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ABSTRACT. Let G/T be a finite volume homogeneous space of a semisimple Lie
group G, and {exp(tD)} be a one-parameter Ad-diagonalizable subgroup inside
a simple Lie subgroup Gg of G. Denote by Z. p the set of points x € G/T
whose {exp(tD)}-trajectory has an escape for at least an e-portion of mass
along some subsequence. We prove that the Hausdorff codimension of Z, p is
at least ce, where ¢ depends only on G, Gg and T".

1. Introduction.

1.1. Statements. In this paper, we will work under the following setting: G is a
connected semisimple Lie group, I' C G be a lattice in G. In addition, Gg C G is a
connected simple Lie subgroup, and Ay C Gy is a Cartan subgroup of Gy. Let g,
go and ag denote respectively the Lie algebras of G, Gy and Aj.

Fix a Cartan involution of the Lie algebra gg, such that ag is the maximal abelian
subalgebra of pg in the corresponding Cartan decomposition gg = £y @ po be the
corresponding Cartan decomposition. Then &, is the Lie algebra of a maximal
compact subgroup Ko C Gy. Equip ag with the inner product metric induced by
the Killing form on gg, and Ky with the unique bi-invariant probability measure
Mgy, -

The focus of this paper is the statistics of orbits of one-parameter subroups of
Ap on G/T that spends at least a prescribed amount of time out of a compact set.

Theorem 1.1. Let G be a connected semisimple Lie group, Go C G be a connected
simple Lie subgroup and I' C G be a lattice. Then there exists a constant ¢ =
¢(G, Gy, T) > 0 such that:

For all € € (0,1], Cartan subgroups Ay C Go, and compact subsets Qy C G/T,
there exists a compact subset Q = Q(G, Gy, T", Ag, Qo,€) C G/T, such that:

For all x € Qq, T > 0, and non-zero vectors D € ag,

mg, ({k € Ko: |{t €[0,T]: exp(tD)k.x ¢ Q}| > eT}) < e . (1.1)

The key feature of Theorem 1.1 is that ¢ is independent of the choices of the
Cartan subgroup Ag C Gy and the unit vector D € ay.

Our second result is a uniform upper bound on the Hausdorff dimension of the
set of escaping trajectories.
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Definition 1.2. Given G/T', D € g and ¢ € (0,1], we say a point x € Gy is
sequentially e-escaping on average with respect to the one parameter subgroup
{exp(tD)}, if there exists a sequence T}, — oo and a weak-* limit p of the sequence
of probability measures

1 [T

KTy, - 5exp(tD).a:dt7 (12)

':ﬁo

such that u(G/I') <1 —e.
The set of points that are sequentially e-escaping on average with respect to
{exp(tD)} is denoted by Z. p.

Theorem 1.3. Let G be a connected semisimple Lie group, Go C G be a connected
simple Lie subgroup and I' C G be a lattice. Then there exists a positive constant
¢ = ¢(G,Gy,T), such that for all semisimple elements D € gy and € € (0,1], the
Hausdorff dimension of Z. p satisfies

dimpy Ze p < dim G — ce.

1.2. Historical background. In [2] Cheung proved the set of singular vectors in

dimension 2 has Hausdorff dimension % and thus Hausdorff codimension % By
a principle due to Dani [4], this set corresponds to the set of points of the form
1 o

1 B8 |T € G/T, where G = SL3(R) and I' = SL3(Z), whose trajecto-
1

ries under the one parameter action by {exp(tD)};>o is divergent, where D =
diag (1,1, —2). It was also shown in [2] that the set of all points x € G/T" with
divergent trajectories under the same action also has Hausdorff codimension % in
G/T. These results were later extended by Cheung and Chevallier [3] (when m =1
below) and by Das, Fishman, Simmons and Urbanski [6, 7] to all SL4(R)/SL4(Z)
for divergent trajectories of one parameter flows

{exp(tD)}t>0, D = diag(m,---,m,—n,---,—n) (1.3)

where m + n = d. In this situation, the exact Hausdorff codimension is nT—:n As

in the case of SL3(R)/SL3(Z), the codimension is found along orbits of the group
( Idm Ic>1k ), which is the full unstable horospherical group of the flow (1.3).
n

A trajectory is divergent if it eventually leaves every compact set without return-
ing. The works of Kadyrov [11] and Kadyrov-Kleinbock-Lindenstrauss-Margulis
[12] considered, for the same flows as above, the set of points whose trajectories
are escaping on average. This means the empirical probability measures along the
trajectories converge to 0 in the weak-* topology. In other words, even though the
trajectory is allowed to return to a given compact set, on average it only spends a
zero portion of time inside the compact set. In [11] and [12], it was proved that,
in the same settings from [2] and [3], the set of points whose trajectories escape on
average has the same Hausdorff dimension as that of divergent trajectories. This
yields the Hausdorff dimension of the so-called singular vectors on average.

Recently, Khalil [13] considered more general homogeneous spaces G/T". His
result provided sharp upper bounds of the Hausdorff dimension of the set of escaping
trajectories for certain one-parameter diagonal flows when either G is an almost
product of factors of real rank 1, or the flow arises from a representation of Gy =
SLa(R).
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In the current paper, we work on homogeneous spaces in full generality. The
ambient space G/I" will be a general homogeneous space, and the direction D of the
flow will be a general semisimple element instead of the special diagonal elements
above. Instead of escaping on average, we will treat the set of trajectories which
are sequentially e-escaping on average. In this scenario, there exists a sequence of
sampling times, up to which the trajectorie has spent no more than a (1—¢€) portion
of time inside any prescribed compact set. A similar but more restrictive notion of
e-escaping on average was studied in [12]*Theorem 1.5 for the diagonal flows (1.3).

Following the ideas from [2, 3, 11, 12], our main result Theorem 1.3 provides
a positive lower bound of the form ce to the Hausdorff codimension of the set of
trajectories sequentially e-escaping on average. A main ingredient of the proof is to
control recurrence by a height function that is contracted on average over random
tranjectories. This idea was first introduced by Eskin, Margulis and Mozes in [9],
and also used in the works of Eskin-Margulis [8] and Benoist-Quint [1].

It should be noted that unlike in the works listed above, all of which focused
on very particular diagonal flows, our bound is neither sharp nor explicit. Instead,
the central motivation of the result is the uniform positiveness of the coefficient ¢
when the flow direction varies over all semisimple elements inside a given simple Lie
subgroup Gg. One obstacle when achieving such uniformity is that, in contrast to
the flow in (1.3), a general flow of the form exp(¢D) may expand part of its unstable
horosphere arbitrarily slowly. This obstruction will be dealt with in Section 3, where
the unstable horosphere is substituted with a strong unstable subgroup.

2. Reduction to unstable horospheres. Let gy = erzo gy be the decom-
position of gq into relative root spaces with respect to the Cartan subalgebra ay.
Yo C a is the collection of relative roots, and the relative root on gy is x € Xo.
Each hyperplane ker x where y € ¥\{0} is a Weyl chamber wall in ag.

In the remainder of the paper, go will be intrinsically equipped with an inner
product metric (for example, by reversing the sign on the negative part of the Killing
form), such that the restriction on ag coincides with the one induced by Killing form.
Denote by B the ball of radius r centered at 0 in gg and let BS° = exp B . Similar
notions will be used, without further explanation, for other Lie algebras equipped
with a metric and their corresponding Lie groups.

Define & := {x € %o : x(D) > 0} and X5~ := {x € % : x(D) < 0}. Let
gg , 987 be respectively the direct sums of relative root spaces gy with y € Ear and
x € {0} UX;. It is easy to see that they are Lie subalgebras. Let Gar, Ggf denote
the corresponding connected Lie subgroups of Gjy.

Then the orbits of Ga' and Gg_ are respectively the unstable, and central-stable
leaves of the flow z — exp(tD).z on G/T.

Moreover, as the Lie subalgebras gar , gg_ are transversal to each other and their

sum is g, there exists 1 > 0 such that the map (a,b) — ab from BTG137 X BTGF to
Gy is a C* diffeomorphism to its image..

In particular, there exists a neighborhood BS° of the identity in Gy such that
every g can be uniquely decomposed as 9a0-9at with g € BTCiOJr and 9go- € 35377
moreover, the map g — (903* , gGU+) is a C> diffeomorphism from BS° to its image.
Let Tat denote the projection g — 9ot

We consider the restriction of Tt to BXo, and consider its derivative, which

maps the Lie algebra €, of K to gsr.
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Lemma 2.1. If r is sufficiently small, then the map Tat BEo — GS‘ is regular,
i.e. the derivative Dka(T = ga' is surjective for all k € BXo.

Proof. As Tt is smooth, Dkﬂ'Gar depends continuously on k£ and hence it being
regular is an open condition in k. Therefore it suffices to show the regularity for
the identity element k = e. As De7rG0+ is the quotient map from go to g3 = go/gy

this is equivalent to showing that £y + 987 = go-

For all D € ag, the set {x € ¥o : x(D) < 0} of non-positive relative roots must
contain the negative relative roots {x € X¢ : x(D’) < 0} for some regular element
D' € ag. By the Iwasawa decomposition go = £ © ap ©no, where ng = @ yex,\ a.

x(D")<0
Furthermore, ag C g3 and thus ap @ n C gJ +no = @ yes, 0§ = g9 - It follows
x(D)<0
that go =t B ag Dng C & + gg_, which is what we need. O

The Lie algebra ga' is nilpotent, and thus G(‘f is a connected nilpotent Lie group
and is hence unimodular.
We also fix a neighborhood BG(T of identity in Gar, whose construction will be

specified later. The Haar measure Mg+ on Gg' will be normalized so that

The choice of BGar is determined by G, and is the same for different D’s leading
to the same G{ .

