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Abstract

During development, neurons arrive at local brain areas in an extended period of time, but
how they form local neural circuits is unknown. Here we computationally model the emer-
gence of a network for precise timing in the premotor nucleus HVC in songbird. We show
that new projection neurons, added to HVC post hatch at early stages of song development,
are recruited to the end of a growing feedforward network. High spontaneous activity of the
new neurons makes them the prime targets for recruitment in a self-organized process via
synaptic plasticity. Once recruited, the new neurons fire readily at precise times, and they
become mature. Neurons that are not recruited become silent and replaced by new imma-
ture neurons. Our model incorporates realistic HVC features such as interneurons, spatial
distributions of neurons, and distributed axonal delays. The model predicts that the birth
order of the projection neurons correlates with their burst timing during the song.

Author summary

Functions of local neural circuits depend on their specific network structures, but how the
networks are wired is unknown. We show that such structures can emerge during devel-
opment through a self-organized process, during which the network is wired by neuron-
by-neuron recruitment. This growth is facilitated by steady supply of immature neurons,
which are highly excitable and plastic. We suggest that neuron maturation dynamics is an
integral part of constructing local neural circuits.

Introduction

During development, the birth order of neurons plays a critical role in constructing the brain’s
large-scale structures. In mammalian cortex, neurons that are destined to the deep cortical lay-
ers are born earlier than those to the superficial layers [1, 2]. In rodent hippocampus, early
born neurons and late born neurons form distinctive parallel circuits through the hippocampal
pathway [3]. However, whether birth order is also important in constructing microcircuits in
local brain areas is unknown [4]. The premotor nucleus HVC (proper name) of the zebra
finch provides an excellent opportunity to investigate this issue.
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HVCis a premotor nucleus that drives singing of the courtship song in the zebra finch [5,
6] (Fig 1). An adult zebra finch sings repetitions of a song motif consisting of a fixed sequence
of syllables [7]. The excitatory HVC neurons that project to the downstream premotor area
RA (robust nucleus of the arcopallium) encode the timing of acoustic features of the song [8].
Each RA-projecting HVC (HVCg,) neuron bursts once during the motif [8, 9]. As a popula-
tion, HVCgr, neurons sequentially burst throughout the entire motif, including the silent gaps
between the syllables [10, 11].

HVCgy4 neurons that simultaneously burst at a single time point drive a specific set of RA
neurons at that moment, which in turn activates downstream motor neurons and produces a
vocalization of the specific acoustic feature in the song motif (Fig 1). The projection patterns
from HVCg4 neurons to RA neurons thus encode a specific learned song. These patterns are
set in the critical period of a male juvenile zebra finch (~90 days post hatch (dph)), who prac-
tices to match his own song to the song template that he memorized after hearing the tutor’s
song [7]. This song learning process is achieved through reinforcement learning, during which
the connections from HVCg, neurons to RA neurons are established through trial-and-error
[12-15]. Song development progresses in four stages [16, 17]: subsong, which is highly variable
and structureless (~48 dph); protosyllable song, which contains syllables with definable

Time in song motif

HVC

RA

Song

Fig 1. Song production circuit. HVC controls timing of acoustic features in a song motif. Time is encoded with a
feedforward synaptic chain network, which supports propagation of spiking activity (green dots, HVCg, neurons; grey
arrows, local synaptic connections; dotted ovals, simultaneously firing groups of neurons). Each HVCg4 neuron bursts
once at a precise time. Groups of simultaneously firing projection neurons encode moments of time (two time points
t; and t, are illustrated). Through the projection patterns, the groups drive specific sets of RA neurons, which in turn
drive specific acoustic features of the song at the specific moments (spectrogram of a zebra finch song syllable is
shown). Two sets of projection patterns, magenta arrows at t; and orange arrows at f,, are shown as examples. The
HVC to RA projection patterns are learned through reinforcement learning. The synaptic chain network in HVC
serves as the backbone that provides the timing structure for the reinforcement learning.

https://doi.org/10.1371/journal.pcbi.1008824.g001
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durations but undistinguishable acoustic features (~58 dph); multi-syllable song, which con-
tains syllables with definite durations and distinctive spectral characteristics (~62 dph); and
motif song, which consists of a reliable sequence of stereotypical syllables like the adult song
(~73 dph).

There is strong evidence that the sequential bursting of HVCg4 neurons is generated within
HVC [9, 18-21]. Moreover, HVCg 4 neurons most likely form a feedforward synaptic chain
network (Fig 1) [9, 21, 22]. The feedforward network supports propagation of bursting activity
of HVCg, neurons, and each HVCgy neuron bursts once at a precise time, as observed experi-
mentally [8, 9]. Such a microcircuit in HVC acts as the infrastructure for the reinforcement
learning of a specific song. Therefore, the synaptic chain network in HVC must be wired up
before the reinforcement learning can proceed.

HVCgya neurons are born and added to HVC mostly after hatching [23-26]. In the zebra
finch, the number of HVCg 4 neurons almost doubles from 20 to 50 days post hatch [27], a
period that overlaps with the subsong and the protosyllable song stages [16, 17]. This is unlike
two other major neuron types in HVC: most GABA (y-Aminobutyric acid)-ergic interneurons
(HVCinr neurons) and neurons that project to area X (HVCx neurons) are already in HVC
before hatching [24] (but see [25]). Therefore, HVCga neurons have a wide range of birthdates
before the emergence of the multi-syllable song and the song motif.

Previous computational models [28, 29] and single unit recordings in juvenile zebra finches
[17] have suggested that the feedforward synaptic chain network in HVC forms through
growth by gradual recruitment of HVCg, neurons to the network. However, these earlier
works did not address whether the ongoing neurogenesis in juvenile zebra finches plays any
role. Indeed, although neurogenesis in HVC post hatch has been observed for decades, its role
for song learning in the zebra finch has remained a mystery [26, 30].

In this paper, we propose that the constant supply of newborn HVCg, neurons plays a
crucial role in building the synaptic chain network in HVC. We investigate this hypothesis
through a computational model that builds on the previous models of network growth in
HVC [28, 29]. Like these earlier computational models, we propose that the synaptic chain net-
work is wired through repeated activations of a set of HVCg, neurons that act as the training
neurons; spontaneous activity of the neurons; and a set of synaptic plasticity rules that shape
the connectivity between HVCg4 neurons. The synaptic chain network grows by gradual
recruitment of neurons into the network. However, our model incorporates more biologically
realistic features, including explicit incorporation of HVCiyr neurons rather than simplifying
the inhibitory actions as idealized global inhibition between HVCg4 neurons; implementation
of axonal delays between HVCg4 neurons, which has shown to be substantial and is important
for determining the connectivity structure of the synaptic chain network [21]; and spatial
structure of HVCg, connectivity, which has been recently measured in the zebra finch [20].
Most importantly, the maturation dynamics of HVCg, neurons is modeled.

Newly born neurons have a number of properties that distinguish them from mature neu-
rons. Immature neurons in rodents [31-33] and in songbird HVC [34] are more excitable; and
in rodents, they are more amenable to synaptic plasticity [35]. In adult rodent hippocampus,
these properties make adult-born dentate gyrus neurons more likely to participate in new
memory formation than mature neurons [36]. We propose that newly born neurons in HVC
similarly facilitate the growth of synaptic chain network. In our model, the synaptic chain net-
work grows through the spontaneous activity of neurons. Due to their high excitability, we
propose that newly added HVCg neurons are preferentially recruited at the growth edge of
the network. We suggest that these neurons mature fast after incorporation into the network
due to consistent activations, and they form a new edge of growth and recruit a new cohort of
immature neurons. This process iterates, creating a synaptic chain network that supports
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precisely timed sequential bursting of HVCg 4 neurons when the training neurons are acti-
vated. We predict that the timing of the bursts relative to the onset of the activity by the train-
ing neurons correlates with the birth order of HVCg4 neurons during the wiring process.

We show evidence that the maturity of HVCga neurons correlates with their timing in song
syllables by reanalyzing the data from the previous experiments on juvenile zebra finch [17].
We also show that our model creates the observed spatial distribution profile for the connec-
tions between HVCg4 neurons [20]. With a wide delay distribution between these connec-
tions, as observed by experiments [21], our model produces a robust polychronous chain
network with continuous and precise time representation, which is recently proposed to be the
structure of the synaptic chain network in HVC [21]. The previous models of chain growth
neglected synaptic delays and produced synfire chains [28, 29], in which a postsynaptic neuron
receives synchronous inputs, and the presynaptic neurons that provide these inputs fire syn-
chronously as well [37]. In a polychronous chain network, the inputs also arrive synchronously
at the postsynaptic neuron. However, the presynaptic neurons fire asynchronously due to the
distributed axonal delays [21, 38]. Our model additionally predicts that HVCgx neurons in the
growing chain network receive less forward inhibition from the HVCg4 neurons that drive
them, which was not predicted by the previous models due to the omission of HVCy neu-
rons [28, 29].

