun) rather than robust rules based on
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Figure 9: Encoder-side and syntax-only performance
on sentences with PP attachment ambiguities. A joint
syntax-semantics model is slightly more robust to
manual adjustment of the prepositional head than a
syntax-only model.

semantic understanding. An ideal model would
have high performance and no drop. Figure 9 com-
pares the tuned syntax-only UD baseline (right
column) and the tuned UDS parser with encoder-
side parsing (left column) on this task, both for
noun-to-verb and verb-to-noun alterations. In all
cases, we see a significant drop in performance on
the altered examples. In the noun-to-verb case, we
see that, while the syntax-only baseline’s initial
performance is higher, it experiences a larger drop
in performance than the encoder-side model, with
its performance on the altered dataset being lower
on UAS and LAS. In the verb-to-noun case, while
both models undergo roughly the same major
performance loss in the altered context, the initial
performance of the encoder-side model is higher.

These results, taken together, suggest that the
addition of the UDS signal may provide a small
benefit when disambiguating PP attachment ambi-
guities. However, such ambiguities are fairly rare
in UD corpora, and are thus unlikely to explain
the whole difference between the models. To this
end, we examine the difference in UAS perfor-
mance between systems on the 10 most frequent
relation types in Figure 10. When comparing a
joint UD-UDS parser, we see that small gains are
realized for the most frequent relations, but some
relations suffer minor losses as well. In contrast,
when comparing the tuned and untuned systems,
nearly all the most frequent relations see fairly
large improvements.

UDS Attributes and UD Relations The close
link between UD parses and the UDS annotations
in the datas et allows us not only to train multitask

Figure 10: Δ between (left) a joint UDS-UD model and
a UD only model and (right) a joint UDS-UD model
with an encoder tuned through layer 4 vs. one with a
frozen encoder.

models for joint syntactic and semantic pars-
ing, but also to inspect the interactions between
syntactic relations and semantic attributes more
closely. Each cell in Figure 12 shows the Pearson
ρ between true and predicted attributes for a
variety of UDS annotations conditioned on UD
dependency relations. The node attributes (anno-
tated on semantic nodes in the UDS graph) are
paired with the UD relation of the corresponding
syntactic head node. Predictions are obtained
from the best tuned model with encoder-side UD
parsing (TFMR + EN), under an oracle decode of
the graph structure.

We see variation across a given attribute and
dependency relation. For example, factuality
annotations display a high ρ value for root
and conj annotations, but a lower correlation
for xcomp. These correlations are visualized in
Figure 11, where we plot the true vs. predicted
value, with the line defined by ρ overlaid. The
close correspondence between UD and UDS lets
us observe this type of discrepancy, which echoes
findings by White et al. (2018), who used fac-
tuality prediction to probe neural models’ ability
to make inferences based on lexical and syntactic
factuality triggers. Furthermore, it is in holding
with semantic theories, as the xcomp relation
is used for open clausal complements (i.e., non-
finite embedded clauses), with an overt control
subject in the main clause (e.g., object or subject
control). In English, xcomp relations correspond
to infinitival embedded clauses, for example, ‘‘I
remembered to turn off the stove.’’ As pointed out
by White (2020), factuality inferences are partic-
ularly hard in these contexts, as they are not only
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Figure 11: True and predicted values for UDS attributes at UD relation types, outlined in Figure 12.

sensitive to the lexical category of the embedding
predicate (i.e., ‘‘remembered’’ vs. ‘‘forgot’’) but
also its polarity (i.e., ‘‘remembered’’ vs. ‘‘didn’t
remember’’). This separates them from finite
clausal complements, where a matrix negation
still results in the same factuality inference; for
example, in both ‘‘I remembered that I turned off
the stove’’ and ‘‘I didn’t remember that I turned
off the stove’’ we infer that the stove was turned
off. Furthermore, xcomp relations are present
in object and subject control cases, which may
be difficult even for human speakers to acquire
(Chomsky, 1969; Cromer, 1970).

Beyond comparing our model predictions to
theoretical predictions at the syntax—semantics
interface, we can also use this analysis to exam-
ine the data on which the model was trained.
For instance, homing in on the genericity-
arg-kind annotations (reflecting the level to
which an argument refers to a kind of thing)
for direct objects dobj, we see that for some
examples, while the model prediction differs
from the annotation, it is not wrong per se. One
example is, ‘‘Take a look at this spreadsheet’’
where ‘‘look’’ is annotated as high for kind
(1.41), but predicted as low (−1.09). In another
example, ‘‘...I could not find one place in Tampa
Bay that sells...’’, the argument ‘‘place’’ has a
high predicted kind value (0.72) but is annotated
otherwise (−0.87). In both these cases, one could
argue that the model’s prediction is not entirely
incorrect.

