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MÖBIUS DISJOINTNESS FOR NILSEQUENCES

ALONG SHORT INTERVALS

XIAOGUANG HE AND ZHIREN WANG

Abstract. For a nilmanifold G/Γ, a 1-Lipschitz continuous function F and
the Möbius sequence µ(n), we prove a bound on the decay of the averaged
short interval correlation
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as H,N → ∞. The bound is uniform in g ∈ G, x ∈ G/Γ and F .
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1. Introduction

The Möbius function μ : N → {−1, 0, 1} is defined as follows: μ(1) = 1, μ(n) =
(−1)k when n is the product of k distinct primes and μ(n) = 0 otherwise. This is
an important function in number theory because both the prime number theorem
and the Riemann hypothesis can be reformulated in terms of it. In fact the prime
number theorem is equivalent to the assertion

∑
n≤N μ(n) = o(N), and the Riemann

hypothesis is equivalent to the assertion
∑

n≤N μ(n) = Oε(N
1
2+ε) for all ε > 0.

The Möbius Randomness Law, proposed in [IK04], suggests to find reasonable
sequences ξ(n) which have significant cancellations with μ(n), that is

∑

n≤N

μ(n)ξ(n) = o(
∑

n≤N

|ξ(n)|).
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3882 XIAOGUANG HE AND ZHIREN WANG

The Möbius Disjointness Conjecture, of Sarnak [Sar09], expects to use observables
from zero entropy topological dynamical systems as the sequence ξ.

Conjecture 1.1 (Möbius Disjointness Conjecture, [Sar09]). Let (X,T ) be a topo-

logical dynamical system with zero topological entropy. Then

(1.1) lim
N→∞

1

N

N∑

n=1

f(Tnx)μ(n) = 0, ∀f ∈ C(X), ∀x ∈ X.

Here, a topological dynamical system is a pair (X,T ) consisting of a compact
metric space X, and a continuous self-map T : X → X.

There have been in recent years many results supporting the Möbius disjoint-
ness conjecture. For brevity we will simply refer to the recent comprehensive survey
[FKPL18] for the progress in this area. Here we discuss only the historical devel-
opements that are more relevant to this paper.

The special case of Conjecture 1.1 for circle rotations has been known since 1937
due to Davenport’s work [Dav37]. Indeed, Davenport proved in [Dav37] that for all
A > 0,

(1.2) sup
α∈R

∣∣∣ 1
N

∑

n≤N

e(αn)μ(n)
∣∣∣ �A log−AN.

Here e(u) = e2πiu.
An important extension of the class of circle rotations is the nilsystems, namely

tranlations x → g · x on a compact nilmanifold G/Γ. Such systems are particularly
important because of their close relationship to multiple ergodic averages. Functions
of the form n → f(gn.x) cover all the polynomial and bracket polynomial phases.
It is known, as a special case of Ratner’s Theorem [Rat91] and its discrete version
by Shah [Sha], that every trajectory of such a translation becomes equidistributed
in the union of finitely many translated copies of a closed sub-nilmanifold. This
property also holds true for polynomial sequences in nilmanifolds by Leibman’s
work [Lei05] (see Definition 2.9 for the term polynomial sequences in nilmanifolds).

Möbius disjointness along orbits of nilsystems, or more generally polynomial
orbits, was established by Green and Tao [GT12b] in the following form:

(1.3) sup
g,F

∣∣∣ 1
N

∑

n≤N

μ(n)F (g(n)Γ)
∣∣∣ �m,A R−Om,A(1) log−AN,

where the supremum is taken over all polynomial functions g : Z → G with respect
to a given nilpotent filtration G• and all functions F : G/Γ → C that are 1-
Lipschitz. Here m = dimG, and the parameter R records the rationality of the
pair (G•,Γ) (see Section 2 for related definitions).

Green-Tao’s proof was based on their accompanying paper [GT12a], which made
effective Leibman’s theorem by describing in a quantitative way how orbits become
equidistributed in sub-nilmanifolds of G/Γ. This was then applied to joinings of
two orbits of the forms {g(pn)Γ} and {g(qn)Γ}. Combined with Vaughan’s identity
[Vau97], which is a modern form of the Vinogradov bilinear method, such estimates
lead to the orthogonality to the Möbius function.

Another strengthening to Davenport’s estimate (1.2) was achieved in the recent
breakthrough papers of Matomäki-Radziwi�l�l [MR16] and Matomäki-Radziwi�l�l-Tao
[MRT15] on averages of non-pretentious multiplicative functions along short inter-
vals. As a consequence, they proved in [MRT15] that for all real-valued 1-bounded
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MÖBIUS DISJOINTNESS FOR NILSEQUENCES 3883

multiplicative functions β, which in particular include the Möbius and Liouville
functions,

(1.4) sup
α∈R

∑

n≤N

∣∣∣∣∣∣

∑

h≤H

β(n+ h)e(α(n+ h))

∣∣∣∣∣∣
dx �

(
log logH

logH
+

1

log1/700 N

)
HN.

Such estimates were used to prove an averaged form of the Chowla Conjecture in
[MRT15], as well as the logarithmically averaged Chowla and Elliott Conjectures
for correlations with either 2 or an odd number of components by Tao [Tao16]
and Tao-Teräväinen [TT19]. The theorems in [MR16] and [MRT15] have also
yielded many applications to Conjecture 1.1, especially in dynamical systems with
strong quasi-periodic behaviors (see the survey [FKPL18]). They were also used in
Frantzikinakis-Host’s proof [FH18] of logarithmically averaged Sarnak Conjecture
for ergodic weights. For most of these applications, it is essential to have a uniform
decay rate in (1.4) that is independent of the choice of α.

It is natural to seek a further strengthening to (1.2) that combines the theorems
of Green-Tao (1.3) and Matomäki-Radziwi�l�l-Tao (1.4), namely a quantitative bound
to Möbius disjointness along short intervals for nilsequences. This is the purpose of
the current paper. This question is especially interesting because, as remarked in
[Tao16, p34], short interval correlations between multiplicative functions and higher
step nilsequences would be useful in the study of logarithmicall averaged Chowla
and Elliott conjectures of higher order correlations.

Previously in this direction, Flaminio, Fra↪czek, Ku�laga-Przymus, and Lemańczyk
[FFKPL19] proved that: if ϕ is an ergodic unipotent affine automorphism of a
compact nilmanifold G/Γ and x ∈ G/Γ, F ∈ C0(G/Γ), then:

(1.5)
1

N

∑

N≤n<2N

∣∣∣∣∣∣
1

H

∑

h≤H

μ(n+ h)F (ϕn+h(x))

∣∣∣∣∣∣
→ 0

as H → ∞ and N/H → ∞. Similar results were also shown for polynomial phases
by El Abdalaoui-Lemańczyk-de la Rue in [eALdlR17]. Those proofs purely rely on a
minor arc argument and use the bilinear method in the form of the Kátai-Bourgain-
Sarnak-Ziegler criterion [Kát86, BSZ13]. The decay estimates in [FFKPL19] and
[eALdlR17] are not effective as the dynamics may become highly quasi-periodic.

The result in this paper produces a uniformly effective bound without requiring
ergodicity.

It should also be noted that without the extra average in N , non-trivial bounds

on
∣∣∣ 1
H

∑
h≤H μ(n+ h)f(n+ h)

∣∣∣ were obtained in the works of Zhan [Zha91], Huang

[Hua15, Hua16] and Matomäki-Shao [MS19] when f is a polynomial phase and
H � nθ for some given θ ∈ (0, 1). (θ = 2

3 in [MS19]).
Our main theorem is:

Theorem 1.2. Suppose G is a connected, simply connected m-dimensional nilpo-

tent Lie group and Γ ⊂ G is a lattice. Then there exists H0 = H0(G,Γ) > 0 and

ε0 = ε0(m) > 0, such that:

For all H,N ∈ N satisfying H > H0 and (logN)
1
2 > logH, and ε ∈ ( log logH

logH , ε0),

there exists a set S ∈ [N ], whose construction depends only on H, N and ε, such
that

(1.6) N −#S �m εN,
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3884 XIAOGUANG HE AND ZHIREN WANG

and

(1.7) sup
‖F‖G/Γ≤1

g∈G,x∈G/Γ

1

HN

∑

n≤N

∣∣∣
∑

h≤H

1S(n+h)μ(n+h)F (gn+hx)
∣∣∣ �m H−ε+δ(Hε, N).

Here, the implied constants depend only on m. ‖F‖G/Γ stands for the Lipschitz

norm of a function F on G/Γ. The construction of the error function δ(·, ·) >
0 is defined in (8.6) and independent of all the parameters here, and it satisfies

limN→∞ δ(a,N) = 0 for all a > 0. Moreover, we have δ(a,N) � aC(log N
aC )−

1
100

for a constant C = C(m) > 0 assuming aC � (logN)
1

150 .

In addition,

(1.8) sup
‖F‖G/Γ≤1

g∈G,x∈G/Γ

1

HN

∑

n≤N

∣∣∣
∑

h≤H

μ(n+ h)F (gn+hx)
∣∣∣ �m ε+H−ε + δ(Hε, N).

The Lipschitz norm of F is defined with respect to a particular Mal’cev basis of
the Lie algebra of G that is compatible with Γ. For details, see (2.2).

By taking ε = log logH
logH , we have (Hε)C = (logH)C . If logN > (logH)150C , then

δ(Hε, N) � (logH)C
(
log N

(logH)C

)− 1
100

� (logN)
1

150 (logN)−
1

100 = (logN)−
1

300 .

After redefining the constant C, the following corollary immediately follows:

Corollary 1.3. Suppose G is a connected, simply connected m-dimensional nilpo-

tent Lie group and Γ ⊂ G is a lattice. Then there exists H0 = H0(G,Γ) > 0 and

C = C(m) > 0, such that:

For all H,N ∈ N with H > H0 and logN > (logH)C ,

(1.9)

sup
‖F‖G/Γ≤1

g∈G,x∈G/Γ

1

HN

∑

n≤N

∣∣∣
∑

h≤H

μ(n+ h)F (gn+hx)
∣∣∣

�m
log logH

logH
+ (logN)−

1
300 .

In particular, in the settings of Corollary 1.3,

(1.10) lim
H→∞

1

H
lim sup
N→∞

1

N

∑

n≤N

∣∣∣
∑

h∈H

μ(n+ h)F (gn+hx)
∣∣∣ = 0,

uniformly for all g ∈ G, x ∈ X and functions F : G/Γ → C from a given uniformly
Lipschitz family.

Remark 1.4. Theorem 1.2 and Corollary 1.3 still hold if μ is replaced by the Liouville
function λ. Theorem 1.2 remains true for any multiplicative function β that is non-
pretentious in the sense M(βχ,X) → ∞ as X → ∞ for all Dirichlet characters
χ, after choosing a different error function δ(·, ·). The function δ depends on the
decay of the functions M(βχ,X). For the definition of the quantitiy M(·, X), see
Definition 5.1.

Remark 1.5. Theorem 8.1, and thus Theorem 1.2 and Corollary 1.3 as well, are
actually valid for all polynomial sequnces {g(n, h)Γ} in G/Γ in lieu of {gn+hx}.
This in particular covers orbits of unipotent affine automorphisms as in [FFKPL19].
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MÖBIUS DISJOINTNESS FOR NILSEQUENCES 3885

We now outline the organization of the paper. The strategy in our proof mixes
those from [GT12b] and [MRT15]. The main new difficulty is that, while for H
sufficiently large, each individual short range orbit {gn+hx}1≤h≤H in G/Γ should
equidistribute well in a subnilmanifold Yn by [GT12a], in order to apply the bilinear
method, it is necessary to know that the equidstribution behaviors display a similar
pattern in Yn and Yn′ when pn ≈ p′n′ for a pair of bounded prime numbers p, p′.
It is for this reason that we choose to view g(n+h), where g is a polynomial in one
variable, as a polynomial g(n, h) in two variables n and h. After introducing the
background notions in Section 2, in Section 3 we derive a variation of Green-Tao’s
quantitative version of Leibman’s Theorem that better adapts to our situation.
Namely, we show that when N and H are both sufficiently large, {g(n, h)Γ}1≤h≤H

is equidistributed in some Yn for a typical n ≤ N , and the equidistrbution patterns
in all such Yn’s are correlated to each other. Section 4 sets up the bilinear method
scheme and separates the estimate into minor and major arcs along each short
interval. In the major arc part (Section 5), the Matomäki-Radziwi�l�l-Tao estimate
can be applied as the correspondence n → Yn is periodic. In the minor arc part
(Section 6), we use Lemma 6.2 to replace the bilinear sum in [MRT15], which
becomes a sum of 4-fold products after applying Cauchy-Schwarz and would get too
complicated for nilsequences, with one that consists of 2-fold products recording the
correlations between short orbits of the form {g(n, p(h+r))} and {g(n′, p′(h+r′))}
where pn ≈ p′n′. The bound of such correlations, for all but a small portion of
choices of (n, n′, p, p′), will be given by Proposition 6.10 and proved in Section 7
using the aforementionned correlation among equidistribution patterns. Finally,
Section 8 merges the minor and major arcs and fixes appropriate parameters to
conclude the proof.

