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MOBIUS DISJOINTNESS FOR NILSEQUENCES
ALONG SHORT INTERVALS

XIAOGUANG HE AND ZHIREN WANG

ABSTRACT. For a nilmanifold G/T", a 1-Lipschitz continuous function F and
the Mobius sequence p(n), we prove a bound on the decay of the averaged

short interval correlation

o | 3 wtn+ W)

n<N h<H

as H, N — oo. The bound is uniform in g € G, z € G/T" and F.
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The Mébius function p: N — {—1,0,1} is defined as follows: u(1) =1, u(n) =
(—1)¥ when n is the product of k distinct primes and p(n) = 0 otherwise. This is
an important function in number theory because both the prime number theorem
and the Riemann hypothesis can be reformulated in terms of it. In fact the prime
number theorem is equivalent to the assertion) . #(n) = o(NN), and the Riemann

hypothesis is equivalent to the assertion ) _\ u(n) = O.(N2+¢) for all & > 0.
The Mébius Randomness Law, proposed in [IK04], suggests to find reasonable

sequences &(n) which have significant cancellations with p(n), that is

Y u)Em) = oYy [Em)]).

n<N n<N
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3882 XIAOGUANG HE AND ZHIREN WANG

The Mobius Disjointness Conjecture, of Sarnak [Sar09], expects to use observables
from zero entropy topological dynamical systems as the sequence &.

Conjecture 1.1 (Mdébius Disjointness Conjecture, [Sar09]). Let (X,T) be a topo-
logical dynamical system with zero topological entropy. Then
N

(1.1) lim % > f(Tx)u(n) =0,Yf € C(X),Vz € X.

Here, a topological dynamical system is a pair (X,T") consisting of a compact
metric space X, and a continuous self-map T : X — X.

There have been in recent years many results supporting the Mobius disjoint-
ness conjecture. For brevity we will simply refer to the recent comprehensive survey
[FKPL18] for the progress in this area. Here we discuss only the historical devel-
opements that are more relevant to this paper.

The special case of Conjecture 1.1 for circle rotations has been known since 1937
due to Davenport’s work [Dav37]. Indeed, Davenport proved in [Dav37] that for all
A >0,

(1.2) sup e Z e(om),u(n)’ <4 log™* N.
acR N n<N
Here e(u) = 2™,

An important extension of the class of circle rotations is the nilsystems, namely
tranlations x — ¢ - on a compact nilmanifold G/T". Such systems are particularly
important because of their close relationship to multiple ergodic averages. Functions
of the form n — f(g™.x) cover all the polynomial and bracket polynomial phases.
It is known, as a special case of Ratner’s Theorem [Rat91] and its discrete version
by Shah [Sha], that every trajectory of such a translation becomes equidistributed
in the union of finitely many translated copies of a closed sub-nilmanifold. This
property also holds true for polynomial sequences in nilmanifolds by Leibman’s
work [Lei05] (see Definition 2.9 for the term polynomial sequences in nilmanifolds).

Mobius disjointness along orbits of nilsystems, or more generally polynomial
orbits, was established by Green and Tao [GT12b] in the following form:

(1.3) sup [ 3™ um) Fg(n)D)| a RO AW log A N,
a.r N

where the supremum is taken over all polynomial functions g : Z — G with respect

to a given nilpotent filtration G4 and all functions F' : G/I' — C that are 1-

Lipschitz. Here m = dim G, and the parameter R records the rationality of the

pair (G,,T") (see Section 2 for related definitions).

Green-Tao’s proof was based on their accompanying paper [GT12a], which made
effective Leibman’s theorem by describing in a quantitative way how orbits become
equidistributed in sub-nilmanifolds of G/I'. This was then applied to joinings of
two orbits of the forms {g(pn)I'} and {g(¢gn)I'}. Combined with Vaughan’s identity
[Vau97], which is a modern form of the Vinogradov bilinear method, such estimates
lead to the orthogonality to the Md&bius function.

Another strengthening to Davenport’s estimate (1.2) was achieved in the recent
breakthrough papers of Matoméki-Radziwilt [MR16] and Matoméki-Radziwilt-Tao
[MRT15] on averages of non-pretentious multiplicative functions along short inter-
vals. As a consequence, they proved in [MRT15] that for all real-valued 1-bounded
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MOBIUS DISJOINTNESS FOR NILSEQUENCES 3883

multiplicative functions 3, which in particular include the Mo6bius and Liouville
functions,

(1.4) sup Z Z B(n+ h)e(a(n+ h))| de <

<1og log H 1
a€R N |h<H

HN.
log H logl/mo N)

Such estimates were used to prove an averaged form of the Chowla Conjecture in
[MRT15], as well as the logarithmically averaged Chowla and Elliott Conjectures
for correlations with either 2 or an odd number of components by Tao [Taol6]
and Tao-Terdviinen [TT19]. The theorems in [MR16] and [MRT15] have also
yielded many applications to Conjecture 1.1, especially in dynamical systems with
strong quasi-periodic behaviors (see the survey [FKPL18]). They were also used in
Frantzikinakis-Host’s proof [FH18] of logarithmically averaged Sarnak Conjecture
for ergodic weights. For most of these applications, it is essential to have a uniform
decay rate in (1.4) that is independent of the choice of a.

It is natural to seek a further strengthening to (1.2) that combines the theorems
of Green-Tao (1.3) and Matomaéki-Radziwill-Tao (1.4), namely a quantitative bound
to Mobius disjointness along short intervals for nilsequences. This is the purpose of
the current paper. This question is especially interesting because, as remarked in
[Tao16, p34], short interval correlations between multiplicative functions and higher
step nilsequences would be useful in the study of logarithmicall averaged Chowla
and Elliott conjectures of higher order correlations.

Previously in this direction, Flaminio, Fraczek, Kulaga-Przymus, and Lemanczyk
[FFKPL19] proved that: if ¢ is an ergodic unipotent affine automorphism of a
compact nilmanifold G/T" and z € G/T', F € C°(G/T), then:

(1.5) % > % >+ h)F (" ()| =0

N<n<2N h<H

as H — oo and N/H — oo. Similar results were also shown for polynomial phases
by El Abdalaoui-Lemariczyk-de la Rue in [eALdIR17]. Those proofs purely rely on a
minor arc argument and use the bilinear method in the form of the Katai-Bourgain-
Sarnak-Ziegler criterion [K4t86, BSZ13]. The decay estimates in [FFKPL19] and
[eALdIR17] are not effective as the dynamics may become highly quasi-periodic.

The result in this paper produces a uniformly effective bound without requiring
ergodicity.

It should also be noted that without the extra average in N, non-trivial bounds
on }% Yoneg (n+h)f(n+ h)‘ were obtained in the works of Zhan [Zha91], Huang

[Hualb, Hual6] and Matoméki-Shao [MS19] when f is a polynomial phase and
H > nf for some given 6 € (0,1). (6 = 2 in [MS19]).
Our main theorem is:

Theorem 1.2. Suppose G is a connected, simply connected m-dimensional nilpo-
tent Lie group and I’ C G is a lattice. Then there exists Hy = Ho(G,T') > 0 and
€0 = €o(m) > 0, such that:

For all H,N € N satisfying H > Hy and (log N)2 > log H, and ¢ € (2818 H ¢y,

log H » €0
there exists a set S € [N], whose construction depends only on H, N and €, such
that
(1.6) N — #S8 <, €N,
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3884 XIAOGUANG HE AND ZHIREN WANG

and
1
(L7)  sup == > ] 3 1s(n+h)p(n+h)F(g"a)| <, B+ 6(H, N).
1Flgr<t HN 1=
g€G,z€G/T = =

Here, the implied constants depend only on m. ||F||q/r stands for the Lipschitz
norm of a function F on G/T. The construction of the error function 6(-,-) >
0 is defined in (8.6) and independent of all the parameters here, and it satisfies
limy 00 6(a, N) = 0 for all a > 0. Moreover, we have §(a, N) < a®(log aﬁc)_ﬁ
for a constant C' = C(m) > 0 assuming a® < (log N) 750

In addition,

1
(1.8) sup > \ S pln + h)F(g""2)| € e+ H + §(HC, N).
HFHG/F<1 n<N h<H
geG,zeG /T

The Lipschitz norm of F is defined with respect to a particular Mal’cev basis of
the Lie algebra of G that is compatible with I'. For details, see (2.2).
By taking e = loilg‘J%IH, we have (H€)¢ = (log H)“. If log N > (log H)**%C then
1
5(H¢,N) < (log H)C(log ﬁ) ” < (log )t (log N)~ 1 = (log N)~ 0.
After redefining the constant C, the following corollary immediately follows:

Corollary 1.3. Suppose G is a connected, simply connected m-dimensional nilpo-
tent Lie group and I’ C G is a lattice. Then there exists Hy = Ho(G,T') > 0 and
C = C(m) > 0, such that:

For all H,N € N with H > Hy and log N > (log H),

NZ’Z (n+h)F(g"™x)

HF||G/F<1 H n<N h<H
(1.9) 9€G.zeG/T
loglog H
STy,

In particular, in the settings of Corollary 1.3,

1.10 lim —hmsu ‘ w(n+ h)F g" )| =0,

uniformly for all g € G, z € X and functions F' : G/T' — C from a given uniformly
Lipschitz family.

Remark 1.4. Theorem 1.2 and Corollary 1.3 still hold if y is replaced by the Liouville
function A\. Theorem 1.2 remains true for any multiplicative function g that is non-
pretentious in the sense M(B8y,X) — oo as X — oo for all Dirichlet characters
X, after choosing a different error function 6(+,-). The function § depends on the
decay of the functions M (8x, X). For the definition of the quantitiy M (-, X), see
Definition 5.1.