Remark 2.2. All Cartan subgroups are conjugate to each other and the norms
induced by Killing forms on Cartan subalgebras are isometric to each other through
these conjugacies. Therefore we can renormalize the metric and Haar measures on
G, G% according to Ay in the following way: first fix a Cartan subgroup 20 as well
as a non-zero vector D € ao. This determines stable and unstable subgroups G(jf (ﬁ)
with respect to D.) Define metrics and Haar measures on Gy, Gz (D). (Note that
G%(f)) depends only on the Weyl chamber containing D. However there are only
finitely many such Weyl chambers.) Then for an arbitrary Ay and D € ag, there
exists g € G such that Ag = g;l\og’l and D = Ad, D where D is some unit vector
with respect to the norm on ay induced by the Killing form of go. Redefine the
metrics and Haar measures on Gy and the stable and unstable subgroups th with
respect to D by pushforward the corresponding objects by the conjugacy by g.

Corollary 2.3. There exist r > 0 and C = C(Gp) > 0, such that for all non-
zero vectors D € ap, WG(;r(Bf(O) is contained in Bgi and (WG(T)*(HIKO|BKO) <

m .
c G(‘]*'|BGD+

Proof. As Tt is smooth near identity, it is clear that the image of BX¢ is in Bgo
for sufficiently small r. In addition, because of the regularity from Lemma 2.1, when
r is sufficiently small, the pushforward (’/TGS—)*(HIKO | g0 ) is bounded by a multiple

of M. Finally, note that the pair (Gg,Ggf), which determines the map Tats

has only finitely many possibilities for all D € A, as gar and gg_ are direct sums
of relative root spaces. Thus we can choose uniform values for r and C that are
independent of D. In light of Remark 2.2, C' can be made independent of the choice
of Ap. O
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Provided the radius r in Corollary 2.3, we fix from now on a finite covering of
the compact group Ko by sets of the form BX - h;, where hj € Ko, j =1, ,q.
We now reduce Theorem 1.1 to the following

Theorem 2.4. Let G be a connected semisimple Lie group, Go C G be a connected
simple Lie subgroup and I' C G be a lattice. Then there exists a constant ¢ =
(G, Go,T') > 0 such that:

For all e > 0, Cartan subgroups Ag C Go, and compact subsets Qo C G/T, there
exists a compact subset Q = Q(G, Gy, T, Ay, Qo,€) C G/T, such that:

For all x € Qg, T > 0, and non-zero vectors D € ag,

Mg+ ({g € BGg : |{t €1[0,T]: exp(tD)g.x ¢ Q}‘ > eT}) <e T, (2.2)
Proposition 2.5. Theorem 2./ implies Theorem 1.1.

Proof. Apply Theorem 2.4 to hjz, 1 < j < g, then we have € such that for all
x € Qo, T > 0 and non-zero vector D € aq,

M ({g€ Bgy - [{t € [0,T]: exp(tD)gh;.x ¢ Q}| > €T}) < e . (2.3)
Here the compact set ; h; is used in lieu of Q.
By Corollary 2.3, the inequality (2.3) implies
mp, ({k € BF°: |{t €[0,T]: exp(tD)kGOJrhj.x ¢} >eT}) < Ce T, (2.4)

Remark that for k € Bfo and t > 0,
exp(tD)khj.x = exp(tD)ngf k‘GOJrhj.x
= exp(tD)ngf exp(—tD) - exp(tD)kG0+ hj.x (2.5)
= Adexp(tD) (kcg—) . eXp(tD)ng— hj.x.

Because tD is an element in the Cartan subalgebra ag, Adexp(¢p) is semisimple
in GL(go). As Gg_ is the central-stable subgroup for the one-parameter subgroup
{exp(tD)}, this shows the distance from Adgp ¢ D)(ng,) to the identity is bounded
by a constant L determined by the right-invariant metric we choose on G and the

compact subgroup Ky. Let 1 be the set of points whose distance to §2 is at most
L. Then it follows from (2.4) and (2.5) that for all 7" > 0,

mp, ({k € BF°: [{t € [0,T] : exp(tD)khj.x ¢ N}| > €T}) < Ce™ T,
Or equivalently,
mpy, ({k € BEh; : [{t € [0,T]: exp(tD)k.x ¢ Q}| > eT}) < Ce T

for each 1 < j < ¢. Since Ky is covered by the union of the Bff“hj’s, we see that
for all sufficiently large T,

mg, ({k € Ko: |{t €[0,T]: exp(tD)k.x ¢ n}| > eT'}) < qCe . (2.6)

To deduce Theorem 1.1 from (2.6), it suffices to rewrite § as c and Q; as Q. O

3. Reduction to strong unstable subgroups. As the unit element D € ag is
chosen arbitrarily, a priori it may sit near a Weyl chamber wall and expand certain
directions in its unstable horosphere very slowly. This subsection aims to overcome
this obstacle.
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Proposition 3.1. Given a connected simple Lie group Gy, there are constants
01 = 01(Go) > 0 and M = 0,(Go) > 0 satisfying the following condition:

Suppose Ag is a Cartan subgroup and its Lie algebra ay is equipped with the
norm induced by the Killing form on go. For all 1 <i <'s, unit vector D € ag and
0 € (0,601), the unstable Lie subalgebra g contains a Lie subalgebra u, and there
exists D' € ag such that:

1. |D'|=1 and |D'— D| < M0;

2. u:@ X€Xo gf)(;
x(D")>0

3. x(D) >0 and x(D') > 0 for each g§ C u.

Here the constants 7 and M can be independent of Ag and D for the reasons
explained in Remark 2.2.

Lemma 3.2. There exists a constant k1 > 0 that depends only on Gy, such that
for all unit vector D € ag, the subset of roots {x € Eo : |x(D)| < K1} is contained
in a proper subspace of a.

Proof. We view both ag and aj as R™ where 7o = rankg G, and equip them with
Euclidean norms that are dual to each other. Let L > 1 be such that |x| < L and
all x € 9 C af. Since Xy is a finite set which spans afj, one can define k¢ € (0,1)
such that kg < |x1 A -+ A Xxn| for all linearly independent elements x1,- -, xn of
Yo-

Let k1 = iro_lL_(TO_l)no. Note that ro, ko and L depends only on Gy (see
Remark 2.2). Therefore k1 depends only on Gg as well. To see that x, satisfies the
conclusion of the lemma, it suffices to show that any r( elements x1, -, Xr, € o
with |x;(D)| < k1 are linearly dependent. Indeed, let P be the ro — 1 dimensional
annihilator of D: P = {6 € afj : 6(D) = 0}. For each x;, denote by x; = X}D + Xj'
the orthogonal decomposition in P @ PL. Then |x;| < L, IXP| < Land |xj| < ki,
Vi=1,---,r9. Thus

X1 A A X

To
:‘Xf/\"'/\Xf;+ZX1/\"'/\X1—1/\Xj_/\Xﬁ-l/\"'/\Xi
i=1

70
:‘0+Z><1A-~-AXHAxf/\xﬁlAmAxfo
=1

ro
L P P
§Z|X1/\"‘/\Xi71/\X1‘ AXig1 N A X |
i=1

<rg - LT071/€1 < Kg.

It follows from the choice of ¢ that x1,--- , xr, are linearly dependent. The lemma
is proved. O

Lemma 3.3. There exist constants My > 1, ko > 0, both depending only on Gy,
that satisfy the following condition:
Suppose that for some D, D" € ag with |D| =1 and § € (0, k2),
{x € Zo: x(D") >0} C {x € o : x(D) >0}, (3.1)

and
|D—D'| <4, (3.2)
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then for any &' € (0,k2), one of the following holds:

1. The set
{x € Zo : x(D') > 0, min(x (D), x(D")) < &'} (3.3)
18 empty;
2. There exists D" € af with |D"| =1, such that
{XE€Zo:x(D") >0} C{x€Xy:x(D) >0}, (3.4)
and
|D — D"| < My(6 +6"). (3.5)
Proof. Let L, kg and k1 be as in Lemma 3.2 and its proof. Take
o . 1 K1
My =4L" kg +1, kg = rnm(m7 j7n 1).
We first remark that as the set of roots ¥¢ is symmetric, (3.1) implies
{x €20 : x(D') <0} C {x € Zg: x(D) <0}, (3.6)
and thus also
{x €39 : x(D") =0} 2 {x € X : x(D) =0}, (3.7)

Assume that claim (1) does not hold. Let ¢ € 3y be an element of the set
(3.3). Then either |((D)| < ¢’, which implies |[((D’)| = |{(D’ — D) + ¢(D)| <
LID-D'|+§ < L5+ < (L+1)ka; or [C(D')| <& < ka. As (L + 1)ka < K1, in
both cases ((D’) < (L 4 1)ka.

As (L + 1)ke < K1, by Lemma 3.2, ¢ and {x € X : x(D’) = 0} span a proper
subspace P of afj. P is strictly larger than the subspace spanned by {x € ¥ :
(D) = 0}, as (D) 0.

Fix a basis x1, -+ , Xn, chosen from {¢} U{x € X¢ : x(D’) = 0}, for P. We can
assume Y1 = . Then for 2 < i < n, x;(D’) = 0. On the other hand, for i = 1, as
X1 = ¢, we have shown above x1(D’) < (L + 1)ka.

Each element n € P with || =1 can be written as

iX1A"'/\X171N7/\Xi+1/\-“AXn N
i
i=1

X1 AR Xn
XIA - AXi—1 ANAX 41 A AXn
X1\ AXn

and the denominator lie in the one dimensional vector space A" P. Notice that the
Ln71-1

Here the notation makes sense because both the numerator

absolute value of each coefficient is less than , where kg is as in the proof of

Lemma 3.2. Thus
In(D")] < L" kgt - [xa (D)) < L7 kg (L + 1)k (3.8)

Let W C ag be the annihilator of P and W+ be the orthogonal complement of
W. W+ is non-trivial because so is P. The inequality (3.8) implies that the W+
component D', of D' in the decomposition W @& W satisfies

1
DL < L7 kg (L + 1)k < 3, (3.9)
where the last inequality follows from the choice of ks.
Set D _tD’
D= ———L 3.10
t |D/ _ tD/ll ) ( )

which is well-defined for ¢ € [0,1]. Observe that D] € W satisfies that x(D}) =0
for each x € Xg with x(D’) = 0 as well as for x = ¢. In addition, x(D;) = 0 for
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all D; and y € ¥, because D; is proportional to a convex combination between D’
and Dj. Let T C [0, 1] be the set of values of ¢ such that

{x € o : x(Dy) =0} 2 {x € Xo : x(D') =0}. (3.11)

Then 7 is non-empty, as 1 € T. Moreover, it is not difficult to verify that 7 is
closed because t € T is equivalent to that D; belongs to the union of finitely many
predetermined subspaces of the form ker y. Hence, s = minsc7 t is well defined. Let
D" =D.. (3.12)

We now verify (3.4) and (3.5).