Notation 1.6. In this paper:

• [N ] stands for the interval of integers {1, · · · , N}.
• X = OY (Z) or X �Y Z means that X

Z is bounded by a constant that
depends only on Y .

• Working under Hypothesis 2.13, we shall assume by default that the im-
plicit constant Y depend on the degree d of the filtration and the dimension
m of the nilmanifold, without including m, d in the subscript. For exam-
ple, OA(1) will actually stand for OA,m,d(1). Similarly, from now on the
notation � will always stand for �m,d.

• Many implicit constants O(1) = Om,d(1) will appear in the proof. For
simplicity, we will use a common constant C0 = Om,d(1) ≥ 1 that is large
enough for all these purposes.

• For α ∈ R, ‖α‖R/Z denotes maxk∈Z |α− k|.

2. Background on sequences in nilmanifolds

In this section, we quickly collect all the facts and notions that we will need from
Green-Tao’s papers [GT12a, §1, §2 & §A] and [GT12b, §3].

A connected, simply connected Lie group G is nilpotent if it has a nilpotent
filtration G•, i.e. a descending sequence of groups G = G1 ⊇ G2 ⊇ · · · ⊇ Gd ⊇
Gd+1 = {e} such that

(2.1) [G,Gi−1] ⊆ Gi, ∀i ≥ 2.
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3886 XIAOGUANG HE AND ZHIREN WANG

This actually implies [Gi, Gj ] ⊆ Gi+j for all i, j ≥ 1. The number d is the degree

of the filtration G•. The step of G is the degree of the lower central filtration
defined by Gi+1 = [G,Gi].

For all i ≥ d+ 1, we will adopt the convention that Gi = {e}.
Denote by gi the Lie algebra Gi, then g• = {gi} is a filtration of Lie algebras,

i.e. [g, gi] ⊆ gi+1, if and only if Gi is a filtration.
A connected, simply connected nilpotent Lie group G has a lattice Γ if and only

if it has an algebraic structure defined over Q. In this case, for a connected Lie
subgroup H of G, H is an algebraic subgroup defined over Q if and only if H ∩ Γ
is a lattice of H. A lattice Γ must be cocompact, and the compact quotient G/Γ is
called a nilmanifold.

A basis V = {V1, · · · , Vm} of g is R-rational if the structure constants cijk in the
Lie bracket relations [Vi, Vj ] =

∑
k cijkVk are rational numbers whose heights are

bounded by R. Recall that the height of a rational number a
b is max(|a|, |b|) when

a, b are coprime. For nilmanifolds G/Γ, G always has a rational basis. A special
kind of rational basis, Mal’cev basis, was defined in [Mal49]. A rational basis
V = {V1, · · · , Vm} is a Mal’cev basis adapted to (G•,Γ) if it satisfies the following
properties in [GT12a, Def. 2.1]:

(i) {Vj , Vj+1, · · · , Vm} spans an ideal of g for all 0 ≤ j ≤ m;
(ii) For each 1 ≤ i ≤ d and mi = dimGi, the Lie algebra gi of Gi is the linear

span of {Vm−mi+1, Vm−mi+2, · · · , Vm};
(iii) There is a diffeomorphism ψV : G → Rm determined by

ψV

(
exp(ω1V1) · · · exp(ωmVm)

)
= (ω1, · · · , ωm);

(iv) In the coordinate system ψV , Γ = ψ−1
V (Zm).

When G has a lattice Γ, there is always a Mal’cev basis adapted to the lower
central filtration. In the coordinate system given by ψV , the set ψ−1

V ([0, 1)m) will
be a fundamental domain of the projection G → G/Γ.

In the sequel, we will always assume that G/Γ has a Mal’cev basis V adapted to
(G•,Γ) for some filtration G•, and fix the tuplet (G,G•,Γ,V). In this case, every
Gi is a rational subgroup of G, and Γi = Gi ∩ Γ is a lattice of Gi.

The nilmanifold G/Γ has a tower structure of principal torus bundles

G/Γ = G/Gd+1Γ → G/GdΓ → · · · → G/G2Γ → G/G1Γ = {pt},

where G/Gi+1Γ is a principal Gi/Gi+1Γ-bundle over G/GiΓ. Remark that here
Gi/Gi+1Γ ∼= Tmi−mi+1 is the quotient of the abelian Lie groupGi/Gi+1

∼= Rmi−mi+1

by the lattice generated by the projections of Vm−mi+1, · · · , Vm−mi+1
.

A vector v ∈ g is an R-rational combination of elements in V if v =
∑

vjVj

where the vj ’s are rational numbers of height bounded by R. A subgroup H ⊆ G
is R-rational with respect to V if its Lie algebra has a basis consisting of such
R-rational combinations.

The Mal’cev basis V induces a right invariant metric dG on G, which is the
largest metric such that d(x, y) ≤ |ψV(xy

−1)| always holds, where | · | denotes the
l∞-norm on Rm. Actually, this in turn induces a metric dG/Γ on G/Γ. For functions
F : G/Γ → C, ‖F‖ will denote the Lipschitz norm

(2.2) ‖F‖ = ‖F‖C0 + sup
n�=y

|F (x)− F (y)|

dG/Γ(x, y)
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MÖBIUS DISJOINTNESS FOR NILSEQUENCES 3887

with respect to dG/Γ. We will also write ‖F‖G/Γ instead, when it becomes necessary
to emphasize that the distance is determined by the Mal’cev basis of G/Γ.

The symbol
∫
G/Γ

will stand for integration with respect to the unique left-

invariant probability measure on G/Γ.
The nilpotent Lie group G is unimodular, and G/Γ has a unique left-invariant

probability measure. The notation
∫
G/Γ

will refer to the average with respect to

this measure.
Since G/[G,G] is abelian and the commutator subgroup [G,G] is a rational sub-

group, (G/Γ)/([G,G]/([G,G]∩Γ)) = G/[G,G]Γ is a quotient torus of the connected
abelian Lie group G/[G,G] ∼= R, called the horizontal torus with respect to

G• of G/Γ.

Definition 2.1 ([GT12a, Definition 2.6]). A horizontal character is a continuous
additive homomorphism η : G/[G,G]Γ → R/Z. We remark that η can also be
viewed as a continuous group homomorphism η : G → R/Z that vanishes on the
subgroup [G,G]Γ.

Using the coordinate representation ψV , there exists an integer vector a ∈ Zm,
supported on the first m−m2 coordinates, such that

(2.3) η(g) = a · ψV(g)(mod Z).

The modulus |η| of η is defined to be |a|. Note η is trivial if and only if |η| = 0.
By abusing notation, we shall also denote by η the linear functional η(v) = a · v on
Rm ∼= g.

Definition 2.2. For a polynomial function f : [N ] → R/Z of degree at most d, f

can be written as f(n) =
∑d

i=0 αi

(
n
i

)
, where αi are uniquely determined modulo 1.

The C∞([N ])-norm of f is given by

‖f‖C∞([N ]) =
d

max
i=0

N i‖αi‖R/Z.

Lemma 2.3 ([GT12b, Lemma 3.2]). If f(n) =
∑d

i=0 βin
i =

∑d
i=0 αi

(
n
i

)
, then there

is an integer D = Od(1) such that ‖Dβi‖R/Z �d N−i‖f‖C∞[N ] for all i = 0, · · · , d.

Lemma 2.4 ([GT12a, Lemma 4.5]). Suppose f(n) =
∑d

i=0 βin
i, δ ∈ (0, 1

2 ), ε ∈

(0, δ
2 ). If f(n)(mod Z) belongs to an interval I ⊆ R/Z of length ε for at least δN in-

tegers n ∈ [N ]. Then for some positive integer D �d δ−Od(1), ‖Df(mod Z)‖C∞[N ]

�d εδ−Od(1).

For an integer vector N ∈ Nr, write [N] = [N1]× · · · × [Nr] ⊂ Zr.

Definition 2.5 ([GT12a, Definition 9.1]). For a multiparatmeter finite sequence
{g(n)}n∈[N] in G and an integer vector N ∈ Nr, g is said to be (W,N)-smooth, if
for all n ∈ [N],

(1) dG(g(n), idG) ≤ W ,
(2) dG(g(n), g(n+ ei)) ≤

W
Ni

for all i, where ei = (0, ..., 0, 1, 0, ..., 0) is the unit
vector along the i-th coordinate direction.
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3888 XIAOGUANG HE AND ZHIREN WANG

If g1, g2 are both (W,N)-smooth, and W ≥ R, where the metric is induced by
an R-rational Mal’cev basis, then g1g2 is (WO(1),N) smooth.

Definition 2.6. An element g ∈ G is R-rational, if there exists 1 ≤ r ≤ R such
that gr ∈ Γ. An element z ∈ G/Γ is R-rational, if z = gΓ for some R-rational
group element g.

Lemma 2.7 ([GT12a, Lemma A.11]). Suppose the Mal’cev basis V adapted to

(G•,Γ) is R-rational. With respect to V, if g is R-rational then ψV(g) ∈
1
qZ

m for

some q � RO(1). Conversely, if ψV(g) ∈
1
RZm then g is RO(1)-rational. Moreover,

the product of two R-rational elements is RO(1)-rational.

Definition 2.8. For a finite arithmetic progression A = {qn + r}n∈[N ] in Z, a
finite sequence {x(n)}n∈A in G/Γ is said to be δ-equidistributed in G/Γ if for all
complex valued Lipschitz function F on G/Γ,

∣∣∣∣∣ E
n∈A

F (x(n))−

∫

G/Γ

F

∣∣∣∣∣ ≤ δ‖F‖G/Γ;

and it is totally δ-equidistributed in G/Γ if the subsequence {x(n)}n∈A′ is δ-
equidistributed in G/Γ for all arithmetic progressions A′ ⊆ A of length at least
δN .

For a map g : Zr → G, the derivative along h ∈ Zr is

(2.4) ∂hg(n) = g(n+ h)g(n)−1.

Definition 2.9. A map g : Zr → G is a polynomial map with respect to G•

if for all i and l1, · · · , li, n ∈ Z, the i-th derivative ∂l1 · · · ∂lig(n) takes values in Gi.
The set of polynomial sequences with respect to G• is noted by Poly(Zr, G•).

Lemma 2.10. Suppose a Mal’cev basis V adapted to (G•,Γ) is R-rational where

R ≥ 10. Let η be a non-trivial horizontal character of G/Γ, whose modulus |η|
is bounded by R with respect to V. If for a polynomial sequence g ∈ Poly(Z, G•)
and N � R, ‖η ◦ g‖C∞([N ]) ≤ R, then {g(n)Γ}n∈[N ] is not totally (O(R))−1-

equidistributed.

Proof. Since ‖η ◦ g‖C∞([N ]) ≤ R, by Lemma 2.3 ‖η ◦ g(n)− η ◦ g(0)‖R/Z � RnN−1.
This implies that for the the mapping η̃(x) = exp(2πiη(x)) from G/Γ to the unit
circle in C, the values of η̃(g(n)) are within distance � Rδ to each other for 0 <
n ≤ δN . Using the convention in Notation 1.6, one can assume that the implicit
constant here is C0. In particular,

(2.5)
∣∣∣ E
0<n≤δN

η̃(g(n)Γ)
∣∣∣ > 1− C0Rδ ≥

1

2
,

if δ < 1
2C0

−1R−1. Because η is a non-zero character, η̃ has zero average on G/Γ.
In addition, ‖η̃‖G/Γ ≤ 2π|η| ≤ 2πR. It follows that the sequence {g(n)Γ}n∈[N ] is

not totally min( 12C0
−1R−1, 1

4πR
−1)-equidistributed in G/Γ. �

Lemma 2.11. If δ ∈ (0, 1) and there exists an interval A ⊆ [N ] of length at

least δN such that {g(n)}n∈A is not δ-equidistributed in G/Γ, then for some N ′ ∈

[ δ
2

2 N,N ], (g(n))n∈[N ′] is not δ2

2 -equidistributed in G/Γ.
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Proof. One may write A = {N1 < n ≤ N2} = [N2] \ [N1]. Write θi = Ni

N and
θ = θ2 − θ1, then θ ≥ δ.

There exists a Lipschitz function F on G/Γ with
∫
G/Γ

F = 0 such that

∣∣∣∣
θ2
θ

E
n∈[N2]

F (g(n)Γ)−
θ1
θ

E
n∈[N1]

F (g(n)Γ)

∣∣∣∣ =
∣∣∣∣ E
n∈A

F (g(n)Γ)

∣∣∣∣ > δ‖F‖.

If θ1 ≥ δ2

2 and
∣∣En∈[N1] F (g(n)Γ)

∣∣ > δ2

2 ‖F‖, then N1 ≥ δ2

2 N and (g(n))n∈[N1] is

not δ2

2 -equidistributed.

