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Abstract. Let G/Γ be a finite volume homogeneous space of a semisimple Lie
group G, and {exp(tD)} be a one-parameter Ad-diagonalizable subgroup inside
a simple Lie subgroup G0 of G. Denote by Zε,D the set of points x ∈ G/Γ

whose {exp(tD)}-trajectory has an escape for at least an ε-portion of mass
along some subsequence. We prove that the Hausdorff codimension of Zε,D is
at least cε, where c depends only on G, G0 and Γ.

1. Introduction.

1.1. Statements. In this paper, we will work under the following setting: G is a
connected semisimple Lie group, Γ ⊆ G be a lattice in G. In addition, G0 ⊆ G is a
connected simple Lie subgroup, and A0 ⊆ G0 is a Cartan subgroup of G0. Let g,
g0 and a0 denote respectively the Lie algebras of G, G0 and A0.

Fix a Cartan involution of the Lie algebra g0, such that a0 is the maximal abelian
subalgebra of p0 in the corresponding Cartan decomposition g0 = k0 ⊕ p0 be the
corresponding Cartan decomposition. Then k0 is the Lie algebra of a maximal
compact subgroup K0 ⊂ G0. Equip a0 with the inner product metric induced by
the Killing form on g0, and K0 with the unique bi-invariant probability measure
mK0

.
The focus of this paper is the statistics of orbits of one-parameter subroups of

A0 on G/Γ that spends at least a prescribed amount of time out of a compact set.

Theorem 1.1. Let G be a connected semisimple Lie group, G0 ⊆ G be a connected
simple Lie subgroup and Γ ⊂ G be a lattice. Then there exists a constant c =
c(G,G0,Γ) > 0 such that:

For all ε ∈ (0, 1], Cartan subgroups A0 ⊂ G0, and compact subsets Ω0 ⊂ G/Γ,
there exists a compact subset Ω = Ω(G,G0,Γ, A0,Ω0, ε) ⊂ G/Γ, such that:

For all x ∈ Ω0, T > 0, and non-zero vectors D ∈ a0,

mK0

({
k ∈ K0 :

∣∣{t ∈ [0, T ] : exp(tD)k.x /∈ Ω}
∣∣ ≥ εT

})
< e−cεT . (1.1)

The key feature of Theorem 1.1 is that c is independent of the choices of the
Cartan subgroup A0 ⊂ G0 and the unit vector D ∈ a0.

Our second result is a uniform upper bound on the Hausdorff dimension of the
set of escaping trajectories.
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Definition 1.2. Given G/Γ, D ∈ g and ε ∈ (0, 1], we say a point x ∈ G0 is
sequentially ε-escaping on average with respect to the one parameter subgroup
{exp(tD)}, if there exists a sequence Tk → ∞ and a weak-∗ limit µ of the sequence
of probability measures

µTk
:=

1

Tk

∫ Tk

0

δexp(tD).xdt, (1.2)

such that µ(G/Γ) ≤ 1− ε.
The set of points that are sequentially ε-escaping on average with respect to

{exp(tD)} is denoted by Zε,D.

Theorem 1.3. Let G be a connected semisimple Lie group, G0 ⊆ G be a connected
simple Lie subgroup and Γ ⊂ G be a lattice. Then there exists a positive constant
c = c(G,G0,Γ), such that for all semisimple elements D ∈ g0 and ε ∈ (0, 1], the
Hausdorff dimension of Zε,D satisfies

dimH Zε,D ≤ dimG− cε.

1.2. Historical background. In [2] Cheung proved the set of singular vectors in
dimension 2 has Hausdorff dimension 4

3 and thus Hausdorff codimension 2
3 . By

a principle due to Dani [4], this set corresponds to the set of points of the form


1 α
1 β

1


Γ ∈ G/Γ, where G = SL3(R) and Γ = SL3(Z), whose trajecto-

ries under the one parameter action by {exp(tD)}t≥0 is divergent, where D =
diag (1, 1,−2). It was also shown in [2] that the set of all points x ∈ G/Γ with
divergent trajectories under the same action also has Hausdorff codimension 2

3 in
G/Γ. These results were later extended by Cheung and Chevallier [3] (when m = 1
below) and by Das, Fishman, Simmons and Urbanski [6, 7] to all SLd(R)/ SLd(Z)
for divergent trajectories of one parameter flows

{exp(tD)}t≥0, D = diag (m, · · · ,m,−n, · · · ,−n) (1.3)

where m + n = d. In this situation, the exact Hausdorff codimension is mn
m+n . As

in the case of SL3(R)/ SL3(Z), the codimension is found along orbits of the group(
Idm ∗

Idn

)
, which is the full unstable horospherical group of the flow (1.3).

A trajectory is divergent if it eventually leaves every compact set without return-
ing. The works of Kadyrov [11] and Kadyrov-Kleinbock-Lindenstrauss-Margulis
[12] considered, for the same flows as above, the set of points whose trajectories
are escaping on average. This means the empirical probability measures along the
trajectories converge to 0 in the weak-∗ topology. In other words, even though the
trajectory is allowed to return to a given compact set, on average it only spends a
zero portion of time inside the compact set. In [11] and [12], it was proved that,
in the same settings from [2] and [3], the set of points whose trajectories escape on
average has the same Hausdorff dimension as that of divergent trajectories. This
yields the Hausdorff dimension of the so-called singular vectors on average.

Recently, Khalil [13] considered more general homogeneous spaces G/Γ. His
result provided sharp upper bounds of the Hausdorff dimension of the set of escaping
trajectories for certain one-parameter diagonal flows when either G is an almost
product of factors of real rank 1, or the flow arises from a representation of G0 =
SL2(R).



ON ε-ESCAPING TRAJECTORIES IN HOMOGENEOUS SPACES 331

In the current paper, we work on homogeneous spaces in full generality. The
ambient space G/Γ will be a general homogeneous space, and the direction D of the
flow will be a general semisimple element instead of the special diagonal elements
above. Instead of escaping on average, we will treat the set of trajectories which
are sequentially ε-escaping on average. In this scenario, there exists a sequence of
sampling times, up to which the trajectorie has spent no more than a (1−ε) portion
of time inside any prescribed compact set. A similar but more restrictive notion of
ε-escaping on average was studied in [12]*Theorem 1.5 for the diagonal flows (1.3).

Following the ideas from [2, 3, 11, 12], our main result Theorem 1.3 provides
a positive lower bound of the form cε to the Hausdorff codimension of the set of
trajectories sequentially ε-escaping on average. A main ingredient of the proof is to
control recurrence by a height function that is contracted on average over random
tranjectories. This idea was first introduced by Eskin, Margulis and Mozes in [9],
and also used in the works of Eskin-Margulis [8] and Benoist-Quint [1].

It should be noted that unlike in the works listed above, all of which focused
on very particular diagonal flows, our bound is neither sharp nor explicit. Instead,
the central motivation of the result is the uniform positiveness of the coefficient c
when the flow direction varies over all semisimple elements inside a given simple Lie
subgroup G0. One obstacle when achieving such uniformity is that, in contrast to
the flow in (1.3), a general flow of the form exp(tD) may expand part of its unstable
horosphere arbitrarily slowly. This obstruction will be dealt with in Section 3, where
the unstable horosphere is substituted with a strong unstable subgroup.

2. Reduction to unstable horospheres. Let g0 =
∑

χ∈Σ0
g
χ
0 be the decom-

position of g0 into relative root spaces with respect to the Cartan subalgebra a0.
Σ0 ⊂ a∗0 is the collection of relative roots, and the relative root on g

χ
0 is χ ∈ Σ0.

Each hyperplane kerχ where χ ∈ Σ\{0} is a Weyl chamber wall in a0.
In the remainder of the paper, g0 will be intrinsically equipped with an inner

product metric (for example, by reversing the sign on the negative part of the Killing
form), such that the restriction on a0 coincides with the one induced by Killing form.
Denote by Bg0

r the ball of radius r centered at 0 in g0 and let BG0
r = expBg0

r . Similar
notions will be used, without further explanation, for other Lie algebras equipped
with a metric and their corresponding Lie groups.

Define Σ+
0 := {χ ∈ Σ0 : χ(D) > 0} and Σ0−

0 := {χ ∈ Σ0 : χ(D) ≤ 0}. Let
g+0 , g

0−
0 be respectively the direct sums of relative root spaces gχ0 with χ ∈ Σ+

0 and
χ ∈ {0} ∪Σ−

0 . It is easy to see that they are Lie subalgebras. Let G+
0 , G

0−
0 denote

the corresponding connected Lie subgroups of G0.
Then the orbits of G+

0 and G0−
0 are respectively the unstable, and central-stable

leaves of the flow x→ exp(tD).x on G/Γ.
Moreover, as the Lie subalgebras g+0 , g

0−
0 are transversal to each other and their

sum is g0, there exists r1 > 0 such that the map (a, b) → ab from B
G0−

0
r1 × B

G+
0

r1 to
G0 is a C∞ diffeomorphism to its image..

In particular, there exists a neighborhood BG0
r of the identity in G0 such that

every g can be uniquely decomposed as gG0−
0
gG+

0
with g ∈ B

G+
0

r1 and gG0−
0

∈ B
G0−

0
r1 ,

moreover, the map g → (gG0−
0
, gG+

0
) is a C∞ diffeomorphism from BG0

r to its image.

Let πG+
0
denote the projection g → gG+

0
.

We consider the restriction of πG+
0

to BK0
r , and consider its derivative, which

maps the Lie algebra k0 of K0 to g+0 .
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Lemma 2.1. If r is sufficiently small, then the map πG+
0
: BK0

r → G+
0 is regular,

i.e. the derivative DkπG+
0
: k → g+0 is surjective for all k ∈ BK0

r .

Proof. As πG+
0

is smooth, DkπG+
0

depends continuously on k and hence it being

regular is an open condition in k. Therefore it suffices to show the regularity for
the identity element k = e. As DeπG+

0
is the quotient map from g0 to g+0

∼= g0/g
0−
0 ,

this is equivalent to showing that k0 + g0−0 = g0.
For all D ∈ a0, the set {χ ∈ Σ0 : χ(D) ≤ 0} of non-positive relative roots must

contain the negative relative roots {χ ∈ Σ0 : χ(D′) < 0} for some regular element
D′ ∈ a0. By the Iwasawa decomposition g0 = k0⊕a0⊕n0, where n0 =

⊕
χ∈Σ0\
χ(D′)<0

g
χ
0 .

Furthermore, a0 ⊆ g00 and thus a0 ⊕ n ⊆ g00 + n0 =
⊕

χ∈Σ0

χ(D)≤0

g
χ
0 = g0−0 . It follows

that g0 = k0 ⊕ a0 ⊕ n0 ⊆ k0 + g0−0 , which is what we need.

The Lie algebra g+0 is nilpotent, and thus G+
0 is a connected nilpotent Lie group

and is hence unimodular.
We also fix a neighborhood BG+

0
of identity in G+

0 , whose construction will be

specified later. The Haar measure mG+
0
on G+

0 will be normalized so that

mG+
0
(BG+

0
) = 1. (2.1)

The choice of BG+
0
is determined by G+

0 , and is the same for different D’s leading

to the same G+
0 .

Remark 2.2. All Cartan subgroups are conjugate to each other and the norms
induced by Killing forms on Cartan subalgebras are isometric to each other through
these conjugacies. Therefore we can renormalize the metric and Haar measures on

G0, G
±
0 according to A0 in the following way: first fix a Cartan subgroup Â0 as well

as a non-zero vector D̂ ∈ â0. This determines stable and unstable subgroups G±
0 (D̂)

with respect to D̂.) Define metrics and Haar measures on G0, G
±
0 (D̂). (Note that

G±
0 (D̂) depends only on the Weyl chamber containing D̂. However there are only

finitely many such Weyl chambers.) Then for an arbitrary A0 and D ∈ a0, there

exists g ∈ G0 such that A0 = gÂ0g
−1 and D = Adg D̂ where D̂ is some unit vector

with respect to the norm on a0 induced by the Killing form of g0. Redefine the
metrics and Haar measures on G0 and the stable and unstable subgroups G±

0 with
respect to D by pushforward the corresponding objects by the conjugacy by g.