Note Dj = D’. As the linear span of {x € ¥¢ : x(D;) = 0} remains constant for
t € 10, s), the signs of x(D;) does not change on [0, s) for any x € 3¢ with x(D’) # 0.
It therefore follows from the fact that D’ satisfies (3.11) that, the only change when
t reaches s is that, for one or more x € 3¢, x(D}) switches from positive to 0 (and
at the same time, for the corresponding —x € X, —x(D;) switches from negative
to 0). This shows (3.4).

Denote the right hand of (3.9) by &, which is in (0,21). Then |D' —tD'/| €

'3
- - 1 -
(1-0,1406) C (3,2). It follows that ‘1 - ﬁ‘ < 20. Therefore,
|D' —tD |

1 t
D/
oY =i
<20|D'| + 2| D', | < 40.
In particular, |D’ — D”| < 40.
Adding (3.2), we obtain that
D= D"| <45+ 6 = (4L kgt +1)0 + 4L kg 16" < Mo(8 +0'),
which is (3.5). Here we used that L > 1. O

D'~ D) =\<1— D,

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let My, k1 and kg be as Lemmas 3.2 and 3.3. Define
fo =0 and inductively f,4+1 = Mo(fn+1). Choose 6; € (0, k1) such that f,,_160; <
KRo.

Fix a unit vector D € ag and 6 € (0,61). Set Dy = D. By applying Lemma 3.3
inductively (to D and D,,_1 in each step, with 6’ = 6 and § = f,,_16), we can define
D,, € ag such that:

{x €Z0:x(Dpn) >0} C{x €Xo:x(Dn-1) >0}, (3.13)
and
|D — D,| < fnb, (3.14)
unless: either
{x € X0 : x(Dy—1) > 0,min(x(D), x(Dp—-1)) <6} =0 (3.15)
or
Jn-10 > Ka. (3.16)

Notice that (3.13) implies

{x € %0 : x(Dn) =0} 2 {x € X : x(Dn-1) =0},
and that the linear span P, of {x € Xo : x(Dy) = 0} strictly increases. Because ¥
spans ag, whose dimension is r, dim P, increases for at most ro — 1 steps before the
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inductive process stops. However, the choice of k1 guarantees that (3.16) does not
happen for n < r. Hence for some n < r, D,,_1 is well-defined and (3.15) holds.
Since (3.13) holds for all m <mn — 1,

{x € Zo : x(Dn-1) >0} C {x € Zo : x(D) > 0}.

To conclude the proof of Proposition 3.1, it suffices to denote D’ = D,,_; and
M = fr,—1. We remark that the subspace u defined in the statement of the propo-
sition form a Lie subalgebra, as for roots x,x’ € X such that g%‘,gé/ C u, either
X+ x ¢ X or g%ﬁ"‘/gu. O

The subgroup U = exp u is the strong horosphere for the one parameter subgroup
exp(tD’). For all r > 0, we define a bounded neighborhood B, of the identity in U
by

B, =exp B} C B, (3.17)
and we simply denote
B = B; =exp By (3.18)
Throughout the rest of the paper, we will have the Haar measure my on U normal-
ized so that my (B) = 1.
The subalgebra gar splits as u @ ut where

ut = &P gy. (3.19)

x(D’)=0,x(D)>0

One can easily check that ut is also a subalgebra. Let U+ = exput. As G¢, U,
U~ are nilpotent groups, G& = U - U+ and the decomposition is a diffeomorphism
between G and UL x U (see e.g. [17]). Moreover, as U and U~ are both nilpotent
and U+ normalizes U, one can renormalize the volumes such that Mg = My XMy
We will choose BG(T such that BGO+ = By B% for some bounded neighborhood By«

of the identity in U, and my 1 (By1) = m.
Remark that there are only finitely many ;ossible configurations for the triple
(GE,U,U") for which we need to choose the neighborhoods BGJ’ B, By..

Remark 3.4. Asin Remark 2.2, the objects U, U+, B,., By, as well as the metric
and Haar measures on them, can be chosen according to the choice of Ay in a way
that is equivalent by conjugacy to the corresponding objects defined for a prescribed
Cartan subgroup ﬁo.

Proposition 3.1 allows to further reduce Theorem 1.1 to the following:

Theorem 3.5. Let G be a connected semisimple Lie group, Go C G be a connected
simple Lie subgroup and I' C G be a lattice. Then there exists a constant ¢ =
¢(G,Gyp,T) > 0, such that:

For all € > 0, Cartan subgroups Ag C Go, and compact subsets Qo C G /T, there
exists a compact subset Q = Q(G, Gy, T, Ag,Qo,€) C G/T, such that:

For allx € Qo, T > 0, and unit vectors D € ag (with respect to the norm induced
by the Killing form on go),

my ({u € B:[{t€[0,T]: exp(tD)u.x ¢ Q}| > €T}) <my(Bi)e “", (3.20)

1
2

where U and B are constructed as above.

Proposition 3.6. Theorem 3.5 implies Theorem 1.1.
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Proof. First observe that in the statement of Theorem 1.1, one may assume without
loss of generality that D is a unit vector after replacing D with % if necessary.

We assume Theorem 3.5 holds. By Proposition 2.5 it suffices to verify Theorem
2.4. Notice

m g+ ({g € Bgy: [{t €[0,T]: exp(tD)g.x ¢ Q}| > €T'})
:/L mu({ueBy: [t (3.21)

exp(tD)uut .z ¢ Q} > eT'})dmys

Given Qg in the condition of Theorem 2.4, let ), be the union of the By -Qq's
for all possible values of U*. Then €2}, a compact subset of G/, so we can apply
Theorem 3.5 to it and get ¢, as well as ) for all € > 0. Then for x € Qy and
T > 0, the integrand in (3.21) is less than mU(B%)e_“T for all v+ € Byi. (3.20)
follows. O

4. Reduction by Margulis arithmeticity theorem. In order to prove Theorem
3.5, we begin by some elementary reductions.

Lemma 4.1. Suppose for two connected semisimple Lie groups G and G*, G* is
a factor group of G with compact or discrete kernel, and the projection of a lattice
I' C G is commensurable to a lattice T* C G*. Then Theorem 3.5 is true for (G,T)
if and only if it is true for (G*,I'*).

Proof. Tt suffices to consider two separate scenarios:

1. G* is a factor of G with compact or discrete kernel, and I'* is the projection
of T';

2. G = G* and I is a finite index sublattice in I'*.

In both cases, G*/T* is a factor of G/T" with preimage fibers being compact or
discrete. As both spaces have finite volume, the fibers are discrete if only if G/T" is
a finite cover of G*/I'*.

The “if” direction: Suppose Theorem 3.5 holds on G*/I'*. Let Gg, Ag, D and
Qo be defined in G or G/T" as in Theorem 3.5. And let U and B be constructed
correspondingly as in Section 3. We aim to show that Theorem 3.5 is true for these
objects.

Let 7 denote indifferently the projections G — G* and G/T — G*/T*. We may
naturally project Gy, Ag, D, Qo, U, my, B, B% under 7. Denote the projected
images respectively by G§, A, D*, Q, U*, my-, B* and B} . Note that, G can be
assumed to be non-compact, otherwise Ag is trivial and the2 statement of Theorem
3.5 is empty. As Gy is a non-compact simple Lie group and ker 7 is compact or
discrete, Go Nker m must be discrete, in other words 7 : Go — G is a covering map.
In this case the Cartan subgroup Ag, the nilpotent subgroup U C Gy, as well as the
set B, are bijectively projected. So A, U* and B* are isomorphic copies of Ag, U
and B. Moreover, D* and U™ still satisfy Proposition 3.1, which is a statement on
the Lie algebra level. And my«(B*) =1, my+(B]) = my(By).

Apply Theorem 3.5 with respect to D* andQQS. We obtain a constant ¢ =
c¢(G*,G§,T*) and a compact set Q* = Q*(G*, G, A5, T, Qf, €) that satisfy (3.20)
with respect to G§, Af, D* and Qf. Because the flow {exp(tD)} projects to
{exp(tD*)}, (3.20) holds for ¢ and the preimage Q of Q.. Notice that since 7
is given, ¢ = ¢(G, Gy, T') and Q = Q(G, Gy, Ag, To, Qo, €).
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The “only if” direction: The proof of this direction is similar. Suppose
Theorem 3.5 holds on G/T'. Let G§, Ajj, D* and Qf be defined in G* or G*/I" as in
Theorem 3.5. And let U* and B* be constructed correspondingly as in Section 3.

As G* is a factor of the semisimple Lie group G, g = g* @& b where § is the Lie
algebra of the compact kernel ker 7. Let go be the image of the Lie algebra g C g*
of G§ in g, and Gy C G be the connected simple Lie group corresponding to go.
Similarly, define the Cartan subgroup Ag and the nilpotent subgroup U inside Gy,
and D € go. Then g is an isomorphic image of gy under D, thus GoNker 7 is again
discrete. In this case, A, U* are isomorphic images of Ag and U under 7. Define
the neighborhoods B and B% as in Section 3, then they projects isomorphically to
B* and B*%‘. The Proposition 3.1 is satisfied by D and U.