Otherwise, either θ1 < δ2

2 or
∣∣En∈[N1] F (g(n)Γ)

∣∣ < δ2

2 ‖F‖. In both cases,

∣∣∣∣
θ1
θ

E
n∈[N1]

F (g(n)Γ)

∣∣∣∣ <
δ2

2
‖F‖,

and thus
∣∣∣∣ E
n∈[N2]

F (g(n)Γ)

∣∣∣∣ ≥
∣∣∣∣
θ2
θ

E
n∈[N2]

F (g(n)Γ)

∣∣∣∣ > δ‖F‖ −
δ2

2
‖F | ≥

δ

2
‖F‖.

So (g(n))n∈[N2] is not
δ
2 -equidistributed. Moreover, N2 ≥ θN ≥ δN . �

The family of Poly(Zr, G•) is known to be a group (Lazard [Laz54], Leibman
[Lei98,Lei02] and Green-Tao [GT12a]). A description of Poly(Zr, G•) was given in
Leibman and Green-Tao’s works:

Lemma 2.12 ([Lei10, §4], [GT12a, §6]). Suppose V is a Mal’cev basis adapted to

(G•,Γ), then g ∈ Poly(Zr, G) if and only if ψV(g(n)) has the form

ψV(g(n)) =
∑

j∈Zr
≥0

ωj

(
n1

j1

)
· · ·

(
nr

jr

)
,

where ωj ∈ Rm and (ωj)i = 0 for all i ≤ m−m|j| with |j| = j1 + · · ·+ jr.

In particular, if |j| > d, then m|j| = 0 and thus ωj = 0.
In the rest of this paper we will work under the following hypothesis

Hypothesis 2.13. G/Γ is an m-dimensional compact nilmanifold with a degree

d rational filtration G•, and V is an R0-rational Mal’cev basis adapted to (G•,Γ),
where R0 > 10. Moreover, g ∈ Poly(Z2, G•) is a polynomial map determined by

coefficients {ωj,k}j,k∈Z≥0
as in Lemma 2.12. Let R ≥ R0 be a parameter to be

determined later. In particular, V is also an R-rational Mal’cev basis adapted to

(G•,Γ).

The formula in Lemma 2.12 writes in this case as:

(2.6) ψV(g(n, h)) =
∑

j,k≥0
j+k≤d

ωjk

(
n

j

)(
h

k

)
,

where (ωjk)i = 0 for all i ≤ m−mj+k.
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3. Quantitative factorization theorem for 2-parameter polynomials

We now state Green-Tao’s effectivization of a theorem of Leibman [Lei05], and
deduce a variation of it that fits our purpose.

Proposition 3.1 ([GT12a, Theorem 2.9]). Suppose G/Γ is an m-dimensional com-

pact nilmanifold with a degree d rational filtration G•, and V is an R-rational

Mal’cev basis adapted to (G•,Γ) where R ≥ 10. For f ∈ Poly(Z, G•), and N ∈ N
such that N � RO(1), at least one of the following holds:

(1) either {f(n)Γ}n∈[N ] is R−1-equidistributed in G/Γ;

(2) or there exists a horizontal character η of G/Γ of modulus |η| ≤ RO(1) such

that ‖η ◦ f‖C∞([N ]) ≤ RO(1).

Corollary 3.2. In Proposition 3.1, one may replace in part (1) the property “R−1-

equidistributed” by “totally R−1-equidistributed”.

Proof. Suppose {f(n)Γ}n∈[N ] is not totally R−1-equidistributed. There exist in-

tegers 0 ≤ a < b ≤ R, and an interval A ⊆ [Nb ] of length at least R−1N , such

that the sequence {f̃(n)Γ}n∈A is not R−1-equidistributed, where f̃(n) = f(bn+a).
By Lemma 2.11, there exists N ′ < N with N ′ ≥ 1

2R
−2 · N

b ≥ R−O(1)N such that

{f̃(n)Γ}n∈[N ′] is not R−O(1)-equidistributed. By Proposition 3.1, there exists a

horizontal character η such that 0 < |η| < RO(1) and ‖η ◦ f̃‖C∞([N ′]) ≤ RO(1).

As N ′ ≥ R−O(1)N , this implies that ‖η ◦ f̃‖C∞([N ]) ≤ RO(1), which in turn

implies by [GT12a, 7.10] that there is a positive integer D ≤ RO(1) such that
‖Dη◦f‖C∞([N ]) � RO(1). The corollary then follows after replacing η with Dη. �

Corollary 3.3. Suppose G is an m-dimensional simply connected Lie group with

a degree d rational filtration G•, and Γj is a lattice in G for j = 1, 2 and Vj is an

R-rational Mal’cev basis adapted to (G•,Γj). Assume in addition that elements in

V2 are R-rational combinations of elements in V1.

For f ∈ Poly(Z, G•), and N ∈ N such that N � RO(1), if {f(n)Γ1}n∈[N ] is

not totally R−1-equidistributed in G/Γ1, then {f(n)Γ2}n∈[N ] is not totally R−O(1)-

equidistributed in G/Γ2.

Proof. By Corollary 3.2, there is a non-trivial horizontal character η of G/Γ1, i.e.
a character G → R/Z that annihilates Γ1, of size |η|V1

≤ RO(1) that satisfies
‖η ◦ f‖C∞([N ]) ≤ RO(1). Here the modulus |η|V1

≤ RO(1) is measured in terms of
the basis V1. Because all elements of V2 are R-rational combinations of those in
V1, by Lemma 2.7, there is a positive integer D ≤ RO(1) such that for all γ ∈ Γ2,
γD ∈ Γ1 and thus Dη(γ) = η(γD) = 0. Then Dη is a horizontal character of
both G/Γ1 and G/Γ2 with |Dη|V1

≤ RO(1). Again, because all elements of V2 are
R-rational combinations of those in V1, |Dη|V2

≤ RO(1). After replacing η with
Dη, one may assert that:

There exists a non-trivial horizontal character η of G/Γ2 such that |η|V2
≤ RO(1)

and ‖η ◦ f‖C∞([N ]) ≤ RO(1). By Lemma 2.10, {f(n)Γ2}n∈[N ] fails to be totally

R−O(1)-equidistributed. �

We will need later the following refined statement to deal with generic restrictions
of a 2-parameter polynomial to one variable.
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Proposition 3.4. Under Hypothesis 2.13, for any R̃ ≥ R and N,H ∈ N such that

N,H � R̃O(1), at least one of the following holds:

(1) either {g(n, h)Γ}h∈[H] is totally R̃−1-equidistributed in G/Γ for all but

R̃−1N values of n ∈ [N ];

(2) or there exists a horizontal character η of G/Γ of modulus |η| ≤ R̃O(1) such

that ‖η(ωj,k)‖R/Z ≤ R̃O(1)N−jH−k for all j, k ≥ 0.

Proof. Assuming (1) fails, we try to establish (2). For more than R̃−1N values of

n ∈ [N ], {g(n, h)Γ}h∈[H] is not totally R̃−1-equidistributed. For every such n, by

Corollary 3.2 there is a horizontal character η with |η| ≤ R̃O(1) such that

(3.1) ‖η ◦ g(n, ·)‖C∞([H]) � R̃O(1).

Applying pigeonhole principle to the at least R̃−1N values of n ∈ [N ], there is a

common η with 0 < |η| < R̃O(1), such that (3.1) holds for at least R̃−O(1)N choices
of n ∈ [N ]. By (2.6), this implies:

∥∥∥∥∥
∑

j,k≥0
j+k≤d

(
n

j

)(
·

k

)
η(ωjk)

∥∥∥∥∥
C∞([H])

� R̃O(1),

which by Definition 2.2 means that
∥∥∥∥∥

d−k∑

j=0

(
n

j

)
η(ωjk)

∥∥∥∥∥
R/Z

� R̃O(1)H−k, ∀k = 0, · · · , d.

As this inequality holds for R̃−O(1)N choices of n ∈ [N ], by Lemma 2.4 there is a
positive integer D > 0 such that

∥∥∥∥∥D
d−k∑

j=0

(
·

j

)
η(ωjk)

∥∥∥∥∥
C∞([N ])

� R̃O(1)H−k · R̃O(1) = R̃O(1)H−k, ∀k = 0, · · · , d.

In other words,

(3.2) ‖Dη(ωjk)‖R/Z � R̃O(1)H−kN−j , ∀k, j ≥ 0 such that k + j ≤ d.

This is exactly the desired conclusion after replacing η with Dη. �

Lemma 3.5. If Case 3.4.(2) holds in Proposition 3.4, then there is a decomposition

g = εg′γ with ε, g′, γ ∈ Poly(Z2, G) such that:

(1) ε is (R̃O(1), (N,H))-smooth;

(2) η ◦ g′ = 0 while regarding η : G/Γ → R/Z as a morphism from G to R;

(3) γ(n, h) is R̃O(1)-rational for all n, h ∈ Z.

Proof. The proof is the same as that of [GT12a, Lemma 9.2] except that we are
not reducing to the case g(0) = id. For completeness, we give a sketch.

For all integer pairs j, k ≥ 0 with j+k ≤ d, choose ujk ∈ Rm such that η(ujk) ∈ Z

and |ωjk − ujk| � R̃O(1)N−jH−k, and vjk ∈ Qm such that η(ujk) = η(vjk), where
η is regarded as an R-valued linear functional from Rm ∼= g. This can be done
while requiring that (ujk)i = (vjk)i = 0 for all i ≤ m − mj+k. Furthermore, one

can require that vj,k ∈ ( 1
DZ)m for some integer 1 ≤ D ≤ R̃O(1).

Licensed to Penn St Univ, University Park. Prepared on Thu Sep  2 22:14:32 EDT 2021 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Then define ε, g′ and γ by

ψV(ε(n, h)) =
∑

j,k≥0
j+k≤d

(ωjk − ujk)

(
n

j

)(
h

k

)
, ψV(γ(n, h)) =

∑

j,k≥0
j+k≤d

vjk

(
n

j

)(
h

k

)
,

and g′(n, h) = ε(n, h)−1g(n, h)γ(n, h)−1. Then by Lemma 2.12, ε, γ belong to
Poly(Z2, G•) and hence so does g′ as Poly(Z2, G•) is a group.

By the bound on |ωjk − vjk|, we know that for all (n, h) ∈ [N ]× [H],

|ψV(ε(n+ 1, h))− ψV(ε(n, h))| �
∑

j≥1,k≥0
j+k≤d

R̃O(1)N−jH−k · nj−1hk � R̃O(1)N−1

and similarly |ψV(ε(n, h+1))−ψV(ε(n, h))| � R̃O(1)H−1. Moreover, |ψV(ε(0, 0))| =

|ω00 − v00| � R̃O(1). These inqualities guarantee property (1) for ε by [GT12a,
Lemma A.5].

Property (2) holds as

η(g′(n, h))

=η(g(n, h))− η(ε(n, h))− η(γ(n, h))

=
∑

j,k≥0
j+k≤d

η(ωjk)

(
n

j

)(
h

k

)
−

∑

j,k≥0
j+k≤d

η(ωjk − ujk)

(
n

j

)(
h

k

)
−

∑

j,k≥0
j+k≤d

η(vjk)

(
n

j

)(
h

k

)

=0.

Finally, it follows from Lemma 2.7 that γ is R̃(O(1)-rational. This also implies by
[GT12a, Lemma A.12] (or rather the natural multiparameter extension of it) that

for some positive integer q � (R̃O(1))O(1) � R̃O(1), γ(n, h)Γ is qZ2-periodic. Thus
we have property (3). �

Using this, Green-Tao’s factorization theorem [GT12a, Theorems 1.19 & 10.2]
can be easily refined to the following:

Theorem 3.6. Under Hypothesis 2.13, for any B ≥ 1, N,H ∈ N such that N,H �
RO(1), there exists an integer W ∈ [R,RO(Bm)], a W -rational subgroup G′ ⊆ G, a

W -rational Mal’cev basis V ′ adapted to (G′
•, G

′ ∩ Γ) consisting of W -rational com-

binations of vector in V, and a decomposition g = εg′γ with ε, g′, γ ∈ Poly(Z2, G•)
such that:

(1) ε is (W, (N,H))-smooth.

(2) g′ takes value in G′. And, with respect to the metric induced by V ′ on G′/Γ′,

{g′(n, h)}h∈[H] is totally W−B-equidistributed for all but at most W−BN
values of n ∈ [N ];

(3) γ(n, h) is W -rational for all n, h ∈ Z. Moreover for some 1 ≤ q ≤ W ,

{γ(n, h)Γ}(n,h)∈Z2 is qZ2-periodic.

Proof. Apply Proposition 3.4 with R̃ = RB. If Case 3.4.(1) holds, then the theorem
is true for G′ = G, W = R, ε(n, h) = γ(n, h) = id and g′ = g.