Corollary 2.3. There exist r > 0 and C = C(G0) > 0, such that for all non-
zero vectors D ∈ a0, πG+

0
(BK0

r ) is contained in BG+
0

and (πG+
0
)∗(mK0

|
B

K0
r

) ≤

CmG+
0
|B

G
+
0

.

Proof. As πG+
0
is smooth near identity, it is clear that the image of BK0

r is in B+
G0

for sufficiently small r. In addition, because of the regularity from Lemma 2.1, when
r is sufficiently small, the pushforward (πG+

0
)∗(mK0

|
B

K0
r

) is bounded by a multiple

of mG+
0
. Finally, note that the pair (G+

0 , G
0−
0 ), which determines the map πG+

0
,

has only finitely many possibilities for all D ∈ A, as g+0 and g0−0 are direct sums
of relative root spaces. Thus we can choose uniform values for r and C that are
independent of D. In light of Remark 2.2, C can be made independent of the choice
of A0.
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Provided the radius r in Corollary 2.3, we fix from now on a finite covering of
the compact group K0 by sets of the form BK0

r · hj , where hj ∈ K0, j = 1, · · · , q.
We now reduce Theorem 1.1 to the following

Theorem 2.4. Let G be a connected semisimple Lie group, G0 ⊆ G be a connected
simple Lie subgroup and Γ ⊂ G be a lattice. Then there exists a constant c =
c(G,G0,Γ) > 0 such that:

For all ε > 0, Cartan subgroups A0 ⊂ G0, and compact subsets Ω0 ⊂ G/Γ, there
exists a compact subset Ω = Ω(G,G0,Γ, A0,Ω0, ε) ⊂ G/Γ, such that:

For all x ∈ Ω0, T > 0, and non-zero vectors D ∈ a0,

mG+
0

({
g ∈ BG+

0
:
∣∣{t ∈ [0, T ] : exp(tD)g.x /∈ Ω}

∣∣ ≥ εT
})

< e−cεT . (2.2)

Proposition 2.5. Theorem 2.4 implies Theorem 1.1.

Proof. Apply Theorem 2.4 to hjx, 1 ≤ j ≤ q, then we have Ω such that for all
x ∈ Ω0, T > 0 and non-zero vector D ∈ a0,

mG+
0

({
g ∈ BG+

0
:
∣∣{t ∈ [0, T ] : exp(tD)ghj .x /∈ Ω}

∣∣ ≥ εT
})

< e−cεT . (2.3)

Here the compact set
⋃

j hjΩ0 is used in lieu of Ω0.

By Corollary 2.3, the inequality (2.3) implies

mK0

({
k ∈ BK0

r :
∣∣{t ∈ [0, T ] : exp(tD)kG+

0
hj .x /∈ Ω}

∣∣ ≥ εT
})

< Ce−cεT . (2.4)

Remark that for k ∈ Bk0
r and t ≥ 0,

exp(tD)khj .x = exp(tD)kG0−
0
kG+

0
hj .x

= exp(tD)kG0−
0

exp(−tD) · exp(tD)kG+
0
hj .x

= Adexp(tD)(kG0−
0
) · exp(tD)kG+

0
hj .x.

(2.5)

Because tD is an element in the Cartan subalgebra a0, Adexp(tD) is semisimple

in GL(g0). As G0−
0 is the central-stable subgroup for the one-parameter subgroup

{exp(tD)}, this shows the distance from Adexp(tD)(kG0−
0
) to the identity is bounded

by a constant L determined by the right-invariant metric we choose on G and the
compact subgroup K0. Let Ω1 be the set of points whose distance to Ω is at most
L. Then it follows from (2.4) and (2.5) that for all T > 0,

mK0

({
k ∈ BK0

r :
∣∣{t ∈ [0, T ] : exp(tD)khj .x /∈ Ω1}

∣∣ ≥ εT
})

< Ce−cεT ,

Or equivalently,

mK0

({
k ∈ BK0

r hj :
∣∣{t ∈ [0, T ] : exp(tD)k.x /∈ Ω1}

∣∣ ≥ εT
})

< Ce−cεT

for each 1 ≤ j ≤ q. Since K0 is covered by the union of the BK0
r hj ’s, we see that

for all sufficiently large T ,

mK0

({
k ∈ K0 :

∣∣{t ∈ [0, T ] : exp(tD)k.x /∈ Ω1}
∣∣ ≥ εT

})
< qCe−cεT . (2.6)

To deduce Theorem 1.1 from (2.6), it suffices to rewrite c
2 as c and Ω1 as Ω.

3. Reduction to strong unstable subgroups. As the unit element D ∈ a0 is
chosen arbitrarily, a priori it may sit near a Weyl chamber wall and expand certain
directions in its unstable horosphere very slowly. This subsection aims to overcome
this obstacle.
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Proposition 3.1. Given a connected simple Lie group G0, there are constants
θ1 = θ1(G0) > 0 and M = θ1(G0) > 0 satisfying the following condition:

Suppose A0 is a Cartan subgroup and its Lie algebra a0 is equipped with the
norm induced by the Killing form on g0. For all 1 ≤ i ≤ s, unit vector D ∈ a0 and
θ ∈ (0, θ1), the unstable Lie subalgebra g+0 contains a Lie subalgebra u, and there
exists D′ ∈ a0 such that:

1. |D′| = 1 and |D′ −D| < Mθ;
2. u =

⊕
χ∈Σ0

χ(D′)>0

g
χ
0 ;

3. χ(D) ≥ θ and χ(D′) ≥ θ for each g
χ
0 ⊆ u.

Here the constants θ1 and M can be independent of A0 and D for the reasons
explained in Remark 2.2.

Lemma 3.2. There exists a constant κ1 > 0 that depends only on G0, such that
for all unit vector D ∈ a0, the subset of roots {χ ∈ Σ0 : |χ(D)| < κ1} is contained
in a proper subspace of a∗0.

Proof. We view both a0 and a∗0 as Rr0 where r0 = rankRG0, and equip them with
Euclidean norms that are dual to each other. Let L > 1 be such that |χ| < L and
all χ ∈ Σ0 ⊂ a∗0. Since Σ0 is a finite set which spans a∗0, one can define κ0 ∈ (0, 1)
such that κ0 < |χ1 ∧ · · · ∧ χn| for all linearly independent elements χ1, · · · , χn of
Σ0.

Let κ1 = 1
4r

−1
0 L−(r0−1)κ0. Note that r0, κ0 and L depends only on G0 (see

Remark 2.2). Therefore κ1 depends only on G0 as well. To see that κ1 satisfies the
conclusion of the lemma, it suffices to show that any r0 elements χ1, · · · , χr0 ∈ Σ0

with |χj(D)| < κ1 are linearly dependent. Indeed, let P be the r0 − 1 dimensional
annihilator of D: P = {δ ∈ a∗0 : δ(D) = 0}. For each χj , denote by χj = χP

j + χ⊥
j

the orthogonal decomposition in P ⊕ P⊥. Then |χj | ≤ L, |χP
j | ≤ L and |χ⊥

j | ≤ κ1,
∀j = 1, · · · , r0. Thus

|χ1 ∧ · · · ∧ χr0 |

=
∣∣∣χP

1 ∧ · · · ∧ χP
r0 +

r0∑

i=1

χ1 ∧ · · · ∧ χi−1 ∧ χ
⊥
i ∧ χP

i+1 ∧ · · · ∧ χP
r0

∣∣∣

=
∣∣∣0 +

r0∑

i=1

χ1 ∧ · · · ∧ χi−1 ∧ χ
⊥
i ∧ χP

i+1 ∧ · · · ∧ χP
r0

∣∣∣

≤
r0∑

i=1

|χ1 ∧ · · · ∧ χi−1 ∧ χ
⊥
i ∧ χP

i+1 ∧ · · · ∧ χP
r0 |

≤r0 · L
r0−1κ1 < κ0.

It follows from the choice of κ0 that χ1, · · · , χr0 are linearly dependent. The lemma
is proved.

Lemma 3.3. There exist constants M0 > 1, κ2 > 0, both depending only on G0,
that satisfy the following condition:

Suppose that for some D,D′ ∈ a0 with |D| = 1 and δ ∈ (0, κ2),

{χ ∈ Σ0 : χ(D′) > 0} ⊆ {χ ∈ Σ0 : χ(D) > 0}, (3.1)

and

|D −D′| < δ, (3.2)
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then for any δ′ ∈ (0, κ2), one of the following holds:

1. The set
{χ ∈ Σ0 : χ(D′) > 0,min(χ(D), χ(D′)) < δ′} (3.3)

is empty;
2. There exists D′′ ∈ a∗0 with |D′′| = 1, such that

{χ ∈ Σ0 : χ(D′′) > 0} ( {χ ∈ Σ0 : χ(D′) > 0}, (3.4)

and
|D −D′′| < M0(δ + δ′). (3.5)

Proof. Let L, κ0 and κ1 be as in Lemma 3.2 and its proof. Take

M0 = 4Lr0κ−1
0 + 1, κ2 = min(

1

2M0
,
κ1

L+ 1
).

We first remark that as the set of roots Σ0 is symmetric, (3.1) implies

{χ ∈ Σ0 : χ(D′) < 0} ⊆ {χ ∈ Σ0 : χ(D) < 0}, (3.6)

and thus also
{χ ∈ Σ0 : χ(D′) = 0} ⊇ {χ ∈ Σ0 : χ(D) = 0}, (3.7)

Assume that claim (1) does not hold. Let ζ ∈ Σ0 be an element of the set
(3.3). Then either |ζ(D)| < δ′, which implies |ζ(D′)| = |ζ(D′ − D) + ζ(D)| ≤
L|D −D′|+ δ′ < Lδ + δ′ < (L+ 1)κ2; or |ζ(D

′)| < δ′ < κ2. As (L+ 1)κ2 ≤ κ1, in
both cases ζ(D′) < (L+ 1)κ2.

As (L + 1)κ2 ≤ κ1, by Lemma 3.2, ζ and {χ ∈ Σ0 : χ(D′) = 0} span a proper
subspace P of a∗0. P is strictly larger than the subspace spanned by {χ ∈ Σ0 :
χ(D′) = 0}, as ζ(D′) 6= 0.

Fix a basis χ1, · · · , χn, chosen from {ζ} ∪ {χ ∈ Σ0 : χ(D′) = 0}, for P . We can
assume χ1 = ζ. Then for 2 ≤ i ≤ n, χi(D

′) = 0. On the other hand, for i = 1, as
χ1 = ζ, we have shown above χ1(D

′) < (L+ 1)κ2.
Each element η ∈ P with |η| = 1 can be written as

r∑

i=1

χ1 ∧ · · · ∧ χi−1 ∧ η ∧ χi+1 ∧ · · · ∧ χn

χ1 ∧ · · · ∧ χn
· χi.