Results
Maturation dynamics of HVCg, neurons

To investigate the possible role of newly born immature HVCg, neurons in wiring the HVC
network, we created a computational model of the maturation dynamics of these neurons. We
modeled HVCg, neurons using the two-compartmental Hodgkin-Huxley neurons with soma
and dendrite (Fig 2A), following the previous models [9, 22, 39]. The somatic compartment
contains sodium, delayed-rectifying potassium, and low-threshold potassium currents for gen-
erating sodium spikes. The dendritic compartment contains calcium and calcium-activated
potassium currents that, in mature neurons, can generate dendritic spikes that drive stereotyp-
ical tight bursts of sodium spikes in the somatic compartment.

This model was modified for new immature HVCg4 neurons. The resting membrane
potential is set higher by 25 mV, since it was generally observed in rodents [32] and in HVC
[34] that the resting membrane potentials of immature neurons are higher than that of mature
neurons. The calcium conductance is set to zero to reflect “weak” dendritic compartment in

A B soma dendrite c
@ Maturation pathways
time schedule
GCaf .
50mV
Erest‘ 5mi|
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dendrite Mature

Fig 2. Computational model of HVCg4 neurons and the maturation process. A: An HVCg4 neuron is modeled as
two-compartmental Hodgkin-Huxley with soma and dendrite. B: Responses of HVCr, neurons to current injection to
the dendritical compartment at different maturation stages. C: Two pathways for neuronal maturation: scheduled
maturation under spontaneous activity, and accelerated maturation driven by activity when neuron spikes reliably.

https://doi.org/10.1371/journal.pchi.1008824.g002
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new immature neurons. Hence, a new immature neuron is incapable of generating tight bursts
(Fig 2B).

With age and activity, a new immature neuron gradually matures. During the maturation,
the resting potential is gradually decreased and the calcium conductance is gradually increased
in the dendritic compartment, eventually reaching the values for the mature neurons. Den-
dritic calcium spike and tight burst of somatic sodium spikes gradually emerges during this
process (Fig 2B). The time course of maturation is age and activity dependent in our model
(Fig 2C). Due to the elevated resting potential and noise, new immature neurons spike sponta-
neously at ~ 0.6 Hz. A spontaneously active immature neuron matures following a time sched-
ule, according to which both the resting membrane potential and the calcium conductance
exponentially approach their mature values with a time constant of 50,000 s. When a neuron is
recruited into the network and spikes reliably, the maturation progresses with a faster rate,
with the time constant set to 500 s. In our model, the spontaneous activity decreases with
age, practically disappearing in mature neurons (S1 Fig). Therefore, neurons that do not get
recruited to the network gradually become silent. The silent neurons were replaced by new
immature neurons in our model to mimic the continuous addition and death of HVCg neu-
rons in juvenile zebra finch [40].

Initial HVC network

Among the three major HVC neuron types, HVCx neurons were shown to impact minimally
on song production in a laser ablation study [41]. Furthermore, analysis of HVC connectivity
suggested that HVCg4 neurons excite HVCx neurons, but HVCx neurons rarely connect back
to HVCgy neurons [42]. These results suggest that HVCx neurons are not necessary for song
production. Therefore, we did not include HVCx neurons in our model.

HVC of the zebra finch is roughly an ellipsoidal structure with axial dimensions 2000 ym,
500 ym and 500 ym [20]. There are approximately 20,000 song-related HVCg 4 neurons and
5,500 HVCinr neurons [12, 43]. Due to the limitation of computational power, we could not
include this many neurons in our model. Instead, we restricted ourselves to 2000 HVCg 4 and
550 HVCyyr neurons. The connections between HVCg neurons and HVC iyt neurons were
set using a simple distance based probabilistic rule suggested by the experiments [20]. Since
the number of neurons is small in our simulations, distributing them in the HVC-sized
ellipsoidal space creates inhomogeneity in the connectivity between HVCgr 4 neurons and
HVCiyr neurons, such that the HVCgr, neurons near the center are connected with more
HVCyr neurons than those off the center and even more so than those near the edge. It is
possible to resolve this issue by modifying the connectivity rule such that the locations of
HVCra neurons is also a factor. However, we chose to simplify the problem and placed neu-
rons on a 2D sphere of radius 260 ym. This eliminated the boundary effects on the connectiv-
ity between HVCg, neurons and HVCyyr neurons. HVCiyr neurons were placed in a lattice-
like grid on the sphere, and HVCg, neurons randomly (Fig 3A). The distance between neigh-
boring HVC;nt neuron roughly matches the value estimated from the volume and the number
of HVC;yt neurons in the zebra finch HVC. We created connections between HVCg, and
HVCiyt neurons probabilistically according to the Gaussian distributions based on the dis-
tance between the neurons (Fig 3B). These distributions are similar to those observed in
experiments [20]. On average, an HVCg4 neuron connects to 65 HVCiyr neurons with mean
distance 155 ym, and an HVCyyr neuron connects to 115 HVCg4 neurons with mean distance
110 pm. Initially, all HVCr neurons were new immature neurons and there were no connec-
tions between them.
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Fig 3. Schematic of a network arrangement and connectivity. A: HVCr,(dark green circles) and HVCyr(red
circles) neurons are distributed over the surface of a sphere. HVCpyr neurons form a lattice-like pattern, while HVCgy
neurons are distributed randomly. Examples of connections from one HVCg4 neuron to HVCyyr neurons and from
one HVCyyr to HVCg, neurons are shown. B: Distribution of axonal conduction lengths for connections between
HVCgu and HVC;yr neurons.

https://doi.org/10.1371/journal.pchi.1008824.9g003

We also created axonal time delays between all neurons by setting the conduction velocity
to 100 ym/ms (the value observed in HVC [21]) and using the distances between the neurons
on the sphere. The range of the computed axonal delays between HVCg, neurons in the
model approximately matched the measured values in zebra finch HVC (1 to 7.5 ms) [21].

Growth of synaptic chain network

To grow a network of connected HVCg4 neurons, we used a combination of a Hebbian-like
burst-timing dependent plasticity (BTDP) (Fig 4A) and two additional plasticity rules for
HVCgy neurons—axon remodeling and potentiation decay, which are similar to those used in
the previous models for growth of synaptic chain networks [28, 29].

The BTDP is modified from the spike-timing dependent plasticity (STDP) rule widely
observed in variety of brain areas in many species [44]. Specifically, the time difference At
between the first spikes of the post- and the pre-synaptic neurons is used. When At > 2 ms,
the synapse is potentiated (long-term potentiation, or LTP); when At < 2 ms, the synapse is
depressed (long-term depression, or LTD). Here we introduced a small positive shift to the
LTD window. This ensures that no connections emerge between neurons that fire synchro-
nously. The magnitude of LTP induction is maximum at At = 5 ms, and LTD is maximal at
At = -1 ms (Fig 4A). The magnitudes of both LTP and LTD induction decay exponentially as
the absolute value of At increases (decay constant 30 ms).

We distinguished three types of connections between HVCg 4 neurons, depending on their
strengths. Silent synapses are weak, nonfunctional connections, with synaptic conductance
smaller than a threshold value W,. They correspond to the synapses containing only NMDA
receptors and do not elicit response in the postsynaptic neuron [45]. When synaptic strengths
exceed W, the synapses become active and produce depolarizations in the postsynaptic neu-
rons. Strong connections with weights above W are considered as supersynaptic (or strong)
connections. The supersynapses correspond to the synapses that have large and stable spine
heads and are maintained through active protein synthesis after repeated LTP inductions [46].

We randomly selected a set of 10 HVCg, neurons as the training neurons, which formed a
seed for the network growth. The training neurons were made fully mature with adult values
for the resting potential and calcium dendritic conductance. HVCg, neurons that were not in
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Fig 4. Mechanism of network growth. A: The burst-timing dependent plasticity (BTDP) rule is based on the timing between burst onsets of HVCg
neurons. B-E: Schematic of the recruitment mechanism. B: Network growth begins with the training neurons (dark green circles) activated in each
simulation trial and other HVCgr, neurons being immature (yellow circles). Silent connections (dashed lines) emerge from the training neurons to the
spontaneously active immature HVCg(red circles) according to the BTDP rule. C: Some silent connections randomly become active (black lines),
undergo further strengthening, and become strong supersynaptic connections (thick green lines). D: When the training neurons acquire certain
number of strong supersynaptic connections, other weak connections are pruned (red crosses). E: The recruited neurons (dark green circles) spike
reliably after the training neurons and begin to recruit immature neurons to the network. F: Network growth is a gradual process in which immature
HVCga neurons are added to the end of the growth edge. Spike raster plots (top row) and first interspike intervals (bottom row) at different training
trials are shown. Also shown are the network topology, in which green dots are neurons in the synaptic chain network and gray lines are the
connections between the neurons. The green dots on top are the training neurons, and those at the bottom are the newly recruited neurons. The burst
times of the neurons approximately align with their positions in the network from the top to the bottom. The first interspike intervals of the neurons
bursting at the end of the spike sequence are larger than those bursting earlier (bottom role), showing that immature neurons are attached to the growth
edge.

https://doi.org/10.1371/journal.pcbi.1008824.9004

the training set, called pool neurons, started as new immature neurons with high resting
potential and devoid of dendritic calcium channels.