Apply Theorem 3.5 with respect to D and the preimage Q2 = 7~ 1(Q3). (Note
that Qo is compact because Qf is compact and the fibers of 7 : G/T' — G*/T*
is compact or finite.) We obtain a constant ¢ = ¢(G,Gy) and a compact set
Q = Q(G,Go, Ap, Qo, €) that satisfy (3.20) with respect to Gg, Ag, D and Q.
Because the flow {exp(tD)} projects to {exp(tD*)}, (3.20) holds for ¢ and the
projected image Q* = w(€). Again, since 7w is given, ¢ = ¢(G*,G§,I'*) and
Q= Q(G*,G§, A5, TS, 05, €%). O

Lemma 4.2. In order to prove Theorem 3.5, it suffices to consider the case when
I' is an irreducible lattice and G has trivial center and no compact factors.

Recall that an irreducible lattice I' in a semisimple Lie group G is one that
projects densely into all non-trivial factors of G.

Proof. By Lemma 4.1, one may assume that G is centerless and has no compact
almost simple factors (by quotienting them out if necessary). In this case G is the
connected component G(R)° of the real points of a linear algebraic group G. Again
by Lemma 4.1, after passing to a commensurable lattice if necessary, we may assume
that G = [[;_, G; and T’ = [[;_, [';, where each G; is a connected semisimple Lie
group without compact factors and IT'; is an irreducible lattice in Gj;.

Foreachi =1,---,n, consider the simple subgroup Gy ; and its Cartan subgroup
Ap,;, which we define respectively as the projections of Gy and Ay in G;. Notice
that as G is simple, G ; and Ay ; are either both trivial or respectively isomorphic
to Gp and Ag. Denote by D; the i-th projection of D, this gives rises to nilpotent
subgroups U; C Gy ; after applying Proposition 3.1. One can then define neighbor-
hoods B; and (By); accordingly. Then B C [[;_, B; and By C [[;_,(B;)i- The
Haar measure my is proportional to [],_; my,.

Now suppose Theorem 3.5 is true for configuration (G, Gos, Ao, Qo,s) for every
i. On each G;/T';, we get a constant ¢; > 0, that depends on G; and Gy ;. If Gg; is
non-trivial then there is a compact function Q; C G;/T"; that is independent of D;
and satisifes (1.1). When Gy ; is trivial, let Q; = Q,. Since Qo C [],_, Qo for
every x € Qo and € € (0,1], we have

my, ({u € B; : |[{t € [0,T] : exp(tD)u.m;(x) ¢ Q}| > eT'}) < eciel,

Here 7; is the projection from G/T to G;/T;. Equivalently,

my ({u € HBl- |{t € [0,T]: mi(exp(tD)k.x) ¢ Q;}| > €T})
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<mU(ﬁ B,;)efcieT.

i=1
Let Q# =[]\_, €, then for all z € Qq,

my ({u € B:|{t €[0,T]: exp(tD)u.x ¢ Q#}| > €T'})

<my ({ue HBZ' |{t €[0,T]: exp(tD)u.x ¢ Q#}‘ > €T'})
i=1

§ZmU({u € HBi : |{t €[0,T]: mi(exp(tD)u.x) ¢ Ql}} > %T}) (4.1)

T T
<n- mU(H Bye »T < nGmU(H B;)-e 7T
i=1 i=1

Here ¢ = min]_, ¢; and ng denotes the number of almost simple factors in G.

Recall that ¢; is determined by G, G; o and I';, so ¢ is determined by G , G and
I'. Furthermore, given Gy and Ag, the factors Gy,; and A ; are determined, and
there are only finitely many possible choices for U and U;, which in turn determine
B and B; (since the metric on Gy is intrinsically defined using the Lie algebra struc-

my (B)
possible values once Gy and Ag are given. Indeed, these values are also indepen-
dent of Ay as all Cartan subgroups are conjugate. To summarize, ngmy ([[;_; B;)
admits only finitely many values determined by G and Gj.

Hence, there is T# = T#(G, G, €), such that

ture of go), so the coefficient my ([[;_, B;) = has only finitely many

nge el < e et VT > TF. (4.2)

Write 0 = Q% Uexp(BT")B.Qy, then Q is determined by G, Gy, Ao, I', Qo and e.
Moreover, for all z € Qy and T < T#,

{ueB:|{tc0,T]: exp(tD)u.x ¢ Q¥}| > eT}) = 0,VT € [0, T#]. (4.3)
Combining (4.2) and (4.3), we know that for all € Qy and T' > 0,

my({u€B:|[{t€[0,T]: exp(tD)u.x ¢ Q} > €T}) < e ma T (4.4)

This is the content of Theorem 3.5, after renaming 25@ by c. O

Corollary 4.3. In order to prove Theorem 3.5, it suffices to consider the following
special cases:

1. (Arithmetic lattices) G = G(R)® is the connected component of the real points
of a linear algebraic group G C SLy defined over Q, G is Q-almost simple
and T = G(Z) NG, and Gy is a connected simple Lie subgroup of G.

2. (Rank 1 homogeneous spaces) G is a connected simple Lie group of real rank
1, Gy C G is a connected simple Lie subgroup, and I' C G is a lattice.

Proof. By Lemma 4.2, one may assume I is irreducible and G is a connected center-
less semisimple Lie group has no compact factors. If G is trivial, then the statement
is empty and it suffices set ¢ = 1. When G is non-trivial, if rankg G = 1, then G
must be simple, which is Case (2). Otherwise, Margulis Arithmeticity Theorem
[18]*Introduction, Theorem 1’ states that there is a connected linear semisimple
algebraic group G C SLg; defined over Q and a surjective Lie group morphism
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7 : G(R)° — G with compact kernel, such that 7(G(Z) N G(R)®°) is commensu-
rable to I'. In order for I" to be irreducible, G must be Q-almost simple. By Lemma
4.1, one may work on the arithmetic homogeneous space G(R)°/(G(Z) N G(R)°),
i.e. in Case (1) instead. O

5. Expansion of vectors. Following Eskin-Margulis-Mozes [9], Eskin-
Margulis [8] and Benoist-Quint [1], we will prove in the next two sections that a
random trajectory does return to a compact set in finite time with hight probability.
This section will characterize the behaviour of the unipotent translates using the
quantitative non-divergence property from Kleinbock-Margulis [16] and Kleinbock
[14].

Let (p, V) be a non-trivial irreducible representation of Gy. We denote indiffer-
ently by p the derivative representation on V' of the Lie algebra go. V decomposes
as a direct sum @565 V¢ of relative weight spaces.

Lemma 5.1. For any connected simple Lie group Gy, there exists B = B(Gg) > 0,
such that for all non-trivial irreducible representations (p, V') of Gy and unit vector
D € ap, maxeex E(D) > f.

Proof. This follows from the following facts:

The convex hull of the set of weights of p is a polygon P in aj. Furthermore, there
is a small radius r9 > 0 such that B(0,r) C P for all non-trivial representations p
of Go. ]

Recall that U is constructed in Proposition 3.1 together with a perturbation D’
of D. Let Viax = @ ez V¢, and VL be the direct sum of the
¢ (D")=max¢cz £(D’)
remaining relative weight spaces in V. Then V = Vi ® Vrrjl_ax' Vinax 18 clearly a
non-trivial subspace. Furthermore, maxeez £(D’) > 8 by Lemma 5.1, and similarly
one can also prove minge= (D) < —f. This shows Vj,ax is proper in V.

Lemma 5.2. For all non-zero vectorsv € V, p(U).v € V.-

ax”

Proof. Tt suffices to prove p(u).v € V&
induced representation of gg on V.

Assume p(u).v C V2., then in particular v € V%, . However, for each ¢ such that
&(D') doesn’t achieve the maximal value maxee= {(D’), the sum of any non-positive
root x (with respect to D’) with ¢ remains non-maximal. Thus p(g)).v C V. as
well. However, by Proposition 3.1, such g3’s span go together with u, it follows that
p(go).v € V& . This makes the span of p(gg).v a proper subrepresentation of V.

max-*

As V is irreducible, this must be a trivial subrepresentation, and thus v = 0. O

where we indifferently denote by p the

Corollary 5.3. For any non-zero vector v € V, p(B1).v £ VL.

Proof. Suppose for the sake of contradiction that p(B1 ).v C Vit . Then by differ-
entiating at the identity, Dp(u).v C V& and it follows that p(U).v C V& . This

contradicts the lemma above. O

Write my, . for the projection from V = Vijax @ Vrﬂ;ax to Viax. By Corollary

5.3, sup,ep [T (p(w).v)] > 0 for all v € V\{0}. As (u,v) = my,.. (p(u).v) is

continuous and the closure Bii of B 1 1s compact, there exists n € (0,1) such that
sup [mv,,.. (p(u).v)| > sup |my,.. (p(u).0)] >n, Vv eV with [v|=1.  (5.1)

ueb 1 u€EB 1
2 1
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The constant 7 = (Go, Ao, p)-
A function f on R"™ is said to be (C, a)-good if for any open ball B C R",

€

men ({z € B: |f(2)] < ¢}) < c( (m”)amn (B),Ve > 0.

sup,ep | f

This definition was introduced in Kleinbock-Margulis [16] and can be traced to
Dani-Margulis [5].

Lemma 5.4. For n,l € N, there are constants C = C(n,l) > 1,a = a(n,l) > 0,
such that all polynomials of degree at most I on R™ are (C, «)-good.

The statement of Lemma 5.4 appeared in [14]*§1. Indeed, the n = 1 case was
proved in [5]*Lemma 4.1 and [16]*Proposition 3.2. It is not difficult to deduce the
general case by induction.

Given t > 0, D € ap and v € V such that |v| =1, consider the function

w(u) = wpy¢,p,0(u) = plexp(tD)u).v
on U. Then woexp~! is a polynomial map on u, where the degree of the polynomial
is determined by p and the structure of u.

Let 81 and M be as in Proposition 3.1. Assume that in Proposition 3.1, § < { =

; B
mln(el, m), then

(D) — &) <él- Mo < 2.