Here the notation χ1∧···∧χi−1∧η∧χi+1∧···∧χn

χ1∧···∧χn
makes sense because both the numerator

and the denominator lie in the one dimensional vector space ∧nP . Notice that the

absolute value of each coefficient is less than Ln−1·1
κ0

, where κ0 is as in the proof of
Lemma 3.2. Thus

|η(D′)| < Ln−1κ−1
0 · |χ1(D

′)| ≤ Lr0−1κ−1
0 (L+ 1)κ2. (3.8)

Let W ⊆ a0 be the annihilator of P and W⊥ be the orthogonal complement of
W . W⊥ is non-trivial because so is P . The inequality (3.8) implies that the W⊥

component D′
⊥ of D′ in the decomposition W ⊕W⊥ satisfies

|D′
⊥| < Lr0−1κ−1

0 (L+ 1)κ2 <
1

2
, (3.9)

where the last inequality follows from the choice of κ2.
Set

D′
t =

D′ − tD′
⊥

|D′ − tD′
⊥|
, (3.10)

which is well-defined for t ∈ [0, 1]. Observe that D′
1 ∈ W satisfies that χ(D′

1) = 0
for each χ ∈ Σ0 with χ(D′) = 0 as well as for χ = ζ. In addition, χ(D′

t) = 0 for
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all D′
t and χ ∈ Σ0, because D

′
t is proportional to a convex combination between D′

and D′
1. Let T ⊂ [0, 1] be the set of values of t such that

{χ ∈ Σ0 : χ(D′
t) = 0} ) {χ ∈ Σ0 : χ(D′) = 0}. (3.11)

Then T is non-empty, as 1 ∈ T . Moreover, it is not difficult to verify that T is
closed because t ∈ T is equivalent to that D′

t belongs to the union of finitely many
predetermined subspaces of the form kerχ. Hence, s = mint∈T t is well defined. Let

D′′ = D′
s. (3.12)

We now verify (3.4) and (3.5).
Note D′

0 = D′. As the linear span of {χ ∈ Σ0 : χ(D′
t) = 0} remains constant for

t ∈ [0, s), the signs of χ(D′
t) does not change on [0, s) for any χ ∈ Σ0 with χ(D

′) 6= 0.
It therefore follows from the fact that D′

s satisfies (3.11) that, the only change when
t reaches s is that, for one or more χ ∈ Σ0, χ(D

′
t) switches from positive to 0 (and

at the same time, for the corresponding −χ ∈ Σ0, −χ(D
′
t) switches from negative

to 0). This shows (3.4).

Denote the right hand of (3.9) by δ̃, which is in (0, 12 ). Then |D′ − tD′
⊥| ∈

(1− δ̃, 1 + δ̃) ⊂ ( 12 ,
3
2 ). It follows that

∣∣∣1− 1

|D′ − tD′
⊥|

∣∣∣ < 2δ̃. Therefore,

|D′ −D′
t| =

∣∣∣∣(1−
1

|D′ − tD′
⊥|

)D′ +
t

|D′ − tD′
⊥|
D′

⊥

∣∣∣∣

<2δ̃|D′|+ 2|D′
⊥| ≤ 4δ̃.

In particular, |D′ −D′′| < 4δ̃.
Adding (3.2), we obtain that

|D −D′′| < 4δ̃ + δ = (4Lr0κ−1
0 + 1)δ + 4Lr0−1κ−1

0 δ′ ≤M0(δ + δ′),

which is (3.5). Here we used that L > 1.

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let M0, κ1 and κ2 be as Lemmas 3.2 and 3.3. Define
f0 = 0 and inductively fn+1 =M0(fn+1). Choose θ1 ∈ (0, κ1) such that fr0−1θ1 <
κ2.

Fix a unit vector D ∈ a0 and θ ∈ (0, θ1). Set D0 = D. By applying Lemma 3.3
inductively (to D and Dn−1 in each step, with δ′ = θ and δ = fn−1θ), we can define
Dn ∈ a0 such that:

{χ ∈ Σ0 : χ(Dn) > 0} ( {χ ∈ Σ0 : χ(Dn−1) > 0}, (3.13)

and
|D −Dn| < fnθ, (3.14)

unless: either

{χ ∈ Σ0 : χ(Dn−1) > 0,min(χ(D), χ(Dn−1)) < θ} = ∅ (3.15)

or
fn−1θ ≥ κ2. (3.16)

Notice that (3.13) implies

{χ ∈ Σ0 : χ(Dn) = 0} ) {χ ∈ Σ0 : χ(Dn−1) = 0},

and that the linear span Pn of {χ ∈ Σ0 : χ(Dn) = 0} strictly increases. Because Σ0

spans a0, whose dimension is r, dimPn increases for at most r0 − 1 steps before the



ON ε-ESCAPING TRAJECTORIES IN HOMOGENEOUS SPACES 337

inductive process stops. However, the choice of κ1 guarantees that (3.16) does not
happen for n ≤ r. Hence for some n ≤ r, Dn−1 is well-defined and (3.15) holds.
Since (3.13) holds for all m ≤ n− 1,

{χ ∈ Σ0 : χ(Dn−1) > 0} ⊆ {χ ∈ Σ0 : χ(D) > 0}.

To conclude the proof of Proposition 3.1, it suffices to denote D′ = Dn−1 and
M = fr0−1. We remark that the subspace u defined in the statement of the propo-

sition form a Lie subalgebra, as for roots χ, χ′ ∈ Σ0 such that g
χ
0 , g

χ′

0 ⊆ u, either

χ+ χ′ /∈ Σ0 or gχ+χ′

0 ⊆ u.

The subgroup U = exp u is the strong horosphere for the one parameter subgroup
exp(tD′). For all r > 0, we define a bounded neighborhood Br of the identity in U
by

Br = expBu
r ⊂ B, (3.17)

and we simply denote

B = B1 = expBu
1 . (3.18)

Throughout the rest of the paper, we will have the Haar measure mU on U normal-
ized so that mU (B) = 1.

The subalgebra g+0 splits as u⊕ u⊥ where

u⊥ =
⊕

χ(D′)=0,χ(D)>0

g
χ
0 . (3.19)

One can easily check that u⊥ is also a subalgebra. Let U⊥ = exp u⊥. As G+
0 , U ,

U⊥ are nilpotent groups, G+
0 = U · U⊥ and the decomposition is a diffeomorphism

between G+
0 and U⊥×U (see e.g. [17]). Moreover, as U and U⊥ are both nilpotent

and U⊥ normalizes U , one can renormalize the volumes such that mG+
0
= mU×mU⊥ .

We will choose BG+
0
such that BG+

0
= BU⊥B 1

2
for some bounded neighborhood BU⊥

of the identity in U⊥, and mU⊥(BU⊥) = 1
mU (B 1

2
) .

Remark that there are only finitely many possible configurations for the triple
(G+

0 , U, U
⊥) for which we need to choose the neighborhoods BG+

0
, B, BU⊥ .

Remark 3.4. As in Remark 2.2, the objects U , U⊥, Br, BU⊥ , as well as the metric
and Haar measures on them, can be chosen according to the choice of A0 in a way
that is equivalent by conjugacy to the corresponding objects defined for a prescribed

Cartan subgroup Â0.

Proposition 3.1 allows to further reduce Theorem 1.1 to the following:

Theorem 3.5. Let G be a connected semisimple Lie group, G0 ⊆ G be a connected
simple Lie subgroup and Γ ⊂ G be a lattice. Then there exists a constant c =
c(G,G0,Γ) > 0, such that:

For all ε > 0, Cartan subgroups A0 ⊂ G0, and compact subsets Ω0 ⊂ G/Γ, there
exists a compact subset Ω = Ω(G,G0,Γ, A0,Ω0, ε) ⊂ G/Γ, such that:

For all x ∈ Ω0, T > 0, and unit vectors D ∈ a0 (with respect to the norm induced
by the Killing form on g0),

mU

({
u ∈ B :

∣∣{t ∈ [0, T ] : exp(tD)u.x /∈ Ω}
∣∣ ≥ εT

})
< mU (B 1

2
)e−cεT , (3.20)

where U and B are constructed as above.

Proposition 3.6. Theorem 3.5 implies Theorem 1.1.
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Proof. First observe that in the statement of Theorem 1.1, one may assume without
loss of generality that D is a unit vector after replacing D with D

|D| if necessary.

We assume Theorem 3.5 holds. By Proposition 2.5 it suffices to verify Theorem
2.4. Notice

mG+
0

({
g ∈ BG+

0
:
∣∣{t ∈ [0, T ] : exp(tD)g.x /∈ Ω}

∣∣ ≥ εT
})

=

∫

u⊥∈B
U⊥

mU

({
u ∈ B 1

2
:
∣∣{t ∈ [0, T ] :

exp(tD)uu⊥.x /∈ Ω}
∣∣ ≥ εT

})
dmU⊥

(3.21)

Given Ω0 in the condition of Theorem 2.4, let Ω′
0 be the union of the BU⊥ ·Ω0’s

for all possible values of U⊥. Then Ω′
0 a compact subset of G/Γ, so we can apply

Theorem 3.5 to it and get c, as well as Ω for all ε > 0. Then for x ∈ Ω0 and
T > 0, the integrand in (3.21) is less than mU (B 1

2
)e−cεT for all v⊥ ∈ BU⊥ . (3.20)

follows.

4. Reduction by Margulis arithmeticity theorem. In order to prove Theorem
3.5, we begin by some elementary reductions.

Lemma 4.1. Suppose for two connected semisimple Lie groups G and G∗, G∗ is
a factor group of G with compact or discrete kernel, and the projection of a lattice
Γ ⊂ G is commensurable to a lattice Γ∗ ⊂ G∗. Then Theorem 3.5 is true for (G,Γ)
if and only if it is true for (G∗,Γ∗).

Proof. It suffices to consider two separate scenarios:

1. G∗ is a factor of G with compact or discrete kernel, and Γ∗ is the projection
of Γ;

2. G = G∗ and Γ is a finite index sublattice in Γ∗.

In both cases, G∗/Γ∗ is a factor of G/Γ with preimage fibers being compact or
discrete. As both spaces have finite volume, the fibers are discrete if only if G/Γ is
a finite cover of G∗/Γ∗.

The “if” direction: Suppose Theorem 3.5 holds on G∗/Γ∗. Let G0, A0, D and
Ω0 be defined in G or G/Γ as in Theorem 3.5. And let U and B be constructed
correspondingly as in Section 3. We aim to show that Theorem 3.5 is true for these
objects.

Let π denote indifferently the projections G→ G∗ and G/Γ → G∗/Γ∗. We may
naturally project G0, A0, D, Ω0, U , mU , B, B 1

2
under π. Denote the projected

images respectively by G∗
0, A

∗
0, D

∗, Ω∗
0, U

∗, mU∗ , B∗ and B∗
1
2

. Note that, G0 can be

assumed to be non-compact, otherwise A0 is trivial and the statement of Theorem
3.5 is empty. As G0 is a non-compact simple Lie group and kerπ is compact or
discrete, G0∩kerπ must be discrete, in other words π : G0 → G∗

0 is a covering map.
In this case the Cartan subgroup A0, the nilpotent subgroup U ⊆ G0, as well as the
set B, are bijectively projected. So A∗

0, U
∗ and B∗ are isomorphic copies of A0, U

and B. Moreover, D∗ and U∗ still satisfy Proposition 3.1, which is a statement on
the Lie algebra level. And mU∗(B∗) = 1, mU∗(B∗

1
2

) = mU (B 1
2
).

Apply Theorem 3.5 with respect to D∗ and Ω∗
0. We obtain a constant c =

c(G∗, G∗
0,Γ

∗) and a compact set Ω∗ = Ω∗(G∗, G∗
0, A

∗
0,Γ

∗,Ω∗
0, ε) that satisfy (3.20)

with respect to G∗
0, A

∗
0, D

∗ and Ω∗
0. Because the flow {exp(tD)} projects to

{exp(tD∗)}, (3.20) holds for c and the preimage Ω of Ω∗. Notice that since π
is given, c = c(G,G0,Γ) and Ω = Ω(G,G0, A0,Γ0,Ω0, ε).
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The “only if” direction: The proof of this direction is similar. Suppose
Theorem 3.5 holds on G/Γ. Let G∗

0, A
∗
0, D

∗ and Ω∗
0 be defined in G∗ or G∗/Γ as in

Theorem 3.5. And let U∗ and B∗ be constructed correspondingly as in Section 3.
As G∗ is a factor of the semisimple Lie group G, g = g∗ ⊕ h where h is the Lie

algebra of the compact kernel kerπ. Let g0 be the image of the Lie algebra g∗0 ⊆ g∗

of G∗
0 in g, and G0 ⊆ G be the connected simple Lie group corresponding to g0.

Similarly, define the Cartan subgroup A0 and the nilpotent subgroup U inside G0,
and D ∈ g0. Then g∗0 is an isomorphic image of g0 under Dπ, thus G0∩kerπ is again
discrete. In this case, A∗

0, U
∗ are isomorphic images of A0 and U under π. Define

the neighborhoods B and B 1
2
as in Section 3, then they projects isomorphically to

B∗ and B∗
1
2

. The Proposition 3.1 is satisfied by D and U .