8 Experiment 3: Multilingual Parsing

The results in §6 that English UD parsing and UDS
parsing are mutually beneficial naturally give rise
to a follow-up question: does this relationship
extend to a multilingual setting. As in the mono-
lingual case, we explore both the impact of UD
parsing on UDS, and vice versa. UD is by design
highly multilingual, spanning scores of languages

Figure 12: ρ on argument (top) and predicate (bottom)
UDS properties (subset) at relevant UD relations. Black
cells indicate no significant correlation. Outlined boxes
plotted in detail in Figure 11.

from a diverse typological range, often with multi-
ple treebanks per language. This has led to interest
in evaluating the performance of UD parsing mod-
els not just on English, but across a range of lan-
guages and language families; both the 2017 and
2018 CoNLL shared tasks focused on multilingual
UD parsing (Zeman et al., 2017, 2018). The intro-
duction of multilingual contextualized encoders,
such as mBERT (Devlin et al., 2019; Devlin, 2018)
and XLM-R (Conneau et al., 2020) has enabled
models to perform UD parsing in multiple lan-
guages simultaneously by using features obtained
by a single multilingual encoder (Schuster et al.,
2019; Kondratyuk and Straka, 2019).

By initializing weights for one task (syntactic or
semantic) with weights learned on the other, and
leveraging the shared input representation space
of XLM-R, we examine bottom–up effects of
representations learned with a syntactic objective
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Code Language Family #Train #Test

AF Afrikaans Germanic 2630 850
DE German Germanic 13814 977
FI Finnish Uralic 27198 4422
FR French Romance 17836 1598
GL Galician Romance 2272 861
HU Hungarian Uralic 910 449
HY Armenian Armenian 1975 278
KK Kazakh Turkic 28 1047

Table 2: Language data and # train/test sentences.

on semantic parsing performance, and top–down
effects the semantic objective on syntactic per-
formance. Note that unlike in §6, we do not have
parallel data in these settings, leading to the use
of pretraining rather than simultaneous multitask
learning. Note also that we are examining the
relationship between English semantic parsing
and multilingual, non-English syntactic parsing.
We do not make use of pretrained type-level word
embeddings in these experiments, leading us to
expect slightly lower absolute performance on the
UDS parsing task as compared to Table 1. Based
on the syntactic results in §6, we explore only the
Transformer models in our multilingual exper-
iments. We tune the XLM-R encoder through
layer 5, based on our observations on the dev-
elopment set in §6.9

Languages Eight languages in 5 families from
the 2018 CoNLL Shared Task (Zeman et al.,
2018) were chosen, across both higher and lower
resource settings. Table 2 gives further details
and highlights the range of resource settings
examined.10

Bottom–up Effects Examining bottom-up
effects of syntax on semantics, we pretrain a
multilingual UD model on all 8 languages simul-
taneously, using alternating batches from each
language and capping each epoch at 20,000 exam-
ples. We then initialize the encoder and biaffine
parser in UDS parser with the weights learned on
UD parsing and continue training on joint UDS
and EWT UD parsing, as in Experiment 1. In
Table 3 we see that syntactic parsing performance

9We also re-tuned the Transformer hyperparameters, as
the input space changed from BERT and GloVe to XLM-R.

10Note that despite its relatively large test set size, the
Kazakh train set is very small (n = 31). Of these sentences,
3 were used for validation, leaving 28 train sentences.

Model P R F1 Attr. ρ Attr. F1 UAS LAS

TFMR 90.80 89.08 89.93 0.51 63.62 — —
TFMR + EN 91.72 89.17 90.42 0.48 60.12 93.44 91.21
TFMR + IN 90.51 87.68 89.07 0.46 59.47 93.47 91.20
TFMR + PRE + EN 91.24 88.97 90.09 0.50 63.23 93.35 91.21
TFMR + PRE + IN 90.65 88.45 89.54 0.46 58.86 93.62 91.37

Table 3: Full UDS and English UD results for
XLM-R models with and without pretraining.

on English EWT UD parsing improves with pre-
training for the intermediate model, but decreases
for the encoder-side model. A similar trend holds
for the S-score, where the intermediate model
improves with pretraining while the encoder-
side model’s performance suffers. However, for
attribute F1 and ρ, the encoder-side model with
pretraining outperforms the encoder-side model
without, while the opposite is true of the inter-
mediate model, whose performance decreases
with pretraining. Unlike in §6, the intermediate
model outperforms the encoder-side model here,
obtaining the highest overall UD parsing score of
any model looked at thus far.

The UAS/LAS of the pretrained intermedi-
ate model is the strongest even when compared
against the best monolingual models in Table 1.
In fact, when trained and evaluated on the entirety
of the EWT UD corpus, the XLM-R-based inter-
mediate model with pretraining obtains the same
exact UAS/LAS performance the best XLM-R
model reported by Glavaš and Vulić (2020): 93.1
UAS, 90.5 LAS. Since our model is additionally
capable of performing UDS parsing at a level com-
petitive with the best system presented in Table 1,
we encourage others to make use of it in the future.