Remark 1.5. Theorem 8.1, and thus Theorem 1.2 and Corollary 1.3 as well, are
actually valid for all polynomial sequnces {g(n,h)T'} in G/T in lieu of {g"Thz}.
This in particular covers orbits of unipotent affine automorphisms as in [FFKPL19).
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MOBIUS DISJOINTNESS FOR NILSEQUENCES 3885

We now outline the organization of the paper. The strategy in our proof mixes
those from [GT12b] and [MRT15]. The main new difficulty is that, while for H
sufficiently large, each individual short range orbit {g"*"z}1 << in G/T should
equidistribute well in a subnilmanifold Y;, by [GT12a], in order to apply the bilinear
method, it is necessary to know that the equidstribution behaviors display a similar
pattern in Y,, and Y, when pn = p'n’ for a pair of bounded prime numbers p, p’.
It is for this reason that we choose to view g(n + h), where g is a polynomial in one
variable, as a polynomial g(n,h) in two variables n and h. After introducing the
background notions in Section 2, in Section 3 we derive a variation of Green-Tao’s
quantitative version of Leibman’s Theorem that better adapts to our situation.
Namely, we show that when N and H are both sufficiently large, {g(n, h) I i<p<m
is equidistributed in some Y,, for a typical n < N, and the equidistrbution patterns
in all such Y},’s are correlated to each other. Section 4 sets up the bilinear method
scheme and separates the estimate into minor and major arcs along each short
interval. In the major arc part (Section 5), the Matoméki-Radziwill-Tao estimate
can be applied as the correspondence n — Y, is periodic. In the minor arc part
(Section 6), we use Lemma 6.2 to replace the bilinear sum in [MRT15], which
becomes a sum of 4-fold products after applying Cauchy-Schwarz and would get too
complicated for nilsequences, with one that consists of 2-fold products recording the
correlations between short orbits of the form {g(n, p(h+r))} and {g(n’,p'(h+71"))}
where pn ~ p'n’. The bound of such correlations, for all but a small portion of
choices of (n,n’,p,p’), will be given by Proposition 6.10 and proved in Section 7
using the aforementionned correlation among equidistribution patterns. Finally,
Section 8 merges the minor and major arcs and fixes appropriate parameters to
conclude the proof.

Notation 1.6. In this paper:

e [N] stands for the interval of integers {1,---, N}.

e X = Oy(Z) or X <y Z means that % is bounded by a constant that
depends only on Y.

e Working under Hypothesis 2.13, we shall assume by default that the im-
plicit constant Y depend on the degree d of the filtration and the dimension
m of the nilmanifold, without including m, d in the subscript. For exam-
ple, O4(1) will actually stand for O4 y, 4(1). Similarly, from now on the
notation < will always stand for <, 4.

e Many implicit constants O(1) = O,, 4(1) will appear in the proof. For
simplicity, we will use a common constant Cy = Oy, 4(1) > 1 that is large
enough for all these purposes.

e For a € R, |a||r/z denotes maxyez | — kl.

2. BACKGROUND ON SEQUENCES IN NILMANIFOLDS

In this section, we quickly collect all the facts and notions that we will need from
Green-Tao’s papers [GT12a, §1, §2 & §A] and [GT12b, §3].

A connected, simply connected Lie group G is nilpotent if it has a nilpotent
filtration G,, i.e. a descending sequence of groups G = G; D G 2 -+ D Gg 2
G441 = {e} such that

(2.1) [G,Gi4] € Gy, Vi > 2.
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3886 XIAOGUANG HE AND ZHIREN WANG

This actually implies [G;, G;] € Gi4; for all ¢,j > 1. The number d is the degree
of the filtration Go. The step of G is the degree of the lower central filtration
defined by Gi+1 = [G, Gl]

For all i > d + 1, we will adopt the convention that G; = {e}.

Denote by g; the Lie algebra G;, then go = {g;} is a filtration of Lie algebras,
ie. [g,0: C git1, if and only if G; is a filtration.

A connected, simply connected nilpotent Lie group G has a lattice I' if and only
if it has an algebraic structure defined over Q. In this case, for a connected Lie
subgroup H of G, H is an algebraic subgroup defined over Q if and only if H N T
is a lattice of H. A lattice I" must be cocompact, and the compact quotient G /T is
called a nilmanifold.

Abasis V= {V1,---,V;,} of g is R-rational if the structure constants c; ;i in the
Lie bracket relations [V;, V}] = Y, ¢;j1 Vi are rational numbers whose heights are
bounded by R. Recall that the height of a rational number § is max(|al, [b]) when
a, b are coprime. For nilmanifolds G/T', G always has a rational basis. A special
kind of rational basis, Mal’cev basis, was defined in [Mal49]. A rational basis
V={V,---,V,,} is a Mal’cev basis adapted to (G,,I") if it satisfies the following
properties in [GT12a, Def. 2.1]:

(i) {V},Vj41,---,Vin} spans an ideal of g for all 0 < j < m;
(ii) For each 1 < i < d and m; = dim G}, the Lie algebra g; of G; is the linear
Span of {Vm—mi+17 Vm—mi+27 ) Vm}y
(iii) There is a diffeomorphism vy, : G — R™ determined by

qu(exp(lel) e exp(mem)> = (w1, ,wWm);

(iv) In the coordinate system by, I' = 1y, (Z™).

When G has a lattice I', there is always a Mal’cev basis adapted to the lower
central filtration. In the coordinate system given by ¢y, the set 1, 1([O, 1)™) will
be a fundamental domain of the projection G — G/T.

In the sequel, we will always assume that G/I" has a Mal’cev basis V adapted to
(G,,T") for some filtration G,, and fix the tuplet (G, G,.,I', V). In this case, every
G; is a rational subgroup of G, and I'; = G; N T is a lattice of G;.

The nilmanifold G/T" has a tower structure of principal torus bundles

G/F = G/Gd+1r — G/GdI‘ — = G/GQP — G/GJ‘ = {pt},

where G/G; 411" is a principal G;/G;+1-bundle over G/G;I". Remark that here
G;/G;i 1T 2 T™i~™it+1 g the quotient of the abelian Lie group G; /G, 11 & R™i~™Mi+1
by the lattice generated by the projections of Vi, 41, Vinemigs -

A vector v € g is an R-rational combination of elements in V if v = Y v,V
where the v;’s are rational numbers of height bounded by R. A subgroup H C G
is R-rational with respect to V if its Lie algebra has a basis consisting of such
R-rational combinations.

The Mal’cev basis V induces a right invariant metric dg on G, which is the
largest metric such that d(z,y) < |[¢y(zy~!)| always holds, where | - | denotes the
[°°-norm on R™. Actually, this in turn induces a metric dg/r on G/I". For functions
F:G/T'— C, ||F| will denote the Lipschitz norm

(@)~ Fly)|
2.2 Fl| = |F +sup —————
(22) 71 = 1P leo +sup =378
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MOBIUS DISJOINTNESS FOR NILSEQUENCES 3887

with respect to dg/p. We will also write || F||¢/r instead, when it becomes necessary
to emphasize that the distance is determined by the Mal’cev basis of G/T.

The symbol fG /T will stand for integration with respect to the unique left-
invariant probability measure on G/T.

The nilpotent Lie group G is unimodular, and G/T" has a unique left-invariant
probability measure. The notation fG T will refer to the average with respect to
this measure.

Since G/[G, G] is abelian and the commutator subgroup [G, G] is a rational sub-
group, (G/T)/(|G,G]/(|G,G]NT")) = G/|G, G]T" is a quotient torus of the connected
abelian Lie group G/[G,G] = R, called the horizontal torus with respect to
G, of G/T.

Definition 2.1 ([GT12a, Definition 2.6]). A horizontal character is a continuous
additive homomorphism 7 : G/[G,G|I' — R/Z. We remark that 1 can also be

viewed as a continuous group homomorphism 7 : G — R/Z that vanishes on the
subgroup [G, G|

Using the coordinate representation vy, there exists an integer vector a € Z™,
supported on the first m — mso coordinates, such that

(2.3) n(g) = a-Py(g)(mod Z).

The modulus |n| of 7 is defined to be |a|. Note # is trivial if and only if |n| = 0.
By abusing notation, we shall also denote by 7 the linear functional n(v) = a-v on
R™ 2 g.

Definition 2.2. For a polynomial function f : [N] — R/Z of degree at most d, f

can be written as f(n) = Z?:o ;i (}), where ; are uniquely determined modulo 1.

The C*°([N])-norm of f is given by
d_ nri
1fllcee vy = Dl,ﬂjgiN llevi |-

Lemma 2.3 ([GT12b, Lemma 3.2)). If f(n) = X0 Bin' = S0 i ("), then there
is an integer D = O4(1) such that ||DB;|r/z <a N‘i||f\|coc[N] foralli=0,---,d.

Lemma 2.4 ([GT12a, Lemma 4.5]). Suppose f(n) = Z?:o Bin', § € (0,3), € €
(0, %) If f(n)(mod Z) belongs to an interval I C R/Z of length € for at least SN in-
tegers n € [N]. Then for some positive integer D <4 6~9¢(1) || D f(mod Z)||cea
<4 eé'*od(l)'

For an integer vector N € N" write [N] = [Ny] x --- x [N,] C Z".

Definition 2.5 ([GT12a, Definition 9.1]). For a multiparatmeter finite sequence
{g9(n) }ne(n in G and an integer vector N € N, g is said to be (W, N)-smooth, if
for all n € [N],

(1) dg(g(n),ide) < W,
(2) dg(g9(n),g(n+e;)) < % for all 4, where e; = (0, ...,0,1,0,...,0) is the unit
vector along the i-th coordinate direction.
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3888 XIAOGUANG HE AND ZHIREN WANG

If g1, g2 are both (W, N)-smooth, and W > R, where the metric is induced by
an R-rational Mal'cev basis, then g1g5 is (WP N) smooth.

Definition 2.6. An element g € G is R-rational, if there exists 1 < r < R such
that ¢" € T. An element z € G/T is R-rational, if z = ¢gI" for some R-rational
group element g.

Lemma 2.7 ([GT12a, Lemma A.11]). Suppose the Mal’cev basis V adapted to
(G, T) is R-rational. With respect to V, if g is R-rational then iy (g) € %Zm for

some ¢ < ROW . Conversely, if Py(g) € %Zm then g is ROW -rational. Moreover,
the product of two R-rational elements is RO -rational.

Definition 2.8. For a finite arithmetic progression A = {gn + 7},¢n] in Z, a
finite sequence {x(n)}ne4 in G/T is said to be J-equidistributed in G/T if for all
complex valued Lipschitz function F on G/T,

< 6[1Flleyr;

E F(x(n))—/G/FF

neA

and it is totally J-equidistributed in G/T if the subsequence {z(n)},c.as is -
equidistributed in G/T for all arithmetic progressions A" C A of length at least
ON.

For a map g : Z" — G, the derivative along h € Z" is

(2.4) dng(n) = g(n +h)g(n)~".
Definition 2.9. A map g : Z" — G is a polynomial map with respect to G,
if for all 4 and Iy, -+ ,l;,n € Z, the i-th derivative 9y, - - - 9;,g(n) takes values in G;.

The set of polynomial sequences with respect to G, is noted by Poly(Z", G,).