Apply Theorem 3.5 with respect to D and the preimage Ω0 = π−1(Ω∗
0). (Note

that Ω0 is compact because Ω∗
0 is compact and the fibers of π : G/Γ → G∗/Γ∗

is compact or finite.) We obtain a constant c = c(G,G0) and a compact set
Ω = Ω(G,G0, A0,Ω0, ε) that satisfy (3.20) with respect to G0, A0, D and Ω0.
Because the flow {exp(tD)} projects to {exp(tD∗)}, (3.20) holds for c and the
projected image Ω∗ = π(Ω). Again, since π is given, c = c(G∗, G∗

0,Γ
∗) and

Ω = Ω(G∗, G∗
0, A

∗
0,Γ

∗
0,Ω

∗
0, ε

∗).

Lemma 4.2. In order to prove Theorem 3.5, it suffices to consider the case when
Γ is an irreducible lattice and G has trivial center and no compact factors.

Recall that an irreducible lattice Γ in a semisimple Lie group G is one that
projects densely into all non-trivial factors of G.

Proof. By Lemma 4.1, one may assume that G is centerless and has no compact
almost simple factors (by quotienting them out if necessary). In this case G is the
connected component G(R)◦ of the real points of a linear algebraic group G. Again
by Lemma 4.1, after passing to a commensurable lattice if necessary, we may assume
that G =

∏r
i=1Gi and Γ =

∏r
i=1 Γi, where each Gi is a connected semisimple Lie

group without compact factors and Γi is an irreducible lattice in Gi.
For each i = 1, · · · , n, consider the simple subgroup G0,i and its Cartan subgroup

A0,i, which we define respectively as the projections of G0 and A0 in Gi. Notice
that as G0 is simple, G0,i and A0,i are either both trivial or respectively isomorphic
to G0 and A0. Denote by Di the i-th projection of D, this gives rises to nilpotent
subgroups Ui ⊆ G0,i after applying Proposition 3.1. One can then define neighbor-
hoods Bi and (B 1

2
)i accordingly. Then B ⊆

∏r
i=1Bi and B 1

2
⊆

∏r
i=1(B 1

2
)i. The

Haar measure mU is proportional to
∏r

i=1 mUi
.

Now suppose Theorem 3.5 is true for configuration (Gi, G0,i, A0,i,Ω0,i) for every
i. On each Gi/Γi, we get a constant ci > 0, that depends on Gi and G0,i. If G0,i is
non-trivial then there is a compact function Ωi ⊆ Gi/Γi that is independent of Di

and satisifes (1.1). When G0,i is trivial, let Ωi = Ω0,i. Since Ω0 ⊆
∏r

i=1 Ω0,i, for
every x ∈ Ω0 and ε ∈ (0, 1], we have

mUi

({
u ∈ Bi :

∣∣{t ∈ [0, T ] : exp(tD)u.πi(x) /∈ Ωi}
∣∣ ≥ εT

})
< e−ciεT .

Here πi is the projection from G/Γ to Gi/Γi. Equivalently,

mU

({
u ∈

r∏

i=1

Bi :
∣∣{t ∈ [0, T ] : πi(exp(tD)k.x) /∈ Ωi}

∣∣ ≥ εT
})
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<mU (

r∏

i=1

Bi)e
−ciεT .

Let Ω# =
∏r

i=1 Ωi, then for all x ∈ Ω0,

mU

({
u ∈ B :

∣∣{t ∈ [0, T ] : exp(tD)u.x /∈ Ω#}
∣∣ ≥ εT

})

≤mU

({
u ∈

r∏

i=1

Bi :
∣∣{t ∈ [0, T ] : exp(tD)u.x /∈ Ω#}

∣∣ ≥ εT
})

≤
r∑

i=1

mU

({
u ∈

r∏

i=1

Bi :
∣∣{t ∈ [0, T ] : πi(exp(tD)u.x) /∈ Ωi}

∣∣ ≥ ε

n
T
})

<n ·mU (
r∏

i=1

Bi)e
− c

n
εT ≤ nGmU (

r∏

i=1

Bi) · e
− c

nG
εT
.

(4.1)

Here c = minri=1 ci and nG denotes the number of almost simple factors in G.
Recall that ci is determined by Gi, Gi,0 and Γi, so c is determined by G , G0 and

Γ. Furthermore, given G0 and A0, the factors G0,i and A0,i are determined, and
there are only finitely many possible choices for U and Ui, which in turn determine
B and Bi (since the metric on G0 is intrinsically defined using the Lie algebra struc-

ture of g0), so the coefficient mU (
∏r

i=1Bi) =
mU (

∏r
i=1Bi)

mU (B)
has only finitely many

possible values once G0 and A0 are given. Indeed, these values are also indepen-
dent of A0 as all Cartan subgroups are conjugate. To summarize, nGmU (

∏r
i=1Bi)

admits only finitely many values determined by G and G0.
Hence, there is T# = T#(G,G0, ε), such that

nGe
− c

nG
εT
< e

− c
2nG

εT
, ∀T > T#. (4.2)

Write Ω = Ω# ∪ exp(BT#

a )B.Ω0, then Ω is determined by G, G0, A0, Γ, Ω0 and ε.
Moreover, for all x ∈ Ω0 and T ≤ T#,

{
u ∈ B :

∣∣{t ∈ [0, T ] : exp(tD)u.x /∈ Ω#}| ≥ εT
})

= ∅, ∀T ∈ [0, T#]. (4.3)

Combining (4.2) and (4.3), we know that for all x ∈ Ω0 and T > 0,

mU

({
u ∈ B :

∣∣{t ∈ [0, T ] : exp(tD)u.x /∈ Ω}
∣∣ ≥ εT

})
< e

− c
2nG

εT
. (4.4)

This is the content of Theorem 3.5, after renaming c
2nG

by c.

Corollary 4.3. In order to prove Theorem 3.5, it suffices to consider the following
special cases:

1. (Arithmetic lattices) G = G(R)◦ is the connected component of the real points
of a linear algebraic group G ⊆ SLd defined over Q, G is Q-almost simple
and Γ = G(Z) ∩G, and G0 is a connected simple Lie subgroup of G.

2. (Rank 1 homogeneous spaces) G is a connected simple Lie group of real rank
1, G0 ⊆ G is a connected simple Lie subgroup, and Γ ⊆ G is a lattice.

Proof. By Lemma 4.2, one may assume Γ is irreducible and G is a connected center-
less semisimple Lie group has no compact factors. If G is trivial, then the statement
is empty and it suffices set c = 1. When G is non-trivial, if rankRG = 1, then G
must be simple, which is Case (2). Otherwise, Margulis Arithmeticity Theorem
[18]*Introduction, Theorem 1’ states that there is a connected linear semisimple
algebraic group G ⊆ SLd defined over Q and a surjective Lie group morphism
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π : G(R)◦ → G with compact kernel, such that π
(
G(Z) ∩ G(R)◦

)
is commensu-

rable to Γ. In order for Γ to be irreducible, G must be Q-almost simple. By Lemma
4.1, one may work on the arithmetic homogeneous space G(R)◦

/(
G(Z) ∩G(R)◦

)
,

i.e. in Case (1) instead.

5. Expansion of vectors. Following Eskin-Margulis-Mozes [9], Eskin-
Margulis [8] and Benoist-Quint [1], we will prove in the next two sections that a
random trajectory does return to a compact set in finite time with hight probability.
This section will characterize the behaviour of the unipotent translates using the
quantitative non-divergence property from Kleinbock-Margulis [16] and Kleinbock
[14].

Let (ρ, V ) be a non-trivial irreducible representation of G0. We denote indiffer-
ently by ρ the derivative representation on V of the Lie algebra g0. V decomposes
as a direct sum

⊕
ξ∈Ξ V

ξ of relative weight spaces.

Lemma 5.1. For any connected simple Lie group G0, there exists β = β(G0) > 0,
such that for all non-trivial irreducible representations (ρ, V ) of G0 and unit vector
D ∈ a0, maxξ∈Ξ ξ(D) > β.

Proof. This follows from the following facts:
The convex hull of the set of weights of ρ is a polygon P in a∗0. Furthermore, there

is a small radius r0 > 0 such that B(0, r0) ⊆ P for all non-trivial representations ρ
of G0.

Recall that U is constructed in Proposition 3.1 together with a perturbation D′

of D. Let Vmax =
⊕

ξ′∈Ξ
ξ′(D′)=maxξ∈Ξ ξ(D′)

V ξ′ , and V ⊥
max be the direct sum of the

remaining relative weight spaces in V . Then V = Vmax ⊕ V ⊥
max. Vmax is clearly a

non-trivial subspace. Furthermore, maxξ∈Ξ ξ(D
′) > β by Lemma 5.1, and similarly

one can also prove minξ∈Ξ ξ(D
′) < −β. This shows Vmax is proper in V .

Lemma 5.2. For all non-zero vectors v ∈ V , ρ(U).v 6⊆ V ⊥
max.

Proof. It suffices to prove ρ(u).v 6⊆ V ⊥
max, where we indifferently denote by ρ the

induced representation of g0 on V .
Assume ρ(u).v ⊆ V ⊥

max, then in particular v ∈ V ⊥
max. However, for each ξ such that

ξ(D′) doesn’t achieve the maximal value maxξ∈Ξ ξ(D
′), the sum of any non-positive

root χ (with respect to D′) with ξ remains non-maximal. Thus ρ(gχ0 ).v ⊆ V ⊥
max as

well. However, by Proposition 3.1, such g
χ
0 ’s span g0 together with u, it follows that

ρ(g0).v ⊆ V ⊥
max. This makes the span of ρ(g0).v a proper subrepresentation of V .

As V is irreducible, this must be a trivial subrepresentation, and thus v = 0.

Corollary 5.3. For any non-zero vector v ∈ V , ρ(B 1
4
).v 6⊆ V ⊥

max.

Proof. Suppose for the sake of contradiction that ρ(B 1
4
).v ⊆ V ⊥

max. Then by differ-

entiating at the identity, Dρ(u).v ⊆ V ⊥
max and it follows that ρ(U).v ⊆ V ⊥

max. This
contradicts the lemma above.

Write πVmax
for the projection from V = Vmax ⊕ V ⊥

max to Vmax. By Corollary
5.3, supu∈B |πVmax

(ρ(u).v)| > 0 for all v ∈ V \{0}. As (u, v) → πVmax
(ρ(u).v) is

continuous and the closure B 1
4
of B 1

4
is compact, there exists η ∈ (0, 1) such that

sup
u∈B 1

2

|πVmax
(ρ(u).v)| ≥ sup

u∈B 1
4

|πVmax
(ρ(u).v)| > η, ∀v ∈ V with |v| = 1. (5.1)
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The constant η = (G0, A0, ρ).
A function f on Rn is said to be (C,α)-good if for any open ball B ⊂ Rn,

mRn

(
{x ∈ B : |f(x)| < ε}

)
≤ C

( ε

supx∈B |f(x)|

)α

mRn(B), ∀ε > 0.

This definition was introduced in Kleinbock-Margulis [16] and can be traced to
Dani-Margulis [5].

Lemma 5.4. For n, l ∈ N, there are constants C = C(n, l) > 1, α = α(n, l) > 0,
such that all polynomials of degree at most l on Rn are (C,α)-good.

The statement of Lemma 5.4 appeared in [14]*§1. Indeed, the n = 1 case was
proved in [5]*Lemma 4.1 and [16]*Proposition 3.2. It is not difficult to deduce the
general case by induction.

Given t > 0, D ∈ a0 and v ∈ V such that |v| = 1, consider the function

w(u) = wρ,t,D,v(u) = ρ(exp(tD)u).v

on U . Then w◦exp−1 is a polynomial map on u, where the degree of the polynomial
is determined by ρ and the structure of u.

Let θ1 and M be as in Proposition 3.1. Assume that in Proposition 3.1, θ < ζ =
min(θ1,

β
2M maxξ∈Ξ\{0} |ξ| ), then

|ξ(D)− ξ(D′)| < |ξ| ·Mθ <
β

2
.