So for each V¢ C Vipax, £(D) > g Note that ¢ = ((Go, Ao, p)-
In this case, for v € Vipax, |p(exp(tD)).v| > e |v|. Tt follows from (5.1) that

sup |w(u)| > % sup |7y, (p(w).v)| > e%n. (5.2)
ueB ueB

In fact, for general representations (p, V') of Gy without fixed vectors, as p is a
direct sum @f_, p; of finitely many non-trivial irreducible representations (p;, V;),
(5.2) remains true if < ¢ where ¢ is a constant depending on Gy, Ag and p. To
see this, note that if [v| = 1, then for some V; the component v; of v in Vj is at
least of modulus %. By (5.2) for irreducible representations, if 8 < (; then

Bt Bt
sup |w(u)| > €= sup [my, .. (p(u).v;)] > €= nj, (5.3)
ueB ueB

where (; and 7; are constants depending only on Gg, Ao, and p;. By taking ¢ =
min; ¢; and n = min; n;, this verifies (5.2) for p.

Recall that the exponential map identifies m, with my, and that my(B) = 1.
By Lemma 5.4, there exists C' > 1 and a > 0 determined by Gy and p (because the
degree [ of w and dimension n of V' are bounded when (p, V') is given), such that

my ({z € B: |w(u)| < e}) < C(e_%n_le)a,Ve > 0. (5.4)
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Therefore,

‘évmwr%mmm

— [ (e € Bl > )y

oo (5.5)
_1
= [ ol e B wt] <)y
0
§/ min (1,067%&7770‘?;7%)(13/
0
Since for all R > 0 and vy > 1,
0 R% 0o
/ min (1,Ry77)dy :/ ldy+ [ , Ry "dy
0 0 R7 (5.6)
_pty Bope 0 R7,
v—1 v—1
we have, for all 6 < ¢,
/ lw(w)| =0 dmy (u) = aa 50%6_%77_6 < 20%6_%77_%. (5.7)
5 _

Recall that 8 = 8(Go) and the constants C, «, ¢, and 7 are determined by Gy,
Ap, and p. After rewrite § as «, we have proved the following:

Proposition 5.5. Suppose Ag is a Cartan subgroup in Gy. For all representations
p: Go = SL(V) without non-zero fixed vectors, there exist positive constants ( =
C(Go, Ao, p) and o = a(Go, Ao, p), such that:

If0 € (0,¢) in Proposition 3.1, then for the strong unstable subgroup U C G and
neighborhood B C U, for allé € (0,a] and a > 0, there exists s = s(Go, Ao, p,a, ) >
0, such that for all unit vector D € ag with respect to the norm induced by Killing
form on go, and t > s, then

/ |p(exp(tD)u).v|~?dmy (u) < alv|~°.
B
The proposition above is analogous to [8]*Lemma 4.2 and [1]*Lemma 4.4.

6. Contraction of height functions. Proposition 5.5 leads to the following im-
portant contraction property:

Proposition 6.1. In both special cases described in Corollary 4.3, there exist posi-
tive constants tg, 6y, determined by G, Go, Ag and T, such that for all compact set
Qo C G/T, there is a proper lower semi-continuous function f : G/T' — [0, 0] and
b > 0, determined by G, Gq, Ao, I' and Qq, such that:

1. For all unit vectors D € ag with respect to the norm induced by the Killing
form on go, t > tg, x € G/T, 6 € (0,0p) , for the subgroup U defined in
Proposition 3.1 with parameter 0, and the neighborhood B in (3.18),

/Bf(exp(tD)u.x)de(u) < e_%f(ac) +b. (6.1)
2. f is bounded on .

We also claim a uniform Lipschitz property of log f.
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Corollary 6.2. In the setting of Proposition 6.1, there exists an C1 > 0 that
depends only on G, Gy, Ao, and T', such that for all x € G/T" and Y € go,

e—Cl|Y\f(x) < f((epr)x) < 601|Y\f(x). (62)

Following [1]*§5-6, the proof of Proposition 6.1 and Corollary 6.2 is divided into
the arithmetic case and the rank 1 case based on Margulis Arithmeticity Theorem.

6.1. Case I: Arithmetic lattices. We first assume the special case (1) from Corol-
lary 4.3. Recall that in this case G = G(R)® is the connected component of the real
points of a linear algebraic group G C SLy defined over Q, and I' = SL4(Z) N G.
Then G/T is naturally embedded in SLg(R)/SL4(Z).
We set
6o = min(61, mgnC(Go, Ao, p)), 00 = mgn a(Go, Ag, p) (6.3)

where 61 = 61(Go) comes from Proposition 3.1 and the minimum is taken over all
subrepresentations p without fixed vectors in all representations of the form A*p,
where py is the standard representation of SL4(R) on R?, restricted to Gg. Here we
recall Gy C G C SLy(R).

The constants 6y, g depend only on G, Gy, and the rational embedding of G in
SL4(R), as the collection of subrepresentations p is finite. It should be emphasized
that the rational embedding of G is not intrinsic to the Lie group structure of G,
but instead determined by I' via Margulis Arithmeticity Theorem (see Corollary
4.3). So we have 0y = 0(G, Go, Ay, T) and §y = do(G, Go, Ao, T).

Proof of Proposition 0.1 for arithmetic latices. The proof of this case is the same as
that of Proposition 5.3 in [1] on recurrence properties of semisimple random walks.

To be precise, in [1]*Lemma 4.4, it was proved that for some semisimple sub-
group H C SL(d,R) and a family of probability measures p*" of finite exponential
moments on H, for all representations (p, V') of H without fixed vectors, there exists
0y > 0 such that for all § € (0,9() and a > 0, there exists ng € N, such that for all
n > ng, then

[ (a1l a(0) < ale

With the semisimple subgroup Gg C G C SLy(R) in place of H and the family
of compactly supported probability measures {(u — exp(tD)u).my|p}i>0 in place
of {p*" }nen, Proposition 5.5 replaces [1]*Lemma 4.4.

A family of proper lower semi-continuous functions

fo 1 SLg(R)/SL4(Z) — [0, 0]

are defined in [1]*equation (5.1). The proof of [1]*Proposition 5.3, with the subsi-
tutions above, shows that:

For some o9 = 0¢(G,Go, A9, T') > 0, for all a € (0,1), there exists to =
to(G, Go, Ao, T, a) > 0 satisfying:

For all 0 € (0,00) and 6 € (0,0p), 6 € (0,d0), and t > to, there is b > 0 such
that for all x € G/T

<1—|—ad

/ fo(exp(tD)u.x)’dmy (u) < 5 fo(2)° + 0.
B

Moreover, the family { f,} is such that for every compact subset Z C SL4(R)/ SLy
(Z), f- is bounded on Z for sufficiently small ¢ > 0 (by [1]*Remark 5.2 and Mahler’s
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compactness criterion.) We choose such an o such that f, is bounded on the
compact subset g C G/I', which is embedded in SLg(R)/SLg(Z). The choice of ¢
depends on G, I" and .

1

—-5_1
e 2—5

5
To conclude the proposition, it suffices to let a = and f = ffo lg/r. This
omits the dependence of tyg on a. Finally, we note that the function f, and the
constant b are determined by G, Go, Ap, I' and 0. So as 0 = o(G,T',{y), and
0o = 90(G, Go, Ao, T'), f and b depend only on G, Gg, Ag, I and Q. O

Next, we recall the construction of the family {f,} in [1] as they will become
useful later.

Fix a Cartan subalgebra a of g and a Weyl chamber C C a. Let PT C a* be the
set of highest weights in all representations of G with respect to C. Fix an element
E € a which lies in the interior of C. For A € P*, let Ay = A(F). For all vector v
in a representative (p, V'), gx(v) denotes the p-equivariant projection to the direct
sum of all irreducible components of highest weight .

For every = in SL4(R)/ SL4(Z), which is the moduli space of unimodular lattices
in R, write £, for the lattice that = represents. For 0 < p < d, let A, = p(d — p).

According to [1]*equations (4.3) and (5.1),

fol@)=" sup ¢ (v), (6.4)
0<p<d
vE(A? L2)\{0}
where ¢, is defined as follows: for all vectors v in A’ RY, on which the natural
exterior product representation acts,
Ap 1
Do (V) = Ljg0(0)|<odry (V) - /\egljl\l{o} NN (6.5)

To obtain Corollary 6.2 in this case we will need is the following observation:

Lemma 6.3. There exists C > 0 that depends only on G, Gy, and the embedding
of G in SL4(R), such that for alloc >0, z € G/T and Y € go,

€_C‘Y|fa($) < fa((exp Y).’L‘) < eC‘Y|f‘7(x)‘

Proof. Let o be fixed. Let C' = C’'(d) = maxg;i | AP poll. Here APpq : sly(R) —
End(AP R?) denotes the standard Lie algebra representation of sly(R) on R¢, and
[ AP poll == suby et (m),)v|=1 | A P(Y)|Ena(A» re) denotes its norm, while the vector
space End(A” R?) is equipped with the operator norm.

We first note that f,(x) = 0 if and only if for all 0 < p < d and all v €
(AP L)\ {0} for one of the p’s, such that go(v) > 027, As go(v) is the equivariant
projection to the subspace of fixed vectors, go((expY).v) = qo(v). It follows that
fo(x) =0 if and only if f,((expY).z) = 0. Therefore we may assume f,(x) # 0.

Suppose v € (AF L) \ {0}. We have |go(v)| < 0% and |g(v)| = ¢o (v)"Br0Br
for some A € Pt \ {0}. Thus

lao((expY).v)| = |(expY).q0(v)| = lgo(v)| < o7,
and

lar((expY).0)| = |(expY).aa ()] = e Mjgr(v)].
Thus, |gr((exp Y).v)| > e~ Ylg, (v) 2202 and

$o((expY).v) <035 [ga((exp¥)w)| 3% < e551¥ 1, (v)

Se%xly‘fa(z).
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Let C = max) g—;, where the maximum is taken over all 0 < p < d, and all highest
weights A € a* appearing in components of A” R%. As there are only finitely many
possible A’s to consider for a given group G, C' depends only on G and d.