Lemma 2.10. Suppose a Mal’cev basis V adapted to (Go,T") is R-rational where
R > 10. Let n be a non-trivial horizontal character of G/T', whose modulus |n|
is bounded by R with respect to V. If for a polynomial sequence g € Poly(Z,G,)
and N > R, ||n o glle=qny < R, then {g(n)T}nepn) is not totally (O(R))!-
equidistributed.

Proof. Since [|nog|lce(n)) < R, by Lemma 2.3 ||nog(n) —nog(0)|g/z < RnN .
This implies that for the the mapping 7(z) = exp(2min(x)) from G/T' to the unit
circle in C, the values of 7j(g(n)) are within distance < RJ to each other for 0 <
n < 6N. Using the convention in Notation 1.6, one can assume that the implicit
constant here is Cy. In particular,

1
(2.5) E_(g(n)D)|>1—-CoRé > 7,
0<n<éN 2
if 6 < %Co_lR_l. Because 7 is a non-zero character, 7 has zero average on G/T.
In addition, ||7j]|q/r < 27|n| < 27R. It follows that the sequence {g(n)I'},eny is
not totally min(3Co~*R™!, ;= R™!)-equidistributed in G/T. O

’ A

Lemma 2.11. If § € (0,1) and there exists an interval A C [N] of length at
least SN such that {g(n)}nea is not §-equidistributed in G/T', then for some N’ €

[%N, N1, (9(n))ne[n) is not %—equidistributed in G/T.
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MOBIUS DISJOINTNESS FOR NILSEQUENCES 3889

Proof. One may write A = {N; < n < N} = [No] \ [V;]. Write 6; = &t and
0 =6y — 0, then 6 > 6.
There exists a Lipschitz function F on G/T" with fG/F F =0 such that

% B Faon)- G B P
n€[Na]

B, Flo(r)| > b[F].
neA
If 0 > % and ’Ene[Nl} F(g(n)I‘)’ > %HFH, then N7 > %N and (g(n))neiny) is
not %—equidistributed.

Otherwise, either 6; < % or |Eneiny Flg(n)T)| < %HFH In both cases,

% EFln)| < S|
el n ~\F|,
9 nE[Nl] g 2
and thus
6 52 5
E Flgn))| =z |2 E Flgn))|>d|F| - = [F| = S[IF].
ne[N] 0 ne[v,] 2 2
So (g(n))ne[ny) is not g-equidistributed. Moreover, No > 6N > §N. O

The family of Poly(Z",G,) is known to be a group (Lazard [Laz54], Leibman
[Lei98, Lei02] and Green-Tao [GT12al]). A description of Poly(Z", G,.) was given in
Leibman and Green-Tao’s works:

Lemma 2.12 ([Leil0, §4], [GT12a, §6]). Suppose V is a Mal’cev basis adapted to
(G, T), then g € Poly(Z",G) if and only if ¥y (g(n)) has the form

o) = 3 (") (7))

jezs,
where wy € R™ and (w;); =0 for all i < m —my; with [j| = j1 + -+ ji.

In particular, if |j| > d, then m; = 0 and thus wj = 0.
In the rest of this paper we will work under the following hypothesis

Hypothesis 2.13. G/T is an m-dimensional compact nilmanifold with a degree
d rational filtration Ge, and V is an Rg-rational Mal’cev basis adapted to (Go,T'),
where Ry > 10. Moreover, g € Poly(Z?,G,) is a polynomial map determined by
coefficients {w; k}j ez, as in Lemma 2.12. Let R > Ry be a parameter to be
determined later. In particular, V is also an R-rational Mal’cev basis adapted to
(G,,T).

The formula in Lemma 2.12 writes in this case as:

26) wtaonin = X wn(")(})

J,k20
Jjtk<d

where (wjx); = 0 for all i < m —mqy.
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3. QUANTITATIVE FACTORIZATION THEOREM FOR 2-PARAMETER POLYNOMIALS

We now state Green-Tao’s effectivization of a theorem of Leibman [Lei05], and
deduce a variation of it that fits our purpose.

Proposition 3.1 ([GT12a, Theorem 2.9]). Suppose G/T" is an m-dimensional com-
pact nilmanifold with o degree d rational filtration Go, and V is an R-rational
Mal’cev basis adapted to (Ge,I') where R > 10. For f € Poly(Z,G,), and N € N
such that N > RO | at least one of the following holds:

(1) either {f(n)T}neqny is R~ -equidistributed in G/T';
(2) or there exists a horizontal character ) of G/T' of modulus |n| < ROM) such
that Hn e} f”coo([N]) S Ro(l).

Corollary 3.2. In Proposition 3.1, one may replace in part (1) the property “R™!-
equidistributed” by “totally R™'-equidistributed”.

Proof. Suppose {f(n)I'},en is not totally R~ '_equidistributed. There exist in-
tegers 0 < a < b < R, and an interval A C [%] of length at least R~'N, such
that the sequence {f(n)['},c4 is not R '-equidistributed, where f(n) = f(bn+a).
By Lemma 2.11, there exists N’ < N with N’ > %R‘2 . % > RPN such that
{f(n)F}ne[N/] is not R~9W_equidistributed. By Proposition 3.1, there exists a
horizontal character 7 such that 0 < || < RM and |5 o f||Coo([N/]) < ROW),
As N’ > RN, this implies that || o f||coo([N]) < RPM | which in turn
implies by [GT12a, 7.10] that there is a positive integer D < R such that
| Dno fllosny) < ROM | The corollary then follows after replacing n with Dn. [

Corollary 3.3. Suppose G is an m-dimensional simply connected Lie group with
a degree d rational filtration G, and I'; is a lattice in G for j = 1,2 and V; is an
R-rational Mal’cev basis adapted to (Go,1';). Assume in addition that elements in
Vs are R-rational combinations of elements in V.

For f € Poly(Z,G,), and N € N such that N > ROW  if {f(n)T1} e is
not totally R~'-equidistributed in G/T1, then {f(n)L2}neqn is not totally R-O0).
equidistributed in G /Ts.

Proof. By Corollary 3.2, there is a non-trivial horizontal character n of G/I'y, i.e.
a character G — R/Z that annihilates Ty, of size |n|y, < RO that satisfies
7o fllew(ny < ROW. Here the modulus |n]y, < RPM is measured in terms of
the basis V;. Because all elements of V5 are R-rational combinations of those in
V1, by Lemma 2.7, there is a positive integer D < RO such that for all v € T'y,
vP € Ty and thus Dn(y) = n(y”) = 0. Then Dp is a horizontal character of
both G/T; and G/T'y with |Dn|y, < RO, Again, because all elements of V are
R-rational combinations of those in Vi, |[Dnly, < ROM. After replacing n with
Dn, one may assert that:

There exists a non-trivial horizontal character 7 of G//T's such that ||y, < RO™)
and [|n o fllge(ny) < ROM. By Lemma 2.10, {f(n)T2}nen fails to be totally
R~9MW_equidistributed. (Il

We will need later the following refined statement to deal with generic restrictions
of a 2-parameter polynomial to one variable.
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Proposition 3.4. Under Hypothesis 2.13, for any R > R and N, H € N such that
N, H > RO at least one of the following holds:

(1) either {g(n,h)T}perm is totally R '-equidistributed in G/T for all but
RN values of n € [N];
(2) or there exists a horizontal character n of G/T of modulus |n| < RO such

that ||n(w;jk)llr/z < ROON—IH for all j, k > 0.
Proof. Assuming (1) fails, we try to establish (2). For more than RN values of

n € [N], {g(n, h)['}rem) is not totally R~ -equidistributed. For every such n, by
Corollary 3.2 there is a horizontal character n with || < RO such that

(3.1) lm0g(n,)llcem) < ROW,

Applying pigeonhole principle to the at least RN values of n € [N], there is a
common 7 with 0 < || < R, such that (3.1) holds for at least R~°( N choices
of n € [N]. By (2.6), this implies:

> (”) (,;)mwjk) < RO,
Fr) ’ o ([H))
which by Definition 2.2 means that
d—k
Z (7?)77(%%) < ROOH* vk =0,---,d
=0 N R/Z

As this inequality holds for R=9WN choices of n € [N], by Lemma 2.4 there is a
positive integer D > 0 such that

Dz_j (; )t

In other words,

(3.2)  [IDn(wji)|lr/z < RCWH*N7I Wk, j > 0 such that k + j < d.

< RO g—F . RO — ]A%O(l)H*k, Vk=0,---,d.
C=([N])

This is exactly the desired conclusion after replacing n with Dn. O

Lemma 3.5. If Case 3.4.(2) holds in Proposition 3.4, then there is a decomposition
g = eg'y with €,g',v € Poly(Z?,G) such that:

(1) € is (ROY (N, H))-smooth;

(2) nog' =0 while regarding n : G/T' — R/Z as a morphism from G to R;

(3) y(n, h) is RO -rational for all n,h € Z.

Proof. The proof is the same as that of [GT12a, Lemma 9.2] except that we are
not reducing to the case g(0) = id. For completeness, we give a sketch.

For all integer pairs j, k > 0 with j+k < d, choose u;; € R™ such that n(u,;) € Z
and |wjr — ujr| < ROWN-IH~F and vjr € Q™ such that n(u;i) = n(vji), where
1 is regarded as an R-valued linear functional from R™ = g. This can be done
while requiring that (w;x); = (vjx)i = 0 for all ¢ < m — m,4. Furthermore, one
can require that v;; € (%Z)m for some integer 1 < D < ROW),
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Then define €, ¢’ and v by

avtent) = X =) (1) (1) wrtmm = 3 (7 ().

4,k>0 4,k>0
j+k<d jhk<d

and ¢'(n,h) = e(n,h)"tg(n,h)y(n,h)~t. Then by Lemma 2.12, ¢, 7 belong to
Poly(Z?,G,) and hence so does ¢’ as Poly(Z?, G,) is a group.
By the bound on |wj — vjx|, we know that for all (n,h) € [N] x [H],

[Wy(e(n+1,h)) — Py(e(n. )| < Y ROWNTH . pi-thk <« ROON!

and similarly [y (e(n, h+1)) =y (e(n, h))| < ROD H=1. Moreover, |1y (e(0,0))| =
lwoo — voo| < RO These inqualities guarantee property (1) for e by [GT12a,
Lemma A.5].

Property (2) holds as

n(g'(n, h))
n(g(n, h)) —n(e(n, b)) —n(y(n,h))

-z ) (M) (1) - 3 - wo (M) (1) - = e (1) (2)

J+k<d Jjtk<d Jj+k<d
=0.