So for each V ξ ⊆ Vmax, ξ(D) > β
2 . Note that ζ = ζ(G0, A0, ρ).

In this case, for v ∈ Vmax, |ρ(exp(tD)).v| ≥ e
βt
2 |v|. It follows from (5.1) that

sup
u∈B

|w(u)| ≥ e
βt
2 sup

u∈B
|πVmax

(ρ(u).v)| > e
βt
2 η. (5.2)

In fact, for general representations (ρ, V ) of G0 without fixed vectors, as ρ is a
direct sum ⊕q

j=1ρj of finitely many non-trivial irreducible representations (ρj , Vj),

(5.2) remains true if θ < ζ where ζ is a constant depending on G0, A0 and ρ. To
see this, note that if |v| = 1, then for some Vj the component vj of v in Vj is at
least of modulus 1

q . By (5.2) for irreducible representations, if θ < ζj then

sup
u∈B

|w(u)| ≥ e
βt
2 sup

u∈B
|πVi,max

(ρ(u).vj)| > e
βt
2 ηj , (5.3)

where ζj and ηj are constants depending only on G0, A0, and ρj . By taking ζ =
minj ζj and η = minj ηj , this verifies (5.2) for ρ.

Recall that the exponential map identifies mu with mU , and that mU (B) = 1.
By Lemma 5.4, there exists C > 1 and α > 0 determined by G0 and ρ (because the
degree l of w and dimension n of V are bounded when (ρ, V ) is given), such that

mU

(
{x ∈ B : |w(u)| < ε}

)
≤ C(e−

βt
2 η−1ε)α, ∀ε > 0. (5.4)
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Therefore, ∫

B

|w(u)|−θdmU (u)

=

∫ ∞

0

mU

(
{x ∈ B : |w(u)|−θ > y}

)
dy

=

∫ ∞

0

mU

(
{x ∈ B : |w(u)| < y−

1
θ }

)
dy

≤

∫ ∞

0

min
(
1, Ce−

αβt
2 η−αy−

α
θ

)
dy

(5.5)

Since for all R > 0 and γ > 1,

∫ ∞

0

min
(
1, Ry−γ

)
dy =

∫ R
1
γ

0

1dy +

∫ ∞

R
1
γ

Ry−γdy

=R
1
γ +

R

γ − 1
·R

1−γ
γ =

γ

γ − 1
R

1
γ ,

(5.6)

we have, for all δ ≤ α
2 ,∫

B

|w(u)|−δdmU (u) =
α

α− δ
C

δ
α e−

βδt
2 η−δ ≤ 2C

1
2 e−

βδt
2 η−

α
2 . (5.7)

Recall that β = β(G0) and the constants C, α, ζ, and η are determined by G0,
A0, and ρ. After rewrite α

2 as α, we have proved the following:

Proposition 5.5. Suppose A0 is a Cartan subgroup in G0. For all representations
ρ : G0 → SL(V ) without non-zero fixed vectors, there exist positive constants ζ =
ζ(G0, A0, ρ) and α = α(G0, A0, ρ), such that:

If θ ∈ (0, ζ) in Proposition 3.1, then for the strong unstable subgroup U ⊆ G+
0 and

neighborhood B ⊆ U , for all δ ∈ (0, α] and a > 0, there exists s = s(G0, A0, ρ, a, δ) >
0, such that for all unit vector D ∈ a0 with respect to the norm induced by Killing
form on g0, and t ≥ s, then

∫

B

|ρ(exp(tD)u).v|−δdmU (u) ≤ a|v|−δ.

The proposition above is analogous to [8]*Lemma 4.2 and [1]*Lemma 4.4.

6. Contraction of height functions. Proposition 5.5 leads to the following im-
portant contraction property:

Proposition 6.1. In both special cases described in Corollary 4.3, there exist posi-
tive constants t0, θ0, determined by G, G0, A0 and Γ, such that for all compact set
Ω0 ⊆ G/Γ, there is a proper lower semi-continuous function f : G/Γ → [0,∞] and
b > 0, determined by G, G0, A0, Γ and Ω0, such that:

1. For all unit vectors D ∈ a0 with respect to the norm induced by the Killing
form on g0, t ≥ t0, x ∈ G/Γ, θ ∈ (0, θ0) , for the subgroup U defined in
Proposition 3.1 with parameter θ, and the neighborhood B in (3.18),

∫

B

f(exp(tD)u.x)dmU (u) ≤ e−
1
2 f(x) + b. (6.1)

2. f is bounded on Ω0.

We also claim a uniform Lipschitz property of log f .
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Corollary 6.2. In the setting of Proposition 6.1, there exists an C1 > 0 that
depends only on G, G0, A0, and Γ, such that for all x ∈ G/Γ and Y ∈ g0,

e−C1|Y |f(x) ≤ f((expY ).x) ≤ eC1|Y |f(x). (6.2)

Following [1]*§5-6, the proof of Proposition 6.1 and Corollary 6.2 is divided into
the arithmetic case and the rank 1 case based on Margulis Arithmeticity Theorem.

6.1. Case I: Arithmetic lattices. We first assume the special case (1) from Corol-
lary 4.3. Recall that in this case G = G(R)◦ is the connected component of the real
points of a linear algebraic group G ⊆ SLd defined over Q, and Γ = SLd(Z) ∩ G.
Then G/Γ is naturally embedded in SLd(R)/ SLd(Z).

We set
θ0 = min(θ1,min

ρ
ζ(G0, A0, ρ)), δ0 = min

ρ
α(G0, A0, ρ) (6.3)

where θ1 = θ1(G0) comes from Proposition 3.1 and the minimum is taken over all
subrepresentations ρ without fixed vectors in all representations of the form ∧kρ0
where ρ0 is the standard representation of SLd(R) on Rd, restricted to G0. Here we
recall G0 ⊆ G ⊆ SLd(R).

The constants θ0, δ0 depend only on G, G0, and the rational embedding of G in
SLd(R), as the collection of subrepresentations ρ is finite. It should be emphasized
that the rational embedding of G is not intrinsic to the Lie group structure of G,
but instead determined by Γ via Margulis Arithmeticity Theorem (see Corollary
4.3). So we have θ0 = θ(G,G0, A0,Γ) and δ0 = δ0(G,G0, A0,Γ).

Proof of Proposition 6.1 for arithmetic latices. The proof of this case is the same as
that of Proposition 5.3 in [1] on recurrence properties of semisimple random walks.

To be precise, in [1]*Lemma 4.4, it was proved that for some semisimple sub-
group H ⊆ SL(d,R) and a family of probability measures µ∗n of finite exponential
moments on H, for all representations (ρ, V ) of H without fixed vectors, there exists
δ′0 > 0 such that for all δ ∈ (0, δ′0) and a > 0, there exists n0 ∈ N, such that for all
n ≥ n0, then ∫

|ρ(g).v|−δdµ∗n(g) ≤ a|v|−δ.

With the semisimple subgroup G0 ⊆ G ⊆ SLd(R) in place of H and the family
of compactly supported probability measures {(u 7→ exp(tD)u)∗mU |B}t≥0 in place
of {µ∗n}n∈N, Proposition 5.5 replaces [1]*Lemma 4.4.

A family of proper lower semi-continuous functions

fσ : SLd(R)/ SLd(Z) → [0,∞]

are defined in [1]*equation (5.1). The proof of [1]*Proposition 5.3, with the subsi-
tutions above, shows that:

For some σ0 = σ0(G,G0, A0,Γ) > 0, for all a ∈ (0, 1), there exists t0 =
t0(G,G0, A0,Γ, a) > 0 satisfying:

For all σ ∈ (0, σ0) and θ ∈ (0, θ0), δ ∈ (0, δ0), and t > t0, there is b > 0 such
that for all x ∈ G/Γ

∫

B

fσ(exp(tD)u.x)δdmU (u) ≤
1 + ad

2
fσ(x)

δ + b.

Moreover, the family {fσ} is such that for every compact subset Z ⊆ SLd(R)/ SLd

(Z), fσ is bounded on Z for sufficiently small σ > 0 (by [1]*Remark 5.2 and Mahler’s
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compactness criterion.) We choose such an σ such that fσ is bounded on the
compact subset Ω0 ⊂ G/Γ, which is embedded in SLd(R)/ SLd(Z). The choice of σ
depends on G, Γ and Ω0.

To conclude the proposition, it suffices to let a =
e−

1
2 − 1

2

d and f = f
δ0
2

σ |G/Γ. This
omits the dependence of t0 on a. Finally, we note that the function fσ and the
constant b are determined by G, G0, A0, Γ and σ. So as σ = σ(G,Γ,Ω0), and
δ0 = δ0(G,G0, A0,Γ), f and b depend only on G, G0, A0, Γ and Ω0.

Next, we recall the construction of the family {fσ} in [1] as they will become
useful later.

Fix a Cartan subalgebra a of g and a Weyl chamber C ⊂ a. Let P+ ⊂ a∗ be the
set of highest weights in all representations of G with respect to C. Fix an element
E ∈ a which lies in the interior of C. For λ ∈ P+, let ∆λ = λ(E). For all vector v
in a representative (ρ, V ), qλ(v) denotes the ρ-equivariant projection to the direct
sum of all irreducible components of highest weight λ.

For every x in SLd(R)/ SLd(Z), which is the moduli space of unimodular lattices
in Rd, write Lx for the lattice that x represents. For 0 ≤ p ≤ d, let ∆p = p(d− p).

According to [1]*equations (4.3) and (5.1),

fσ(x) = sup
0<p<d

v∈(
∧p Lx)\{0}

φσ(v), (6.4)

where φσ is defined as follows: for all vectors v in
∧p

Rd, on which the natural
exterior product representation acts,

φσ(v) = 1{|q0(v)|<σ∆p}(v) · min
λ∈P+\{0}

σ
∆p
∆λ |qλ(v)|

− 1
∆λ . (6.5)

To obtain Corollary 6.2 in this case we will need is the following observation:

Lemma 6.3. There exists C > 0 that depends only on G, G0, and the embedding
of G in SLd(R), such that for all σ > 0, x ∈ G/Γ and Y ∈ g0,

e−C|Y |fσ(x) ≤ fσ((expY ).x) ≤ eC|Y |fσ(x).

Proof. Let σ be fixed. Let C ′ = C ′(d) = maxd−1
p=1 ‖ ∧p ρ0‖. Here ∧pρ0 : sld(R) →

End(
∧p

Rd) denotes the standard Lie algebra representation of sld(R) on Rd, and
‖∧p ρ0‖ := supY ∈sld(R),|Y |=1 ‖∧

p ρ(Y )‖End(
∧

p
Rd) denotes its norm, while the vector

space End(
∧p

Rd) is equipped with the operator norm.
We first note that fσ(x) = 0 if and only if for all 0 < p < d and all v ∈

(
∧p Lx) \ {0} for one of the p’s, such that q0(v) ≥ σ∆p . As q0(v) is the equivariant
projection to the subspace of fixed vectors, q0((expY ).v) = q0(v). It follows that
fσ(x) = 0 if and only if fσ((expY ).x) = 0. Therefore we may assume fσ(x) 6= 0.

Suppose v ∈ (
∧p Lx) \ {0}. We have |q0(v)| < σ∆p and |qλ(v)| = φσ(v)

−∆λσ∆p

for some λ ∈ P+ \ {0}. Thus

|q0((expY ).v)| = |(expY ).q0(v)| = |q0(v)| < σ∆p ,

and
|qλ((expY ).v)| = |(expY ).qλ(v)| ≥ e−C′|Y ||qλ(v)|.

Thus, |qλ((expY ).v)| ≥ e−C′|Y |φσ(v)
−∆λσ∆p and

φσ((expY ).v) ≤σ
∆p
∆λ |qλ((expY ).v)|

− 1
∆λ ≤ e

C′

∆λ
|Y |
φσ(v)

≤e
C′

∆λ
|Y |
fσ(x).

(6.6)
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Let C = maxλ
C′

∆λ
, where the maximum is taken over all 0 < p < d, and all highest

weights λ ∈ a∗ appearing in components of
∧p

Rd. As there are only finitely many
possible λ’s to consider for a given group G, C depends only on G and d.