One simulation trial lasted for 500 ms in network dynamics. At each trial, the training neu-
rons were stimulated with a synchronous kick of strong excitatory conductance. To ensure
that the growth dynamics was not influenced by the initial state of the network, the stimulation
was delivered at a random time between 100 to 400 ms in each trial. Immature pool neurons
were spontaneously active during the trials due to the elevated resting potentials and noisy
fluctuations in the membrane potentials. When some pool neurons spiked after the training
neurons, silent connections from the training neurons to the pool neurons emerged according
to the BTDP rule (Fig 4B). During the repeated trials, silent synapses stochastically changed
their strength via LTP and LTD, and could randomly become active (Fig 4C). Emergence of
too many active connections leads to uncontrolled network growth and runaway network
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activity [28, 29]. To avoid this, we introduced potentiation decay for all synapses, following
what was done in the previous models [28, 29]. Specifically, synaptic weights of all synapses
were decreased by a constant value 6 at the end of each trial.

Depolarizations of the pool neurons provided by the active synapses from the training set
biased these neurons to be more active during the subsequent trials. Thus, a positive feedback
emerged, since the activity of these pool neurons facilitated strengthening of the synapses via
LTP, eventually forming supersynaptic connections from the training neurons. To enforce
sparse output connections, we only allowed each HVCg, neuron to make a limited number of
supersynaptic connections to other HVCg4 neurons, which was set to 10 in the model. When
a neuron acquired the maximal number of supersynaptic outputs, the neuron underwent axon
remodeling, in which other weak outgoing connections were pruned and did not affect their
postsynaptic targets anymore [28, 29] (Fig 4D and 4E). Limitations on the number of the
strong outputs created a competition between the pool neurons for the convergent inputs
from the training set. When the training neurons formed the allowed number of supersynaptic
connections, their postsynaptic targets were spiking reliably in each trial. After this point, the
training neurons did not recruit any more targets because of the limitation of the supersy-
napses they could form. This restriction is also necessary for avoiding the “hoarding problem”,
in which the training neurons make strong connections to all neurons in the network through
repeated LTP [28]. The recruited neurons then acted as new seeds for the network growth, and
recruited their own targets just like the training neurons did. This iterated as the trials went
on, and the synaptic network grew through the neuron-by-neuron recruitment process.

In the model, network grew gradually as neurons were added to the network (Fig 4F). The
total time of burst propagation in the network gradually increased with the number of training
trials. The network topology was visualized with the Kamada-Kawai algorithm [47], which lays
out the neurons in the network in a two-dimensional space such that the Euclidian distance
between any pair of the neurons roughly matches the minimum number of the strong connec-
tions needed to connect the pair in the network, with the priority of matching given to the
directly connected pairs. The resulting plot revealed a chain network structure with the train-
ing neurons at one end and the growth edge at the other. The length of the chain grew with the
number of training trials. Added neurons were initially immature and had less tight burst
compared to the neurons already in the network. With time and reliable activations, the added
neurons matured and developed tight bursts. Thus, we always had immature neurons at the
growth edge of the network. This can be seen in Fig 4F (bottom row), which shows that neu-
rons bursting at the end of the activity propagation in the chain have larger first interspike
intervals than those that burst early.

During the growth, some immature pool neurons were not recruited due to the competitive
process of the recruitment. However, these neurons still matured with time, although the mat-
uration rate was much less compared to that of the recruited neurons, which bursted reliably
at each trial. As they matured, the non-recruited neurons became less spontaneously active,
which further reduced the chances that they could be recruited. Eventually they became
completely mature and lacked spontaneous activity, leaving them silent and outside of the syn-
aptic chain network. In our simulations, we introduced neuronal turnover to eliminate these
silent pool neurons. If a maturing pool neuron spiked in less than 80 trials in the past 4000 tri-
als, it was replaced by a new immature neuron (S2 Fig). This turnover process mimics the
turnover of newborn HVCg4 neurons observed in juvenile zebra finches [40]. Since the silent
neurons were replaced in our simulations, the network consisted of immature pool neurons
with varying degrees of “maturity” that depended on their “birth times”, defined as the trial
numbers at which the neurons were introduced as new immature neurons. The neurons in the
growing network were all mature neurons, except those newly recruited and attached to the
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https://doi.org/10.1371/journal.pcbi.1008824.9005

growth edge. In our simulations, the fraction of the pool neurons of the total number of neu-
rons decreased as more neurons were incorporated into the network. The fraction started
from 1 and gradually approached around 0.6.

A consequence of neuronal turnover in our model is that the birth time of a recruited
HVCgy4 neuron positively correlates with the time at which it bursts in the network (Fig 5).
This is because a new immature neuron has a higher spontaneous activity rate than the “resi-
dent” pool neurons that have been maturing since they are introduced to the pool. At each
trial, more active pool neurons have higher chance of spiking right after the recruiting neu-
rons, hence are more likely to get recruited. In our simulations, this positive correlation was
apparent after the replacements started at trial 4000.

In our model, the growth of the network slowed down as the chain grew in length. There
are two contributing factors for this phenomenon. One is that the fraction of the pool neurons
decreased as the chain grew, hence less number of pool neurons were available to fire right
after the recruiting neurons bursted at each trial. The other is that in our simulations each trial
was limited to 500 ms, and the activation of the network was anywhere from 100 ms to 400 ms
after the trial onset. As the network grew longer and the propagation of the bursts took more
than 100 ms, some trials with late activations ended before the bursts could propagate all the
way to the growth edge, and these trials had no recruiting events.

Axonal conduction velocity and network topology

In our model, the axonal conduction velocity controlled the axonal time delays between neu-
rons. With the conduction velocity set to 100 yum/ms, which created the realistic axonal time
delays between HVCga neurons [21], the emerged network showed continuous dynamics and
nearly uniform temporal distribution of burst onset times (Fig 6A). Established connections
between HVCg4 neurons (Fig 6B) were biased towards short delay connections, but were on
average longer than the connections to HVCiyr neurons that were set with the distance based
probabilistic rule. The network was temporally precise with a sub-millisecond jitter in burst
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neurons for different conduction velocities. The inputs arrive at the postsynaptic neurons synchronously in all networks wired with different conduction velocities.

https://doi.org/10.1371/journal.pcbi.1008824.9006

onset times (Fig 6C). Plot of the network topology with the Kamada-Kawai algorithm [47] did
not reveal any grouping structure (Fig 6D). These are the characteristics of the polychronous
chain network proposed as the connectivity of HVCg4 neurons within HVC in a recent study
[21].

When we repeated the growth with a 10 times faster conduction velocity (1000 ym/ms), the
emerged network showed a strongly synchronous activity pattern (Fig 6E). The distribution of
axonal delays between HVCg4 neurons in the formed network was similar to the delay distri-
bution of randomly connected HVCg, neurons (Fig 6F). The network was also temporally
precise with the jitter level similar to the polychronous chain network (Fig 6G). The network
topology was highly structured, showing groups of neurons with similar input and output con-
nections. In other words, the grown network had a synfire chain topology with prominent
oscillatory activity coming from the identical chain layers of neurons.

We systematically varied conduction velocity from 0.5 to 10 times of the original value, and
observed a sharp transition in the burst density oscillations at 1.5 (Fig 6I). Networks with the
velocity smaller than this value had a flat burst density, while networks with velocity exceeding
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Fig 7. Decrease in the burst onset latency of the recruited neurons leads to pruning of long delay connections. A:
Burst onset latency between the parent and the recruited neurons decreases during recruitment. Early in the
recruitment, the recruited neurons are immature can still spontaneously fire, hence the burst onset latencies are
scattered in a large range. This scatter disappears in later trials as the neurons become mature. The boxed area is scaled
to show more clearly the burst events of the recruited neurons driven by the parents in all trials. Steady decrease of the
burst onset latencies with the training trials is evident. B-C: Mechanism for pruning long delay connections. B: A
neuron being recruited initially spikes at a large latency, which allows long delay connections to emerge. C: After the
recruitment, the neuron spikes at a shorter latency, which makes the long delay connections to arrive late and be
pruned via LTD.

https://doi.org/10.1371/journal.pchi.1008824.9007

this value showed prominent oscillations. We quantified the network structure using the simi-
larity of input connections for the neurons bursting simultaneously in a time window of vari-
able size (Fig 6]). The networks with prominent oscillations in burst density (vel. 2 and 10
times) showed a stair-like decay in the similarity of inputs, which is expected for the synfire
chain topology with defined groups and all-to-all connections from the neurons in one group
to the next; whereas the networks with weak activity oscillations (vel. 0.5, 1 and 1.33 times)
had a smooth decreasing curve, which is expected for the polychronous chain networks with
no definable groups. All grown networks, regardless synfire chains or polychronous chains,
possessed a property of nearly synchronous excitatory inputs to the postsynaptic neurons

(Fig 6K).