Finally, it follows from Lemma 2.7 that ~ is R©OO_rational. This also implies by

[GT12a, Lemma A.12] (or rather the natural multiparameter extension of it) that
for some positive integer ¢ < (ROM)OM) « RO ' ~(n, h)T is qZ*-periodic. Thus
we have property (3). O

Using this, Green-Tao’s factorization theorem [GT12a, Theorems 1.19 & 10.2]
can be easily refined to the following:

Theorem 3.6. Under Hypothesis 2.13, for any B > 1, N, H € N such that N, H >
ROW | there exists an integer W € (R, RO(BM)], a W -rational subgroup G' C G, a
W -rational Mal’cev basis V' adapted to (G,, G’ NT) consisting of W -rational com-
binations of vector in V, and a decomposition g = eg'y with €, g’,y € Poly(Z?,G,)
such that:
(1) € s (W, (N, H))-smooth.
(2) ¢ takes value in G'. And, with respect to the metric induced by V' on G'/T”,
{9/ (n,h)}nepm) is totally W—B-equidistributed for all but at most W—BN
values of n € [N];
(3) ~y(n,h) is W-rational for all n,h € Z. Moreover for some 1 < ¢ < W,
{v(n, R} pyeze 18 qZ?-periodic.

Proof. Apply Proposition 3.4 with R = RB. If Case 3.4.(1) holds, then the theorem
is true for @ = G, W = R, e(n,h) = v(n,h) =id and ¢’ = g.

If Case 3.4.(2) holds for a non-trivial horizontal character n; of G/T of norm
< §0(1)7 then Lemma 3.5 produces a decomposition g = €1g;v1. In this case,
let G/l = kerG m and Fll = Gll NT. Then (G/l)' :~{(G/1)i}i20 = {Gll n Gi}iZO
is a filtration of G4. Notice that each (G}); is a R°(M)-rational subgroup. For
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Ry = ROM) = RO(B) by [GT12a, Lemma A.10] G; has an Rj-rational Mal'cev
basis V; adapted to ((G1)e,1}) consisting of R;-rational combinations of vector
in V.

Apply Proposition 3.4 again, and Lemma 3.5 if necessary, with R = R to the
sequence {¢}(n)I'}} in G1/T}. The argument is iterated if Case 3.4.(2) holds in
every step. So in the k-th step, Proposition 3.4 is applied with R = R,]ffl. With

O(1
Ry = (RE)7" = (R 1)0®:

e a non-trivial horizontal charcter n of Gj,_,/I'}._; of norm < Ry;

e an Rj-rational Mal’cev basis Vj, adapted to ((G})e,I'},) consisting of Rj-
rational combinations of vector in Vi, _1, where G}, = kerg, , np and (G}); =
G% n Gi;

e a decomposition g, ; = €xg,vx in the group Poly(Z?, (Gr—1)s),

such that:

e cis (Ry, (N, H))-smooth with respect to the metric induced by V;_1 on
Gt

e g takes value in G}, and thus g} € Poly(Z?, (G})s);

° ”y,’c is Ry-rational with respect to the Mal’cev basis Vi_;.

As dim G}, strictly decreases, the process must stop at some k& < m. This means
Case 3.4.(1) holds, i.e. {g;(n, h)[x}nem is totally R, P-equidistributed in G} /T,
for all but R, ®N values of n € [N].

Write g = e’y where e = ¢1 -+ €, ¢ =g, and y =y -1, G =G, V =V
and W = Ry. Notice that since for each j, ¢; € Poly(Z?,(G)s) C Poly(Z?,G,)
and Poly(Z?, G,) is a group, € C Poly(Z?,G,). Similarly v is in Poly(Z?2, G,) and
sois ¢g'.

It was shown above that the property (2) in the theorem holds for ¢’. The
properties (1) and the W-rationality in (3) follow in the same way as in the proof
of [GT12a, Theorem 10.2], after replacing W with WOW if necessary. Furthermore,
by a multiparameter version of [GT12a, Lemma A.12], the 2-parameter sequence
' (n, )T} npyeze is qZ2-periodic for some ¢ < WP, Once again by replacing
W with WO we obtain the property (3) for ~.

Finally, remark that as k < m, Ry < RO(F™) and W <« Rg(l) < ROB™) O

4. SEPARATION OF MAJOR AND MINOR ARCS

From now on, we work under Hypothesis 2.13.

Notation 4.1. For any By > 10, let N, H, and g be as in Theorem 3.6, applied with
B = B;. Also let €, ¢', v, W, ¢, G’ and V' be as in the conclusion of the theorem.
Without loss of generality, we may assume R > 10. In addition, after replacing the
period ¢ with a multiple of it if necessary, we may assume ¢q € (%, w].

Because W € [R, RO(Blm)], we will fix a constant C; = Oy, 4(1) > 1 and assume

(4.1) W e [R, RO,
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Let F': G/T' — C be a function with ||F'|| <1, 8 is a 1-bounded multiplicative
arithmetical function. For every n > 0, choose 6,, from the unit circle such that

(4.2) | Bln+ W) F(g(n, WD) = 0, 3 Bln+ h)F(g(n, h)T).
h<H h<H

Split (0, H] into W? subintervals Iy, -- ,Iyy2 of equal lengths W=2H. Then
for each n, there exist an integer ng € Z/qZ such that n = ng(mod ¢). Identi-
fying arithmetic progressions with subsets of N, the arithmetic progression [H] is
decomposed as the disjoint union

H] = | | Zn;
jieg
of arithmetic progressions
Z,;={helz NN:ny+h = j(mod q)},
where
(4.3) T ={(k,j):1<k<W?0<j<q—1}.
Remark that
1
(4.4) #J =W?3q € (§W3, Ww3).
Thus the length of the arithmetic progression Z,, j satisfies
(4.5) #IL,; € [W2H,2W3H)

Because € is (W, (N, H))-smooth, dg(e(n, h),idg) < W for all (n, h) € [N] x [H].
Moreover, for any given 1 < k < W2, dg(e(n, h),e(n, k') < . W=2H < W~ for
all b, h' € I .

For a given pair (n,j) = (n,k, j), Choose €, ; = €(n, h) for the smallest h € Z,, ;.
As 7, ; C I, 1, we know

(4.6) da(enj e(n,h)) < W Vh € T,;.
Moreover, by (W, (N, H))-smoothness,
(4.7) da(€nj,ide) < W.

Choose a rational element +, ; € G such that v, ;I' = v(n, h)I" for any h € 7, ;.
The value of 7, ; can in fact be chosen to be independent of the choice of h € Z,, ;
and g¢-periodic in n, because 7, ; C ¢Z + j — n and y(n, h) is g-periodic in both n
and h. As y(n,h) is W-rational, and 7, ; = v(n, h)¢ for some & € T, 7, is WO
rational by Lemma, 2.7. Moreover, we may choose 7y j from the fundamental domain
¥, ([0,1)™). In particular, by [GT12a, Lemma A.4],

(4.8) de (7, ide) < ROW.
Define G5 by Gnj =7, ;G Vnj and Tpj = G NT.

Lemma 4.2. The following properties are true:

(1) Gnjisa WO rational subgroup and Ty is a lattice of it;
(2) The assignments G ; and 'y 5 are g-periodic in n;
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(3) Gnj has a WOW) _rational Mal’cev basis V,, ; adapted to ((Gy.j)e; I'nyj) that
consists of WO _rational combinations of elements from V. Here (Grj)e
consists of the subgroups (Gpj)i = Gnj N G.

Proof. Because vy, j is WOM _rational and G’ is a W-rational subgroup, by [GT12a,
Lemma A.13], G, ; is a WO rational subgroup. As Yn.j is g-periodic in n, so are
the correspondences from (n,j) to G, ; and I',,j. The last property is given by
[GT12a, Proposition A.10]. O

Define g, j(h) = fy;’}g’(n, h)¥nj € Gpnj- Then g, ; € Poly(Z, (G j)e) and

L9 g(n, B)T =¢(n, h)g'(n, h)y(n, h)T = e(n, h)g'(n, h)yn ;T
( ’ ) :e(n,h)'yn,jgnd(h)I‘, Vh € In)j.

We then define a new function F,, ; : G, j/T; — C by
(4.10) Fj(9Tn3) = OnF (€njYni9T)-

Note that F), j is well-defined because if g = gn with n € I, 5 C I, then gI"' = gI'.
By (4.7), (4.8) and [GT12a, Lemma A.5], we get

(4.11) | EnllG, ;/mn; < (WROMOW) | gr < WOW,
By (4.9), (4.11) and (4.6), for all h € T,

(4.12) da/r(eniTnign (T, g(n, ML) < W

and

(4.13) |F3(9n3(M)Tn5) = 0, F (g(n, h)T)| < W F.

Lemma 4.3. For all Lipschitz function F' on G/T, the sum
(4.14) S| X2 B+ myF )
n<N h<H

is approzimated by

(4.15) Y>> B+ h)Fu(gni(M)lny),

n<N jeJ h€l, ;
up to an error bounded by W HN.
Proof. As [H] = | |;c 7 Znj, the claim follows from (4.2) and (4.13). O

For each triple (n,j), decompose F, j as F, ; + E, j where E,; = I e, Fn
n,j n,j

is a constant and ﬁn,j has zero average on G, j/I'y, ;. Then (4.15) splits into the
sum of a major arc part

(4.16) YN > EwgBn+h).

n<N JET h€L, ;

and a minor arc part

(4.17) Z Z Z B(n+ h)F, ,J(gn,J(h)Fn,j)a

n<N jeJ h€l, ;
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Note that,

(4.18) |Engl <1,

(4.19) 1Fnsllc, ym., <20Fuslla, r,, < WO,
(4.20) 1wl co (G ymag) < 2

5. MAJOR ARC ESTIMATE

The major arc estimate will concern only multiplicative functions £ that are
non-pretentious as defined by Granville and Soundararajan [GS07]. Given two 1-
bounded multiplicative functions 3, 5’ and a parameter X >1, a distance D(3, §’; X)
€ [0, +00) is defined by the formula

N 1)2
> 1 —Re(B(p)B'(p))

p<X p

D(B, B X) =

It is known that this gives a (pseudo-)metric on 1-bounded multiplicative functions;
see [GS07, Lemma 3.1]. Moreover, let

(5.1) M(B; X) := ‘ti‘r%fx D(B,n — n“;X)2
and
- M(BX.Y):= il M(5%:X)

D(B,n + x(n)n'"; X)?,

inf
[t1<X;9<Y5x (q)

where x ranges over all Dirichlet characters of modulus ¢ <Y
In addition, define

(5.3) M(3,X,Y) = inf M(5,X",Y).