Then (6.6) implies

fσ((expY ).x) = sup
0<p<d

v∈(
∧p Lx)\{0}

φσ((expY ).v) ≤ eC|Y |fσ(x).

Similarly we can show fσ(x) ≤ eC|Y |fσ((expY ).x).

Proof of Corollary 6.2 for arithmetic lattices. To deduce this from Lemma 6.3, it

suffices to remember that f = f
δ0
2

σ , where δ0 = δ0(G,G0, A0,Γ), in the proof of
Proposition 6.1.

6.2. Case II: Rank 1 homogeneous spaces. We now assume the special case
(2) from Corollary 4.3, which is that the semisimple Lie groups G has real rank 1.

Proof of Prop. 6.1 when rankRG = 1. In this case, a continuous and proper height
function f0 : G/Γ → [0,∞) was given in [1]*(6.3) following [8]. The function has
the form

f0(gΓ) = max
1≤i≤r

max
γ∈Γ

|ρ(gγ)vi|
−1, (6.7)

where the vi’s are non-trivial vectors from a fixed faithful irreducible representation
(ρ, V ) of G. Moreover, vi is invariant under Ni, where {Ni}

r
i=1 is a maximal set

of maximal unipotent subgroups of G which intersect Γ in a lattice and are not
conjugate to each other by elements from Γ. (This set is known to be finite by
Garland-Raghunathan[10].)

By Proposition 5.5, for all δ ∈ (0, α] where α = α(G0, A0, ρ) > 0, there exists
s = s(G0, A0, ρ, δ) > 0 such that for all t ≥ s,

∫

B

f0(exp(tD)u.x)δdmU (u) ≤ e−
1
2 f0(x)

δ. (6.8)

This shows Proposition 6.1 in this case by letting f = fα0 .

Lemma 6.4. There exists C > 0 that depends only on G and Γ, such that for all
x ∈ G/Γ and Y ∈ g0,

e−C|Y |f0(x) ≤ f0((expY ).x) ≤ eC|Y |f0(x).

The proof of the lemma is the same as that of Lemma 6.3, while using a different
representation ρ.

Proof of Cor. 6.2 when rankRG = 1. This follows directly from Lemma 6.4, as f =
fα0 and α depends on G, G0, and ρ, and ρ is an arbitrarily fixed faithful irreducible
representation of G.

6.3. Independence of parameters on A0. We can eliminate the dependence of
t0 and θ0 on A0.

Lemma 6.5. In Proposition 6.1, the parameters t0, θ0 can be made to be dependent
only on G, G0 and Γ, and b can be made to be dependent only on G, G0, Γ and Ω0.
Corollary 6.2 is not affected by these changes.
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Proof. Recall that all Cartan subgroups of G0 are conjugate to each other. Fix a

Cartan subgroup Â0, and choose g ∈ G such that A0 = gÂ0g
−1. Choose t0 and θ0

in Proposition 6.1 with respect to Â0. Then for all compact set Ω0 ⊆ G/Γ, there is

a proper lower semicountinuous function f̂ : G/Γ → [0,∞] and b such that:

1. For all unit vectors D̂ ∈ â0 with respect to the norm induced by the Killing

form on g0, t ≥ t0, x ∈ G/Γ, θ ∈ (0, θ0) , for the subgroup Û defined in Propo-

sition 3.1 with parameter θ with respect to Â0 and D̂, and the neighborhood

B̂ ⊂ Û given by (3.18),
∫

B̂

f̂(exp(tD̂)u.x)dmÛ (u) ≤ e−
1
2 f̂(x) + b. (6.9)

2. f̂ is bounded on g−1Ω0.

For a unit vector D ∈ a0 with respect to the norm on a0 induced by the Killing form

on g0, D̂ := Adg−1 D is a unit vector with respect to the norm on â0 induced by the

Killing form on g0. The group U = gÛg−1 satisfies Proposition 3.1 with respect to
D ∈ a0 and θ. We normalize the metric on G0 and U so that the neighborhood B

in (3.18) satisfies B = gB̂g−1. (Note that doing so would not affect the reductions
in §2 and §3, see Remarks 2.2 and 3.4.) Then mU is equivalent to mÛ via the

conjugacy u→ gug−1.

Define f(x) = f̂(g−1x), which is bounded on Ω0. Because

f(exp(tD)ux) =f̂(g−1 exp(tD)ux) = f̂(exp(tD̂)g−1ug.g−1x),

(6.1) follows from (6.9) with the same value b for all t ≥ t0 and θ ∈ (0, θ0). This
eliminates the dependence on A0 from t0, θ0 and b.

By Corollary 6.2, log f̂ is Lipschitz with respect to left translations with a Lip-

schtiz constant Ĉ1 depending on G, G0, Γ and the choice of Â0, since f((expY ).x) =

f̂(g−1(expY ).x) = f̂(exp(Adg Y ).g−1x), log f is also Lipschitz continuous with a

Lipschitz constant C1 depending on Ĉ1 and g. As Â0 is fixed and g depends on

A0 and Â0, C1 = C1(G,G0, A0,Γ). Thus Corollary 6.2 remains valid after the
substitution above.

7. Non-escape of mass for random walks. In this section, we assume G, G0,
and Γ are as in at least one of the conditions from Corollary 4.3. Fix Ω0 ⊂ G/Γ. Let
θ0, t0, b and f be as in Proposition 6.1 (and Lemma 6.5). Fix a flow time τ ≥ t0,
the choice of which will depend only on G, G0, Γ, and be specified later. We also
fix θ = 1

2θ0, a unit vector D in one of the a0’s, and let U be as in Proposition 3.1.
The next goal is to show escape of mass is exponentially rare for the random walk
generated by (u→ exp(τD)u)∗mU |B on G/Γ.

In the remainder of this part, we roughly follow the approach of Kadyrov, Klein-
bock, Lindenstrauss and Margulis [12]*§5, but work on a nilpotent scheme instead.

For all t ≥ 0, define a probability measure

νt = (Adexp(−tD))∗mU |B . (7.1)

Remark that ν0 = mU |B .
The convolution between two probability measures µ and ν on U is defined by

∫

U

φ(u)d(µ ∗ ν)(u) =

∫

U

∫

U

φ(uv)dµ(u)dν(v). (7.2)
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Lemma 7.1. There exists t1 = t1(G,G0,Γ) > 0 such that for all τ ≥ t1 and N ≥ 0,
the probability measures mU |B and νNτ ∗ ν(N−1)τ ∗ · · · ∗ ντ ∗ ν0 coincide on B 1

2
, i.e.

mU (Q) = (νNτ ∗ ν(N−1)τ ∗ · · · ∗ ντ ∗ ν0)(Q)

for all subsets Q ⊆ B 1
2
.

Proof. By the Baker-Campbell-Hausdorff formula on the nilpotent Lie algebra u,
for X,Y ∈ u such that |X|, |Y | ≤ 2,

exp−1
(
expY expX

)
= X + Y +OU (XY ).

In other words, there is a constant C2 > 1 such that for all X,Y ∈ u with |X|, |Y | ≤
2,

∣∣ exp−1
(
expY expX

)
−X

∣∣ ≤ C2|Y |.

The constant C2 is determined by the metric and Lie structure of U , hence it can
be chosen to be a constant that depends only on G0 in light of Remark 3.4.

In consequence, if X0, X1, · · · , XN ∈ u satisfy |X0| ≤ 1 and
∑N

j=1 |Xj | ≤
1
C2

,
then expXN · · · expX1 expX0 = expX where

|X| ≤ |X0|+ C2

N∑

j=1

|Xj |. (7.3)

Choose t1 > 0 such that

e−t1θ

1− e−t1θ
<

1

2C2
. (7.4)

t1 is determined by G, G0 and Γ as C2 = C2(G0) and θ = 1
2θ0 with θ0 =

θ0(G, ,G0,Γ) (see Lemma 6.5).
We now start with the equality

(νNτ ∗ ν(N−1)τ ∗ · · · ∗ ντ ∗ ν0)(Q)

=

∫

(uN ,··· ,u0)∈UN+1

uNuN−1···u0∈Q

N∏

j=0

dνjτ (uj)

=

∫

(uN ,··· ,u1)∈UN

(∫

u0∈U
uNuN−1···u0∈Q

dmU |B(u0)
) N∏

j=0

dνjτ (uj).

(7.5)

By Proposition 3.1, for t ≥ 0, χ(−tD) ≤ −tθ for all gχ0 ⊆ u. Moreover, the
adjoint action of G0 on u ⊆ g0 is semisimple. Thus

Adexp(−tD)(B) = exp(Adexp(−tD)(B
u
1 )) ⊆ expBu

e−tθ . (7.6)

If (u1, · · · , uN ) is in the support of
∏N

j=0 dνjτ , then as νjτ is supported on

Adexp(−jτD)(B), | exp−1 uj | ≤ e−jτθ. By (7.4),
∑N

j=1 | exp
−1 uj | <

1
2C2

.

For Q ⊆ B 1
2
, by (7.3), every element u of the set

exp(−u1) exp(−u2) · · · exp(−uN )Q
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verifies | exp−1 u| ≤ 1
2 + C2 ·

1
2C2

= 1 and thus belongs to B. Thus, by (7.5),

(νNτ ∗ ν(N−1)τ ∗ · · · ∗ ντ ∗ ν0)(Q)

=

∫

(uN ,··· ,u1)∈UN

mU

(
exp(−u1) exp(−u2) · · · exp(−uN )Q

) N∏

j=0

dνjτ (uj)

=

∫

(uN ,··· ,u1)∈UN

mU (Q)

N∏

j=0

dνjτ (uj)

=mU (Q).

The proof is completed.

Hereafter, we fix τ = τ(G,G0,Γ) by making

τ = max(t0, t1). (7.7)

Define, for N ≥ n ≥ 0 and ū = (u0, · · · , uN−1) ∈ BN ,

ψn(ū) = (Adexp(−(n−1)τD) un−1) · · · (Adexp(−τD) u1)u0, (7.8)

with the convention that ψ0(ū) = e. The construction (7.1) guarantees that

(ψn)∗(mU |B)
N = νnqτ ∗ · · · ∗ ντ ∗ ν0. (7.9)

Lemma 7.2. For all n ≥ 0 and ū ∈ BN ,

exp(nτD)ψn(ū) = exp(τD)un−1 exp(τD)un−2 · · · exp(τD)u1 exp(τD)u0.

Proof. This follows from direct computation.

Lemma 7.3. For all N ≥ n ≥ 0 and ū ∈ BN ,

1. ψn(ū) ∈ B 3
2
;

2. For all x ∈ G/Γ,

e−C1(nτ+
3
2
)f(x) ≤ f

(
exp(nτD)ψn(ū).x

)
≤ eC1(nτ+

3
2
)f(x),

3. For all x ∈ G/Γ,

e−
3C1
2 f

(
exp(nτD)ψN (ū).x

)
≤ f

(
exp(nτD)ψn(ū).x

)

≤ e
3C1
2 f

(
exp(nτD)ψN (ū).x

)
.

Here C1 is as in Corollary 6.2.

Proof. (1) By (7.6), Adexp(−kτD) uk ∈ Be−kτ = expBu
e−kτ . Then by (7.4), (7.3) and

(7.7), for all n and ū,

| exp−1 ψn(ū)| ≤ 1 + C2

n∑

k=1

e−kτθ ≤ 1 + C2 ·
1

2C2
=

3

2
.

(2) Part (2) is a direct consequence of Corollary 6.2 and part (1).
(3) By Lemma 7.2,

exp(nτD)ψN (ū)

= exp(nτD)
(
Adexp(−nτD) ψN (un, · · · , uN−1)

)
ψn(ū)

=ψN (un, · · · , uN−1) exp(nτD)ψn(ū),

Part (3) is proved by applying Corollary 6.2 and part (1).
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Corollary 7.4. For x ∈ G/Γ and q > 0, if there exists ū∗ ∈ Bq such that
f
(
exp(qτD)ψq(ū

∗).x
)
≥ 1

e−
1
3 −e−

1
2

eC1(2qτ+3)b, then

∫

Bq

f
(
exp(qτD)ψq(ū)

)
dmq

U (ū) ≤ e−
1
3
qf(x).