Then (6.6) implies

fo((expY)x) = sup  o((expY).v) < e“Vfo(2).
0<p<d
ve(AP £2)\{0}
Similarly we can show f,(z) < e“IYIf, ((expY).z). O

Proof of Corollary 6.2 for arzthmetzc lattices. To deduce this from Lemma 6.3, it

suffices to remember that f = fg , where &g = 00(G, Go, Ao, T"), in the proof of
Proposition 6.1. O

6.2. Case II: Rank 1 homogeneous spaces. We now assume the special case
(2) from Corollary 4.3, which is that the semisimple Lie groups G has real rank 1.

Proof of Prop. 6.1 when rankg G = 1. In this case, a continuous and proper height
function fy : G/T' — [0,00) was given in [1]*(6.3) following [8]. The function has
the form

— 1
folgl') = max max|p(gy)vil ™, (6.7)

where the v;’s are non-trivial vectors from a fixed faithful irreducible representation
(p,V) of G. Moreover, v; is invariant under IV;, where {N;}_, is a maximal set
of maximal unipotent subgroups of G which intersect I' in a lattice and are not
conjugate to each other by elements from I'. (This set is known to be finite by
Garland-Raghunathan[10].)

By Proposition 5.5, for all é € (0,a] where a = a(Go, Ao, p) > 0, there exists
s = s(Go, Ao, p,d) > 0 such that for all ¢ > s,

/ Folexp(tD)u.z)’dmy (u) < e fo(x)". (6.8)
B
This shows Proposition 6.1 in this case by letting f = f§". O

Lemma 6.4. There exists C > 0 that depends only on G and I', such that for all
x€G/T andY € go,

e M fo(x) < fol(expY).z) < eV fo(x).

The proof of the lemma is the same as that of Lemma 6.3, while using a different
representation p.

Proof of Cor. 6.2 when rankg G = 1. This follows directly from Lemma 6.4, as f =
& and o« depends on G, Gy, and p, and p is an arbitrarily fixed faithful irreducible
representation of G. O

6.3. Independence of parameters on Ay. We can eliminate the dependence of
t() and 90 on Ao.

Lemma 6.5. In Proposition 6.1, the parameters tg, 0y can be made to be dependent
only on G, Gy and T', and b can be made to be dependent only on G, Gy, I' and Q.
Corollary 6.2 is not affected by these changes.
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Proof. Recall that all Cartan subgroups of Gy are conjugate to each other. Fix a
Cartan subgroup 21\0, and choose g € G such that Ag = gﬁog_l. Choose tg and 6
in Proposition 6.1 with respect to 121\0. Then for all compact set Qp C G/T, there is
a proper lower semicountinuous function f : G/T' — [0,00] and b such that:

1. For all unit vectors D € ap with respect to the norm 1nduced by the Killing
form on go, t > tg, z € G/T', 0 € (0,60) , for the subgroup U defined in Propo-
sition 3.1 with parameter 6 with respect to AO and D and the neighborhood
BcU given by (3.18),

/ f(exp(tD)u.z)dm olu) <e %f(m) +b. (6.9)

2. f is bounded on g~ €.
For a unit vector D € ag with respect to the norm on ay induced by the Killing form
on go, D= Ad,-1 D is a unit vector with respect to the norm on ag induced by the
Killing form on gg. The group U = g(/jg_l satisfies Proposition 3.1 with respect to
D € ap and 0. We normalize the metric on Gy and U so that the neighborhood B
in (3.18) satisfies B = gBg~'. (Note that doing so would not affect the reductions
in §2 and §3, see Remarks 2.2 and 3.4.) Then my is equivalent to my via the
conjugacy u — gug_'.

Define f(z) = f(g~'z), which is bounded on €. Because

flexp(tD)uz) =f(g~" exp(tD)uz) = f(exp(tD)g ' ug.g~ ),

(6.1) follows from (6.9) with the same value b for all ¢ > tg and 6 € (0,6y). This
eliminates the dependence on Ag from tg, 8y and b.

By Corollary 6.2, log f is Lipschitz with respect to left translations with a Lip-
schtiz constant Cy depending on G, Gy, T and the choice of Ay, since f((expY).x) =
f(g* (expY).z) = f(exp(Ad Y). gilzc) log f is also Llpschltz continuous with a
Lipschitz constant C: depending on C’l and g. As AO is fixed and g depends on
A and Ay, C1 = ¢4 (G,Go, Ap,T). Thus Corollary 6.2 remains valid after the
substitution above. O

7. Non-escape of mass for random walks. In this section, we assume G, Gy,
and I" are as in at least one of the conditions from Corollary 4.3. Fix Qy C G/T. Let
0o, to, b and f be as in Proposition 6.1 (and Lemma 6.5). Fix a flow time 7 > tq,
the choice of which will depend only on G, Gy, I', and be specified later. We also
fix 0 = %90, a unit vector D in one of the ay’s, and let U be as in Proposition 3.1.
The next goal is to show escape of mass is exponentially rare for the random walk
generated by (u — exp(7D)u).my|B on G/T.

In the remainder of this part, we roughly follow the approach of Kadyrov, Klein-
bock, Lindenstrauss and Margulis [12]*§5, but work on a nilpotent scheme instead.

For all t > 0, define a probability measure

Vi = (Adexp(—tD))*mU‘B' (71)

Remark that vy = my|ps.
The convolution between two probability measures p and v on U is defined by

/U B(u)d (e 5 v)(u) = /U /U () dp(u)dv(v). (7.2)
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Lemma 7.1. There exists t1 = t1(G,Go,T') > 0 such that for allT > t; and N > 0,
the probability measures my|p and VN, * V(n_1); * -+ % Vr * 1y coincide on B% , G.€e.

my(Q) = (UNr * Vn—1)r * - * V7 % 10)(Q)

for all subsets Q C B%.

Proof. By the Baker-Campbell-Hausdorff formula on the nilpotent Lie algebra u,
for X,Y € u such that | X|,|Y] < 2,

exp~! (epreXpX) =X+Y +0y(XY).

In other words, there is a constant Cy > 1 such that for all X, Y € u with | X/, Y| <
2

‘exp_1 (epreXpX) —X’ < ColY).

The constant Cs is determined by the metric and Lie structure of U, hence it can
be chosen to be a constant that depends only on Gy in light of Remark 3.4.

In consequence, if Xy, X1, -, Xn € u satisfy |Xo| < 1 and Z;\f:l |X;] < C%’
then exp X - - - exp X; exp Xg = exp X where

N
|1X| < [Xol +C2 Y IX;1. (7.3)
j=1
Choose t; > 0 such that
et 1
T < a0 (7.4)

t; is determined by G, Gy and T' as Cy = C5(Gy) and 6§ = %60 with 0y =
00(G,,Go,T) (see Lemma 6.5).
We now start with the equality

(VN7 * V(N—1)r * -k v x10)(Q)

N
— UN+1H Jr\Uj
(uZuN,lo)suer j=0 (75)

N
= de‘B(UO) duT(u)
/(UN,“',UJ)EUN (/ uoeU 0 )]]1 J ]

UNUN—_1"UQE

By Proposition 3.1, for t > 0, x(—tD) < —tf for all g§& C u. Moreover, the
adjoint action of Gy on u C gg is semisimple. Thus

Adcxp(ftD) (B) = eXp(Adcxp(—tD) (Bil)) C exp Bs,tg. (7.6)

If (ug,---,un) is in the support of H;V:O dv;r, then as vj, is supported on
_ — N _
Adexp(—jrp)(B), |exp~tu;| < eI By (7.4), > j—1lexp Lyl < ﬁ
For Q € By, by (7.3), every element u of the set

exp(—uy) exp(—uz) - - - exp(—un)Q
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verifies |exp™ u| < § 4 Cy - 5= = 1 and thus belongs to B. Thus, by (7.5),

(UNr % V(N _1)r %ok Vr % 10)(Q)

N
= /(uN’” eun mU<exp(*U1) exp(—ug) -+ exp(*uN)Q> E)dl/jT(uj)

N
= my (Q) dvjr (u;)
/(UN,~--,u1)€UN JI;[O ! !

=my (Q).
The proof is completed. O

Hereafter, we fix 7 = 7(G, Go, I') by making

7 = max(to, t1). (7.7)
Define, for N >n >0 and 4 = (ug, -+ ,un_1) € BY,
¢n(a) = (Adexp(f(nfl)TD) un—l) t (Adexp(f'rD) Ul)“Ov (78)

with the convention that ¢y(@) = e. The construction (7.1) guarantees that
(wn)*(mU|B)N = Upgr % -+ % Up % 1. (7.9)
Lemma 7.2. For alln >0 and u € BN,
exp(nT D)y, (a) = exp(T7D)tup—1 exp(TD)tp—2 - - - exp(7D)uy exp(TD)ug.
Proof. This follows from direct computation. O

Lemma 7.3. For all N >n >0 and u € BY,
1. wn(ﬂ) € B%;
2. Forallz € G/T,

e—Cl(n‘r+%)f($) < f(exp(nTD)¢n(ﬁ)x) < 601(717-4-%)‘}”(16),
3. For all z € G/T,
e~ % f(exp(nT D) (a).z) < f(exp(nrD)in(@).x)
< e%f(eXp(mD)f/fN(ﬂ)ﬁ)'
Here (] is as in Corollary 6.2.

Proof. (1) By (7.6), Adexp(—krp) Uk € Be-r- = exp BY_,. Then by (7.4), (7.3) and
(7.7), for all n and @,
3

- 1
—1 n— <1 —k‘r9<1 =,
|exp™ ¥, (0)] < +02k§::16 <1+ Co 50, ~ 2

(2) Part (2) is a direct consequence of Corollary 6.2 and part (1).
(3) By Lemma 7.2,
exp(nT D)y (1)
:exp(nTD)(Adexp(_mD) UN(Up, - ,uN,l))wn(ﬂ)
=N (Un, -+, un-1) exp(nT D), (1),
Part (3) is proved by applying Corollary 6.2 and part (1). O
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Corollary 7.4. For x € G/T" and q > 0, if there exists u* € B9 such that
f(eXp(qTD)z/)q(ﬂ*).x) > L e Rar3)y then
e 3 —e 2

/B 1 (explarD)y (@) dmfy (@) < e~ Hf(o).