Remark that M is increasing in X and decreasing in Y.
Instead of (4.16), we will first estimate

(5.4) S>> Engls(n+h)B(n+h).

n<N Jj€J h€L, ;

Proposition 5.1. Assuming Hypothesis 2.13, Notation 4.1 and the following in-
equalities:

log log H 1 i
(5.5) % <e< oo 10 < Ry < R < HCTB1™ ;log H < (log N)3.
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Then for all 1-bounded multiplicative function f : N — C and function F :
G/T — C with ||F|| < 1, there exists a subset S C [0, N]|NN with N — #S < €N,
such that

‘ Z Z Z Enjls(n+h)B(n+h)

(5.6) n<N jeJ h€Z, ;

N
<(w i+ wie VORI, 2 W) W (log )T

W5’
Moreover, the choice of S depends only on H, N, and €.

This will result from the following more precise statement.

Proposition 5.2. Assume the settings of Theorem 3.6, and inequalities

(5.7) 10 < P < Q1 < exp ((log N)%), (log Q1)*° < P;

(5.8) W% <P <@ <WH.
Then there exists a subset S C [0, N] NN with

log P1
og Q1

such that for all 1-bounded multiplicative function B : N — C and function F :
G/T — C with |F|| <1,

‘ D2 D Eajls(nt )+ h)

n<N jeJ h€l, ;

(5.9) N -#8< 5N,

M N
(5.10) <<(W’%+W36_%M(/B’WS’W)M(5, W)+ W(log 7)™

w5’
., (log H)%

oF JHN.

Moreover, the choice of S depends only on H, N, P, and Q1.

Proof of Proposition 5.1 assuming Proposition 5.2. Let leH% and P;=Q5%0¢.
The inequalities in (5.5), together with the fact that W € [R, RG1B 1], imply
W < H¢ < Hﬁ, Q1 < W™*H, and P, = H*®¢ which in turn guarantee (5.7)
and (5.8).

We also have

1 1
(IOg{{)G S (logf)ﬁ < H*E < Wﬁl,
Plﬁ Ho»¢
and
log Py
= 500¢e < e.
log Q1
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So Proposition 5.1 follows from (5.10). Notice that S depends only on N, H, P;
and @1, whereas P, and )7 are determined by H and e. O

The following constants are defined in [MRT15, §2]:
Definition 5.3. Given P;, @Q; as in (5.7), let P,., @, be defined by the formulas
P, = exp(r'"(log Q1) log 1), @ = exp(r*"*(log Q1)").
1
Let ry be the largest index such that @Q,, < exp (%) Also define
Sp, 0,,n = {n < N :n has at least one prime factor in [P, Q,],V1 < r <ri}.

Lemma 5.4 ([MRT15, Lemma 2.2)). #([N]\ Sp,.q, n) < {ZEEN.

In addition to the conditions in Definition 5.3, we shall also assume H < N and
(5.8), and write simply

(5.11) S =38pr.oi.N

when it does not cause ambiguity. Clearly, the construction of S depends only on
N, P1 and Q1~

Following [MRT15, p2177-2178|, denote by /3 the 1-bounded completely multi-
plicative function determined by 3 (p) = B(p) for all prime numbers p. Then the
Dirichlet inverse of /3 is MB, and thus 8 = 3 * 1, where n = [ ,uB is the Dirichlet
convolution between [ and MB- Then the function 7 is multiplicative, bounded by
2 in absolute value, and satisfies

(5.12) > Inm)n= G+ = 0,(1)

for all o > 0. Note that D(8, 8; N) = D(3, 8"; N) for all 5.
For 1 <k < W?2let

q—1
frx(h) = ZEn,(k,j)IIn,w,j)(h)
=0

on I . Then f,  is bounded by 1 in absolute value and g-periodic on I N N.
Furthermore,

GA=> > 3 istn+h)Bn+h)fur(h)

n<N k<W?2 hel,NN

(5.13) :Z Z Zn(a) Z 1s(ab)B(b) fux(ab—n)
et =

By (5.12), the contribution of terms with a > W is bounded:

Lemma 5.5.

Z Z Zn(a) Z ls(ab)B(b)fn,k(ab_n)

n<N k<W?2a>W beN
aben+1I

< W™ iHN.
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Proof. For every n € [0, N] and k < W?2,

Sn@) S 1s(ab)B(b) fulab - n)

a>W beEN
aben+1Ig
(514) 1 2 _3 _1 —92
< @) -a'WPH < Y n(a)la” - WTE-WPH
a>W a>W
<W~i.W2H.
The lemma follows by summing over 1 < k < W2 and n < N. O

Next, we aim to bound

Z Z Zn(a) Z 1S(ab)6(b)fn7k(ab—n)

n<N kE<W?2 a<W bbENl
(5.15) aben e )
=3 D> @ Y 1s(b)BB) faklab—n).
n<N k<W?2 a<W beN
aben+1y

The latter inequality follows from the observation that if a < W < P, then b€ S
if and only if ab € S.

Givena < W, k < W2 < P; and n < N, decompose the set {b € N : ab € n+ 1.}
according to u = ged(b, q):

E 15(6)B(D) fui(ab —n)
beN
abeEn+I;

= 1s(b)B(b) 1 (ab —n
(5.16) %a%@%jk s(0)BD) frr( )
:ZB(“) Z 15(0)B(©) frx(auv — n).

u\q auveEn+Iy
(v,2)=1

For the last equality we used the identity 1s(uv)B(uv) = 1s(v)3(u)3(v), which
follows from the complete multiplicativity of 8 and the condition u < ¢ < W < P;.
The Dirichlet characters of conductor  form an orthonormal basis of the [-space
on the finite abelian group (Z/(%)Z) 8
Since the function fn kaw @ v = far(auv —n)le, 2= is L-periodic, it can

u
be decomposed as a linear combination 4 Wn, k,auxX Of such characters.
Then,

x mod* %

(517) Z |wn,k,a,u,x|2 < an,k,a,u”l‘x’ < 1.

x mod* £
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3900 XIAOGUANG HE AND ZHIREN WANG

By (5.16), (5.17) and the Cauchy-Schwarz inequality, we have

(5.18)
2
S 15030 fustad )
beN
aben+1I,
2
= Zﬁ(u) Z W k,a,u,x Z 18(1))6(1]))((1})
ula x mod* % a'u11v€€71L\I+I,C
2
PN (] X vrann X 15| )
ulg ulg ' x mod*ZL ve(#-i-#lk)ﬂN
R 2
A(T( T ) | T o))
ulg  x mod*Z x mod* L wve(+L1)NN
. 2
o T ] X swieno]).
ulg ve(Z+-LT1;)NN
x mod* £
Therefore, again by Cauchy-Schwarz inequality,
2
Z Z fn k( b_n)
n<N beN
aben+1Ij
2
<NZ’ Z (b) fn.1(ab— n)‘
n<N  beN
aben+1;,
. 2
NYa Y | Y s@iexe)
(5.19) n<N  ulg we(s 3t LI)nN
x mod* £
. 2
SWNY Y | Y 1s@Bwx)
n<N uW ve(L+2L 1NN
condxg‘f
. 2
SN Y aw X | Y s, e @50
u<W ng% ve(n+ﬁ1k)ﬂN
condxg%

The inner sumation in formula (5.19) is controlled by the estimate of Matomaéki-
Radziwilt-Tao on averages of multiplicative functions on short intervals.

Theorem 5.6 ((Matoméki-Radziwilt-Tao) [MRT15, Thm A.2]). Suppose that 10 <
P < Q1 < H and (logQ1)*® < Py, then for all sufficiently large N, 1-bounded
multiplicative functions 8 and Dirichlet characters x of modulus bounded by Y,

S Y tsmammem 080X

N<n<2N n<v<n+Hg

(log Ho)%
o0l

< (e MENVI (B, N,Y) +
P

+ (log N)~* ) H2N,

where M (B, N,Y) is defined by (5.2).
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Corollary 5.7. Assuming the conditions (5.7) and (5.8), for all positive integers
E<W?2 T <W?2, 1-bounded multiplicative functions 8, and primitive characters x
of conductor bounded by W,

. 2
1D DI DN PR OLONG
n<& veE(n+£Ix)NN
— 1 2
~T 4 o~ M85 W (log H)3s N -2\ H?N
<<<W +€ w (63W57 )+?+(logﬁ) 50 ?
Proof. Decompose [0, 2] into dyadic intervals (25, 7] fori = 1, -+, [3log, W1,
and [O, W] Then
. 2
Y| X is, . s @B0XO)]
nS% vE(nJr%Ik)ﬂN T
[3logy, W1 . 9
ol U ONNED DU D VRN | D DR U DA
ne(giz gyl n< (3log12VW]T v€(n+ 7 1;)NN

= Z Ji + Jo.

i<[3log, W
The contribution of the interval Jy can be bound trivially by
N H
T ——- 2 .
wsaT (W2T ) T2
By Theorem 5.6, with Hy = ngT < W~2H, the contribution from the dyadic

intervals is

3 . N log H)3 N H2N
< > (e*M(ﬂ’%’V‘”M(ﬂ : W)—|—M+(log )3 )

T’ N i 272
i<[3log, W] 2T P 2T 22iT"
3 2
~M (3,55 W) 3f (logH)s N ,L)H N
< (e TN, W)+ e )
The corollary follows because M(/B, -,-) and M(B, -,+) have the same value. O

e N8, W) T log H)3 -%
Denote K := (W T4 MBy )M(ﬂ,%,W)—l—%-l-(log%) 50) be

given in Corollary 5.7, therefore

W PN W2H2N?
(5.20) (5.19) < WN > — S < K———.
S (au) a

In other words,

(5.21) S N 1sBM) farlab—n)| < aT'KEWHN
n<N beN
aben+1Iy,

foralla < W, k < W?2.
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Lemma 5.8. Assuming the conditions (5.7) and (5.8), we have

>3 > n@) Y 1s(0)BO) farlab—n)| < K2WEHN.
n<N k<W?2 a<W abgiljlk

Proof. Summing (5.21) over k and a, one can see that the left hand side is bounded
by

Z n(a)a 'KzW3HN.

a<W

which is in turn by (5.12) bounded by the right hand side up to a multiplicative
constant. O

Proof of Proposition 5.2. By merging Lemmas 5.5, Lemma 5.8 into (5.13), we see
that

1(5.4)]
N (log H)3

W)+

<WHHN + WH(W 7 4 e MO N (3,
W5 Plﬁ

N _1\z
+(logﬁ) oO) HN

i — N N
< (W W E O W N(5, o W)E 4 W (log )T
log H)®
+W37(Og1)6)HN,
PR

which is in turn bounded by the right hand side up to a constant multiple.
1
The proposition follows, thanks to Lemma 5.4 and the fact that W3 < P?2. O

6. MINOR ARC ESTIMATE

In Sections 6 and 7, we will provide a bound to (4.17) under appropriate hy-
pothesis.