Proof. For 0 ≤ k ≤ q − 1 and ū ∈ Bk, by Lemma 7.3.(2),

f
(
exp(kτD)ψk(ū).x

)

≥eC1(kτ+
3
2
)f(x) ≥ e−C1(kτ+

3
2
)e−C1(qτ+

3
2
)f
(
exp(qτ)ψq(ū

∗).x
)

≥e−C1(2qτ+3)f
(
exp(qτ)ψq(ū

∗).x
)
≥

1

e−
1
3 − e−

1
2

b.

Hence, by Lemma 7.2, (7.7) and Proposition 6.1,
∫

Bk+1

f
(
exp((k + 1)τD)ψk(ū).x

)
dmk+1

U (ū)

=

∫

Bk

∫

B

f
(
exp(τD)uk exp(kτD)ψk(ū).x

)
dmU (uk)dm

k
U (ū)

≤

∫

Bk

(
e−

1
2 f

(
exp(kτD)ψk(ū).x

)
+ b

)
dmk

U (ū)

≤

∫

Bk

e−
1
3 f

(
exp(kτD)ψk(ū).x

)
dmk

U (ū)

=e−
1
3

∫

Bk

f
(
exp(kτD)ψk(ū).x

)
dmk

U (ū).

The corollary is established by using this inequality q times.

For N ∈ N, write [N ] = {1, · · · , N}. For x ∈ G/Γ, M > 0, N, q ∈ N, ū ∈ BNq,
define

Jx(M,N, q, τ, ū) = {n ∈ [N ] : f
(
exp(nqτD)ψnq(ū).x

)
> M}. (7.10)

Given a subset J ⊆ [N ], we denote

Zx(M,N, q, τ, J) = {ū ∈ BNq : Jx(M,N, q, τ, ū) = J}, (7.11)

and try to estimate its size.

One can write [N ] as a disjoint union of non-empty segments
⊔L

l=1 Il, where
I1, · · · , IL are listed in increasing order, such that either J =

⊔
l odd Il or J =⊔

l even Il. Then each Il is contained either in J or in [N ] \ J . Write Ik = {Nk−1 +
1, · · · , Nk}.

Denote

En =

∫

Zx(M,n,q,τ,J∩[n])

f
(
exp(nqτD)ψnq(ū).x

)
dmnq

U (ū), (7.12)

with the convention that
E0 = f(x). (7.13)

We now prove the following key claim:

Lemma 7.5. If M ≥ 1

e−
1
3 −e−

1
2

eC1(2qτ+3)b, then for k ≥ 1,

1. If Ik ⊆ J , then ENk
≤ e−

1
3
(Nk−Nk−1)qENk−1

;
2. If Ik ⊆ [N ] \ J , then ENk

≤ M . Suppose in addition that k ≥ 2, then
ENk

≤ ENk−1
.
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Proof. (1) We inductively bound En for Nk−1 + 1 ≤ n ≤ Nk + 1.
For Nk−1 + 1 ≤ n ≤ Nk, n ∈ Ik ⊂ J . Remark that Zx(M,n, q, τ, J ∩ [n]) ⊆

Zx(M,n− 1, q, τ, J ∩ [n− 1])×Bq. Write

Yx(M,n− 1, q, τ, J) ={ū ∈ Zx(M,n− 1, q, τ, J ∩ [n− 1])

s.t. ∃w̄∗ ∈ Bq with (ū, w̄∗) ∈ Zx(M,n, q, τ, J ∩ [n])}.

Then by Corollary 7.4,

En

≤

∫

(ū,unq−q,··· ,unq−1)
∈Zx(M,n,q,τ,J∩[n])

f
(
exp(qτD)ψq(unq−q, · · · , unq−1)

exp(nqτD)ψnq(ū).x
)
dmq

U (unq−q, · · · , unq−1)dm
(n−1)q
U (ū)

≤

∫

Yx(M,n−1,q,τ,J)

∫

w̄∈Bq

f
(
exp(qτD)ψq(w̄)

exp((n− 1)qτD)ψ(n−1)q(ū).x
)
dmq

U (w̄)dm
(n−1)q
U (ū)

≤

∫

Yx(M,n−1,q,τ,J)

e−
1
3
qf

(
exp((n− 1)qτD)ψ(n−1)q(ū).x

)
dm

(n−1)q
U (ū)

≤e−
1
3
qEn−1.

(7.14)

Here Corollary 7.4 applies because, as (ū, w̄∗) ∈ Zx(M,n, q, τ, J ∩ [n]) and n ∈ J ,

f
(
exp(qτD)ψq(w̄

∗) exp((n− 1)qτD)ψ(n−1)q(ū).x
)

=f
(
exp(nqτD)ψnq(ū, w̄

∗).x
)
> M

≥
1

e−
1
3 − e−

1
2

eC1(2qτ+3)b.

The inequality in part (1) follows by applying (7.14) repeatedly.
(2) Remark that for all ū ∈ Zx(M,Nk, q, τ, J ∩ [Nk]),

f
(
exp(NkqτD)ψNkq(ū).x

)
≤M.

This guarantees ENK
≤M . And, if k ≥ 2, then

f
(
exp(Nk−1qτD)ψNk−1q(ū).x

)
> M.

Furthermore,

Zx(M,Nk, q, τ, J ∩ [Nk]) ⊆ Zx(M,Nk−1, q, τ, J ∩ [Nk−1])×B(Nk−Nk−1)q.

Therefore, as mU (B) = 1,

ENk
=

∫

Zx(M,Nk,q,τ,J∩[Nk])

f
(
exp(NkqτD)ψNkq(ū).x

)
dmNkq

U (ū)

≤

∫

Zx(M,Nk−1,q,τ,J∩[Nk−1])

f
(
exp(NkqτD)ψNkq(ū).x

)
dm

Nk−1q
U (ū)

≤

∫

Zx(M,Nk−1,q,τ,J∩[Nk−1])

f
(
exp(Nk−1qτD)ψNk−1q(ū).x

)
dm

Nk−1q
U (ū)

=ENk−1
,

which proves part (2).

Lemma 7.5 leads to:



352 FEDERICO RODRIGUEZ HERTZ AND ZHIREN WANG

Proposition 7.6. Suppose G, G0 and Γ are as in one of the conditions from
Corollary 4.3. Then there exists M1 > 0, determined by G, G0, Γ, Ω0 and q, such
that for all N ∈ N, M ≥M1, x ∈ G/Γ satisfying f(x) ≤M , and J ⊆ [N ]

mNq
U

(
Zx(M,N, q, τ, J)

)
≤ e−

1
3
q|J|.

Proof. Set M1 = 1

e−
1
3 −e−

1
2

eC1(2qτ+3)b. Recall that b, C1 and τ are all determined

by G, G0, Γ and Ω0 (see Proposition 6.1, Corollary 6.2 and Lemma 6.5). Thus M1

depends only on G, G0, Γ and q. Assume M ≥M1.
Suppose I1 ⊆ J , then E1 ≤ e−

1
3
q|I1|E0 = e−

1
3
q|I1|f(x) ≤ e−

1
3
q|I1|M by Lemma

7.5.(1). Suppose I1 ⊂ [N ] \ J , then by Lemma 7.5.(2), E1 ≤ M . In both cases,
inductively applying Lemma 7.5 shows

ENk
≤ e

− 1
3
q
∑

h≤k,Ih⊆J |Ih|M. (7.15)

Let k = K or K − 1, depending on which one makes Ik ⊂ J . Then (7.15) writes
∫

Zx(M,Nk,q,τ,J)

f
(
exp(NkqτD)ψNkq(ū).x

)
dmNkq

U (ū) ≤ e−
1
3
q|J|M.

SinceNk ∈ J , f
(
exp(NkqτD)ψNkq(ū).x

)
≥M for all ū ∈ Zx(M,Nk, q, τ, J). There-

fore,

mNkq
U

(
Zx(M,Nk, q, τ, J)

)
≤ e−

1
3
q|J|.

Finally, as Zx(M,N, q, τ, J) ⊆ Zx(M,Nk, q, τ, J∩[Nk])×B
(N−Nk)q and mU (B) =

1, the corollary follows.

For a real number ε ∈ (0, 1), denote

Zx(M,N, q, τ, ε) = {ū ∈ BN : |Jx(M,N, q, τ, ū)| ≥ εN}. (7.16)

Corollary 7.7. Suppose G, G0 and Γ are as in one of the conditions from Corollary
4.3. For all ε ∈ (0, 1), there exist M1 = M1(G,G0,Γ,Ω0, ε) > 0 and q = q(ε) ∈ N,
such that for all N ∈ N, M ≥M1, x ∈ G/Γ satisfying f(x) ≤M , and J ⊆ [N ]

mNq
U

(
Zx(M,N, q, τ, ε)

)
≤ e−

1
6
qεN .

Proof. Zx(M,N, q, τ, ε) =
⋃

J⊆[N ]
|J|≥εN

Zx(M,N, q, τ, J). So by the proposition above,

its measure is at most 2Ne−
1
3
qεN where 2N is the number of subsets in [N ]. For

q ≥ 6ε−1 log 2, 2e−
1
3
qε ≤ e−

1
6
qε. The corollary follows.

8. Non-escape of mass for diagonal flows. We produce the proof of Theorem
3.5, which in turn implies Theorem 1.1, in this section. For now we continue to
assume that at least one of the conditions from Corollary 4.3 holds.

In addition to (7.10), (7.16), set

J ′
x(M,N, q, τ, ū) = {n ∈ [N ] : f

(
exp(nqτD)ψNq(ū).x

)
> M}, (8.1)

and
Z ′
x(M,N, q, τ, ε) = {ū ∈ BN : |J ′

x(M,N, q, τ, ū)| ≥ εN}. (8.2)

The difference is that ψnq(ū) is replaced with ψNq(ū) in this new definition.
We deduce from Lemma 7.3.(3) that

J ′
x(M,N, q, τ, ū) ⊆ Jx(e

−
3C1
2 M,N, q, τ, ū).

Hence
Z ′
x(M,N, q, τ, ū) ⊆ Zx(e

−
3C1
2 M,N, q, τ, ū).
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With M2 = e
3C1
2 M1, Corollary 7.7 implies

Corollary 8.1. For all ε ∈ (0, 1), there exist M2 = M2(G,G0,Γ,Ω0, ε) > 0 and
q = q(ε) ∈ N, determined by G, G0, A0 and ε, such that for all N ∈ N, M ≥ M2,
x ∈ G/Γ satisfying x ≤M , and J ⊆ [N ]

mNq
U

(
Z ′
x(M,N, q, τ, ε)

)
≤ e−

1
6
qεN .

By switching from the discretized setting in Corollary 8.1 to a continuous flow,
we are now able to prove Theorem 3.5.

Proof of Theorem 3.5. By Corollary 4.3, one may assume that either Γ is an arith-
metic lattice or G has real rank 1, so that all the earlier discussions can be applied.

Similarly to (8.1) and (8.2), for u ∈ U , define

J∗
x(M,N, q, τ, u) = {n ∈ [N ] : f

(
exp(nqτD)u.x

)
> M}, (8.3)

and
Z∗
x(M,N, q, τ, ε) = {u ∈ B 1

2
: |J∗

x(M,N, q, τ, u)| ≥ εN}. (8.4)

Then ψ−1
NqZ

∗
x(M,N, q, τ, ε) ⊆ Z ′

x(M,N, q, τ, ε).

