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Deep AI Enabled Ubiquitous Wireless Sensing: A Survey

CHENNING LI1, ZHICHAO CAO1, and YUNHAO LIU1,2, 1Michigan State University, USA
and 2Tsinghua University, China

With the development of the Internet of Things (IoT), kinds of wireless signals (e.g., Wi-Fi, LoRa, RFID) are
full of our living and working spaces nowadays. Beyond communication, wireless signals can sense the status
of surrounding objects, known as wireless sensing, with their reflection, scattering, and refraction while
propagating in space. In the last past decade, many sophisticated wireless sensing techniques and systems
are widely studied for various applications (e.g., gesture recognition, localization, object imaging). Recently,
deep Artificial Intelligence (AI), also known as Deep Learning (DL), has shown great success in computer
vision. And some works have initially proved that deep AI can benefit wireless sensing as well, leading to
a brand-new step toward ubiquitous sensing. In this survey, we focus on the evolution of wireless sensing
enhanced by deep AI techniques. We first present a general workflow of Wireless Sensing Systems (WSSs)
which consists of signal pre-processing, high-level feature, and sensing model formulation. For each module,
existing deep AI-based techniques are summarized, further compared with traditional approaches. Then, we
provide a view of issues and challenges induced by combining deep AI and wireless sensing together. Finally,
we discuss the future trends of deep AI to enable ubiquitous wireless sensing.
CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and
tools; • General and reference → Surveys and overviews.
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1 INTRODUCTION
With the emergence of IoT, wireless communication technologies are widely used with the explosion
of IoT devices. Resembling light in its wave property, wireless signals cannot only be modulated
to carry data, but also reflected, scattered or refracted by surrounding objects/humans so that the
changes of their phase and attenuation can be further utilized for sensing tasks. The raw signal
information fetched from radios are either Received Signal Strength Indicator (RSSI) or Channel
State Information (CSI) which can be taken as input of WSSs. To achieve various application goals
(e.g., detection, recognition, tracking, imaging), elaborate features and models are required for three
general function modules of WSSs, which are signal pre-processing, high-level feature and sensing
model formulation as summarized in Figure 1.
In recent years, deep AI (e.g., CNN, RNN, GAN), also known as deep learning, has shown its

success in many vision and audio applications such as speech recognition, object detection and
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face completion. In comparison with traditional Machine Learning (ML) models (e.g., k-NN, SVM,
boosting, decision tree, Bayesian networks), DL frameworks take the advantage of a huge amount
of complex and heterogeneous input data, and are able to efficiently prohibit noises and extract
features so that guarantee the accurate results in general application scenarios. As the similarity
of inputs and outputs between wireless sensing and vision sensing, WSSs can absolutely benefit
from deep AI. As shown in Figure 1, some works have embedded DL frameworks into each
part of WSSs. For signal pre-processing, several works [29, 52, 53, 63, 81, 134, 136, 165, 184, 191]
leverage the adversarial architecture [32, 36] and attention module [29, 69, 120, 168, 189] for
noise reduction. Moreover, various deep neural networks (e.g., CNN [14, 29, 52, 53, 69, 83, 114, 188–
191, 194], RNN [53, 63, 87, 92, 191, 194], GAN [29, 52, 134, 165, 191]) can be adopted to automatically
extract spatial, temporal and physical features from sanitized signals. We can further employ DL
frameworks [29, 49, 63, 65, 69, 114, 134, 135, 188–191, 194] to formulate complex models of wireless
sensing as a whole, resolving the generality by extending the WSSs to various environments.

Signal 
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High-level 
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(Sec 5)

Sensing Model 
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Application 
Goal
(Sec 2)
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Fig. 1. The general flowchart of WSSs and modules enhanced by deep AI.

Despite the growing interests in deep AI enabled wireless sensing, existing surveys are scattered
across different raw signal information and application goals. And a comprehensive survey is
lacking for the evolution and principle of systems to combine wireless sensing and deep AI together.
This survey fills the gap by summarizing deep AI approaches and comparing them with traditional
methods for the middle three function modules in the general workflow, shown in Figure 1. Beyond
reviewing relevant literature, we present some unique issues and challenges induced by deep AI.
Finally, we wrap up this paper by presenting future trends that use deep AI to enable ubiquitous
wireless sensing. Our ultimate prospect is to provide a comprehensive review of deep AI enabled
WSSs, which can inspire researchers to adopt DL techniques to resolve intractable issues when
deploying WSSs in real life.

Survey Organization: This article is organized as follows. We first provide the background
of DL and wireless sensing in § 2. Existing surveys are discussed in § 3. Then, we present the
comparison between deep AI frameworks and traditional methods designed for different function
modules in § 4, § 5 and § 6, respectively. Furthermore, issues and challenges induced by deep AI
are demonstrated in § 7, followed by § 8 for future trends. We conclude our survey in § 9.