To understand how the conduction velocity influences the network topology, we examined
the case of slow conduction velocity, for which the potential connections between neurons
have a wide range of axonal delays. We monitored the burst onset latency of the recruited
neurons relative to their presynaptic neurons (the parents) (Fig 7A). In the beginning of the
recruitment, connections to the recruited neurons were still weak and these neurons had a
large range of burst onset latency. This permitted connections with a large range of delays to
target the recruited neurons via LTP (Fig 7B). Subsequently, however, the burst onset latency
was gradually decreasing due to strengthening of the connections from the parent neurons
(Fig 7A, inset). This resulted in pruning of some of the inputs with long axonal delays via LTD
(Fig 7C). Therefore, the grown network had a prominent bias towards forming short delay
connections while keeping a few long delay connections, characteristic of the delay distribu-
tion for the polychronous chain topology. In contrast, when the conduction velocity is high,
all possible connections have short delays, and there is no bias towards short distance connec-
tions. In this case, the synfire chain topology emerged.
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The role of inhibition in network growth

Inhibition should play an important role in the network growth since it impacts the spontane-
ous activity of immature neurons. Due to the randomness of the connections between HVCgy
neurons and HVCyr neurons, feedback inhibition to individual HVCg4 neurons is inhomo-
geneous in time. To see if this affects which neurons get recruited into the network, we tracked
the inhibitory conductance of all HVCg4 neurons in the network. We considered a simulation
with the default conduction velocity (100 ym/ms), and switched off the replacement of the
silent non-recruited neurons to allow a direct comparison between the recruited and the non-
recruited neurons. The grown network after 30,000 trials contained 306 recruited and 1,684
non-recruited HVCg, neurons.

We observed that in this network, the averaged inhibitory synaptic weight to single non-
recruited neurons (1515 + 4 pS, mean + s.e.m.) were larger than the average to single recruited
neurons (1430 + 9 pS, p < 10”7, Wilcoxon rank-sum test). Additionally, the number of inhibi-
tory connections to single non-recruited neurons (32.2 £ 0.1) was also larger than the number
to single recruited neurons (29.7 £ 0.2, p < 1022, Wilcoxon rank-sum test). It resulted in an
increased total inhibition (computed as a sum of all inhibitory conductance to a neuron) to the
non-recruited neurons (48.7 £ 0.2 nS) compared to the total inhibition to the recruited neu-
rons (42.4 + 0.4 nS, P < 107*°, Wilcoxon rank-sum test; Fig 8A and 8B).

Timing of the inhibitory inputs is also an important factor in determining which neurons
get recruited. This is illustrated with a simple example (Fig 8C). Consider a neuron at the
growth edge of the network forming connections to two pool neurons. After a burst of the net-
work neuron arrives at the pool neurons, the connections are strengthened if the pool neurons
fire in the LTP window of the BTDP synaptic rule (between 2 ms and 32 ms after the presynap-
tic burst arrival). In this example pool neuron 1 receives less inhibition than pool neuron 2 in
the LTP window, hence pool neuron 1 is more likely to fire than pool neuron 2; therefore, pool
neuron 1 is more likely to get recruited.

To quantify the effect of inhibition in the LTP window in our simulations, we compared
the temporal profiles of inhibitory conductance of the recruited and the non-recruited
HVCga neurons during the network growth. We aligned the profile of a recruited neuron to
the burst arrival time of the presynaptic parent neurons, and compared the profile in the LTP
window to the averaged inhibitory conductance profile of the non-recruited neurons extracted
in the same time interval (Fig 8D and 8E). We took the difference of the inhibitory conduc-
tance at each time point and summed over the time window to arrive at the total area of the
difference A. We found that over multiple trials, A for a single recruited neuron tended to be
negative, indicating that the neuron received less inhibition in the LTP time window than the
non-recruited neurons (Fig 8E). For the population, the median of the distribution for the
averaged A for the recruited neurons was significantly negative (p < 10>, Wilcoxon signed-
rank test; Fig 8E). This observation shows that neurons that receive less inhibition from the
parent neurons are preferentially recruited into the growth edge of the network. For fully
grown network, because the excitatory connections are much stronger than during the
recruitments, the inhibition is not able to suppress the activations of the postsynaptic neurons.
Nevertheless, we see that A is still significantly negative (p < 107>°, Wilcoxon signed-rank test;
$3 Fig).

We next aligned the inhibitory conductance profiles of the recruited neurons to their own
bursts during the network growth. We compared the inhibitory conductances of a recruited
neuron in two time windows: from 10 ms before the burst to the burst, and from the burst to
10 ms after the burst (Fig 8F and 8G). The sum of inhibitory conductance in the before-win-
dow is denoted as Apefore and that in the after-window as A, ge,. The difference Apefore — Aafter
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Fig 8. The role of inhibition in the network growth. A-B: Comparison of inhibitory weights onto the recruited and the non-recruited neurons. A: A recruited
neuron (green circles) receives strong excitation (green arrow) and weak inhibition (red arrow). A non-recruited neuron (blue circles) receives larger inhibitory
inputs. B: Distribution of the total inhibition, computed as the sum of all inhibitory input conductance to the neuron, shows stronger inhibition onto the non-
recruited HVCg 4 neurons (blue) compared to the recruited neurons (green), p < 107, Wilcoxon rank-sum test. C-E: Comparison of the temporal profile of
inhibitory conductance aligned to the presynaptic neuron bursts during the network growth. C: Illustration of how inhibition determines which HVCgy
neurons get recruited into the network. Left: the presynaptic HVCg, neuron (green circle) may form connections to two pool HVCg4 neurons (yellow circles)
during the network growth. Middle: When aligned to the presynaptic burst arrival time, pool neuron 1 receives weak inhibition (red arrows) in the LTP
window, defined as the time interval in which bursting of the pool neuron leads to a significant strengthening of the connection from the presynaptic neuron.
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Eventually pool neuron 1 gets recruited into the network, while pool neuron 2 remains not recruited. D: Left: For each recruited neuron during the network
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growth, the temporal profile of inhibitory conductance is aligned to the burst arrival times of all presynaptic parent neurons (green). Note that these arrival
times are synchronous but have small jitters across different presynaptic neurons. At each trial, the inhibitory conductance in the LTP window is averaged
across all parent neurons during the network growth. For comparison, we use an averaged inhibitory conductance of all non-recruited HVCg 4 neurons
extracted in the same time intervals. Right: The inhibitory conductance in the LTP window averaged for all presynaptic burst alignments is compared between
the recruited (green) and the non-recruited (blue) neurons using the area A under the conductance curve. E: Top: A for a single recruited neuron during the
network growth until the neuron is recruited. Bottom: A for all recruited neurons. For each recruited neuron, we use the median A across all trials until the
neuron recruitment. Distribution has a negative shift, meaning that the recruited neurons receive smaller inhibitory conductance in the LTP window during the
recruitment, p < 107**, Wilcoxon signed-rank test. F-H: Comparison of the temporal profile of inhibitory conductance aligned to the postsynaptic neurons
during the network growth. F: Burst times of a neuron being recruited at different trials. G: The inhibitory conductance profile is aligned to the burst onset
times of the recruited neurons. Difference in inhibitory conductance in time windows 10 ms after and 10 ms before the burst is calculated using the area under
the conductance curve, Apefore and Ayger- (h) TOp: Apeore — Aafier fOr a single recruited neuron during the network growth until the neuron is recruited. Bottom:
Apefore — Aafier for all recruited neurons. For each recruited neuron, we used the median of the difference across all trials until the neuron recruitment. The
distribution has a positive shift, meaning that the recruited neurons receive stronger inhibition after the burst, p < 10°!, Wilcoxon signed-rank test. J: Top: The
difference in inhibitory conductance 10 ms before the burst and the mean inhibitory conductance in the trial for a single recruited neuron during the network
growth until the neuron is recruited. Bottom: The distribution of the difference for all recruited neurons. For each recruited neuron, we used the median of the
differences in all trials until the neuron recruitment. The distribution has a negative shift, meaning that the recruited neurons receive smaller inhibition before
the burst compared to the average inhibition during the entire trial, p < 107", Wilcoxon signed-rank test.

https://doi.org/10.1371/journal.pchi.1008824.g008

for a single recruited neuron over multiple trials tended to be positive (Fig 8H), indicating that
the recruited neuron received more inhibition after its own burst than before. As a population,
the distribution of the median differences for all recruited neurons had a mean that was signifi-
cantly positive (p < 10~>", Wilcoxon signed-rank test; Fig 8H). We attribute this observation
to the self-inhibition of the neurons due to the prevalence of local connections between
HVCg, neurons and HVCyyr neurons. By bursting, HVCy 4 neuron activated a subset of
nearby interneurons, which in turn provided a feedback inhibition. In the fully grown net-
work, this effect is much smaller but still significant (p < 10>, Wilcoxon signed-rank test; S3
Fig). The effect is small due to the high network driven activity of HVCyyt neuron population.