Proposition 6.1. Assuming Hypothesis 2.13 and Notation 4.1, the constant Cy
being sufficiently large, and the following inequalities:

1 €
(6.1) 0<e< W;Bl > Cy:10< Ry < R< HC1Bim+1

then for all 1-bounded multiplicative function 8 : N — C and function F': G/T' — C
with ||F|| < 1, there exists a subset S C [0, N]NN with N — #S < €N, such that

[ 3230 > tstn+m)B( A+ W) Foj(gn(0)Tny)
(6.2) n<N JET heLy,
<(W=Co " Bllog / + H-)HN.
Moreover, the choice of S depends only on H, N, and €.

Following [MRT15, §3], let P be the set of primes in [P, Q4] for some fixed
values W < P < @1 < H. A priori, P, and )7 are not necessarily equal to the
homonymous constants appearing in §5.
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Lemma 6.2. Under the assumptions of Proposition 6.1, there exists a subset S C
, NINN with N — #S < 2255 N, such that for alln < N,
0, N|NN with N — #8 < 282 N gych that for all N

log Q1
H
6.3 B(n+ h) pi=nnS(P)(L) <P
(63) hZH‘ ,,GZPZEZNH#{M !
n+hes

The construction of S depends only on N and Py, Q1.

Proof. Define
S={n<N:3peP,pn}
and
F={neN<N:p*tn,Vpec P}
Note that these definitions depend only on N, P; and Q.

By Lemma 5.4, N — #8 < {2LLN.

Decompose the sum on the left hand side of formula (6.3) as

2.t )

h<H h<H
n+heS\F n+heSNF

We will bound the two components separately.
Remark first that, when n+ h € S,

pl=n+h Lpi=nn
(6.4) Ee;%hr#{qep qll} ;% Lpzpnin +#{q € P - qn}

Lpjntn
<2 Faer g ="

peP

In particular, the equality holds when n € SN F.
If n4+heSNF, then for all p € P and I € N such that pl = n+h, pt! and
thus S(n + h) = B(p)B(l). Hence

1=n+1B(p)B(1) 1=nt+hB(n+h) |
’ Bneh) =30 e ‘ Bl =30 S PR =0

peEP lEN pEP LEN
So
(6.5) > =0
h<H
n+heSNF

On the other hand, if n + h € S\ F, then

pl n+hﬂ pl n—+h
o= S5 e O < S g e <2

pEP leEN pEP leEN
So
(6.6) Y o<2 1<22212‘n+h<22—<<—
h<H h<H h<H peP pop P
ntheS\F  ntheS\F
It now suffices to add together (6.5) and (6.6). O
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Lemma 6.3. Suppose Cy = O(1) is sufficiently large and By > Cy. Then there
ezists a subset N C [N] such that

(6.7) #N > (1-w- BN

and for all (n,j) € N x J, the sequence {gnj(h)Tnj}tnein is totally w-Co B
equidistributed in Gy /Ty .

Proof. By property (2) in Theorem 3.6, it suffices to show that if {g, (7)) j}tne[m)
is not totally W‘CO*IBl-equidistributed, then {g'(n, h)I'"'} pc[m) is not totally w—DBi.
equidistributed in G’ /T".

Consider the lattice I', ; = ¥5,jI'jyn; in G'. Then G'/I7 ; is isomorphic to
Gnj/T'nj via the conjugacy Ad,, ; by yn;. Let V) ; be the Hnage of V,; un-
der Ad,, ;, which is a Mal’cev basis adapted to (G§,I7, ;). Because of the bound
(4.8) and [GT12a, Lemma A.5], Ad,, , is ROW- Llpschltz continuous. As W > R
and ¢'(n,h) = Ad,, ; gnj(h), the sequence {g'(n,h)I"} ;}ne(m) fails to be totally
W_Colel_O(l)-equidistributed in G /T, ; with respect to the metric induced
by V,, ;-

Moreover, because 7, j is W-rational and satisfies the bound (4.8), it is a rational
element of height bounded by WM Since Vn j consists of WO _rational combi-
nations of elements of V, by [GT12a, Lemma A.11], so does V;uj' We also know that
V' consists of W-rational combinations of elements from V. Because they are both
Mal’cev basis of G, it follows that 1’ consists of WM rational combinations of
elements from V), ;. Hence by Corollary 3.3, the sequence {g'(n, h)I"'} ez fails to
be totally W’O(Co_lBl+CO)—equidistributed in G,, ;/I", with respect to the met-
ric induced by V’. As it will be assumed that By > Cj, the lemma follows after
updating the value of the constant Cy = O(1). O

Corollary 6.4. The integral

(6.8) YD D s+ h)B(n+h)Fu(gng (W)l ),
n<N jeJ hel,

is approzimated by

(6.9) DI B LI

neN jeJ peP leN

within an error of O(P; ' + W_Bl) .HN.
Here the set A/ C [N] is chosen as in (6.7).

Proof. The corollary directly follows from the Lemma 6.2 and the inequality (6.7).
O

Take P; = 2°- and Q; = 2°+ for integers s_ < s;. The expression (6.9) splits
into the sum

eI Y LY Y S e ),

sE(s_,s+| NEN jE€T pe(25—1,2¢] IEN

over all integers s € [s_, s4].
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Notation 6.5. Here and below, the letters p, p1, p2 will always denote prime num-
bers.

Observe that, for all given s,
pl€n+In B )ﬂ(l) -
E E E 2 Fy5(gn; ()T
L #lge P gy P

neN jeJ pe(2s—1,25] IeEN
S5 Y B0)Fui(gng(P)Tay)

neEN JET pe(2°~1,2°]
plen+Z, ;

DD BD)Fri(gni ()T 5)

neN JET pe(2°~1,29]
pl€n+In )i

S5 S B(0)Fui(gng(P)Ty)

neEN JET pe(2°~1 2°]
plEn-i—InJ

Zl+#{q€7’ qll}

leN

(6.11)

< >

z<N+H

2)§

The latter inequality is justified by the observation that, if j = (k,j) and pl €
n+ I, j, then 2571 < pl < N + H.

For a configuration n = (n,j) = (n, k,j) € N x J, define an arithmetic progres-
sion

<<2—%N%< >

l<N+H

(6.12) Anp,={leN:plen+Z,;} ={leN:pl—n €l pl=j(modq)}
For two such given configurations

n; = (n1,j1) = (n1, k1, 1), n2 = (n2,j2) = (n2, k2, j2) € N x 7,

write
(6.13) Aninspripe = Anipr NV Any -
Then
2
XY Y B®F(gas(P)Thy)
l<N+H neEN JET pe(2°~1 2°]
pl€n+I" i
(6.14)

= > > >, BB/

n; €N XJ p1,p2€(25=1,25] I€ AR ns.p; .90

Fnl (gnl (pll) 1) ns (gnz (pQZ) )

It will be useful to have an upper bound on the size of the set An, ny py.ps-

Lemma 6.6. If p1 > W, then #An, ny.pr.p» < 1 W 3H.

Proof. For a prime p > W, p is coprime to q € (%, W]. The arithmetic progression
Ay, from (6.12) is bounded in length by

(6.15) #HAnp < ¢ 'p I <207 'WIWTPH = 2p 'W 3 H.

The lemma follows because An, ny.p,.p2 = Anypi N Ang ps- O
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We remark that, if H > 4pW3, then we also have
1 1
(6.16) #Anp > q o | - 1) -1 > §q71p71|1k| 2 §P71W73H-

To bound the sum (6.14) we first consider those terms for which the length of

An, ny,pi,p. 1S bounded by 2=sTW—(B243) [ where By > 10 and will be determined
later. These terms are easily bounded in next Lemma.

Proposition 6.7. For By > 10, the expression

> > > B)Bp)

ny,np €N T p1,p2€(2°71,2°) l€An; n3,p1,p2
#An| ng.p1.po <o—ew-Barory

(6.17)

Fay (gn, (P10)Tn,) Fay (90, (p20)'n, )
satisfies |(6.17)| < 2W-B2 2N,
Proof.

[CRIES D 3 yeny—(Bato gy
n1,n26N><.7 p17p2€(23—1723]
#Anl’nzvz’hpz <275W7(B2+3)H

—syy—(Ba2+3)
<2W Ho > IR VR,
p1,p2€(25—1,25] n1 N2 €N X T

<2 5w Bt g 92 WwIN . g — 2w-Pep2N

Here the last inequality follows from (4.4) and the lemma below. O

Lemma 6.8. If 25 > W > 10, then for allny € N x J and py,p2 € (2°71,2°],
#{ny e N X T Animyprp 0} < H.

Proof. Let ny = (ng, k2,j2), ko is given, then An17n272017:02 # 0 implies that (% +
p%]kl) N(E+ p%[kz) # (). The length of interval that no belongs to is at most

B2 L, < 2W2H + W2H = 3W2H.
p 1 2
1

The elements n; and p; determine the congruence class Ay, p, modulo ¢. Since
Any ns.prps = Anypy N Ans.p,, the elements ny, py, ne and ps determine a unique
choice of the remainder jo modulo q.

Therefore, >, cnrx 7 Ln, mymypg 20 < D hy<w2 W~—2H = H. O

We now focus on intersections with #.An, nypy.ps > o-syy—(Ba+3)

Definition 6.9. For s € [s_,s.], n; € N' x J, prime number p; € (2571,2%] and
a parameter By > 10, denote by the set of all configurations (nz,ps2) €

N x J x (2571 2%] such that:
(i) pq is prime;
(il) #Anl,l’lg,phpz 2 2_SW_(BQ+3)H;

$,11,P1 ,BQ
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(iii)

‘ Z ﬁnl (gnl (pll - nl)Fln)ﬁnfz (gn2 (p2l - nl)Fnz)

leAnl sN2,p1,P2

-B
2 W 2 #Anl ,N2,P1,P2 *

Proposition 6.10. One can choose the constant Co = O(1) > 10 to be sufficiently
large, such that: if

(6.18) W > 10, By > 10, By > CoBo, H > max(W51,210%),
then for all pairs (ny,p1), where ny C N x J and p; € (2571,29],
#Q, . p <2wBn
The proof of the proposition is postponed to the next section.