Since Z∗
x(M,N, q, τ, ε) ⊆ B 1

2
, by Lemma 7.1, Lemma 7.2, equality (7.9) and

Corollary 8.1,
mU

(
Z∗
x(M,N, q, τ, ε)

)

=(ν(Nq−1)τ ∗ · · · ∗ ντ ∗ ν0)
(
Z∗
x(M,N, q, τ, ε)

)

=mNq
U

(
ψ−1
NqZ

∗
x(M,N, q, τ, ε)

)

≤mNq
U

(
Z ′
x(M,N, q, τ, ε)

)

≤e−
1
6
qεN

(8.5)

assuming M ≥M2 and f(x) ≤M .
For M,T, ε > 0, u ∈ U , denote

J∗
x(M,T, u) = {t ∈ T : f

(
exp(tD)u.x

)
> M}, (8.6)

and
Z∗
x(M,T, ε) = {u ∈ B 1

2
: |J∗

x(M,T, u)| ≥ εT}. (8.7)

By Lemma 6.2, we have

[t− qτ, t+ qτ ] ⊆ J∗
x(e

−C1qτM,T, u), ∀t ∈ J∗
x(M,T, u). (8.8)

Given T > 0, let N = b T
qτ c. Then for all u ∈ Z∗

x(M,T, ε), the number of the

intervals among
(
(n−1)qτ, nqτ

]
who intersect J∗

x(M,T, u) is at least εN . For these

values of n, n ∈ J∗
x(e

−C1qτM,N, q, τ, u) by (8.8). This demonstrates that

Z∗
x(M,T, ε) ⊆ Z∗

x(e
−C1qτM,N, q, τ, ε). (8.9)

It now follows from (8.4) that, assuming T ≥ 2qτ − 12τ
ε logmU (B 1

2
), M ≥

eC1qτM2 and f(x) ≤M , then

mU

(
Z∗
x(M,T, ε)

)
≤ e−

1
6
qεN ≤ e−

1
6
qε( T

qτ
−1) ≤ mU (B 1

2
)e−

1
12τ

εT . (8.10)

Under the hypothesis in Theorem 3.5, take

T# = 2qτ −
12τ

ε
logmU (B 1

2
),

c =
1

12τ
,
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Ω# = f−1
([
0,max(eC1qM2, sup

x∈Ω0

f(x))
])
.

Recall that τ is determined by G, G0 and Γ; q depends only on ε; M2 is deter-
mined by G, G0, Γ, Ω0 and ε; and f is determined by G, G0, A0 and Γ. Also there
are only finitely many possible values for mU (B 1

2
) when D varies as a unit vector in

a0. Thus, c = c(G,G0,Γ), T
# = T#(G,G0,Γ, ε) and Ω# = Ω#(G,G0, A0,Γ,Ω0, ε).

Since the function f , defined by Proposition 6.1, is bounded on Ω0, the threshold
value M# := max(eC1qM2, supx∈Ω0

f(x)) is finite. Moreover, as f is also proper,

Ω# is compact.
Assume x ∈ Ω0, then f(x) ≤ M#. As M# ≥ eC1qM2, mU

(
Z∗
x(M

#, T, ε)
)
≤

e−cεT for all T ≥ T# by (8.10). Equivalently, for all x ∈ Ω0 and T ≥ T#,

mU

({
u ∈ B :

∣∣{t ∈ [0, T ] : exp(tD)u.x /∈ Ω#}
∣∣ ≥ εT

})

<mU (B 1
2
)e−cεT .

(8.11)

Now let Ω = Ω# ∪ exp(BT#

a )B.Ω0. Then (3.20) holds for all x ∈ Ω0 and T > 0,

where BT#

a is the closed ball of radius T# in a0. Indeed, this follows from (8.11)
when T ≥ T#; and is automatically true when T < T#, as in this case exp(tD)u.x ∈

exp(BT#

a )B.Ω0.
Finally, remark that B, Ω# and T# are all determined by G, G0, A0, Ω0, Γ and

ε, and thus so is Ω.

Therefore, due to Proposition 3.6, the proof of Theorem 1.1 is completed.

9. Hausdorff dimension estimate. We now prove Theorem 1.3. To do so we will
work first under the additional assumption that D belongs to a Cartan subalgebra
a0 of g0, and extend to the general case later.

Proof of Theorem 1.3 assuming D ∈ a0. First of all, by passing to a commensurable
lattice one may again assume Γ = G(Z).

The vector D can be assumed to be non-trivial, as otherwise Zε,D is empty and
its Hausdorff dimension is 0. Furthermore, one may fix a norm on g and assume
without loss of generality that D is a unit vector with respect to it. This is because
replacing D with the unit vector in its direction would not affect the definition of
Zε,D.

Let U be as in Proposition 3.1 and define the identity neighborhood B inside U
as in (3.18). We may fix a transversal manifold B∗ ⊂ G of dimension dimG−dimU
such that:

1. e ∈ B∗;
2. the multiplication (g, h) → gh is a diffeomorphism from B × B∗ to its image

in G;
3. mG(BB

∗) = 1.

As mG is bi-invariant and mU (B) = 1, there is a probability measure µ on B∗ such
that dmG(gh) = dmU (g)dµ(h). As there are only finitely many choices of U once
G, G0 and A0 are given, the same can be made true for the choices of B, B∗ and
µ. In parcticular, BB∗ is uniformly bounded given G, G0 and A0.

Fix a coordinate system in g, and let B̂r
g be the closed cube of diameter r centered

at 0 in these coordinates. Because of the uniform boundedness of BB∗, the following
claim is evident:
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There exists κ = κ(G,G0, A0) > 0, such that for all r ∈ (0, 1) and v ∈ exp−1

(BB∗),

exp(B̂κr
g + v) ⊆ Br

G. exp(v). (9.1)

As G/Γ is covered by countably many precompact sets of the form BB∗.x, it
suffices to prove that

dimH(BB∗.x0 ∩ Zε,D) ≤ dimG− cε, ∀x0 ∈ G/Γ. (9.2)

Denote

Zx0
(Ω, D, T, ε) :=

{
g ∈ BB∗ :

∣∣{t ∈ [0, T ] : exp(tD)g.x0 /∈ Ω}
∣∣ ≥ εT

}
.

Fix x0 and ε
′ ∈ (0, ε), and let Ω0 = BB∗.x0. Note that D is not necessarily a unit

vector in terms of the norm | · | induced by the Killing form of a0. However, we can

still apply Theorem 3.5 to
D

|D|
, and find a compact set Ω1 = Ω1(G,G0,Γ, A0,Ω0, ε

′)

such that for all x ∈ B∗x0 ⊆ Ω and T > 0,

mU

({
u ∈ B :

∣∣{t ∈ [0, T ] : exp(
tD

|D|a0

)u.x /∈ Ω1}
∣∣ ≥ ε′T

})
< mU (B 1

2
)e−cε′T .

This is equivalent to that

mU

({
u ∈ B :

∣∣{t ∈ [0, T ] : exp(tD)u.x /∈ Ω1}
∣∣ ≥ ε′T

})
< mU (B 1

2
)e−cε′T ,

for all x ∈ B∗x0 and T > 0. After integrating with respect to µ, we obtain

mG(Zx0
(Ω1, D, T, ε

′)) < mU (B 1
2
)e−cε′T , ∀T > 0. (9.3)

To make use of (9.3), we claim that for the set Ω = B1
G.Ω1 and some contant

C = C(G) > 0,

Be−CT

G .Zx0
(Ω, D, T, ε′)) ⊆ Zx0

(Ω1, D, T, ε
′), ∀T > 0. (9.4)

Indeed, if g ∈ Zx0
(Ω, D, T, ε′) and h ∈ Be−CT

G .g, then

exp(tD)h ∈ Adexp(tD)(B
e−CT

G ). exp(tD)h.

When C = C(G,G0, A0) is chosen by C := maxX∈a0,|X|=1 ‖ adX ‖GL(g),

Adexp(tD)(B
e−CT

G ) ⊆ B1
G, ∀t ∈ [0, T ].

So exp(tD)h ∈ B1
G. exp(tD)g, and thus

{t ∈ [0, T ] : exp(tD)h.x0 /∈ Ω} ⊆ {t ∈ [0, T ] : exp(tD)g.x0 /∈ Ω1},

which in turn implies (9.4).
We also remark that, if Tk → ∞ and |T ′

k − Tk| ≤ 1, then µTk
and µT ′

k
have the

same weak-∗ limit in Definition 1.2. So in that definition, one can assume without
loss of generality that Tk ∈ N for all k. By Definition 1.2 and the remark earlier,
for all g ∈ BB∗ such that g.x0 ∈ Zε,D, there are infinitely many Tk ∈ N such that
g ∈ Zx0

(Ω, D, Tk, ε
′). In other words,

{
g ∈ BB∗ : g.x0 ∈ Zε,D

}
⊆

⋂

n≥1

⋃

m≥n

Zx0
(Ω, D,m, ε′). (9.5)

We now bound the Hausdorff dimension of (9.5). For every r > 0, choose n
to be the smallest positive integer such that κe−Cn < r. For all m ≥ n, cover

exp−1(BB∗) ⊆ g by translates {Ym,i}i of B̂κe−Cm

g which overlap only along their
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boundaries. If Ym,i intersects exp
−1(Zx0

(Ω, D,m, ε′)), then by (9.1) and (9.4), it is
completely contained in

exp−1(Be−Cm

G .Zx0
(Ω, D,m, ε′)) ⊆ exp−1(Zx0

(Ω1, D,m, ε
′)).

By (9.3), the number of such indices i is at most OG,G0,A0
(e−cε′m · (eCm)dimG). So

exp−1(Zx0
(Ω, D,m, ε′)) can be covered by a subcollection Im of Ym,i’s, that satisfies

∑

i∈Im

|Ym,i|
s ≤ OG,G0,A0

(ecε
′m · (eCm)dimG · (e−Cm)s). (9.6)

For all s > dimG− cε′

C ,
∑

m≥n

∑

i∈Im

|Ym,i|
s ≤ OG,G0,A0

(
e(C(dimG−s)−cε′)n

)
, (9.7)

which tends to 0 as δ → 0, or equivalently, as n → ∞. Because {Ym,i}m≥n,
i∈Im

is a

covering of the set

exp−1
({
g ∈ BB∗ : g.x0 ∈ Zε,D

})

by sets of diameter at most κe−cn < r, the Hausdorff dimension of (9.5) satisfies

dimH

({
g ∈ BB∗ : g.x0 ∈ Zε,D

})
≤ dimG−

cε′

C
. (9.8)

Since ε′ ∈ (0, ε) is arbitary, we deduce that

dimH(BB∗.x0 ∩ Zε,D) ≤ dimG−
cε

C
. (9.9)

To complete the proof of Theorem 3.5 in this special case, it now suffices to
rewrite c

C as c, after which c depends only on G, G0, A0 and Γ.
Finally, like in Lemma 6.5, the dependence of c on A0 can be removed. In fact,

if D = gD̂g−1, then exp(tD).x = g−1 exp(tD̂).gx. Thus x ∈ Zε,D if and only if
gx ∈ Zε,D̂, and therefore dimH Zε,D = dimH Zε,D̂. Since one can conjugate A0 to

a prescribed Cartan subgroup Â0, and D to some D̂ ∈ â0 by some element g, the
choice of constant c can be made independent of A0.

Proof of Theorem 1.3, general case. Now letD ∈ g0 be a semisimple element, which
does not necessarily belong to a Cartan subalgebra of a0.

Similar to Lemma 4.1, after taking the quotient of G by its center (so that a
point x ∈ G/Γ is sequentially ε-escaping on average if and only if its projection is),
we may assume that G = G(R)◦ ⊆ SLd(R) where G is a semisimple linear algebraic
group.

In this case, it is known that G0, being a simple Lie subgroup, must be the
connected component G0(R)

◦ of a simple linear algebraic group G0 ⊆ SLd as well.
The semisimple element D decomposes as Ds + Da, where Ds, Da ∈ g0(R) and
commute with each other, expDs belongs to an R-split torus Ts ⊆ G0 and expDa

belongs to an R-anisotropic torus Ta ⊆ G0. Then exp(tD) = exp(tDa) exp(tDs)
for all t. Moreover, exp(tDa) lies in the compact group Ta(R) for all t. It follows
that the sets Zε,D and Zε,Ds

are equal. So we may assume without loss of generality
that D sits in an R-split torus Ts ⊆ G0. Under this assumption, Ts is contained
in a maximal R-split torus T in G0, so exp(D) belongs to T(R), which is a Cartan
subgroup of G0. This reduces to the previous case.
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