During the network growth, the inhibitory conductance on the recruited neurons 10 ms
before the burst was smaller than the mean inhibitory conductance computed over the trials
(p< 10™°!, Wilcoxon signed-rank test; Fig 8]). This further supports that HVCr 4 neurons
requires less inhibition on average to be recruited. Since the initial excitatory inputs to HVCgya
neurons are weak, the recruitment favors HVCg neurons that receive less inhibition to ensure
that they can be activated by the parent neurons at the growth edge. In the fully grown net-
work, the inhibitory conductance 10 ms before bursts was significantly larger than the aver-
aged inhibitory conductance during the trials (p < 10~°°, Wilcoxon signed-rank test; S3 Fig).
This is simply because the network activity was after a period of spontaneous activity in each
trial, and the firing rates of the inhibitory neurons were much higher during the network activ-
ity than during spontaneous activity. Note that the network activity started anywhere between
100 to 400 ms in each trial in our simulations.

Experimental evidence linking maturity of HVCg, neurons and sequence
growth

Experimentally, Okubo et al showed that the length of sequential activity of HVCg4 neurons
grows during vocal development in zebra finches [17]. To see whether immature neurons are
involved in the sequence growth, we reanalyzed the publicly available Okubo dataset, which
contains extracellular recordings of neurons in HVC of juvenile zebra finches [17, 48]. The
dataset is organized into four stages of song development [17]: subsong, protosyllable song,
multi-syllable song, and motif song.

HVCgy neurons in adult zebra finches produce highly stereotyped bursts of 4—5 spikes
lasting approximately 6 ms [8]. Experiments and computational models suggest that such a
burst is driven by dendritic calcium spike [9, 22]. Since immature neurons typically do not
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Fig 9. Burst tightness of HVCg4 neurons as quantified with the first interspike interval at different stages of song
development. A: Example of spike patterns of two HVCg4 neurons in the protosyllable stage aligned to a syllable
onset. B: Cumulative distributions of the first interspike intervals of HVCgs neurons. The first interspike intervals
become progressively smaller on average as the song develops (multi-syllable versus protosyllable, p = 0.023, one-sided
Wilcoxon rank sum test; motif versus multi-syllable, p < 0.0001, one-sided Wilcoxon rank sum test). C: The first
interspike intervals of HVCg4 neurons as a function of the burst times at the protosyllable, the multi-syllable and the
motif stages. The red line is the linear least square fit. The slope is significantly positive for the protosyllable stage

(p = 0.012, two-tailed t-test). The trend is weaker but significant for the multi-syllable stage (p = 0.017, two-tailed t-
test), and is not significant for the motif stage (p = 0.14, two-tailed t-test).

https://doi.org/10.1371/journal.pcbi.1008824.9009

have fully developed dendritic trees [31, 49], immature HVCg4 neurons may not be able to
generate brief, high frequency bursts. Indeed, spike patterns of projection neurons during
song development varied significantly in the number of spikes produced per burst and in the
burst duration [17]. We therefore assumed that burst tightness is an indicator for HVCg4 neu-
ron maturity. Specifically, we defined burst tightness as the first interspike interval in the burst
(Fig 9A). The first spike interspike interval is simple to measure and is not affected by the vari-
ations in the durations and the numbers of spikes in the bursts. We observed that bursts in the
HVCra neuron population in the data gradually tightened as the song progressed through the
protosyllable, multi-syllable and motif stages (Fig 9B, multi-syllable versus protosyllable,

p =0.023, one-sided Wilcoxon rank sum test; motif versus multi-syllable, p < 0.0001, one-
sided Wilcoxon rank sum test), supporting that burst tightness is positively linked to song
development and presumably to HVCg4 neuron maturation.

We next looked at the burst tightness of the HVCg4 neurons that were locked to syllables,
i.e. those tended to burst at fixed latencies relative to the syllable onsets (Fig 9C). In the proto-
syllable stage, the first spike interval significantly increased with the burst latency (p = 0.012,
two-tailed t-test), suggesting that bursts are tighter for neurons bursting at the start of the sylla-
bles than those at the end. Thus, the maturity of HVCga neurons are heterogeneous in this
stage, and immature neurons tend to burst towards the end of the syllables. This trend was less
pronounced but still significant in the multi-syllable stage (p = 0.017, two-tailed t-test). It dis-
appeared in the motif stage (p = 0.14, two-tailed t-test).

Our analysis provides evidence that the maturity of HVCg4 neurons is correlated with their
burst timings during the early stages of song development, and that immature neurons are
preferentially added to the end of the growing sequence in HVC.
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Discussion

In an adult zebra finch, HVCg, neurons burst sequentially with a millisecond precision during
singing [8]. Electrophysiological [10] and calcium imaging [11] studies showed that the
sequence is continuous, supporting the idea that such sequential bursts are generated within
HVC through a feedforward synaptic chain network [9, 18, 22]. Previous models suggested
that such a network can be wired by recruiting neurons group by group through synaptic plas-
ticity and spontaneous activity, resulting in growth of sequence during the wiring process [28,
29]. This prediction is in agreement with an experiment that recorded projection neurons in
HVC of juvenile zebra finches [17]. Our reanalysis of this experimental data [48] suggested
that HVCga neurons at the growth edge have the characteristics of immature neurons. We
therefore further extended the model to include the maturation dynamics of HVCg, neurons.
Moreover, we included more biologically realistic features that lacked in previous models,
including explicit modeling of HVCyyt neurons, spatial distributions of HVC neurons, and
realistic axonal delays in HVC [21]. We showed that immature neurons, which are more
excitable hence have higher spontaneous activity rates compared to mature neurons, are
preferentially recruited at the growth edge. The inclusion of the axonal delays leads to a long
polychronous chain network, a structure favored by a recent analysis of HVC network and
dynamics [21]. In contrast, neglecting axonal delays leads to synfire chains [37, 50], previously
thought to be the topology of the HVC network [22, 28, 29]. Explicit modeling of HVCyyr also
predicts that the wiring process favors a path of less inhibition, such that neurons that are
recruited receive less forward inhibition from the recruiting neurons, highlighting the
importance of inhibition in HVC [19]. Our model also reproduces the observation that

HVCgy neurons connect to more distal HVCg, neurons, unlike their tendency to connect to
nearby HVCiyr neurons [20].

Inclusion of immature neurons has an important effect on the growth process of synaptic
chain networks. In the model, spontaneous activity plays a critical role. The distinction
between immature and mature neurons allows different levels of spontaneous activity in these
two populations. Immature neurons are more spontaneously active due to higher intrinsic
excitability, and they are the targets of recruitments by the neurons at the growth edge. In con-
trast, mature neurons in the network are not spontaneously active, hence are not targets of
recruitments. This allows continued growth of the network, as long as there is a supply of
immature neurons in the pool. This was not the case in the previous models, in which there
was a single neuron population [22, 28, 29]. There, all neurons had similar level of spontaneous
activity and consequently, the chain growth usually stopped by the formation of loops after
neurons already in the chain were recruited. We have confirmed that loops emerge in our
model as well when using a single population of mature and spontaneously active HVCgy neu-
rons (54 Fig).

During development, immature neurons in many neural circuits across multiple species go
through a period of depolarizing inhibition before switching to hyperpolarizing inhibition,
which is caused by an elevated GABA reversal potential on immature neurons [51]. Our
computational experiments with developmental switch in GABA resulted in the emergence of
numerous connections between nearby HVCg, neurons [52]. This was because the dense
local connectivity between HVCgy and HVCyyr neurons promotes recruitment of nearby
immature neurons through depolarizing local inhibition. Experimentally, local connections
between HVCg 4 neurons are sparse [20]. We therefore assumed that the emergence of con-
nectivity between HVCga neurons happens at the time when GABA exerts a hyperpolarizing
response on immature neurons. This assumption needs to be tested in future studies with
intracellular recordings of HVCg4 neurons during development.
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In our model, maturation of newborn HVCg4 neurons is age and activity driven. The pas-
sage of time alone is enough for the neuron to mature, but more reliable activations after the
recruitment into the network accelerates the maturation. This acceleration prevents the
recruited neurons in the growing network from spontaneous activations, and hence protect
the network from forming loops. This maturation dynamics is inspired by the observation that
adult-born neurons in rodent hippocampus mature faster with enhanced activity and mature
more slowly with reduced activity [53]. The exact value of the activity-driven maturation time
scale is not important, as long as it is much smaller than the maturation time scale with the age
and spontaneous activity alone. Neurons that become mature but not recruited into the net-
work become silent, and they are replaced by new immature neurons. This turnover ensures
that there is a fresh supply of immature neurons for the chain growth. The rate of replacement
also controls the number of available targets for the growth, which is important for forming
convergent inputs to the targets during the recruitment process. If the number of targets is too
large, the recruiting neurons can connect to divergent targets, and the resulting network is not
capable of producing precise timing.