If Case 3.4.(2) holds for a non-trivial horizontal character η1 of G/Γ of norm

� R̃O(1), then Lemma 3.5 produces a decomposition g = ε1g
′
1γ1. In this case,

let G′
1 = kerG η1 and Γ′

1 = G′
1 ∩ Γ. Then (G′

1)• = {(G′
1)i}i≥0 = {G′

1 ∩ Gi}i≥0

is a filtration of G′
1. Notice that each (G′

1)i is a R̃O(1)-rational subgroup. For
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R1 = R̃O(1) = RO(B), by [GT12a, Lemma A.10] G1 has an R1-rational Mal’cev
basis V1 adapted to ((G1)•,Γ

′
1) consisting of R1-rational combinations of vector

in V .
Apply Proposition 3.4 again, and Lemma 3.5 if necessary, with R̃ = RB

1 to the
sequence {g′1(n)Γ

′
1} in G1/Γ

′
1. The argument is iterated if Case 3.4.(2) holds in

every step. So in the k-th step, Proposition 3.4 is applied with R̃ = RB
k−1. With

Rk =
(
RB

k−1

)O(1)
= (Rk−1)

O(B):

• a non-trivial horizontal charcter ηk of G′
k−1/Γ

′
k−1 of norm � Rk;

• an Rk-rational Mal’cev basis Vk adapted to ((G′
k)•,Γ

′
k) consisting of Rk-

rational combinations of vector in Vk−1, whereG
′
k = kerGk−1

ηk and (G′
k)i =

G′
k ∩Gi;

• a decomposition g′k−1 = εkg
′
kγk in the group Poly(Z2, (Gk−1)•),

such that:

• ε is (Rk, (N,H))-smooth with respect to the metric induced by Vk−1 on
G′

k−1;

• g′k takes value in G′
k, and thus g′k ∈ Poly(Z2, (G′

k)•);
• γ′

k is Rk-rational with respect to the Mal’cev basis Vk−1.

As dimG′
k strictly decreases, the process must stop at some k ≤ m. This means

Case 3.4.(1) holds, i.e. {g′k(n, h)Γk}h∈[H] is totally R−B
k -equidistributed in G′

k/Γ
′
k

for all but R−B
k N values of n ∈ [N ].

Write g = εg′γ where ε = ε1 · · · εk, g
′ = g′k and γ = γk · · · γ1, G

′ = G′
k, V

′ = Vk

and W = Rk. Notice that since for each j, εj ∈ Poly(Z2, (G′
j)•) ⊆ Poly(Z2, G•)

and Poly(Z2, G•) is a group, ε ⊆ Poly(Z2, G•). Similarly γ is in Poly(Z2, G•) and
so is g′.

It was shown above that the property (2) in the theorem holds for g′. The
properties (1) and the W -rationality in (3) follow in the same way as in the proof
of [GT12a, Theorem 10.2], after replacing W with WO(1) if necessary. Furthermore,
by a multiparameter version of [GT12a, Lemma A.12], the 2-parameter sequence
{γ′(n, h)Γ}(n,h)∈Z2 is qZ2-periodic for some q � WO(1). Once again by replacing

W with WO(1), we obtain the property (3) for γ.

Finally, remark that as k ≤ m, Rk � RO(Bm) and W � R
O(1)
k � RO(Bm). �

4. Separation of major and minor arcs

From now on, we work under Hypothesis 2.13.

Notation 4.1. For any B1 > 10, let N , H, and g be as in Theorem 3.6, applied with
B = B1. Also let ε, g′, γ, W , q, G′ and V ′ be as in the conclusion of the theorem.
Without loss of generality, we may assume R ≥ 10. In addition, after replacing the
period q with a multiple of it if necessary, we may assume q ∈ (W2 ,W ].

Because W ∈ [R,RO(B1
m)], we will fix a constant C1 = Om,d(1) ≥ 1 and assume

(4.1) W ∈ [R,RC1B1
m

].
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Let F : G/Γ → C be a function with ‖F‖ ≤ 1, β is a 1-bounded multiplicative
arithmetical function. For every n > 0, choose θn from the unit circle such that

(4.2)
∣∣ ∑

h≤H

β(n+ h)F (g(n, h)Γ)
∣∣ = θn

∑

h≤H

β(n+ h)F (g(n, h)Γ).

Split (0, H] into W 2 subintervals I1, · · · , IW 2 of equal lengths W−2H. Then
for each n, there exist an integer n0 ∈ Z/qZ such that n ≡ n0(mod q). Identi-
fying arithmetic progressions with subsets of N, the arithmetic progression [H] is
decomposed as the disjoint union

[H] =
⊔

j∈J

In,j

of arithmetic progressions

In,j = {h ∈ Ik ∩ N : n0 + h ≡ j(mod q)},

where

(4.3) J = {(k, j) : 1 ≤ k ≤ W 2, 0 ≤ j ≤ q − 1}.

Remark that

(4.4) #J = W 2q ∈ (
1

2
W 3,W 3].

Thus the length of the arithmetic progression In,j satisfies

(4.5) #In,j ∈ [W−3H, 2W−3H)

Because ε is (W, (N,H))-smooth, dG(ε(n, h), idG) ≤ W for all (n, h) ∈ [N ]× [H].
Moreover, for any given 1 ≤ k ≤ W 2, dG(ε(n, h), ε(n, h

′)) ≤ W
H ·W−2H ≤ W−1 for

all h, h′ ∈ In,k.
For a given pair (n, j) = (n, k, j), Choose εn,j = ε(n, h) for the smallest h ∈ In,j.

As In,j ⊆ In,k, we know

(4.6) dG(εn,j, ε(n, h)) ≤ W−1, ∀h ∈ In,j.

Moreover, by (W, (N,H))-smoothness,

(4.7) dG(εn,j, idG) � W.

Choose a rational element γn,j ∈ G such that γn,jΓ = γ(n, h)Γ for any h ∈ In,j.
The value of γn,j can in fact be chosen to be independent of the choice of h ∈ In,j
and q-periodic in n, because In,j ⊂ qZ + j − n and γ(n, h) is q-periodic in both n

and h. As γ(n, h) is W -rational, and γn,j = γ(n, h)ξ for some ξ ∈ Γ, γn,j is W
O(1)-

rational by Lemma 2.7. Moreover, we may choose γn,j from the fundamental domain

ψ−1
V ([0, 1)m). In particular, by [GT12a, Lemma A.4],

(4.8) dG(γn,j, idG) � RO(1).

Define Gn,j by Gn,j = γ−1
n,jG

′γn,j and Γn,j = Gn,j ∩ Γ.

Lemma 4.2. The following properties are true:

(1) Gn,j is a WO(1)-rational subgroup and Γn,j is a lattice of it;

(2) The assignments Gn,j and Γn,j are q-periodic in n;
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(3) Gn,j has a WO(1) -rational Mal’cev basis Vn,j adapted to ((Gn,j)•,Γn,j) that

consists of WO(1)-rational combinations of elements from V. Here (Gn,j)•
consists of the subgroups (Gn,j)i = Gn,j ∩Gi.

Proof. Because γn,j is W
O(1)-rational and G′ is a W -rational subgroup, by [GT12a,

Lemma A.13], Gn,j is a WO(1)-rational subgroup. As γn,j is q-periodic in n, so are
the correspondences from (n, j) to Gn,j and Γn,j. The last property is given by
[GT12a, Proposition A.10]. �

Define gn,j(h) = γ−1
n,jg

′(n, h)γn,j ∈ Gn,j. Then gn,j ∈ Poly(Z, (Gn,j)•) and

(4.9)
g(n, h)Γ =ε(n, h)g′(n, h)γ(n, h)Γ = ε(n, h)g′(n, h)γn,jΓ

=ε(n, h)γn,jgn,j(h)Γ, ∀h ∈ In,j.

We then define a new function Fn,j : Gn,j/Γn,j → C by

(4.10) Fn,j(gΓn,j) = θnF (εn,jγn,jgΓ).

Note that Fn,j is well-defined because if g = ĝη with η ∈ Γn,j ⊂ Γ, then gΓ = ĝΓ.
By (4.7), (4.8) and [GT12a, Lemma A.5], we get

(4.11) ‖Fn,j‖Gn,j/Γn,j
≤ (WRO(1))O(1)‖F‖G/Γ ≤ WO(1).

By (4.9), (4.11) and (4.6), for all h ∈ In,j,

(4.12) dG/Γ(εn,jγn,jgn,j(h)Γ, g(n, h)Γ) ≤ W−1,

and

(4.13) |Fn,j(gn,j(h)Γn,j)− θnF (g(n, h)Γ)| ≤ W−1‖F‖.

Lemma 4.3. For all Lipschitz function F on G/Γ, the sum

(4.14)
∑

n≤N

∣∣∣
∑

h≤H

β(n+ h)F (g(n, h)Γ)
∣∣∣

is approximated by

(4.15)
∑

n≤N

∑

j∈J

∑

h∈In,j

β(n+ h)Fn,j(gn,j(h)Γn,j),

up to an error bounded by W−1HN .

Proof. As [H] =
⊔

j∈J In,j, the claim follows from (4.2) and (4.13). �

For each triple (n, j), decompose Fn,j as F̃n,j + En,j where En,j =
∫
Gn,j/Γn,j

Fn,j

is a constant and F̃n,j has zero average on Gn,j/Γn,j. Then (4.15) splits into the
sum of a major arc part

(4.16)
∑

n≤N

∑

j∈J

∑

h∈In,j

En,jβ(n+ h).

and a minor arc part

(4.17)
∑

n≤N

∑

j∈J

∑

h∈In,j

β(n+ h)F̃n,j(gn,j(h)Γn,j),
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Note that,

(4.18) |En,j| ≤ 1,

(4.19) ‖F̃n,j‖Gn,j/Γn,j
≤ 2‖Fn,j‖Gn,j/Γn,j

� WO(1).

(4.20) ‖F̃n,j‖C0(Gn,j/Γn,j) ≤ 2.

5. Major arc estimate

The major arc estimate will concern only multiplicative functions β that are
non-pretentious as defined by Granville and Soundararajan [GS07]. Given two 1-
bounded multiplicative functions β, β′ and a parameterX≥1, a distance D(β, β′;X)
∈ [0,+∞) is defined by the formula

D(β, β′;X) :=

⎛
⎝∑

p≤X

1− Re(β(p)β′(p))

p

⎞
⎠

1/2

.

It is known that this gives a (pseudo-)metric on 1-bounded multiplicative functions;
see [GS07, Lemma 3.1]. Moreover, let

(5.1) M(β;X) := inf
|t|≤X

D(β, n �→ nit;X)2

and

(5.2)

M(β;X,Y ) : = inf
q≤Y ;χ (q)

M(βχ;X)

= inf
|t|≤X;q≤Y ;χ (q)

D(β, n �→ χ(n)nit;X)2,

where χ ranges over all Dirichlet characters of modulus q ≤ Y .
In addition, define

(5.3) M̃(β,X, Y ) = inf
X′≥X

M(β,X ′, Y ).

Remark that M̃ is increasing in X and decreasing in Y .
Instead of (4.16), we will first estimate

(5.4)
∑

n≤N

∑

j∈J

∑

h∈In,j

En,j1S(n+ h)β(n+ h).

Proposition 5.1. Assuming Hypothesis 2.13, Notation 4.1 and the following in-

equalities:

(5.5)
log logH

logH
< ε <

1

500
; 10 ≤ R0 ≤ R ≤ H

ε

C1B1m ; logH < (logN)
1
2 .
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Then for all 1-bounded multiplicative function β : N → C and function F :
G/Γ → C with ‖F‖ ≤ 1, there exists a subset S ⊆ [0, N ] ∩ N with N −#S � εN ,

such that

(5.6)

∣∣∣
∑

n≤N

∑

j∈J

∑

h∈In,j

En,j1S(n+ h)β(n+ h)
∣∣∣

�
(
W− 1

4 +W 3e−
1
2 M̃(β, N

W5 ,W )M̃(β,
N

W 5
,W )

1
2 +W 3(log

N

W 5
)−

1
100

)
HN.

Moreover, the choice of S depends only on H, N , and ε.

This will result from the following more precise statement.

Proposition 5.2. Assume the settings of Theorem 3.6, and inequalities

(5.7) 10 ≤ P1 < Q1 ≤ exp
(
(logN)

1
2

)
, (logQ1)

480 < P1;

(5.8) W 96 ≤ P1 < Q1 ≤ W−4H.

Then there exists a subset S ⊆ [0, N ] ∩ N with

(5.9) N −#S �
logP1

logQ1
N,

such that for all 1-bounded multiplicative function β : N → C and function F :
G/Γ → C with ‖F‖ ≤ 1,

(5.10)

∣∣∣
∑

n≤N

∑

j∈J

∑

h∈In,j

En,j1S(n+ h)β(n+ h)
∣∣∣

�
(
W− 1

4 +W 3e−
1
2 M̃(β, N

W5 ,W )M̃(β,
N

W 5
,W )

1
2 +W 3(log

N

W 5
)−

1
100

+
(logH)

1
6

P
1
96
1

)
HN.

Moreover, the choice of S depends only on H, N , P1 and Q1.

Proof of Proposition 5.1 assuming Proposition 5.2. Let Q1=H
96
100 and P1=Q500ε

1 .

The inequalities in (5.5), together with the fact that W ∈ [R,RC1B1
m

], imply

W < Hε < H
1

500 , Q1 < W−4H, and P1 = H480ε, which in turn guarantee (5.7)
and (5.8).