Proof. For 0 <k < ¢q—1and u € B*, by Lemma 7.3.(2),

f (exp(k7 D)k () )
>eC10TH2) () > e O ITHD = CUITHD) £ ((oxp(gr )i, (@) )
Ze_cl (2‘17+3)f(eXp(qT)¢q(a*)'x) > %b

e 3 —e 2

Hence, by Lemma 7.2, (7.7) and Proposition 6.1,
/B _F(esp((k+ DrD)y().a) dmfy (@)

:/Bk /Bf(eXp(TD)Uk eXp(k’TD)’(/Jk(ﬂ).x)de(uk)dmIch(a)

IN

/Bk (e‘%f(exp(kTD)W(a).x) + b) dm ()

IN

/B e_%f( exp(kT D)y (1).x) dmf, ()

B

:(f%/ f(exp(kJTD)wk(a).x)dm]f](a).
Bk
The corollary is established by using this inequality ¢ times. O

For N € N, write [N] = {1,--- ,N}. Forx € G/T, M >0, N,q € N, 4 € BNY,
define

Jo(M,N,q,7,4) = {n € [N] : f(exp(ngrD)inq(t).x) > M}. (7.10)
Given a subset J C [N], we denote
Zo(M,N,q,7,J) = {u € BN : J,(M,N,q,7,u) = J}, (7.11)

and try to estimate its size.
One can write [N] as a disjoint union of non-empty segments [_|ZL:1 I;, where

I,--- Iy, are listed in increasing order, such that either J = ||, 4411 or J =
Ll; even £1- Then each I; is contained either in J or in [N]\ J. Write I, = {Ny—1 +
Lo, Nyl
Denote
E, = / f(exp(anD)wnq(ﬁ).a:)dqu(ﬂ), (7.12)
Zy(M,n,q,7,JN[n])

with the convention that
Ey = f(x). (7.13)
We now prove the following key claim:

Lemma 7.5. If M > — 22— Qam43)p then for k > 1,
e 3—e 2
1. If Iy C J, then By, < e 3WNe=Ne-apy

2. If I, C [N]\ J, then En, < M. Suppose in addition that k > 2, then
En, < En,_,.
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Proof. (1) We inductively bound E,, for Ny_1 +1 <n < N + 1.
For N1 +1 <n < Ng, n € Iy C J. Remark that Z,(M,n,q,7,J N [n]) C
Zy(M,n—1,q,7,JN[n—1]) x B1. Write

Y.(M,n—1,q,7,J)={u€ Z,(M,n—1,q,7,JN[n—1])
s.t. Jw* € BY with (4, w*) € Z,(M,n,q,7,J N[n])}.
Then by Corollary 7.4,
E,
< ﬁu,unq,q,.. fng_1) f(eXP(qTD)wq(“nq*qv ot Ung—1)
€Zy(M,n,q,7,JN[n])

exp(anD)wnq(ﬂ).x) dm{; (ung—q, - - ,unq_l)dmgjn_l)q(ﬂ)

< / / f(exp(gTD)tpy(w) (7.14)
Yz (M,n—1,q,7,J) JweB
exp((n — 1)(]7'D)1/1(n_1)q(ﬂ).x)dm?](@)dmgy_l)q(ﬂ)

< / =¥ f (exp((n — 1)gr D)u_1y(@)-)dm{ V()
Yy (M,n—1,q,7,J)

Se_%qEn,l.
Here Corollary 7.4 applies because, as (a, w*) € Z,(M,n,q,7,J N [n]) and n € J,

f ( exp(gTD)1hg(w™) exp((n — 1)q7D)¢(n_1)q(ﬂ).m)
=f(exp(ngT D)y (t, 0*).x) > M

1
1€

= cCia7+3)y
1 .
e"3 —e 2

The inequality in part (1) follows by applying (7.14) repeatedly.
(2) Remark that for all u € Z,(M, Ny, q,7,J N [Ng]),

f(exp(Nyqm D), q(t0).2) < M.
This guarantees Ey, < M. And, if k¥ > 2, then
f(exp(Nk—1gTD)¢n, _,q(0).z) > M.
Furthermore,
Zy(M, Ny, q,7,J N [Ni]) € Zo(M, Ni_1,q,7,J N [Ng_1]) x BNe=Ne-1)a,
Therefore, as my(B) = 1,

En, :/ f(eXp(quTD)¢qu(a).I)dmgkq(ﬂ)
Zo(M,Ny,q,7,JN[Ng])

<

/ f( eXp(quTD)kaq(ﬂ).x) dmgkflq(ﬂ)
Zo(M,Nk_1,q,7,JN[Nk_1])

<

/ f(exp(Nk_quD)¢Nk71q(ﬁ).x)dmg’“_lq(ﬂ)
Z3(M,Ni—1,q,7,JN[Ni_1])

:ENk,l )
which proves part (2). O

Lemma 7.5 leads to:
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Proposition 7.6. Suppose G, Gy and I' are as in one of the conditions from
Corollary /.3. Then there exists My > 0, determined by G, Go, ', Qo and q, such
that for all N € N, M > My, x € G/T satisfying f(x) < M, and J C [N]

my?(Zs(M, N, q,7,J)) < e 391,

Proof. Set M; = —1—e©1(2a7+3)p Recall that b, C; and 7 are all determined

e 3—e 2
by G, Go, I and Qg (see Proposition 6.1, Corollary 6.2 and Lemma 6.5). Thus M;
depends only on G, Gy, I' and ¢q. Assume M > M;.

Suppose I; C J, then F; < e~ 39l gy = e_%q“”f(x) < e~sdllilpg by Lemma
7.5.(1). Suppose I; C [N]\ J, then by Lemma 7.5.(2), By < M. In both cases,
inductively applying Lemma 7.5 shows

En, < e 39%nsnacs iy (7.15)

Let k = K or K — 1, depending on which one makes I, C J. Then (7.15) writes
/ f(exp(quTD)kaq(a).x)dmg’“q(ﬂ) < e 597l
Zy(M,Ny,,q,7,J)

Since Ny, € J, f(exp(NkqrD)¥w,q(@).¢) > M for all @ € Z, (M, Ny, q,7, J). There-
fore,
mgkq(ZIE(Mv Nk, q,T, J)) < 67%Q|J|'

Finally, as Z,(M, N, q,7,J) C Z,(M, Ng,q, 7, JN[Ng]) x BN=Ne)4 and my (B) =
1, the corollary follows. O

For a real number € € (0,1), denote
Zy(M,N,q,7,¢) ={a € BN : |J,(M,N,q,7,@)| > eN}. (7.16)

Corollary 7.7. Suppose G, Gy and T are as in one of the conditions from Corollary
4.3. For all € € (0,1), there exist My = M1(G,Go,T,Q0,¢) >0 and ¢ = q(e) €N,
such that for all N € N, M > My, x € G/T satisfying f(x) < M, and J C [N]

m](}[q (Zx(Mv N7 q,T, 6)) < eiéq€N~
Proof. Z,(M,N,q,7,¢) = jcin) Z(M,N,q,7,J). So by the proposition above,

[T >eN
its measure is at most 2¥e~ 39N where 2V is the number of subsets in [N]. For
q > 66 1log?2, 2e739¢ < ¢~ 5%, The corollary follows. O

8. Non-escape of mass for diagonal flows. We produce the proof of Theorem
3.5, which in turn implies Theorem 1.1, in this section. For now we continue to
assume that at least one of the conditions from Corollary 4.3 holds.

In addition to (7.10), (7.16), set

Jo(M,N,q,7,u) = {n € [N] : f(exp(ngrD)nq(t).x) > M}, (8.1)
and
Z!(M,N,q,7,¢) = {uc BN : |J.(M,N,q,7,a)| > eN}. (8.2)
The difference is that ¥,q(@) is replaced with )n4(@) in this new definition.
We deduce from Lemma 7.3.(3) that
JL(M,N,q,7,7) C Jo(e~ "M, N, q,7,0).

Hence o
ZL(M,N,q,7,0) C Zy(e” * M,N,q,7,7).
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With My = e M, Corollary 7.7 implies

Corollary 8.1. For all e € (0,1), there exist My = M>(G, Gy, T, Qg,€) > 0 and
q = q(e) € N, determined by G, Gy, Ag and €, such that for all N € N, M > Mo,
x € G/T satisfying x < M, and J C [N]
myy? (Z,(M,N,q,7,€)) < e 51N,
By switching from the discretized setting in Corollary 8.1 to a continuous flow,
we are now able to prove Theorem 3.5.