A consequence of the chain growth and the turnover is that the burst times of neurons in
the chain network is positively correlated with the order of their introductions. In other words,
birth order determines burst timing. Since neurons are added to the growth edge, newly added
HVCgy neurons, if recruited, should burst at the time point of the growth edge. Hence the
growth of the chain network necessarily requires late burst times for late born neurons. Addi-
tionally, newly born immature neurons are more spontaneously active compared to the resi-
dent maturing neurons, and they are better positioned to be recruited to the growth edge at
the time of their arrivals in HVC. This prediction of our model can be tested by labeling
cohorts of newborn neurons using viral strategy in juvenile [25] and recording their burst tim-
ings in adulthood using calcium imaging [11].

Our simulations started with all neurons immature except the training neurons. We judged
the silent neurons that should be replaced by new immature neurons based on their spontane-
ous activity in the past 4000 trials. Consequently, the neuronal turnover happened only after
the network had grown for some time (Fig 5). Once the turnover started, the positive correla-
tion between the birth time and the burst time became apparent. In real HVC, it is more likely
that when the wiring process starts, there are already a mixture of newly born neurons, matur-
ing neurons, and fully matured neurons. We therefore expect that the correlation should apply
to all neurons in the grown network in real HVC.

Addition and turnover of HVCg4 neurons post hatch has been observed for over 30 years
[23, 54], but the significance of this process for birdsong development remains unclear [26,
30]. In juvenile zebra finch, deprivation of auditory inputs by deafening before song learning
[55] and the inability to learn tutor song due to peripheral nerve injury [56] did not impact the
addition of newly born HVCg, neurons. These observations are consistent with our view that
the addition of newly born HVCg4 neurons mainly contributes to the self-organized wiring
process of the synaptic chain network in HVC, which should not depend on auditory inputs
or learning specific tutor songs.

Synfire chain is a popular feedforward model for generating precise and stable sequential
activity of neurons [37, 50, 57]. Several computational models have explored the formation of
synfire chains. Successful models that can grew long sequences used a combination of the
STDP rule and additional synaptic plasticity mechanisms to constrain the connectivity. With
the STDP rule and heterosynaptic plasticity rules that limited the total incoming and outgoing
synaptic weights for each neuron, Fiete et al [58] showed formation of synfire chain loops with
length distributed according to a power law. Short loops were more numerous than long
loops. However, to form groups of neurons that fire at the same time as observed in HVC, the
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model needed to introduce additional correlated inputs that defined coherent groups before
the chain formation. Jun and Jin [28] showed that synfire chain forms with the STDP rule and
additional synaptic plasticity rules that constrained the number of strong output connections.
The model was able to show the gradual growth of synfire chains through group-by-group
recruitment of HVCg, neurons. The process ended with the formation of a loop, with the
length following a Gaussian distribution [29].

Our study builds upon the gradual recruitment model [28, 29] and uses similar synaptic
plasticity rules. However, our model introduces several realistic features that none of the previ-
ous models had, including explicit modeling of HVCyyr neurons; spatial distributions of neu-
rons and realistic axonal time delays recently measured in HVC [21]; and, most importantly,
newly born HVCg, neurons and their maturation dynamics. These lead to novel insights, as
discussed earlier. Additionally, no loops form in our model, unlike all previous models. Under
realistic axonal time delays, we show that a polychronous chain network rather than a synfire
chain network emerges after the training. The network possesses a sub-millisecond precision,
and importantly, the bursts of the neurons cover the time almost uniformly with no preferred
time points. Using connections with fast conduction velocity, we can recover the synfire chain
topology. The grown synfire chain network has similar sub-millisecond level of precision, but
its burst density shows prominent oscillations with some time points with more bursts than
others. By changing the axonal conduction velocity between HVCg 4 neurons, we can grow
either synfire chain or polychronous chain networks. In the polychronous chains, neurons are
driven by almost synchronous inputs despite of the distributed presynaptic spike times due to
the delays. This is similar to a previous study in which approximately 70 ms long polychronous
sequences with an average size around 20 neurons emerged and disappeared in a recurrent
network with the STDP rule for synaptic plasticity [38]. However, in our case the incorpo-
ration of additional synaptic plasticity rules produce stable sequences that span hundreds of
milliseconds and contain hundreds of neurons. Thus, we show that long polychronous neuro-
nal sequence can emerge from a combination of the STDP and additional synaptic plasticity
rules.

Our growth mechanism is robust with respect to the changes in the model parameter val-
ues. The use of different strength of inhibitory connections (varied between G;, = 0.015 mS/
cm?* and G;, = 0.060 mS/cm?), different number of efferent supersynaptic connections (N = 10
and N; = 20), and different maximal strength of excitatory connections between HVCg, neu-
rons (between G, = 1.5 1S and G, = 4 1S) lead to the emergence of precisely timed neural
sequences [52]. Thus our modeling results do not rely on fine-tuning of the model parameters.

Our reanalysis of the data that recorded HVC neurons in juveniles [17, 48] showed that the
burst tightness of projection neurons decreases with the burst timing during the sequence
growth in the protosyllable stage. This difference disappears in later stages of song develop-
ment. We interpreted decreased tightness of bursts as a reflection of immature intrinsic burst-
ing mechanism. An alternative possibility is that the burst tightness is a network phenomenon.
It is possible that neurons that burst earlier in the sequence are better connected and get stron-
ger inputs, leading to tighter bursts, whereas those that burst later are still in process of getting
incorporated and hence are loosely connected. Another possibility is that feedback inhibition
controls the burst tightness [59]. However, there is some evidence in the data that supports the
intrinsic mechanism. We found one HVCg, neuron in the subsong stage that was not locked
to a syllable but still showed tight bursts usually observed in the motif stage (S5 Fig). Since the
network is unlikely formed in this stage, this observation favors intrinsic mechanism for burst
tightness. It is also possible to access the network effect on the burst tightness by comparing
the spike patterns of syllable-locked neurons during and outside of singing of the syllables.
However, due to the limited number of HVCg, neurons recorded in the subsong stage and the
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protosyllable stage in the experiments [17, 48], which were not designed to address these ques-
tions, we could not gather more evidence to be certain about the network effects. Future exper-
iments with more data on HVCg neurons in early stages of song development, perhaps also
including intracellular recordings in vivo and in slices, should be able to address whether burst
tightness is intrinsically controlled.

Intermittent activations of a set of training neurons and spontaneous activity of immature
neurons are two of the most important ingredients of the network growth process in our
model. As in the previous models of chain growth, the activations of the training neurons cre-
ate the recruiting events in the wiring process [28, 29]. The thalamic nucleus Uvaeformis
(UVA) and the cortical nucleus interfacialis of the nidopallium (NIF), an area that is highly
selective to the bird’s own song [60], are two major sources of inputs to HVC [60-64]. As early
as 20 days post hatch, UVA and NIF have already established projections to HVC [65, 66]. It is
conceivable that the HVCg, neurons innervated by UVA and/or NIF around this age or even
earlier are the ones that act as the training set for the network growth. Indeed, UV A neurons
do burst consistently before the onsets of syllables [63], as do NIF neurons [64]. A recent study
provides evidence that NIF neurons are more likely candidates for providing the inputs to the
HVC training neurons [64]. Spontaneous bursts in UVA and NIF can reliably activate HVC
neurons [62]. We speculate that the chain growth starts as soon as the UVA and/or NIF projec-
tions are established to HVCg4 neurons, and spontaneous bursting appears in UVA, NIF, and
HVC. The wiring process most likely goes on well into the protosyllable stage, since we see
from the reanalysis of the data [17] evidence that the maturity of HVCg4 neurons is correlated
with the timing of their bursts relative to the syllable onsets in this stage [17] (Fig 9), as
expected from our model (Fig 4). The protosyllable stage is when definable durations of sylla-
bles emerge while the acoustic features of the syllables are not yet learned [17]. The establish-
ment of synaptic chain network in this stage should provide the timing substrate that is
required for establishing the specific projections from HVC to RA to learn the specific syllables
through reinforcement learning [12-15]. Taken together, we propose that the wiring process
of the synaptic chain network in HVC spans a time before the subsong stage to the protosylla-
ble stage (<20 to ~58 dph).

In our model, the wiring process consists of trials spanning 500 ms. This time span is an
arbitrary choice of the model. In reality, each trial should corresponds to a bursting event in
UVA and/or NIF that activates HVCg4 neurons. The lengths of the trials then correspond to
the inter-burst intervals of these events. These events might be most reliable during the singing
attempts in the subsong and the protosyllable stages. However, they could also occur during
sleep [8] and in other states of juvenile zebra finches. Our model shows that the maximum
length of the chain is limited by the durations of the trials. It would be interesting to see
whether the inter-burst intervals in UVA and/or NIF in juvenile zebra finch might dictate the
durations of the syllables that emerge at the protosyllable stage.