We also have

(logH)
1
6

P
1
96
1

≤
(logH)

1
6

H5ε
< H−ε < W−1,

and

logP1

logQ1
= 500ε � ε.
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So Proposition 5.1 follows from (5.10). Notice that S depends only on N , H, P1

and Q1, whereas P1 and Q1 are determined by H and ε. �

The following constants are defined in [MRT15, §2]:

Definition 5.3. Given P1, Q1 as in (5.7), let Pr, Qr be defined by the formulas

Pr = exp(r4r(logQ1)
r−1 logP1), Qr = exp(r4r+2(logQ1)

r).

Let r+ be the largest index such that Qr+ ≤ exp
( (logN)

1
2

2

)
. Also define

SP1,Q1,N = {n ≤ N : n has at least one prime factor in [Pr, Qr], ∀1 ≤ r ≤ r+}.

Lemma 5.4 ([MRT15, Lemma 2.2]). #([N ] \ SP1,Q1,N ) � logP1

logQ1
N.

In addition to the conditions in Definition 5.3, we shall also assume H � N and
(5.8), and write simply

(5.11) S = SP1,Q1,N

when it does not cause ambiguity. Clearly, the construction of S depends only on
N , P1 and Q1.

Following [MRT15, p2177-2178], denote by β̂ the 1-bounded completely multi-

plicative function determined by β̂(p) = β(p) for all prime numbers p. Then the

Dirichlet inverse of β̂ is μβ̂, and thus β = β̂ ∗ η, where η = β ∗ μβ̂ is the Dirichlet

convolution between β and μβ̂. Then the function η is multiplicative, bounded by
2 in absolute value, and satisfies

(5.12)

∞∑

n=1

|η(n)|n−( 1
2+σ) = Oσ(1)

for all σ > 0. Note that D(β, β′;N) = D(β̂, β′;N) for all β′.
For 1 ≤ k ≤ W 2 let

fn,k(h) =

q−1∑

j=0

En,(k,j)1In,(k,j)
(h)

on In,k. Then fn,k is bounded by 1 in absolute value and q-periodic on Ik ∩ N.
Furthermore,

(5.13)

(5.4) =
∑

n≤N

∑

k≤W 2

∑

h∈Ik∩N

1S(n+ h)β(n+ h)fn,k(h)

=
∑

n≤N

∑

k≤W 2

∑

a∈N

η(a)
∑

b∈N

ab∈n+Ik

1S(ab)β̂(b)fn,k(ab− n)

By (5.12), the contribution of terms with a > W is bounded:

Lemma 5.5.
∣∣∣∣
∑

n≤N

∑

k≤W 2

∑

a>W

η(a)
∑

b∈N

ab∈n+Ik

1S(ab)β̂(b)fn,k(ab− n)

∣∣∣∣ � W− 1
4HN.
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Proof. For every n ∈ [0, N ] and k ≤ W 2,

(5.14)

∣∣∣∣
∑

a>W

η(a)
∑

b∈N

ab∈n+Ik

1S(ab)β̂(b)fn,k(ab− n)

∣∣∣∣

≤
∑

a>W

|η(a)| · a−1W−2H ≤
∑

a>W

|η(a)|a−
3
4 ·W− 1

4 ·W−2H

�W− 1
4 ·W−2H.

The lemma follows by summing over 1 ≤ k ≤ W 2 and n ≤ N . �

Next, we aim to bound

(5.15)

∑

n≤N

∑

k≤W 2

∑

a≤W

η(a)
∑

b∈N

ab∈n+Ik

1S(ab)β̂(b)fn,k(ab− n)

=
∑

n≤N

∑

k≤W 2

∑

a≤W

η(a)
∑

b∈N

ab∈n+Ik

1S(b)β̂(b)fn,k(ab− n).

The latter inequality follows from the observation that if a ≤ W ≤ P1, then b ∈ S
if and only if ab ∈ S.

Given a ≤ W , k ≤ W 2 < P1 and n ≤ N , decompose the set {b ∈ N : ab ∈ n+Ik}
according to u = gcd(b, q):

(5.16)

∑

b∈N

ab∈n+Ik

1S(b)β̂(b)fn,k(ab− n)

=
∑

u|q

∑

ab∈n+Ik
(b,q)=u

1S(b)β̂(b)fn,k(ab− n)

=
∑

u|q

β̂(u)
∑

auv∈n+Ik
(v, qu )=1

1S(v)β̂(v)fn,k(auv − n).

For the last equality we used the identity 1S(uv)β̂(uv) = 1S(v)β̂(u)β̂(v), which

follows from the complete multiplicativity of β̂ and the condition u ≤ q ≤ W < P1.
The Dirichlet characters of conductor q

u form an orthonormal basis of the l2-space

on the finite abelian group
(
Z/( qu )Z

)×
.

Since the function fn,k,a,u : v → fn,k(auv − n)1(v, qu )=1 is q
u -periodic, it can

be decomposed as a linear combination
∑

χ mod∗ q
u
wn,k,a,u,χχ of such characters.

Then,

(5.17)
∑

χ mod∗ q
u

|wn,k,a,u,χ|
2 ≤ ‖fn,k,a,u‖l∞ ≤ 1.
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By (5.16), (5.17) and the Cauchy-Schwarz inequality, we have
(5.18)∣∣∣∣

∑

b∈N

ab∈n+Ik

1S(b)β̂(b)fn,k(ab− n)

∣∣∣∣
2

=

∣∣∣∣
∑

u|q

β̂(u)
∑

χ mod∗ q
u

wn,k,a,u,χ

∑

v∈N

auv∈n+Ik

1S(v)β̂(v)χ(v)

∣∣∣∣
2

≤
(∑

u|q

|β̂(u)|2
)
·

(∑

u|q

∣∣∣∣
∑

χ mod∗ q
u

wn,k,a,u,χ

∑

v∈( n
au+ 1

au Ik)∩N

1S(v)β̂(v)χ(v)

∣∣∣∣
2)

≤q

(∑

u|q

( ∑

χ mod∗ q
u

|wn,k,a,u,χ|
2
)( ∑

χ mod∗ q
u

∣∣∣
∑

v∈( n
au+ 1

au Ik)∩N

1S(v)β̂(v)χ(v)
∣∣∣
2
))

≤q

( ∑

u|q
χ mod∗ q

u

∣∣∣
∑

v∈( n
au+ 1

au Ik)∩N

1S(v)β̂(v)χ(v)
∣∣∣
2
)
.

Therefore, again by Cauchy-Schwarz inequality,

(5.19)

∣∣∣∣
∑

n≤N

∑

b∈N

ab∈n+Ik

1S(b)β̂(b)fn,k(ab− n)

∣∣∣∣
2

≤N
∑

n≤N

∣∣∣
∑

b∈N

ab∈n+Ik

1S(b)β̂(b)fn,k(ab− n)
∣∣∣
2

≤N
∑

n≤N

q
∑

u|q
χ mod∗ q

u

∣∣∣
∑

v∈( n
au+ 1

au Ik)∩N

1S(v)β̂(v)χ(v)
∣∣∣
2

≤WN
∑

n≤N

∑

u≤W
condχ≤W

u

∣∣∣
∑

v∈( n
au+ 1

au Ik)∩N

1S(v)β̂(v)χ(v)
∣∣∣
2

≤WN
∑

u≤W
condχ≤W

u

au
∑

n≤ N
au

∣∣∣
∑

v∈(n+ 1
au Ik)∩N

1S
P1,Q1, N+H

au

(v)β̂(v)χ(v)
∣∣∣
2

.

The inner sumation in formula (5.19) is controlled by the estimate of Matomäki-
Radziwi�l�l-Tao on averages of multiplicative functions on short intervals.

Theorem 5.6 ((Matomäki-Radziwi�l�l-Tao) [MRT15, Thm A.2]). Suppose that 10 <
P1 < Q1 < H and (logQ1)

480 < P1, then for all sufficiently large N , 1-bounded
multiplicative functions β and Dirichlet characters χ of modulus bounded by Y ,

∑

N<n≤2N

∣∣∣
∑

n≤v≤n+H0

1SP1,Q1,2N+H0
(v)β(v)χ(v)

∣∣∣
2

�
(
e−M(β,N,Y )M(β,N, Y ) +

(logH0)
1
3

P
1
12
1

+ (logN)−
1
50

)
H2

0N,

where M(β,N, Y ) is defined by (5.2).
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Corollary 5.7. Assuming the conditions (5.7) and (5.8), for all positive integers

k ≤ W 2, T ≤ W 2, 1-bounded multiplicative functions β, and primitive characters χ
of conductor bounded by W ,

T
∑

n≤N
T

∣∣∣
∑

v∈(n+ 1
T Ik)∩N

1S
P1,Q1, N+H

T

(v)β̂(v)χ(v)
∣∣∣
2

�
(
W−7 + e−M̃(β, N

W5 ,W )M̃(β,
N

W 5
,W ) +

(logH)
1
3

P
1
12
1

+
(
log

N

W 5

)− 1
50

)H2N

T 2
.

Proof. Decompose [0, N
T ] into dyadic intervals ( N

2iT ,
N

2i−1T ] for i = 1, · · · , �3 log2 W �,

and [0, N
2�3 log2 W�T

]. Then

T
∑

n≤N
T

∣∣∣
∑

v∈(n+ 1
T Ik)∩N

1S
P1,Q1, N+H

T

(v)β̂(v)χ(v)
∣∣∣
2

=T

⎛
⎜⎝

�3 log2 W�∑

i=1

∑

n∈( N

2iT
, N

2i−1T
]

+
∑

n≤ N
�3 log2 W�T

⎞
⎟⎠

∣∣∣
∑

v∈(n+ 1
T Ik)∩N

1S
P1,Q1, N+H

T

(v)β̂(v)χ(v)
∣∣∣
2

:=
∑

i≤�3 log2 W�

Ji + J0.

The contribution of the interval J0 can be bound trivially by

T ·
N

W 3T
· (

H

W 2T
)2 � W−7H

2N

T 2
.

By Theorem 5.6, with H0 = H
W 2T ≤ W−2H, the contribution from the dyadic

intervals is

�
∑

i≤�3 log2 W�

(
e−M(β̂, N

2iT
,W )M(β̂,

N

2iT
,W ) +

(logH)
1
3

P
1
12
1

+ (log
N

2iT
)−

1
50

)H2N

22iT 2

�
(
e−M̃(β̂, N

W5 ,W )M̃(β̂,
N

W 5
,W ) +

(logH)
1
3

P
1
12
1

+ (log
N

W 5
)−

1
50

)H2N

T 2
.

The corollary follows because M̃(β, ·, ·) and M̃(β̂, ·, ·) have the same value. �

Denote K :=
(
W−7 + e−M̃(β, N

W5 ,W )M̃(β, N
W 5 ,W ) + (logH)

1
3

P
1
12
1

+
(
log N

W 5

)− 1
50

)
be

given in Corollary 5.7, therefore

(5.20) (5.19) � WN
∑

u≤W

W

u
· K

H2N

(au)2
� K

W 2H2N2

a2
.

In other words,

(5.21)

∣∣∣∣∣
∑

n≤N

∑

b∈N

ab∈n+Ik

1S β̂(b)fn,k(ab− n)

∣∣∣∣∣ � a−1K
1
2WHN

for all a ≤ W , k ≤ W 2.
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Lemma 5.8. Assuming the conditions (5.7) and (5.8), we have
∣∣∣∣
∑

n≤N

∑

k≤W 2

∑

a≤W

η(a)
∑

b∈N

ab∈n+Ik

1S(b)β̂(b)fn,k(ab− n)

∣∣∣∣ � K
1
2W 3HN.

Proof. Summing (5.21) over k and a, one can see that the left hand side is bounded
by ∑

a≤W

η(a)a−1K
1
2W 3HN.

which is in turn by (5.12) bounded by the right hand side up to a multiplicative
constant. �

Proof of Proposition 5.2. By merging Lemmas 5.5, Lemma 5.8 into (5.13), we see
that

|(5.4)|

�W− 1
4HN +W 3

(
W−7 + e−M̃(β, N

W5 ,W )M̃(β,
N

W 5
,W ) +

(logH)
1
3

P
1
12
1

+ (log
N

W 5
)−

1
50

) 1
2

HN

�
(
W− 1

4 +W 3e−
1
2 M̃(β, N

W5 ,W )M̃(β,
N

W 5
,W )

1
2 +W 3(log

N

W 5
)−

1
100

+W 3 (logH)
1
6

P
1
24
1

)
HN,

which is in turn bounded by the right hand side up to a constant multiple.

The proposition follows, thanks to Lemma 5.4 and the fact that W 3 ≤ P
1
32
1 . �

6. Minor arc estimate

In Sections 6 and 7, we will provide a bound to (4.17) under appropriate hy-
pothesis.