The trends here suggest that a multilingual
syntactic signal, when incorporated well into a
UDS model, can provide benefit to the syntactic
performance without necessarily reducing the
semantic performance. Note that unlike in §6,
the syntactic data used to pretrain the syntactic
encoder and biaffine parser is neither parallel to
the UDS dataset, nor is it in English. Thus, that
the syntactic data can act as a signal for semantic
parsing, albeit with small effects, is surprising.

Top–down Effects In the top–down direction
(semantics to syntax) we train the encoder-side
and intermediate variants of the joint UDS and
syntactic parsing model and subsequently load the
weights from their encoders and biaffine parsers
into separate UD models for all 8 languages.
These are compared against a baseline model with
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Lang. Base Encoder Intermediate

AF 86.10 / 89.06 86.40↑ / 89.28↑ 85.27↓ / 88.39↓
DE 84.30 / 88.45 84.23↓ / 88.49↑ 83.49↓ / 87.85↓
FI 80.94 / 85.83 80.53↓ / 85.52↓ 80.50↓ / 85.44↓
FR 86.66 / 90.02 86.82↑ / 90.07↑ 86.71↑ / 89.94↓
GL 78.60 / 82.46 79.58↑ / 83.08↑ 79.77↑ / 83.19↑
HU 82.90 / 87.76 83.67↑ / 88.33↑ 82.01↓ / 86.75↓
HY 77.97 / 83.72 79.31↑ / 85.08↑ 76.48↓ / 82.79↓
KK 51.05 / 67.09 51.25↑ / 65.49↓ 48.85↓ / 63.08↓

AVG 78.56 / 84.30 78.97↑ / 84.42↑ 77.88↓ / 83.43↓

Table 4: LAS/UAS for models with weights
transferred from EWT UD parsing compared with
those from encoder-side and intermediate UDS
models.

weights initialized from a English UD parsing
model. Thus any improvement obtained by the
encoder and intermediate models comes strictly
from the semantic signal, since the syntactic
signal is shared with the baseline model. Table 4
shows the LAS and UAS performance of these
models, with arrows indicating the direction of
change from the baseline model. We see that
almost all of the languages see benefits from the
addition of semantic signal in at least one model
variant, with the exception of Finnish, which
performs worse across all variants and metrics
when the semantic signal is included. For Galician,
Hungarian, and Armenian, we see a sizeable
improvement between the models. With the
exception of Kazakh, whose train set is miniscule,
these are among the lowest-resource languages
considered. While, given the typical pipeline view
of syntax as a substrate for semantics, we might
expect the bottom–up results to be stronger than
top–down results, here we find that the syntactic
benefits of pretraining on a semantic task are more
consistent and stronger than in the other direction.

Discussion On the whole, the multilingual
top–down and bottom–up effects seem to mim-
ick the monolingual results, albeit with smaller
relative improvements. In §6, we saw a mutually
beneficial relationship between UD and UDS
parsing in a number of settings; here, we see that
in several cases, this pattern generalizes to a case
where we pretrain on data that is not only in a
different domain than the evaluation (i.e., syntax
vs. semantics) but also in a different language.
These effects hint at useful commonalities not
only between syntactic parses across multiple

languages, but also between multilingual syntax
and the UDS representation.

9 Conclusion

In §5, we introduced a number of multitask
architectures for joint syntactic and semantic pars-
ing, which we demonstrated in §6 can perform
UD and UDS parsing simultaneously without
sacrificing performance, as evaluated across a
number of syntactic and semantic metrics. In
particular, we observed a top–down benefit to
syntactic parsing from the semantic signal as
well as a bottom–up benefit to semantic per-
formance from syntactic parsing. We contrasted
both LSTM and Transformer-based variants of
these architectures, finding the Transformer to
be better on all metrics. Finding the syntactic
and semantic information present in the data to
be complementary to that encoded in a frozen
contextualized encoder, we experimented in §7
with tuning the encoder to varying depths, find-
ing that tuning the top-most layers provides the
greatest benefit. We analyzed the models resulting
from this tuning step on their ability to resolve
attachment ambiguities, as well as examining
interactions between UDS annotations and UD
dependency relations. Furthermore, in §8, we
extended our experiments beyond English, using
a transfer-learning experimental paradigm to
investigate effects between multilingual syntactic
parsing in 8 languages and English semantic par-
sing, where we found similar trends to the English-
only setting. Based on these multilingual results,
we believe that expanding the UDS data paradigm
(i.e., UD-based graph structure, continuous attri-
butes) beyond English and building robust multi-
lingual parsing models is a particularly promising
direction for future work. Other directions include
improving the robustness of the Transformer
model in low-resource settings and improvements
to the attribute modules.
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Martı́, Lluı́s Màrquez, Adam Meyers, Joakim
Nivre, Sebastian Padó, Jan Štěpánek, Pavel
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