Proof of Theorem 3.5. By Corollary 4.3, one may assume that either I' is an arith-
metic lattice or G has real rank 1, so that all the earlier discussions can be applied.
Similarly to (8.1) and (8.2), for u € U, define

JE(M,N,q,7,u) = {n € [N]: f(exp(ngrD)u.z) > M}, (8.3)

and
Z¥(M,N,q,1,¢) = {u € By : |Jx(M,N,q,7,u)| > eN}. (8.4)

Then Qp]:f}]Z;(Ma N,q,, 6) < Z/z(MvN’(LTv 6)'
Since Z¥(M,N,q,T,¢) C B%, by Lemma 7.1, Lemma 7.2, equality (7.9) and
Corollary 8.1,
mU(Z;(M7 N,q,T, e))

=(V(Ng—1)r * -k Up % yo)(Z;(M, N,q,T, e))

—my? (Y5 Za(M, N, g, 7€) (8.5)
<m(j?(Z,(M,N,q,7,c))

Se—%qu

assuming M > My and f(z) < M.
For M,T,e > 0, u € U, denote

JE(M,T,u) ={t €T : f(exp(tD)u.z) > M}, (8.6)
and
Zi(M,T,e) = {u€ By : |J5(M,T,u)| > eT}. (8.7)
By Lemma 6.2, we have
[t —qr,t+qr] C J:(e= 19" M, T, u),Vt € J: (M, T,u). (8.8)

Given T' > 0, let N = qurj Then for all uw € ZX(M,T,¢€), the number of the
intervals among ((n —1)gr, an] who intersect J* (M, T, u) is at least eN. For these
values of n, n € J*(e=“19" M, N,q,7,u) by (8.8). This demonstrates that

ZX(M,T,€e) C Z:(e "M, N, q,7,¢). (8.9)

It now follows from (8.4) that, assuming T > 2q7 — 27 log my(By), M >
e“19" My and f(x) < M, then

my (Z5(M, T, €)) < e 89N < em 896G "0 <y (B, )e T (8.10)

Under the hypothesis in Theorem 3.5, take

);

1
2

12
T# = 2q7 — T logmy (B
€

1
127’
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OF = fﬁl([O,max(eclqu, sup f(:z:))])
FASION)

Recall that 7 is determined by G, Gy and I'; ¢ depends only on €; My is deter-
mined by G, Gy, I, Q¢ and ¢€; and f is determined by G, Gg, Ag and I'. Also there
are only finitely many possible values for mU(B%) when D varies as a unit vector in
ap. Thus, ¢ = ¢(G, Gy, 1), T# = T#(G,Go,T,€) and Q7 = Q7 (G, Gy, Ag, T, Qo, €).

Since the function f, defined by Proposition 6.1, is bounded on €y, the threshold
value M# := max(e“* My, sup,cq, f()) is finite. Moreover, as f is also proper,
O# is compact.

Assume z € Qo, then f(z) < M#. As M# > ¢“19My, my (Z;(M#,T,¢)) <
eI for all T > T# by (8.10). Equivalently, for all z € Qg and T > T#,

my ({u € B:|[{t €[0,T]: exp(tD)u.x ¢ Q#}’ > €T'})

8.11
<IHU(B%)6766T. (8.11)

Now let Q = Q¥ Uexp(BT*)B.Qg. Then (3.20) holds for all x € Qg and T > 0,
where BT* is the closed ball of radius 7% in ag. Indeed, this follows from (8.11)
when 7' > T#: and is automatically true when T < T#, as in this case exp(tD)u.x €
exp(BI*)B.Qy.

Finally, remark that B, Q# and T# are all determined by G, Gg, Ao, Qo, I' and
€, and thus so is €. O

Therefore, due to Proposition 3.6, the proof of Theorem 1.1 is completed.

9. Hausdorff dimension estimate. We now prove Theorem 1.3. To do so we will
work first under the additional assumption that D belongs to a Cartan subalgebra
ap of gg, and extend to the general case later.

Proof of Theorem 1.3 assuming D € ag. First of all, by passing to a commensurable
lattice one may again assume I' = G(Z).

The vector D can be assumed to be non-trivial, as otherwise Z, p is empty and
its Hausdorff dimension is 0. Furthermore, one may fix a norm on g and assume
without loss of generality that D is a unit vector with respect to it. This is because
replacing D with the unit vector in its direction would not affect the definition of
ZeD.

Let U be as in Proposition 3.1 and define the identity neighborhood B inside U
as in (3.18). We may fix a transversal manifold B* C G of dimension dim G —dim U
such that:

1. e € BY;
2. the multiplication (g,h) — gh is a diffeomorphism from B x B* to its image
in G;

3. mg(BB*) = 1.
As mg is bi-invariant and my (B) = 1, there is a probability measure p on B* such
that dmg(gh) = dmy(g)du(h). As there are only finitely many choices of U once
G, Gy and Ay are given, the same can be made true for the choices of B, B* and
p. In parcticular, BB* is uniformly bounded given G, Gy and Ag.

Fix a coordinate system in g, and let §g be the closed cube of diameter r centered
at 0 in these coordinates. Because of the uniform boundedness of BB*, the following
claim is evident:
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There exists k = k(G,Go, Ag) > 0, such that for all » € (0,1) and v € exp™!
(BB"),
exp(égr +v) C Bg.exp(v). (9.1)
As G/T is covered by countably many precompact sets of the form BB*.z, it
suffices to prove that

dimg(BB*.29g N Z.,p) < dim G — ce, Yo € G/T. (9.2)
Denote
Z2y(Q,D,T,€) :={g € BB*: |{t € [0,T] : exp(tD)g.wo ¢ QU}| > eT'}.
Fix ¢ and ¢ € (0, ¢€), and let Qg = BB*.x. Note that D is not necessarily a unit
vector in terms of the norm |- | induced by the Killing form of ay. However, we can
2, and find a compact set Q; = Q4 (G, Go, T, Ag, Qo, €)

D
such that for all z € B*zg C Q and T > 0,

still apply Theorem 3.5 to

my ({u € B:|{t€[0,7]: exp(gz)u.x ¢ Q)| = ¢T)) < mu(Bs)e ™.

1
2
This is equivalent to that

my ({ue B:|{t€[0,T]: exp(tD)u.x ¢ Q}| > T}) <my(By)e T,

%
for all x € B*zg and T' > 0. After integrating with respect to u, we obtain
me(Zay (1, D, T, €)) < my(B1)e T VT > 0. (9.3)

2

To make use of (9.3), we claim that for the set Q = B}.Q; and some contant

C=C(G)>0,
BE " Z4y(Q,D, T, ¢)) C Zay (O, D, T, )T > 0. (9.4)
Indeed, if g € Zy,(Q,D,T,¢') and h € B * .g, then
exp(tD)h € Adepup)(BE ). exp(tD)h.
When C = C(G, Gy, Ag) is chosen by C' := maxxecq,, x|=1 || adx |aL(g),
Adespeny(BE ) € B, Vt € [0,T].
So exp(tD)h € Bt .exp(tD)g, and thus
{t €[0,T]: exp(tD)h.xg ¢ Q} C{t €[0,T]: exp(tD)g.xo & U},

which in turn implies (9.4).

We also remark that, if T, — oo and |T}, — Tx| < 1, then pg, and pr; have the
same weak-* limit in Definition 1.2. So in that definition, one can assume without
loss of generality that T) € N for all k. By Definition 1.2 and the remark earlier,
for all g € BB* such that g.xg € Z. p, there are infinitely many T} € N such that
g € Zy, (2, D, Ty, €). In other words,

{g € BB* : g.xg € ZE,D} C m U Z1o (2, D, m, €. (9.5)
n>1lm>n

We now bound the Hausdorff dimension of (9.5). For every r > 0, choose n
to be the smallest positive integer such that ke=¢" < r. For all m > n, cover
exp ' (BB*) C g by translates {Y,,;}: of Bgefcm which overlap only along their
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boundaries. If Y, ; intersects exp ™! (Z,, (2, D, m,€')), then by (9.1) and (9.4), it is
completely contained in

exp_l(Bgcm Zo(,D,m,€")) C exp_l(Zzo (Q1,D,m,€)).

By (9.3), the number of such indices i is at most Og. a4, (e~ ™ - (€C™)dMG) G

expH(Zzy (92, D,m, €')) can be covered by a subcollection Z,,, of Y, ;’s, that satisfies

Z |Ym,i|s < Og.co.A, (ece’m . (€C’m)dimG . (e—Cm)s). (9.6)
i€Lm

For all s > dimG — %,

Z Z ‘Krl7i|8 < OG,GO,AO (e(c(dimes)*cel)n)7 (9.7)

m2>ni€ly

which tends to 0 as 6 — 0, or equivalently, as n — oco. Because {Y},, ;}m>n, is a
€L
covering of the set

exp ! ({g € BB* : g.xg € ZG’D})

—Ccn

by sets of diameter at most ke~ " < r, the Hausdorff dimension of (9.5) satisfies

6/

dimy ({g € BB* : g.xo € Zep}) < dim G — % (9.8)

Since €’ € (0, ¢€) is arbitary, we deduce that
dimy (BB* .20 N Ze.p) < dim G — % (9.9)
To complete the proof of Theorem 3.5 in this special case, it now suffices to
rewrite & as ¢, after which ¢ depends only on G, Go, Ag and I'.
Finally, like in Lemma 6.5, the dependence of ¢ on Ay can be removed. In fact,
if D = gDg™', then exp(tD).x = g 'exp(tD).gz. Thus z € Z. p if and only if

gr € Ze,f)v and therefore dimy Z. p = dimg Ze,ﬁ' Since one can conjugate Ag to

a prescribed Cartan subgroup 207 and D to some D € dp by some element g, the
choice of constant ¢ can be made independent of Ag. O

Proof of Theorem 1.3, general case. Now let D € gy be a semisimple element, which
does not necessarily belong to a Cartan subalgebra of ag.

Similar to Lemma 4.1, after taking the quotient of G by its center (so that a
point z € G/T is sequentially e-escaping on average if and only if its projection is),
we may assume that G = G(R)° C SL4(R) where G is a semisimple linear algebraic
group.

In this case, it is known that Gy, being a simple Lie subgroup, must be the
connected component Go(R)° of a simple linear algebraic group Gy C SL, as well.
The semisimple element D decomposes as Dy + D,, where Dy, D, € go(R) and
commute with each other, exp D belongs to an R-split torus Ty C Gg and exp D,
belongs to an R-anisotropic torus T, C Gg. Then exp(tD) = exp(tD,) exp(tDy)
for all t. Moreover, exp(tD,) lies in the compact group T, (R) for all t. Tt follows
that the sets Z. p and Z, p_ are equal. So we may assume without loss of generality
that D sits in an R-split torus Ty C Gg. Under this assumption, T is contained
in a maximal R-split torus T in Gy, so exp(D) belongs to T(R), which is a Cartan
subgroup of GGy. This reduces to the previous case. O
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