Proposition 6.1. Assuming Hypothesis 2.13 and Notation 4.1, the constant C0

being sufficiently large, and the following inequalities:

(6.1) 0 < ε <
1

100
;B1 ≥ C0; 10 ≤ R0 ≤ R ≤ H

ε

C1B1m+1 ,

then for all 1-bounded multiplicative function β : N → C and function F : G/Γ → C
with ‖F‖ ≤ 1, there exists a subset S ⊆ [0, N ] ∩ N with N −#S � εN , such that

(6.2)

∣∣∣
∑

n≤N

∑

j∈J

∑

h∈In,j

1S(n+ h)β(n+ h)F̃n,j(gn,j(h)Γn,j)
∣∣∣

�(W−C0
−1B1 logH +H−ε)HN.

Moreover, the choice of S depends only on H, N , and ε.

Following [MRT15, §3], let P be the set of primes in [P1, Q1] for some fixed
values W < P1 < Q1 < H. A priori, P1 and Q1 are not necessarily equal to the
homonymous constants appearing in §5.
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Lemma 6.2. Under the assumptions of Proposition 6.1, there exists a subset S ⊆
[0, N ] ∩ N with N −#S � logP1

logQ1
N , such that for all n ≤ N ,

(6.3)
∑

h≤H
n+h∈S

∣∣∣∣β(n+ h)−
∑

p∈P

∑

l∈N

1pl=n+hβ(p)β(l)

1 + #{q ∈ P : q|l}

∣∣∣∣ �
H

P1
.

The construction of S depends only on N and P1, Q1.

Proof. Define

S = {n ≤ N : ∃p ∈ P, p|n}

and

F = {n ∈ N ≤ N : p2 � n, ∀p ∈ P}.

Note that these definitions depend only on N , P1 and Q1.
By Lemma 5.4, N −#S � logP1

logQ1
N .

Decompose the sum on the left hand side of formula (6.3) as
∑

h≤H
n+h∈S\F

+
∑

h≤H
n+h∈S∩F

.

We will bound the two components separately.
Remark first that, when n+ h ∈ S,

(6.4)

∑

p∈P

∑

l∈N

1pl=n+h

1 + #{q ∈ P : q|l}
=

∑

p∈P

∑

l∈N

1pl=n+h

1p2|n+h +#{q ∈ P : q|n}

≤
∑

p∈P

1p|n+h

#{q ∈ P : q|n}
= 1.

In particular, the equality holds when n ∈ S ∩ F .
If n + h ∈ S ∩ F , then for all p ∈ P and l ∈ N such that pl = n + h, p � l and

thus β(n+ h) = β(p)β(l). Hence
∣∣∣∣β(n+h)−

∑

p∈P

∑

l∈N

1pl=n+hβ(p)β(l)

1 + #{q ∈ P : q|l}

∣∣∣∣=
∣∣∣∣β(n+h)−

∑

p∈P

∑

l∈N

1pl=n+hβ(n+ h)

1 + #{q ∈ P : q|l}

∣∣∣∣ = 0.

So

(6.5)
∑

h≤H
n+h∈S∩F

= 0

On the other hand, if n+ h ∈ S \ F , then
∣∣∣∣β(n+ h)−

∑

p∈P

∑

l∈N

1pl=n+hβ(p)β(l)

1 + #{q ∈ P : q|l}

∣∣∣∣ ≤ 1 +
∑

p∈P

∑

l∈N

1pl=n+h

1 + #{q ∈ P : q|l}
≤ 2.

So

(6.6)
∑

h≤H
n+h∈S\F

≤ 2
∑

h≤H
n+h∈S\F

1 ≤ 2
∑

h≤H

∑

p∈P

1p2|n+h ≤ 2
∑

p≥P1

H

p2
�

H

P1
.

It now suffices to add together (6.5) and (6.6). �
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Lemma 6.3. Suppose C0 = O(1) is sufficiently large and B1 ≥ C0. Then there

exists a subset N ⊆ [N ] such that

(6.7) #N ≥ (1−W−B1)N

and for all (n, j) ∈ N × J , the sequence {gn,j(h)Γn,j}h∈[H] is totally W−C0
−1B1-

equidistributed in Gn,j/Γn,j.

Proof. By property (2) in Theorem 3.6, it suffices to show that if {gn,j(h)Γn,j}h∈[H]

is not totallyW−C0
−1B1 -equidistributed, then {g′(n, h)Γ′}h∈[H] is not totallyW

−B1 -
equidistributed in G′/Γ′.

Consider the lattice Γ′
n,j = γn,jΓn,jγn,j in G′. Then G′/Γ′

n,j is isomorphic to

Gn,j/Γn,j via the conjugacy Adγn,j
by γn,j. Let V ′

n,j be the image of Vn,j un-

der Adγn,j
, which is a Mal’cev basis adapted to (G′

•,Γ
′
n,j). Because of the bound

(4.8) and [GT12a, Lemma A.5], Adγn,j
is RO(1)-Lipschitz continuous. As W ≥ R

and g′(n, h) = Adγn,j
gn,j(h), the sequence {g′(n, h)Γ′

n,j}h∈[H] fails to be totally

W−C0
−1B1−O(1)-equidistributed in Gn,j/Γ

′
n,j with respect to the metric induced

by V ′
n,j.

Moreover, because γn,j is W -rational and satisfies the bound (4.8), it is a rational

element of height bounded by WO(1). Since Vn,j consists of W
O(1)-rational combi-

nations of elements of V , by [GT12a, Lemma A.11], so does V ′
n,j. We also know that

V ′ consists of W -rational combinations of elements from V . Because they are both
Mal’cev basis of G′, it follows that V ′ consists of WO(1)-rational combinations of
elements from V ′

n,j. Hence by Corollary 3.3, the sequence {g′(n, h)Γ′}h∈[H] fails to

be totally W−O(C0
−1B1+C0)-equidistributed in Gn,j/Γ

′, with respect to the met-
ric induced by V ′. As it will be assumed that B1 ≥ C0, the lemma follows after
updating the value of the constant C0 = O(1). �

Corollary 6.4. The integral

(6.8)
∑

n≤N

∑

j∈J

∑

h∈In,j

1S(n+ h)β(n+ h)F̃n,j(gn,j(h)Γn,j),

is approximated by

(6.9)
∑

n∈N

∑

j∈J

∑

p∈P

∑

l∈N

1pl∈n+In,j
β(p)β(l)

1 + #{q ∈ P : q|l}
F̃n,j(gn,j(pl)Γn,j)

within an error of O(P−1
1 +W−B1) ·HN .

Here the set N ⊆ [N ] is chosen as in (6.7).

Proof. The corollary directly follows from the Lemma 6.2 and the inequality (6.7).
�

Take P1 = 2s− and Q1 = 2s+ for integers s− < s+. The expression (6.9) splits
into the sum

(6.10)
∑

s∈(s−,s+]

∑

n∈N

∑

j∈J

∑

p∈(2s−1,2s]

∑

l∈N

1pl∈n+In,j
β(p)β(l)

1 + #{q ∈ P : q|l}
F̃n,j(gj(n)Γn,j),

over all integers s ∈ [s−, s+].
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Notation 6.5. Here and below, the letters p, p1, p2 will always denote prime num-
bers.

Observe that, for all given s,

(6.11)

∣∣∣∣
∑

n∈N

∑

j∈J

∑

p∈(2s−1,2s]

∑

l∈N

1pl∈n+In,j
β(p)β(l)

1 + #{q ∈ P : q|l}
F̃n,j(gn,j(pl)Γn,j)

∣∣∣∣

≤
∑

l∈N

|β(l)|

1 + #{q ∈ P : q|l}

∣∣∣∣
∑

n∈N

∑

j∈J

∑

p∈(2s−1,2s]
pl∈n+In,j

β(p)F̃n,j(gn,j(pl)Γn,j)

∣∣∣∣

≤
∑

l≤N+H

2s−1

∣∣∣∣
∑

n∈N

∑

j∈J

∑

p∈(2s−1,2s]
pl∈n+In,j

β(p)F̃n,j(gn,j(pl)Γn,j)

∣∣∣∣

�2−
s
2N

1
2

( ∑

l≤N+H

2s−1

∣∣∣∣
∑

n∈N

∑

j∈J

∑

p∈(2s−1,2s]
pl∈n+In,j

β(p)F̃n,j(gn,j(pl)Γn,j)

∣∣∣∣
2) 1

2

.

The latter inequality is justified by the observation that, if j = (k, j) and pl ∈
n+ In,j, then 2s−1l ≤ pl ≤ N +H.

For a configuration n = (n, j) = (n, k, j) ∈ N ×J , define an arithmetic progres-
sion

(6.12) An,p = {l ∈ N : pl ∈ n+ In,j} = {l ∈ N : pl − n ∈ Ik, pl ≡ j(mod q)}

For two such given configurations

n1 = (n1, j1) = (n1, k1, j1),n2 = (n2, j2) = (n2, k2, j2) ∈ N × J ,

write

(6.13) An1,n2,p1,p2
= An1,p1

∩An2,p2
.

Then

(6.14)

∑

l≤N+H

2s−1

∣∣∣∣
∑

n∈N

∑

j∈J

∑

p∈(2s−1,2s]
pl∈n+In,j

β(p)F̃n,j(gn,j(pl)Γn,j)

∣∣∣∣
2

=
∑

n1,n2∈N×J

∑

p1,p2∈(2s−1,2s]

∑

l∈An1,n2,p1,p2

β(p1)β(p2)

F̃n1
(gn1

(p1l)Γn1
)F̃n2

(gn2
(p2l)Γn2

)

It will be useful to have an upper bound on the size of the set An1,n2,p1,p2
.

Lemma 6.6. If p1 > W , then #An1,n2,p1,p2
� p−1

1 W−3H.

Proof. For a prime p > W , p is coprime to q ∈ (W2 ,W ]. The arithmetic progression
An,p from (6.12) is bounded in length by

(6.15) #An,p ≤ q−1p−1|Ik| ≤ 2p−1W−1W−2H = 2p−1W−3H.

The lemma follows because An1,n2,p1,p2
= An1,p1

∩ An2,p2
. �
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We remark that, if H ≥ 4pW 3, then we also have

(6.16) #An,p ≥ q−1(p−1|Ik| − 1)− 1 ≥
1

2
q−1p−1|Ik| ≥

1

2
p−1W−3H.

To bound the sum (6.14) we first consider those terms for which the length of

An1,n2,p1,p2
is bounded by 2−sW−(B2+3)H where B2 ≥ 10 and will be determined

later. These terms are easily bounded in next Lemma.

Proposition 6.7. For B2 ≥ 10, the expression

(6.17)

∑

n1,n2∈N×J

∑

p1,p2∈(2s−1,2s]

#An1,n2,p1,p2
<2−sW−(B2+3)H

∑

l∈An1,n2,p1,p2

β(p1)β(p2)

F̃n1
(gn1

(p1l)Γn1
)F̃n2

(gn2
(p2l)Γn2

))

satisfies |(6.17)| � 2sW−B2H2N.

Proof.

|(6.17)| ≤

∣∣∣∣
∑

n1,n2∈N×J

∑

p1,p2∈(2s−1,2s]

#An1,n2,p1,p2
<2−sW−(B2+3)H

2−sW−(B2+3)H

∣∣∣∣

≤2−sW−(B2+3)H
∑

p1,p2∈(2s−1,2s]

∑

n1,n2∈N×J

1An1,n2,p1,p2
�=∅

�2−sW−(B2+3)H · 22s ·W 3N ·H = 2sW−B2H2N

Here the last inequality follows from (4.4) and the lemma below. �

Lemma 6.8. If 2s ≥ W ≥ 10, then for all n1 ∈ N × J and p1, p2 ∈ (2s−1, 2s],

#{n2 ∈ N × J : An1,n2,p1,p2
�= ∅} � H.

Proof. Let n2 = (n2, k2, j2), k2 is given, then An1,n2,p1,p2
�= ∅ implies that (n1

p1
+

1
p1
Ik1

) ∩ (n2

p2
+ 1

p2
Ik2

) �= ∅. The length of interval that n2 belongs to is at most

p2
p1

|Ik1
|+ |Ik2

| ≤ 2W−2H +W−2H = 3W−2H.

The elements n1 and p1 determine the congruence class An1,p1
modulo q. Since

An1,n2,p1,p2
= An1,p1

∩ An2,p2
, the elements n1, p1, n2 and p2 determine a unique

choice of the remainder j2 modulo q.
Therefore,

∑
n2∈N×J 1An1,n2,p1,p2

�=∅ �
∑

k2≤W 2 W−2H = H. �

We now focus on intersections with #An1,n2,p1,p2
≥ 2−sW−(B2+3)H.

Definition 6.9. For s ∈ [s−, s+], n1 ∈ N × J , prime number p1 ∈ (2s−1, 2s] and
a parameter B2 ≥ 10, denote by Ωs,n1,p1,B2

the set of all configurations (n2, p2) ∈

N × J × (2s−1, 2s] such that:

(i) p2 is prime;

(ii) #An1,n2,p1,p2
≥ 2−sW−(B2+3)H;
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(iii)
∣∣∣

∑

l∈An1,n2,p1,p2

F̃n1
(gn1

(p1l − n1)Γn1
)F̃n2

(gn2
(p2l − n1)Γn2

)
∣∣∣

≥ W−B2#An1,n2,p1,p2
.