Proposition 6.11. In the settings of Proposition 6.10, the expression

> > > Bp)Bp)

ny,npeN'xJ p1,p2€(2°71,2°) l€An; n3,p1,p2

6.19 o ‘
( ) #'Anl’"%PLPgZz SW (BQ+3)H

Fl'l1 (gl'u (pll - nl)rnl)Fnz (gnz (le - n2)rn2)
satisfies |(6.19)| < 2sW—DB2H2N .
Proof. As |8] < 1 and ||Fallco < 2 for all n, in |(6.19)], using Lemma 6.6 and

Proposition 6.10, the contribution from configuration with (ns,ps) € Q
bounded by

(#N - #T) - 27 - (max #Q, o p ) max  #An, n, pyp,) - 4

ni,p1 ni,nz,pi,p2
(6.20)  <«NW3.20. 25w B2 . optwdy
<2»w-B2p2N,

i
37“17101732 S

From Lemma 6.6, Lemma 6.8 and the construction of
contribution out of (6.20) is bounded.

(#N - #T)-2%° . max E
ni,pi1,p2
ny€NXJ
An1m2,p1,p27é®

Z ﬁﬂl (gl'll (pll - nl)rnl)ﬁnz (gnz (pQZ - nl)rrm)
(621) l€An ) ns,p1,p2
<NW3. 22 . w52 max #An, no.p1,p2

ni,nz,pi,p2

sm1.p1. By the remaining

<NW? .92 . [ . WwB2g—syy 3y
= w-Bap2 .
The lemma follows by combining these two bounds. O

Summing up the estimates from Propositions 6.7 and 6.11 leads to the proof of
Proposition 6.1.

Licensed to Penn St Univ, University Park. Prepared on Thu Sep 2 22:14:32 EDT 2021 for download from IP 132.174.254.159.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3908 XIAOGUANG HE AND ZHIREN WANG

Proof of Proposition 6.1. By Propositions 6.7 and 6.11, when Cj is sufficiently
large, under assumptions (6.18), we have

(6.11) <2 5 N3(6.14)7 < 275 N3 ((6.17) + (6.19))*

s s B
(6.22) <2 5N .OSW- N3

By

=W~"2 HN.
Hence,
_By
(6.23) (6.9)] =[(6.10)] < > (6.11) < s, W™= HN,
s€(s—,54]

and by Corollary 6.9,

1(6.8)] <[(6.9) + (2~ + w- BN
(6.24) B
B _B
L(s4y W™ +27°- + W PHHN.

We now set the parameters s_, sy, B; and By. Let sy = L% log H|. and s_ =
|20€s |. This guarantees that N — #S <« sz < eN. Moreover, 275~ < H™¢.

Assume in addition that B; > 10C, and let By = Cy~'B;. The inequalities in
(6.1), together with the fact that W € [R, RClBlm], imply WB1 < RGBT <
H¢ < H. This also implies for all s € (s_,sy), 2° > 2°- > H® > W. So all
conditions in (6.18) are verified.

(6.24) now yields

_Co1By e, w-B
[(6.8)] <(W = logH+H “+W 7P1)HN
_Co1By _
<(W = logH+ H )HN.
Finally, to complete the proof, one only needs to replace the value of the constant
C() with 1000. O

(6.25)

7. PROOF OF PROPOSITION 6.10

This part contains the proof of Proposition 6.10 by contradiction. In the rest of
Section 7, we will assume that ¢, s, ny, p; are all fixed. For brevity, we will replace
the notations ny and ps with n and p.

Because one may choose the constant C as long as it depends only on m and d,
instead of (6.18) we will assume instead:

(7.1) 95 > W > 10, B, > 10, B; > 10C%Bo, H > max(W 51, 210%),
In order to get contradiction, suppose for n; € A" x J and p; € (2571, 2°],
st —B
(7.2) #Qs7n17p17B2 > 2°W~"2H.

Let (n,p) be an element of Qs,nl,pl,Bz’ then p;,p > 2° > W > q. By the proof
of Lemma 6.6, as An, np, p is the intersection of two finite arithmetic progressions
An, p1, An,p of step length g, it also has step length ¢ itself whenever it is non-empty.

Since n; and p; are fixed, the arithmetic progression Ay, ,, can be parametrized
as {qt + r : t € [T]} for some r € Z. Here by (6.15)

(7.3) T=#An, p, <4-27°W3H.
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When (n,p) € Q_,, . p,, the subsequence An, np, p has the form {qt +r :
t € A, ,} where Aj  is a subinterval of integers in [T] of length #An, np,p >
2-sw-Bap.
in Definition 6.9 can be rewritten as

The conditions (i) and (iii) on QB
(7.4) AL >0 (Bt g
and

> Fuy(gni (pr(at +7) = n1)Tn,) Fu(gn(p(gt +7) —n)Tn)
(7.5) teA,
>w Bl
For every configuration (n,p) = (n,j,p) = (n,k,j5,p) € Q Define
polynomial sequences gn p, gn,p : Z — Gn, X Gn by
(7.6) Inp(1) = (g0, (P1l = 11), gn (Pl = 1)); Gnp(t) = gnp(at + 7).

Note that the definition of g, , depends on the choice of n.

Then gn p, fn,p € Poly(Z, (Gn,)e X (Gn)s). From (4.20), (7.3), (7.4) and (7.5), we
know the sequence (gn,p(t)(I' X I'))tea;,  is not totally 2_2W_BQ—equidistributed
in (Gp,/Tn;) X (Gn/Tn). Then by Lemma 2.11, for a shorter length

s;ny,p1,Ba-

T, , > 2 Wb,

the sequence (gnp(t)(I' x T))ierry ) fails to be 2-51 ~2B2_equidistributed in

(Gny /Tny) X (Gn/T'n).
By Proposition 3.1, there exists a horizontal character 7y, of (Gn,/I'n,) X
(Gn/Tn) such that

(7.7) 0 < |7l < WOB2)

and [[7np © gnplloe= (1) < wobB2) Ag Thp > W—2B27T this implies that

(7.8) 170, © Gn,p |C°°([T]) < WO(B2).
Here the norm |1y, ;| is measured in terms of the Mal'cev basis Vi, U Vi, where
Vi = Vy; and Vn, =V, 5, are defined in Section 4.

Recall from our construction in Section 4 that the sequences Gy, I'n, Vy are
determined by vy, which in turn depends only on the variables n, j in n = (n, k, j)
and is g-periodic in n. So there are ., G4, I', V. such that for at least ¢ 2#Qs n, p,

choices of (n,p) € Q_ ni,p1, By’

(79) (7n7Gn7Fn>Vn) — (7*>G*>F*7V*)
Note the number of horizontal characters satisfying (7.7) is bounded by WoBa),

Given (7.2) and that ¢ < W, by pigeonhole principle, we can find some horizontal
character 1 of (Gn, /T'n,) X (G+/T'x) such that for a set Q. of at least 25 —0B2)

choices of (n,p) € Q. p,, (7.9) holds and 9y = 7.
Therefore,
(7.10) 7 Gnpllomzy < WO
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3910 XIAOGUANG HE AND ZHIREN WANG

holds for at least 25W~OB2) [ choices of (n,p) € Q n1.p1.Bs In particular, be-

cause of the fact #J < W3 and Lemma 6.8, there is a set Ps n, p, C {p prime: p €
(2571, 2%]} of size

(7.11) HPy ) py > QSW—O(B2)’

such that for all p € P, n, p,, there are at least W-0B2) [ choices of n, such that
for some j, the configuration n = (n, j) satisfies (n,p) € Q_,  p and (7.10).

Recall that g, (h) = v, ¢’ (n, h)ym. So for the polynomial g.(n, h) =~ g’ (n, h)7«
and every (n,p) € Q_, B, gn(h) = g.(n, h) where n is the first coordinate of
n = (n,k,j). In this case,

(7.12) Inp(t) = (gn, (pr(qt +7) — 11), g« (n, p(gt + ) — n)).

Write n = (1) ©n(2), where 71y and 72 are respectively horizontal characters of
Gn,/Tn, and G, /Iy and at least one of them is non-zero. Then 71y o gn, : Z — R
and 7(1) 0 gs : 72 — R are polynomials of total degree bounded by d, where d is the
step of nilpotency of Go. As p1, 7, ¢, n; are all fixed, one can write

(7.13) (1) © gn, (t Z oyt
(7.14) N2 © g=(n, h) Z B 1,m nlthlz,
11,120
Li+i2<d

We now parametrize 7)z) 0 g. differently. When (n,p) € Q_ B, Aninpip #
(. So we can fix an ty = to(n, p) € [T] such that p(gto +7) —n € Z,, C [H]. On the
other hand, because tg < T = #An, p,, by (6.15), 0 < pgty < 2pq-q 'py ' W2H <
4W—2H. Thus pr —n € [-4W2H, H| C (—H, H]. We will write b =pr —n + H.
Then b € [2H]|. For u € Z, we can write

N2 © gx(n, qu + pr —n)
=n2) © g«(pr + H —b,qu+b— H)
> B (or+ H=b)" (qu+b— H)"

(7.15) 11,1220
li+12<d

. E l1,,la70

= Bll,lg,ip1u2b
l1,l2,i>0
li+la+i<d

In particular, for u = pt, we have
N(2) © g«(n, p(gt + 1) —n)
=12y © g«(pr + H — b, q(pt) +b— H)
= Z Buy 10" (pt) 2’

(7.16) 1,12,i>0
li+l+i<ld

d d-l

= ZZﬂl/lmp b't!
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MOBIUS DISJOINTNESS FOR NILSEQUENCES 3911

then
d d d-U _
(7.17) 70 gnp(t) = Z(Oél + Z Z Br—1.qp" b,
1=0 V=1 i=0

where the coefficients §;_;;; are independent of p,b and ¢ (but depend on ny, p;

and H).

The earlier discussion asserts that for all p € Pg n, p,, there is a subset By n, p, p C
[2H] of size
(7'18) #387111717171) > WﬁO(B2)H’

such that for all b € By n, p, p, [[(7.17) (mod Z)||cee (1) < WO B2 Here (7.17) is
regarded as a polynomial in ¢.

For such pairs (p,b), by Lemma 2.3 and (7.3), there is a positive integer Z; <
O(1) such that for all 0 <1 < d,

d d-1l

7.19 HZ b
(7.19) o+ Y0 Broiap )R

I'=l1=0

< WOB—  olsyyOB2) -1,
/Z

By pigeonhole principle, Z; can be made independent of b after substituting Bs n, p, ,p
with a smaller subset whose size still satisfies the lower bound (7.11).