We used synaptic plasticity rules based on the timing of burst onsets (the BTDP rule). This
simple rule sidesteps the complex interactions of multiple spikes within the bursting pre- and
post-synaptic neurons [67], and is guided by the observation that in cortical neurons, the tim-
ings of the first spikes in bursts are most important for determining the timing-dependent
LTP and LTD [68]. In addition, we apply a small 2 ms shift of the BTDP curve to the region of
positive times, so that there is an LTD for synchronously bursting neurons. This prevents the
emergence of connections between neurons that fire synchronously. Such a shift was used to
stabilize weight distributions in random networks of spiking neurons in another modeling
study [69]. Whether these rules apply to synaptic plasticity for HVCg4 neurons remains to be
seen. To date, there is no systematic study of synaptic plasticity in HVC, and further experi-
ments are needed.
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In addition to sequence growth, extracellular recordings in juvenile zebra finches also
revealed sequence splitting during the syllable development [17]. At the protosyllable stage, a
majority of the projection neurons fired in a single protosequence. When several syllable types
emerged from a common protosyllable, the corresponding protosequence split. While there
were still neurons firing at all syllables with the same latencies relative to syllable onsets
(“shared neurons”), more neurons fired specifically to a single syllable type. Gradually, the
shared neurons disappeared. The authors proposed a model, according to which a protose-
quence grown from a common seed of synchronously activated neurons is split by dividing
the seed into several groups activated at different times, and also by increasing local inhibition.
In our study, the splitting does not happen during the network growth and we did not explore
mechanisms for it to happen. Activation of seed neurons at different times and increase in
inhibition may also induce protosequence splitting in our model.

In conclusion, we have shown that protracted addition of new neurons in HVC in juvenile
helps to wire synaptic chain network through a self-organized process. Our model illustrates
the possibility that birth order of neurons is important for constructing functional microcir-
cuits in local brain areas.

Materials and methods
Juvenile zebra finch data analysis

We reanalyzed a previously reported data set of extracellular recordings in HVC of juvenile
zebra finches [17, 48]. The data set contained recordings of projection neurons from 32 birds
during the song development (44-112 dph). HVCg, neurons exhibited sparse bursting activity.
Following the procedure in Okubo et al [17], a burst was defined as a continuous group of
spikes separated by intervals of 30 ms or less. To determine the burst tightness of a projection
neuron, we estimated the median of the first interspike intervals of all the bursts produced by
the neuron at a given song development stage (subsong, protosyllable, multi-syllable, and
motif). To find the bursting time of the neurons locked to syllables, we followed the approach
in Okubo et al [17].

Network model

We distributed 2000 HVCg4 and 550 HVCpyr neurons over the 2D sphere of radius 260 ym
with no overlap. A neuron occupies a volume of a sphere with diameter 10um. HVCyyr neu-
rons were first placed evenly on the sphere using the Fibonacci lattice [70]. The distance
between the nearest neighbors on sphere is approximately Ar;, = 40 ym, which matches the
average distance between HVCiyr in real HVC (as estimated from the HVC volume and the
number of interneurons). Then, they were randomly shifted along the sphere surface by a
small amount: A@ = 0.0006Ar;, and A¢ = 0.0006Ar;,/sin(8), where 6 is the latitude of a neuron’s
position on the sphere, ¢ is its longitude. HVCg 4 neurons were placed randomly over the
sphere, with the constraint that they do not overlap with other HVCgs or HVCjyr neurons.
Connections between HVCy and HVCry neurons were placed probabilistically
based on the distance between neurons along the sphere: p,, ,  exp (—d*/o3, ) and
Prra X €xp(—d?®/a; ), where pra_ris a probability for a given HVCg, neuron to contact
a given HVCyr neuron, py_.r4 is a probability for a given HVCi neuron to contact a given
HVCgy neuron, d is a distance between given HVCg, and HVCyyr neurons on the sphere,
Ora—1= 130 um, and 07,4 = 90 um. Only a single connection between a pair of neurons was
allowed. Parameter og4_.; was chosen to match the upper bound on the number of postsynap-
tic HVCyr partners for an HVCg, neuron [20, 71]. On average an HVCr4 neuron contacted
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11.6% of HVC;nr neurons. HVCpyr neurons had a smaller spatial connectivity scale to influ-
ence nearby HVCgy neurons. A single HVCyt neuron contacted 5.8% of HVCga neurons.
Conductance of the connections were sampled from uniform distributions on the intervals (0,
G,;) for HVCgy to HVCyr connections and (0, G;,) for HVCyyr to HVCgra connections, with
G,; = 0.4mS/cm* and G, = 0.03mS/cm*. Axonal time delays for the connections were calculated
by dividing the distance between neurons by the axonal conduction velocity. Normal conduc-
tion velocity was set to 100 ym/ms, as observed in HVC [21]. Connections between HVCga
neurons did not exist at the start of simulations.

A randomly selected set of 10 HVCga neurons were chosen as the training neurons that act
as the starting seed for the network growth. The training neurons had the mature properties,
while other HVCy, neurons started as new immature neurons.

Growth simulation

Network dynamics was run in trials of 500 ms duration with a time step 0.02 ms. In the begin-
ning of each trial, the dynamical variables of neurons were reset to their resting values. Ata
random time between 100 ms and 400 ms in a trial, the training neurons were excited by a syn-
chronous excitatory conductance kick of strength 300 nS, which made them burst. Simulations
were run until the number of supersynaptic connections in the network remained constant for
10000 trials.

Neuron model

For HVC;nr neuron we used a single compartment Hodgkin-Huxley model identical to the
one described in [9]. For HVCg4 neuron we used a two-compartmental Hodgkin-Huxley
model with soma and dendrite similar to the one in [9].

Parameters of sodium, potassium and leak currents of the soma of a mature HVCg, are
identical to those in [9]. Somatic compartment is additionally equipped with low-threshold
potassium current Ix; 1= G, g7 [(V, — Ex) with conductance G; x; 1 = 3.5 mS/cm?, potassium
reversal potential Ex = —90 mV and gating variable [. Gating variable obeys the following
dynamics: 7,dl/dt = 1,.(V) — I, where 7;,= 10 ms, [..(V) = 1/(1 + exp — (V + 40)/5). Parameters
of the dendritic compartment of a mature HVCg, are identical to [9], except for 7, = 15 ms.

Immature HVCyg4 neuron has elevated leak reversal potential E; = =55 mV in both somatic
and dendritic compartments. In addition, the calcium conductance in the dendritic compart-
ment of immature HVCg, were set to zero.

Synapse model

Synaptic conductances on neurons were modeled according to the “kick-and-decay” dynamics
[9]. Synaptic conductance of a neuron increases following a delivery of a spike to the synapse
with conductance G: g, — gs,» + G. In between spike arrivals, synaptic conductance decays
exponentially: 7, dg,,/dt = —g;,,. We used the same values for synaptic decay time constants
asin [9].

Noise model and simulation

Noise in HVCyyr neurons was created using stochastic Poisson spike trains arriving at excit-
atory and inhibitory synapses, mimicking random synaptic activity, such that HVCyyr neu-
rons spiked spontaneously with rate ~ 10 Hz. Parameters of the Poisson spike trains were
identical to [9]. Dynamics of HVCyyt neuron was solved using Dormand-Prince order 8
method [72].
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Noise in HVCg, neurons was implemented by injecting white noise current of amplitude
0.1 nA to soma and 0.2 nA to dendrite [21]. To account for white noise stimulus, HVCg 4
model was treated as a system of stochastic differential equations and was solved with weak
order 3 AN3D1 method [73].

Maturation model

Maturation of HVCg, neurons was modeled as a gradual increase of dendritic calcium con-
ductance, and a gradual decrease in the somatic and dendritic leak reversal potential:

dG,,
Tmar dtc = Gmar - GCa’
dE
Tmat —* = Emar - EL7
dt

where 7,4, is the maturation time constant; G, = 55 mS/cm? is the mature value of calcium
conductance; and E,,,,; = —80 mV is the mature value of leak reversal potential. Values of G¢,
and E; were updated at the end of each trial. Maturation rate of an HVCgx neuron 7,,,,
depended on its activity history. If a neuron spiked in less than half of the trials in the past
1000 trials, it was treated as spontaneously spiking. Once a neuron spiked in more than half of
the trials in the past 1000 trials, it was treated as reliably spiking. For a spontaneously spiking
neuron, maturation time constant was set to 7,,,; = 50,000 s. For a reliably spiking neuron,
maturation time constant was set to a smaller value of 7,,,,, = 500 s.