Proposition 6.10. One can choose the constant C0 = O(1) ≥ 10 to be sufficiently

large, such that: if

(6.18) W ≥ 10, B2 ≥ 10, B1 ≥ C0B2, H ≥ max(WB1 , 210s),

then for all pairs (n1, p1), where n1 ⊂ N × J and p1 ∈ (2s−1, 2s],

#Ωs,n1,p1,B2
< 2sW−B2H.

The proof of the proposition is postponed to the next section.

Proposition 6.11. In the settings of Proposition 6.10, the expression

(6.19)

∑

n1,n2∈N×J

∑

p1,p2∈(2s−1,2s]

#An1,n2,p1,p2
≥2−sW−(B2+3)H

∑

l∈An1,n2,p1,p2

β(p1)β(p2)

F̃n1
(gn1

(p1l − n1)Γn1
)F̃n2

(gn2
(p2l − n2)Γn2

)

satisfies |(6.19)| � 2sW−B2H2N .

Proof. As |β| ≤ 1 and ‖F̃n‖C0 ≤ 2 for all n, in |(6.19)|, using Lemma 6.6 and
Proposition 6.10, the contribution from configuration with (n2, p2) ∈ Ωs,n1,p1,B2

is

bounded by

(6.20)

(#N ·#J ) · 2s · (max
n1,p1

#Ωs,n1,p1,B2
)( max

n1,n2,p1,p2

#An1,n2,p1,p2
) · 4

�NW 3 · 2s · 2sW−B2H · 2p−1W−3H

�2sW−B2H2N.

From Lemma 6.6, Lemma 6.8 and the construction of Ωs,n1,p1,B2
, the remaining

contribution out of (6.20) is bounded.

(6.21)

(#N ·#J ) · 22s · max
n1,p1,p2

∑

n2∈N×J
An1,n2,p1,p2

�=∅
∣∣∣

∑

l∈An1,n2,p1,p2

F̃n1
(gn1

(p1l − n1)Γn1
)F̃n2

(gn2
(p2l − n1)Γn2

)
∣∣∣

�NW 3 · 22s ·H ·W−B2 max
n1,n2,p1,p2

#An1,n2,p1,p2

�NW 3 · 22s ·H ·W−B22−sW−3H

=2sW−B2H2N.

The lemma follows by combining these two bounds. �

Summing up the estimates from Propositions 6.7 and 6.11 leads to the proof of
Proposition 6.1.
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Proof of Proposition 6.1. By Propositions 6.7 and 6.11, when C0 is sufficiently
large, under assumptions (6.18), we have

(6.22)

(6.11) �2−
s
2N

1
2 (6.14)

1
2 ≤ 2−

s
2N

1
2 ((6.17) + (6.19))

1
2

�2−
s
2N

1
2 · 2

s
2W−

B2
2 HN

1
2

=W−
B2
2 HN.

Hence,

(6.23) |(6.9)| =|(6.10)| ≤
∑

s∈(s−,s+]

(6.11) ≤ s+W
−
B2
2 HN,

and by Corollary 6.9,

(6.24)
|(6.8)| ≤|(6.9)|+ (2−s− +W−B1)HN

�(s+W
−
B2
2 + 2−s− +W−B1)HN.

We now set the parameters s−, s+, B1 and B2. Let s+ = � 1
10 logH�. and s− =

�20εs+�. This guarantees that N −#S � s−
s+

N ≤ εN . Moreover, 2−s− < H−ε.

Assume in addition that B1 ≥ 10C0 and let B2 = C0
−1B1. The inequalities in

(6.1), together with the fact that W ∈ [R,RC1B1
m

], imply WB1 < RC1B1
m+1

<
Hε < H. This also implies for all s ∈ (s−, s+), 2

s > 2s− > Hε > W . So all
conditions in (6.18) are verified.

(6.24) now yields

(6.25)
|(6.8)| �(W−

C0−1B1
2 logH +H−ε +W−B1)HN

�(W−
C0−1B1

2 logH +H−ε)HN.

Finally, to complete the proof, one only needs to replace the value of the constant
C0 with 10C0. �

7. Proof of Proposition 6.10

This part contains the proof of Proposition 6.10 by contradiction. In the rest of
Section 7, we will assume that t, s, n1, p1 are all fixed. For brevity, we will replace
the notations n2 and p2 with n and p.

Because one may choose the constant C0 as long as it depends only on m and d,
instead of (6.18) we will assume instead:

(7.1) 2s > W ≥ 10, B2 ≥ 10, B1 ≥ 10C0
2B2, H ≥ max(WB1 , 210s),

In order to get contradiction, suppose for n1 ∈ N × J and p1 ∈ (2s−1, 2s],

(7.2) #Ωs,n1,p1,B2
≥ 2sW−B2H.

Let (n, p) be an element of Ωs,n1,p1,B2
, then p1, p ≥ 2s > W ≥ q. By the proof

of Lemma 6.6, as An1,n,p1,p is the intersection of two finite arithmetic progressions
An1,p1

, An,p of step length q, it also has step length q itself whenever it is non-empty.
Since n1 and p1 are fixed, the arithmetic progression An1,p1

can be parametrized
as {qt+ r : t ∈ [T ]} for some r ∈ Z. Here by (6.15)

(7.3) T = #An1,p1
≤ 4 · 2−sW−3H.
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When (n, p) ∈ Ωs,n1,p1,B2
, the subsequence An1,n,p1,p has the form {qt + r :

t ∈ A′
n,p} where A′

n,p is a subinterval of integers in [T ] of length #An1,n,p1,p ≥

2−sW−B2H.
The conditions (ii) and (iii) on Ωs,n1,p1,B2

in Definition 6.9 can be rewritten as

(7.4) A′
n,p ≥ 2−sW−(B2+3)H

and

(7.5)

∣∣∣∣∣∣

∑

t∈A′
n,p

F̃n1
(gn1

(p1(qt+ r)− n1)Γn1
)F̃n(gn(p(qt+ r)− n)Γn)

∣∣∣∣∣∣

≥W−B2#A′
n,p

For every configuration (n, p) = (n, j, p) = (n, k, j, p) ∈ Ωs,n1,p1,B2
. Define

polynomial sequences gn,p, g̃n,p : Z → Gn1
×Gn by

(7.6) gn,p(l) =
(
gn1

(p1l − n1), gn(pl− n)
)
; g̃n,p(t) = gn,p(qt+ r).

Note that the definition of g̃n,p depends on the choice of n.
Then gn,p, g̃n,p ∈ Poly(Z, (Gn1

)•×(Gn)•). From (4.20), (7.3), (7.4) and (7.5), we

know the sequence (g̃n,p(t)(Γ × Γ))t∈A′
n,p

is not totally 2−2W−B2-equidistributed

in (Gn1
/Γn1

)× (Gn/Γn). Then by Lemma 2.11, for a shorter length

T ′
n,p ≥ 2−5W−2B2T,

the sequence (g̃n,p(t)(Γ × Γ))t∈[T ′
n,p]

fails to be 2−5W−2B2-equidistributed in

(Gn1
/Γn1

)× (Gn/Γn).
By Proposition 3.1, there exists a horizontal character ηn,p of (Gn1

/Γn1
) ×

(Gn/Γn) such that

(7.7) 0 < |ηn,p| < WO(B2)

and ‖ηn,p ◦ g̃n,p‖C∞([T ′
n,p])

� WO(B2). As T ′
n,p � W−2B2T , this implies that

(7.8) ‖ηn,p ◦ g̃n,p‖C∞([T ]) � WO(B2).

Here the norm |ηn,p| is measured in terms of the Mal’cev basis Vn ∪ Vn′ , where
Vn = Vn,j and Vn1

= Vn1,j1 are defined in Section 4.
Recall from our construction in Section 4 that the sequences Gn, Γn, Vn are

determined by γn, which in turn depends only on the variables n, j in n = (n, k, j)
and is q-periodic in n. So there are γ∗, G∗, Γ∗, V∗ such that for at least q−2#Ωs.n1,p1

choices of (n, p) ∈ Ωs,n1,p1,B2
,

(7.9) (γn, Gn,Γn,Vn) = (γ∗, G∗,Γ∗,V∗).

Note the number of horizontal characters satisfying (7.7) is bounded by WO(B2).
Given (7.2) and that q ≤ W , by pigeonhole principle, we can find some horizontal

character η of (Gn1
/Γn1

)× (G∗/Γ∗) such that for a set Ω∗ of at least 2sW−O(B2)H
choices of (n, p) ∈ Ωs,n1,p1,B2

, (7.9) holds and ηn,p = η.

Therefore,

‖η ◦ g̃n,p‖C∞[T ] � WO(B2)(7.10)
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3910 XIAOGUANG HE AND ZHIREN WANG

holds for at least 2sW−O(B2)H choices of (n, p) ∈ Ωs,n1,p1,B2
. In particular, be-

cause of the fact #J ≤ W 3 and Lemma 6.8, there is a set Ps,n1,p1
⊆ {p prime: p ∈

(2s−1, 2s]} of size

(7.11) #Ps,n1,p1
� 2sW−O(B2),

such that for all p ∈ Ps,n1,p1
, there are at least W−O(B2)H choices of n, such that

for some j, the configuration n = (n, j) satisfies (n, p) ∈ Ωs,n1,p,B2
and (7.10).

Recall that gn(h) = γ−1
n g′(n, h)γn. So for the polynomial g∗(n, h)=γ−1

∗ g′(n, h)γ∗
and every (n, p) ∈ Ωs,n1,p1,B2

, gn(h) = g∗(n, h) where n is the first coordinate of

n = (n, k, j). In this case,

(7.12) g̃n,p(t) =
(
gn1

(p1(qt+ r)− n1), g∗(n, p(qt+ r)− n)
)
.

Write η = η(1)⊕η(2), where η(1) and η(2) are respectively horizontal characters of
Gn1

/Γn1
and G∗/Γ∗ and at least one of them is non-zero. Then η(1) ◦ gn1

: Z → R

and η(1) ◦ g∗ : Z2 → R are polynomials of total degree bounded by d, where d is the
step of nilpotency of G•. As p1, r, q, n1 are all fixed, one can write

(7.13) η(1) ◦ gn1
(t) =

d∑

l=0

αlt
l.

(7.14) η(2) ◦ g∗(n, h) =
∑

l1,l2≥0
l1+l2≤d

β∗
l1,l2n

l1hl2 .

We now parametrize η(2) ◦g∗ differently. When (n, p) ∈ Ωs,n1,p1,B2
, An1,n,p1,p �=

∅. So we can fix an t0 = t0(n, p) ∈ [T ] such that p(qt0 + r)− n ∈ In ⊂ [H]. On the
other hand, because t0 ≤ T = #An1,p1

, by (6.15), 0 < pqt0 ≤ 2pq ·q−1p−1
1 W−2H ≤

4W−2H. Thus pr − n ∈ [−4W−2H,H] ⊆ (−H,H]. We will write b = pr − n+H.
Then b ∈ [2H]. For u ∈ Z, we can write

(7.15)

η(2) ◦ g∗(n, qu+ pr − n)

=η(2) ◦ g∗(pr +H − b, qu+ b−H)

=
∑

l1,l2≥0
l1+l2≤d

β∗
l1,l2(pr +H − b)l1(qu+ b−H)l2

=:
∑

l1,l2,i≥0
l1+l2+i≤d

βl1,l2,ip
l1ul2bi

In particular, for u = pt, we have

(7.16)

η(2) ◦ g∗(n, p(qt+ r)− n)

=η(2) ◦ g∗(pr +H − b, q(pt) + b−H)

=
∑

l1,l2,i≥0
l1+l2+i≤d

βl1,l2,ip
l1(pt)l2bi

=
d∑

l=0

d∑

l′=l

d−l′∑

i=0

βl′−l,l,ip
l′bitl
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then

(7.17) η ◦ g̃n,p(t) =
d∑

l=0

(αl +
d∑

l′=l

d−l′∑

i=0

βl′−l,l,ip
l′bi)tl,

where the coefficients βl′−l,l,i are independent of p,b and t (but depend on n1, p1
and H).

The earlier discussion asserts that for all p ∈ Ps,n1,p1
, there is a subset Bs,n1,p1,p ⊆

[2H] of size

(7.18) #Bs,n1,p1,p � W−O(B2)H,

such that for all b ∈ Bs,n1,p1,p, ‖(7.17) (mod Z)‖C∞([T ]) � WO(B2). Here (7.17) is
regarded as a polynomial in t.

For such pairs (p, b), by Lemma 2.3 and (7.3), there is a positive integer Z1 �
O(1) such that for all 0 ≤ l ≤ d,

(7.19)
∥∥∥Z1(αl +

d∑

l′=l

d−l′∑

i=0

βl′−l,l,ip
l′bi)

∥∥∥
R/Z

� WO(B2)T−l � 2lsWO(B2)H−l.