We now view Z;(aq + Z;l,:l Z?;é/ Br_114p" b%) as a polynomial of b. Applying
Lemma 2.4 (with € = 2 OB2) H—1 and § = W*O(BQ)), we deduce from (7.19)
that there is a positive integer Zo < WOB2) such that

L& 174 ls11,0(B2) l
o bl s 2) -
(7.20) HZQZl(Oq + l/zz:l 122; Br—i,1,p b ) (mod Z)HCOO[QH] K 2°W H™,

Again by Lemma 2.3, for all p € Ps p, p,, there is a positive integer Z3 < O(1),
such that for all 4 > 1, [ > 0 such that i + 1 < d,

d—i
(721) HZ322Z1 Z ﬂl’—l,l,ipl/ H < QISWO(BQ)Hfifl;
=1 R/Z

and when ¢ =0, for all 0 <[ < d,

d
7.22 HZ Zs7 s rop” H < 2w OB g1,
(7.22) 37 1(az+;51 11,00 ) vz
Since p € [27], € = QZSWO(BQ)H_I, and § = VV_O(BQ)7 Lemma 2.4 yields a
positive integer Z; < WO(BQ) such that: for all ¢ > 1, 0 < [ < d subject to

1+ 1 <d,

d—1i B
7.23 HZ 25252, By_11.4p" (mod Z H < 2lswOoB2) i,
( ) 44342 1; —1,1 ( ) C‘X’([2S])
and for i =0 and 0 <[ <d,

d

7.24 HZ AR s op") (mod Z H < s OB) -1,
(7.24) 1Z3Z2Z1(ou + Y Brrop”) ( ) o (2))

=l
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3912 XIAOGUANG HE AND ZHIREN WANG

A final round of application of Lemma 2.3 yields, for a positive integer Z; <
O(1), the following properties:
Forall:>1,0<1<1!"<dsubject toi+1<d,

(7.25) HZ5Z4Z3ZQZ151171,1,1' . < 2U=1)syy0Ba) fr-i-t,

in addition, for i =0 and 0 <! <!’ <d with I’ > 1, (7.25) also holds.
Write Z = Z5Z4737577, which is an integer that is independent of b and ¢, and
satisfies Z < WOB2), The character Zn2) satisfies

(7.26) 1Zna)| < |Z) - In| < WOB2).
According to Notation 1.6, one choose a sufficiently large constant Cy = O(1) >

10 which serves as the implicit constants both in the exponent of WobB2) of (7.25)
and in (7.26). Now we write (7.25) as

7.97 HZ L
(7.27) Br—i,, v

< 2(lfl’)sW00B2H7ifl;
z

In other words, the inequality
(7.28) ’Z@l,lz,i %)

holds for all integer triples (I1,12,4) such that l1,l2,¢ > 0,11 + 13+ < d and [y, lo,
1 are not simultaneously equal to 0.

< 2—llsWCOBQ H—i—lg
Z

Lemma 7.1. One can choose the constant Cy = Cy(m,d) > 10 to be sufficiently
large, such that :

If (7.1) and (7.2) both hold then for every configuration (n,p) € Q . B .t
sequence {gn(h)ln}ne[m) is not totally w-Co ™' B -equidistibuted in Gn/Ty.
Proof. Let r and b be as above. Set Uy, = {u € Z:qu+b— H € [H]}. Then Uy,
is an interval of integers, whose length satisfies % -1 < #Un,p < % + 1. Moreover,
as 0 < b < 2H, every u € Uy )y satisfies |u| < %.

he

—2CyBy-
Fix any subinterval Uy, , C Uy of integers, that is of length [W].

We note that because of (7.1), #U,, , > 10. Then for any u;,uz € U’, by (7.8),
1Zn¢2) © g«(n, qui +b — H) — Zn2) © gu«(n,qua + b — H)||r/z
:HZ Z 611712,ipl1bi(ul12 - ul22)

l1,l2,i>0
li+la+i<d

-

lo—1

L pi h, la—1—h
S DR ARCEA) ST
Pt R/Z

l1,l2,220

li+lx+i<d
7.29 B
( ) W2C()BQSH)(H)12—1

< Z 27ZISWCOBQH71-7I2 . (25)11 (2H)z( p

l1,i>0512>1
l1+l2+i<d

= Z (W—COBQ—B)q—lz

l1,i>0;12>1
l1+l2+i<d

<w-CoBz
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This implies that for the mapping 7j(x) = exp(2miZn)(z)) from G /T to the unit
circle in C, the values of 7(gn(h)) are within distance < Ww—CoB2 ¢ each other

for h € {qu+b—H :u €Uy, ,}. Again, using the convention in Notation 1.6, one
can assume that the implicit constant here is Cy. In particular,

(7.30) E (ga(h)Tn)| > 1 = Cow—CoB2 >

1
he{qutb—H:ueld, ,} 2’

as we assumed Cpy, By and W are all bounded by 10 from below. Because Zn
is a non-zero character, 7 has zero average on G /I'y. In addition, |7, /r, <
20| < WP,

Now note that {qu+b—H :u € Uy, ,} C [H] is an arithmetic progression whose
length is greater than Ww—2CoB2—4 ] Tt follows that the sequence {gn(h)I'n}nern
is not totally min(W‘2COB2_4, %W_COBQ)—equidistributed in Gp/Tp.

To finish the proof of Lemma 7.1, it suffices to notice that by the assumptions
in (7.1), min(W—2C0B2-4 1y-CoBay > yy-Co™' By, O

Proof of Proposition 6.10. Recall that after redefining Cy we may assume (7.1) in-
stead of (6.18). By Lemma 7.1, and the construction of A/ in Lemma 6.3, if (7.2)
holds, then for all n € Q n ¢ N x J. This contradicts the definition of

s,ny,p1,B9
Q, n1.p1, By which requires n € A x J. Therefore, (7.2) is false for all n; € A" x J;
in other words, Proposition 6.10 is true. ]

8. PROOF OF THE MAIN THEOREM

Theorem 1.2 will follow from

Theorem 8.1. Suppose G is a connected, simply connected nilpotent Lie group
and I' C G is a lattice. Assume that there exists an Rg-rational Mal’cev basis V of
the Lie algebra G adapted to a nilpotent filtration Go and the lattice I'. Then there
are constants C,eq > 0 that depend only on the dimension m of G, such that for
all g € Poly(Z2,G,), 1-bounded multiplicative function 3 : N — C, and continuous
function F: G/T - R, H N €N, ¢ >0, if

log Ry loglog H 1
8.1 ( —) - log H < (log N3 ,.
(8.1) gl log Il <e<e€; logH < (logN)2
then
> |Y s+ mF(gm )|
n<N h<H
—e ¢ —LM(B,-N_ gCey—~— N o1
(8:2) <<(H + H%e oM B goe H )M(B>HCE>HC)2
€ N
+ HC (loche) 1OO)HN.

Proof. Let By = 10Cy, Cy = C1B1y™ = O(1) and R = HC2 Combining
Propositions 5.1 and 6.1, we know that if
loglog H 1

<d < ——H > Ry >10; log H < (log N)?,

8.3
(8:3) log H 500
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3914 XIAOGUANG HE AND ZHIREN WANG

then there exists a subset S C [0, N] NN, determined by H, N, and €, with
N — #8 < ¢ N, such that

Z’Zﬂn—l—h g(n,h)T)

n<N h<H

<<(VV—1 log H+H< + W1

N
(8.4) PSR (5, D +W3<logW>‘”“)HN
— —le¢ - —le¢ € ——M /1H N e\:
<<(H Com' g [ 4 H—1C27'¢ | g3 o~ 3MO i H D g, e H )?
N
+ H3e (log H56’) 1(1)0)_[{]\77

where W € [R, RClBlm] C [Hoflel, H¢]. Here we used the fact that M (3, s, W)
is decreasing in W. The set S is the union of both the exceptional sets from
Propositions 5.1 and 6.1.

We now rewrite € = +Co !¢’ and assume € > % Then H¢ > log H and

HC2 ' log H = H % log H < H™*.
Note that (8.1) implies (8.3). So (8.4) becomes

Z‘Zﬂn—kh nh)F)‘

n<N h<H
42— G2 N
(85) <<<er + HlZCgee 2 H2002€ M(ﬂ, HQOCze,H4CQE)%
12C5¢ N .
+ 2O log ) mo)HN.

The theorem follows by letting C' = 20C5 and ¢y = W which depend only

on m and d. But as d < m, the dependence on d can be suppressed O

Proof of Theorem 1.2. First choose Ry > 10 such that g has an Ry-rational Mal’cev
basis with respect to the lower central series filtration G, and lattice I'. We then
fix Hy such that log Hy > Ry.

Notice that f(n,h) = g"*"z € G/T is a polynomial map from Poly(Z2,G,).

: log Ry loglog H _ loglog H
Furthermore, in (8.1), max ( 257, =75 ) = “hgp for all H > Ho. Hence

Theorem 8.1 can be applied. The output is (1.6) and (1.7), with

(86)  8(a, N) = aCe 3MB:2a) 375, aﬂc a®)} + a€ (log aﬂc)—ﬁ
We need to show limy_,o d(a, N) = 0 for all @ > 0.

When S is the M6bius function p or the Liouville function ), it is known that
My o0 + Yopex B(n)x(n) = 0. By Haldsz’s Theorem [Hal68], for any given
Dirichlet character x, limx_ oo D(8x, 1, X) = co. Moreover, Matomiki, Radziwilt
and Tao [MRT15, (1.12)] proved that M (B; X,Y) > (5 — €)loglog X + O(1) for

Y < (log X)125. Therefore in this case we also have

M(B;X,Y) > (% —¢)loglog X 4+ O(1).
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MOBIUS DISJOINTNESS FOR NILSEQUENCES 3915
1 1
If a“ < (log N)70, then a® < (log &)1 and

02 (g N (0)5 ¢ IO a) o ~drtomtondE _ (105 N )i
a a
Therefore, we get 6(a, N) < a“(log aﬂc)_ﬁ for a® < (log N) 0. This proves that
limpy 00 0(a, N) =0 for all a > 0.
Finally, it remains to show (1.8). To see this, it suffices to notice that, because

because N > exp((log H)?) = H'*¢ > Hlog H > He 1,

N ntH N n+H

IS Y s R - | Y wwFeh)
n=1 l=n+1 n=1 |=n+1

1 1
<iv Z ((n,n+HN\S)| < g - H#(N + H]\S)
<<N(EN+H) < e
So (1.8) can be deduced from (1.7). O
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