Neuronal turnover

Neuron was assigned as silent if it spiked in less than 80 trials in the past 4000 trials. Silent neu-
rons were replaced at the end of each trial with new immature neurons. New immature neu-
rons were placed randomly on the surface of the sphere representing HVC, avoiding overlaps
with all HVCy, and HVC yr neurons.

BTDP synaptic plasticity rule

To update weights between HVCg, neurons, we used a BTDP rule based on the burst onset
timing between the presynaptic and the postsynaptic neurons (Fig 4A). We defined a “burst”
as a continuous group of spikes with duration 30 ms or less. Burst onset time was defined as
the first spike in a burst. Each time a neuron produced a new burst, all afferent synapses onto
the neuron and all efferent synapses are updated. For a pair of a presynaptic neuron i with
burst onset time ¢; and a postsynaptic neuron j with burst onset time t;, an additive LTP would
occur for the synapse with weight Gj; if At =t; — t; > Tg:

AL (At —T,)/ T, if At <T,+T,,

Gy — GUJF{
Apexp(—(At =T, — T,)/tp), if At > T, + T,p.

If At < T, the synapse undergoes depression through multiplicative LTD:
ADGij(TO — At /Ty, if At >T,—Tp,
Gij — Gij — {

A,Gexp (At =T, + Tp) /1), if At < T, =T,
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The following parameters were used in simulations unless specified: Ap = 0.25nS, Ap =
0.02, To =2 ms, Tp=3 ms, Tp =3 ms, 7p = 30 ms, 7p = 30 ms. All weights were clipped below
G,nin = 0 1S and above G,,,, = 4 nS.

Synapse states

Synapses were in 1 of 3 possible states depending on their synaptic weight. Synapses with
weights 0 < W < W, were silent and did not elicit response in postsynaptic neurons. Synapses
with weights W, < W < W, were active and produced depolarization in postsynaptic neurons.
Synapses with weights W > W, were supersynapses that produced a strong response in post-
synaptic neuron. Regardless of their state, all synapses participated in BTDP update rules. The
following parameters were used in simulations unless specified: W, = 0.2 nS, W, = 1.0 nS.

Potentiation decay

All synapses experience a depression at the end of each trial: G — G — 6, where 6 = 0.01 nS.
This depression is needed to prevent the emergence of too many active synapses that may lead
to uncontrolled network growth [29].

Axon remodeling

The axon remodeling rule was identical to the one in [28]. When the number of efferent super-
synaptic connections of a neuron reaches N; = 10, the neuron is saturated and all other active
efferent connections of the neuron are withdrawn. Withdrawn connections do not elicit effect
on postsynaptic neurons and do not participate in BTDP updates. However, they still undergo
potentiation decay. Withdrawn connections will be re-connected if the neuron loses one or
more of its supersynapses.

Neural activity analysis

Burst density was calculated as a histogram of burst onset times with bin size 1 ms. The pres-
ence of oscillations in burst density was estimated using the coefficient of variation (CV),
which is a standard deviation divided by the mean. Jitter in a neuron’s timing was calculated as
a standard deviation of the burst onset times based on the 200 test runs of the dynamics of the
grown network.

Network structure

Plots of network topology were based on the supersynaptic weights between neurons and were
created using Kamada-Kawai algorithm in Pajek software program for network analysis [47].

Network structure was also analyzed using the similarity of inputs to neurons that spike
synchronously within a time window T,. For neuron i that bursts at ¢;, the synchronously spik-
ing neurons have their burst onset times within a time interval (t; — T.,/2, t; + T,,/2). The simi-
larity of inputs to neuron i and a synchronously spiking neuron is computed as the fraction of
the presynaptic neurons common to the two neurons among all presynaptic neurons to the
two neurons (the Jaccard index). The mean Jaccard index of all synchronously spiking neurons
at t; represents the similarity of inputs at this time. The mean Jaccard index for all burst times
is defined as the similarity of inputs for a given time window T,.

Analysis of inhibition

With the neuronal turnover disabled and the conduction velocity set to 100 ym/ms, inhibitory
conductance of all HVCg 4 neurons was tracked for 30000 trials. By the end of these trials, the
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number of supersynaptic and active connections have reached stable values and the network
growth stopped. A neuron was designated as recruited if it spiked consistently during the test-
ing trials of the grown network in more than 95 out of 100 trials. The time of its recruitment
was estimated using its spike history during the growth. At each trial, the number of the neu-
ron’s spikes averaged over a window of the past 25 trials was computed, and when the average
first reached 1, which signaled the start of reliable spiking, the trial was defined as the trial at
which the neuron was recruited.

For a recruited neuron i, an LTP window is defined relative to the burst time of its presyn-
aptic neuron j, during which the synaptic strength from neuron j to neuron i can be strength-
ened according to the BTDP rule. Specifically, the window is the time interval (¢; + dj; + T, t; +
d;; + Ty + 1p), where dj; is the axonal delay; T = 2 ms is the time shift in the BTDP rule; and
Tp = 30 ms is the time scale of the LTP part of the BTDP. At each trial before the recruitment, a
set of inhibitory conductance traces on neuron i is extracted in the LTP windows relative to all
its presynaptic neurons. The average of this set represents an inhibitory conductance of the
recruited neuron at trial T aligned to its presynaptic neurons. For comparison, an average
inhibitory conductance of the non-recruited neurons is extracted in the same time intervals,
and is defined as the inhibitory conductance of the non-recruited neurons. Difference in the
area under conductance curves is computed numerically using a trapezoid method. The
median difference in the area computed for all trials before the recruitment represents the dif-
ference in the inhibitory conductance between the recruited neuron and the non-recruited
neurons.

For analysis of inhibition on a recruited neuron i relative to its own burst onset times before
the recruitment, only trials in which neuron i produced bursts are considered. For each such
trial, the area under the inhibitory conductance curve is calculated for 10 ms before and 10 ms
after the burst onset time. The median of the difference in area for all trials represents the dif-
ference in the inhibitory conductance before and after bursting of neuron i. The difference of
the inhibitory conductance before burst relative to the average is defined as median of the dif-
ferences between the mean inhibitory conductance 10 ms before the burst and the mean dur-
ing the trial for all trials before the recruitment.

To investigate the inhibition after recruitment, similar procedure is applied to 100 test trials
of the grown network.

Supporting information

S1 Fig. Neuronal age and spontaneous activity. In the model, spontaneous firing rate of
HVCgyx neuron decreases with neuronal age due to reduced excitability.
(EPS)

S2 Fig. Comparison of recruited (green lines) and non-recruited neurons (blue lines). For a
recruited neuron, the number of bursts in each trial quickly stabilizes to 1 after the recruit-
ment, and the total excitatory conductance to the recruited neuron jumps to a large stable
value as well. In contrast, for a non-recruited neuron the number of bursts in each trial fluctu-
ates at small values, and gradually decreases, until the neuron is replaced by a new immature
neuron. The total excitatory conductance to the non-recruited neuron also fluctuates at small
values and gradually decreases due to potentiation decay.

(EPS)

$3 Fig. Comparison of inhibitory conductance for a grown network based on 100 test tri-
als. A: Difference in the area under the conductance curve in the LTP window (A) for all
recruited neurons aligned to presynaptic parents. This corresponds to Fig 8D and 8E in the
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main text. A is significantly negative (p < 107°%, Wilcoxon signed-rank test). B-C: Analysis of
inhibitory conductance of recruited neurons aligned post-synaptically. B: Difference in inhibi-
tory conductance after and before burst for all recruited neurons. This corresponds to Fig 8F
and 8G in the main text. Apefore and A, g, are the sum of the inhibitory conductance within 10
ms window before and after the burst. Apefore — Aafier is much smaller than during the chain
growth, but is still significantly positive (p < 10~> Wilcoxon signed-rank test). C: Difference in
inhibitory conductance 10 ms before burst and the mean inhibitory conductance during the
trials for all recruited neurons. This corresponds to Fig 8] in the main text. The difference is
significantly positive (p < 107°° Wilcoxon signed-rank test) because interneurons fire with
much higher rates during the network activity than during the entire trials on average.

(EPS)

S4 Fig. Loop formation in the network with noisy mature HVCg, neurons. When we use a
single population of mature spontaneously active HVCg 4 neurons receiving a large white
noise stimulus of amplitude 0.25 nA to soma and 0.5 nA to dendrite, loop sequences form.
Here we use a fast conduction velocity 1000 4m/ms, which leads to the emergence of a synfire
chain. A: Raster plot of network dynamics. B: Network topology based on synaptic weights
between neurons.

(EPS)

S5 Fig. Example HVCg,4 neuron recorded in the subsong stage showing tight burst without
being locked to the subsong onset. (Left) Firing rate of the neuron aligned to syllable onset
times does not show significant peak, meaning that the neuron is not locked to the syllables.
(Right) Example extra-cellular recording traces of the same neuron demonstrate a tight burst-
ing pattern.

(EPS)
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