By pigeonhole principle, Z1 can be made independent of b after substituting Bs,n1,p1,p

with a smaller subset whose size still satisfies the lower bound (7.11).

We now view Z1(αl +
∑d

l′=l

∑d−l′

i=0 βl′−l,l,ip
l′bi) as a polynomial of b. Applying

Lemma 2.4 (with ε = 2lsWO(B2)H−l and δ = W−O(B2)), we deduce from (7.19)

that there is a positive integer Z2 � WO(B2) such that

(7.20)
∥∥∥Z2Z1(αl +

d∑

l′=l

d−l′∑

i=0

βl′−l,l,ip
l′bi) (mod Z)

∥∥∥
C∞[2H]

� 2lsWO(B2)H−l,

Again by Lemma 2.3, for all p ∈ Ps,n1,p1
, there is a positive integer Z3 � O(1),

such that for all i ≥ 1, l ≥ 0 such that i+ l ≤ d,

(7.21)
∥∥∥Z3Z2Z1

d−i∑

l′=l

βl′−l,l,ip
l′
∥∥∥
R/Z

� 2lsWO(B2)H−i−l;

and when i = 0, for all 0 ≤ l ≤ d,

(7.22)
∥∥∥Z3Z2Z1(αl +

d∑

l′=l

βl′−l,l,0p
l′)
∥∥∥
R/Z

� 2lsWO(B2)H−l.

Since p ∈ [2s], ε = 2lsWO(B2)H−l, and δ = W−O(B2), Lemma 2.4 yields a

positive integer Z4 � WO(B2) such that: for all i ≥ 1, 0 ≤ l ≤ d subject to
i+ l′ ≤ d,

(7.23)
∥∥∥Z4Z3Z2Z1

d−i∑

l′=l

βl′−l,l,ip
l′ (mod Z)

∥∥∥
C∞([2s])

� 2lsWO(B2)H−i−l;

and for i = 0 and 0 ≤ l ≤ d,

(7.24)
∥∥∥Z4Z3Z2Z1(αl +

d∑

l′=l

βl,l′,0p
l′) (mod Z)

∥∥∥
C∞([2s])

� 2lsWO(B2)H−l.
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A final round of application of Lemma 2.3 yields, for a positive integer Z5 �
O(1), the following properties:

For all i ≥ 1, 0 ≤ l ≤ l′ ≤ d subject to i+ l ≤ d,

(7.25)
∥∥∥Z5Z4Z3Z2Z1βl′−l,l,i

∥∥∥
R/Z

� 2(l−l′)sWO(B2)H−i−l;

in addition, for i = 0 and 0 ≤ l ≤ l′ ≤ d with l′ ≥ 1, (7.25) also holds.
Write Z = Z5Z4Z3Z2Z1, which is an integer that is independent of b and t, and

satisfies Z � WO(B2). The character Zη(2) satisfies

(7.26) |Zη(2)| � |Z| · |η| � WO(B2).

According to Notation 1.6, one choose a sufficiently large constant C0 = O(1) ≥

10 which serves as the implicit constants both in the exponent of WO(B2) of (7.25)
and in (7.26). Now we write (7.25) as

(7.27)
∥∥∥Zβl′−l,l,i

∥∥∥
R/Z

� 2(l−l′)sWC0B2H−i−l;

In other words, the inequality

(7.28)
∥∥∥Zβl1,l2,i

∥∥∥
R/Z

� 2−l1sWC0B2H−i−l2

holds for all integer triples (l1, l2, i) such that l1, l2, i ≥ 0, l1 + l2 + i ≤ d and l1, l2,
i are not simultaneously equal to 0.

Lemma 7.1. One can choose the constant C0 = C0(m, d) ≥ 10 to be sufficiently

large, such that :

If (7.1) and (7.2) both hold then for every configuration (n, p) ∈ Ωs,n1,p1,B2
, the

sequence {gn(h)Γn}h∈[H] is not totally W−C0
−1B1-equidistibuted in Gn/Γn.

Proof. Let r and b be as above. Set Un,p = {u ∈ Z : qu+ b−H ∈ [H]}. Then Un,p

is an interval of integers, whose length satisfies H
q − 1 < #Un,p < H

q +1. Moreover,

as 0 < b ≤ 2H, every u ∈ Un,p satisfies |u| ≤ 2H
q .

Fix any subinterval U ′
n,p ⊂ Un,p of integers, that is of length � 2W−2C0B2−3H

q �.

We note that because of (7.1), #U ′
n,p ≥ 10. Then for any u1, u2 ∈ U ′, by (7.8),

(7.29)

‖Zη(2) ◦ g∗(n, qu1 + b−H)− Zη(2) ◦ g∗(n, qu2 + b−H)‖R/Z

=
∥∥∥Z

∑

l1,l2,i≥0
l1+l2+i≤d

βl1,l2,ip
l1bi(ul2

1 − ul2
2 )

∥∥∥
R/Z

=
∥∥∥Z

∑

l1,l2,i≥0
l1+l2+i≤d

βl1,l2,ip
l1bi(u1 − u2)

l2−1∑

h=0

uh
1u

l2−1−h
2

∥∥∥
R/Z

�
∑

l1,i≥0;l2≥1
l1+l2+i≤d

2−l1sWC0B2H−i−l2 · (2s)l1(2H)i
(W−2C0B2−3H

q

)(H
q

)l2−1

=
∑

l1,i≥0;l2≥1
l1+l2+i≤d

(W−C0B2−3)q−l2

�W−C0B2 .
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This implies that for the mapping η̃(x) = exp(2πiZη(2)(x)) from G/Γ to the unit

circle in C, the values of η̃(gn(h)) are within distance � W−C0B2 to each other
for h ∈ {qu + b −H : u ∈ U ′

n,p}. Again, using the convention in Notation 1.6, one
can assume that the implicit constant here is C0. In particular,

(7.30)

∣∣∣ E
h∈{qu+b−H:u∈U ′

n,p}
η̃(gn(h)Γn)

∣∣∣ > 1− C0W
−C0B2 ≥

1

2
,

as we assumed C0, B2 and W are all bounded by 10 from below. Because Zη
is a non-zero character, η̃ has zero average on Gn/Γn. In addition, ‖η̃‖Gn/Γn

�

|Zη(2)| ≤ WC0B2 .
Now note that {qu+ b−H : u ∈ U ′

n,p} ⊆ [H] is an arithmetic progression whose

length is greater than W−2C0B2−4H. It follows that the sequence {gn(h)Γn}h∈[H]

is not totally min(W−2C0B2−4, 1
2W

−C0B2)-equidistributed in Gn/Γn.
To finish the proof of Lemma 7.1, it suffices to notice that by the assumptions

in (7.1), min(W−2C0B2−4, 1
2W

−C0B2) ≥ W−C0
−1B1 . �

Proof of Proposition 6.10. Recall that after redefining C0 we may assume (7.1) in-
stead of (6.18). By Lemma 7.1, and the construction of N in Lemma 6.3, if (7.2)
holds, then for all n ∈ Ωs,n1,p1,B2

, n /∈ N × J . This contradicts the definition of

Ωs,n1,p1,B2
, which requires n ∈ N ×J . Therefore, (7.2) is false for all n1 ∈ N ×J ;

in other words, Proposition 6.10 is true. �

8. Proof of the main theorem

Theorem 1.2 will follow from

Theorem 8.1. Suppose G is a connected, simply connected nilpotent Lie group

and Γ ⊂ G is a lattice. Assume that there exists an R0-rational Mal’cev basis V of

the Lie algebra G adapted to a nilpotent filtration G• and the lattice Γ. Then there

are constants C, ε0 > 0 that depend only on the dimension m of G, such that for

all g ∈ Poly(Z2, G•), 1-bounded multiplicative function β : N → C, and continuous

function F : G/Γ → R, H,N ∈ N, ε > 0, if

(8.1) max
( logR0

logH
,
log logH

logH

)
< ε < ε0; logH < (logN)

1
2 , .

then

(8.2)

∑

n≤N

∣∣∣
∑

h≤H

β(n+ h)F (g(n, h)Γ)
∣∣∣

�
(
H−ε +HCεe−

1
2 M̃(β, N

HCε ,H
Cε)M̃(β,

N

HCε
, HCε)

1
2

+HCε(log
N

HCε
)−

1
100

)
HN.

Proof. Let B1 = 10C0, C2 = C1B1
m = O(1) and R = HC2

−1ε′ . Combining
Propositions 5.1 and 6.1, we know that if

(8.3)
log logH

logH
< ε′ <

1

500
;HC2

−1ε′ ≥ R0 ≥ 10; logH < (logN)
1
2 ,
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3914 XIAOGUANG HE AND ZHIREN WANG

then there exists a subset S ⊆ [0, N ] ∩ N, determined by H, N , and ε′, with
N −#S � ε′N , such that

(8.4)

∑

n≤N

∣∣∣
∑

h≤H

β(n+ h)F (g(n, h)Γ)
∣∣∣

�
(
W−1 logH +H−ε′ +W− 1

4

+W 3e−
1
2 M̃(β, N

W5 ,W )M̃(β,
N

W 5
,W )

1
2 +W 3(log

N

W 5
)−

1
100

)
HN

�
(
H−C2

−1ε′ logH +H− 1
4C2

−1ε′ +H3ε′e
− 1

2 M̃(β, N

H5ε′
,Hε′ )

M̃(β,
N

H5ε′
, Hε′)

1
2

+H3ε′(log
N

H5ε′
)−

1
100

)
HN,

whereW ∈ [R,RC1B1
m

] ⊆ [HC2
−1ε′ , Hε′ ]. Here we used the fact that M̃(β, N

W 5 ,W )
is decreasing in W . The set S is the union of both the exceptional sets from
Propositions 5.1 and 6.1.

We now rewrite ε = 1
4C2

−1ε′ and assume ε > log logH
logH . Then Hε > logH and

H−C2
−1ε′ logH = H−4ε logH < H−ε.

Note that (8.1) implies (8.3). So (8.4) becomes

(8.5)

∑

n≤N

∣∣∣
∑

h≤H

β(n+ h)F (g(n, h)Γ)
∣∣∣

�
(
H−ε +H12C2εe

− 1
2 M̃(β, N

H20C2ε
,H4C2ε)

M̃(β,
N

H20C2ε
, H4C2ε)

1
2

+H12C2ε(log
N

H20C2ε
)−

1
100

)
HN.

The theorem follows by letting C = 20C2 and ε0 = 1

2000C2
, which depend only

on m and d. But as d ≤ m, the dependence on d can be suppressed. �

Proof of Theorem 1.2. First choose R0 ≥ 10 such that g has an R0-rational Mal’cev
basis with respect to the lower central series filtration G• and lattice Γ. We then
fix H0 such that logH0 ≥ R0.

Notice that f(n, h) = gn+hx ∈ G/Γ is a polynomial map from Poly(Z2, G•).

Furthermore, in (8.1), max
(

logR0

logH , log logH
logH

)
= log logH

logH for all H > H0. Hence

Theorem 8.1 can be applied. The output is (1.6) and (1.7), with

(8.6) δ(a,N) = aCe−
1
2 M̃(β, N

aC ,aC)M̃(β,
N

aC
, aC)

1
2 + aC(log

N

aC
)−

1
100 .

We need to show limN→∞ δ(a,N) = 0 for all a > 0.
When β is the Möbius function μ or the Liouville function λ, it is known that

limN→∞
1
X

∑
n≤X β(n)χ(n) = 0. By Halász’s Theorem [Hal68], for any given

Dirichlet character χ, limX→∞ D(βχ, 1, X) = ∞. Moreover, Matomäki, Radziwi�l�l
and Tao [MRT15, (1.12)] proved that M(β;X,Y ) ≥ ( 13 − ε) log logX + O(1) for

Y ≤ (logX)
1

125 . Therefore in this case we also have

M̃(β;X,Y ) ≥ (
1

3
− ε) log logX +O(1).
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If aC � (logN)
1

150 , then aC ≤ (log N
aC )

1
125 and

e−
1
2 M̃(β, N

aC ,aC)M̃(β,
N

aC
, aC)

1
2 � e−

1
3 M̃(β, N

aC ,aC) � e−
1
10 log log N

aC = (log
N

aC
)−

1
10 .

Therefore, we get δ(a,N) � aC(log N
aC )−

1
100 for aC � (logN)

1
150 . This proves that

limN→∞ δ(a,N) = 0 for all a > 0.
Finally, it remains to show (1.8). To see this, it suffices to notice that, because

because N > exp((logH)2) = H logH > H logH > Hε−1,

1

HN

∣∣∣∣∣

N∑

n=1

∣∣∣
n+H∑

l=n+1

1Sμ(l)F (glx)
∣∣∣−

N∑

n=1

∣∣∣
n+H∑

l=n+1

μ(l)F (glx)
∣∣∣
∣∣∣∣∣

≤
1

HN

∣∣∣∣∣

N∑

n=1

#((n, n+H]\S)

∣∣∣∣∣ ≤
1

HN
·H#([N +H]\S)

�
1

N
(εN +H) � ε.

So (1.8) can be deduced from (1.7). �
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