2 BACKGROUND OFWIRELESS SENSING AND DEEP AI
In this section, we first summarize the widely adopted wireless signal inputs and popular application
outputs of existing WSSs. Then, we provide a basic overview of deep AI techniques that have the
potential to enhance the performance of WSSs.

2.1 Inputs and Outputs of Wireless Sensing
With the development of IoT, multiple wireless technologies are adopted to connect IoT devices in
different spectrum bandwidth, communication range, data rate and energy consumption. The widely
used and commercialized wireless technologies include Wi-Fi, ZigBee, LoRa, RFID, Ultra-Wideband
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Fig. 2. Illustration of typical sourcing inputs as sensing mediums, including RSSI, CSI, and FMCW.

(UWB) and Bluetooth. Moreover, due to camera, speaker and microphone are cheap and widely
equipped on smartphone and wearable devices, acoustic signal and visible light based wireless
communication is also emerged. By taking different types of raw signal information as inputs, we
can derive diverse outputs across many sensing purposes which include detection, recognition,
identification, positioning, tracking and imaging.

2.1.1 Signal Status as Inputs. Given a transceiver pair, the status of the received signals obtained
from either commodity radio or software-defined-radio (SDR) serves as the inputs of a WSSs. Next,
we discuss three kinds of signal status which are RSSI, CSI and chirp.

RSSI: RSSI can be directly fetched from most of commodity radios and characterizes the spatial
attenuation of signal propagation, covering multiple modalities including Wi-Fi [56, 58], LoRa [60,
60, 72], RFID [78, 91, 132]. Empirically, RSSI follows a propagation fading model (e.g., Log-normal
Distance Path Loss (LDPL) model [109]). The LDPL model characterize the variation of received
signal power over distance due to path loss and shadowing caused by obstacles through absorption,
reflection, scattering, and diffraction. As shown in Figure 2(a), we can leverage the path loss for
the power-based ranging assuming that RSSI monotonically decreases with distance. Due to the
random shadowing effect, the monotonic trend only holds on relatively large scale. Given the
multi-path effect, RSSI can fluctuate on the order of signal wavelength and blurs the monotonic
trend, making it almost impossible to distinguish locations in the vicinity [169].

CSI: Along with the success of Orthogonal Frequency-division Multiplexing (OFDM) and
Multiple-Input Multiple-Output (MIMO) in Wi-Fi, CSI can be acquired readily and measure the
multi-path effect using the amplitude attenuation and phase shift at each carrier frequency [82].
Although CSI is included in Wi-Fi since IEEE 802.11n, it is not reported by all commercial Wi-Fi
Network Interface Controllers (NIC). And the 802.11n CSI Tool [40] and the Atheros CSI Tool [159]
are most widely used for CSI measurement on commercial Wi-Fi devices. And we illustrate the
raw CSI measurements from the commercial Intel 5300 Wi-Fi NIC in Figure 2(c). Given the three
antennas from a NIC with 90 subcarriers, each CSI complex value is converted into the amplitude
(dBm) representing the intensity and phase information. Due to the narrow-band signal of each
subcarrier, raw CSI measurements demonstrate noticeable dynamics across packets and subcarriers,
rendering the necessity of the noise reduction in signal pre-processing. For example, multiple
algorithms have been proposed to remove the time and phase shift induced by the Cyclic Shift
Diversity (CSD), Sampling Time Offset (STO), Sampling Frequency Offset (SFO), and beamforming
technique [82, 169], shown in Figure 2(d).

FMCW: Chirp signal refers to signals generated by multiple types of circuits [5, 86, 90] whose
carrier frequency changes linearly with time, especially the Frequency Modulated Continuous

1Note that the Intel 5300 NIC reports the CSI amplitude in voltage space [40]. We convert the amplitude of CSI |ℎ | into P
with the unit of dBm as: 𝑃 = 20𝑙𝑜𝑔 ( |ℎ |/1000) [131].
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Wave (FMCW) radio. As shown in Figure 2(b), FMCW transmits a chirp signal (e.g., red solid line)
as 𝑆𝑡 (𝑡) = 𝑐𝑜𝑠 (2𝜋 𝑓𝑚𝑖𝑛𝑡 + 𝜋𝐵𝑡2

𝑇
). And 𝐵 = 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 and 𝑇 denote the frequency bandwidth and

sweeping time. Thus, the received FMCW (e.g., red dashed line) becomes 𝑆𝑟 (𝑡) = 𝛼𝑆𝑡 (𝑡 −𝑇𝑜𝐹 ) with
the attenuation factor𝛼 and ToF for the reflected signal propagation.We use frequency correlation of
these two signals [85, 88] to compute the ToF. And it provides additional resilience to the multi-path
effect for measuring Time-of-Flight (ToF) [84] and is employed broadly in Wi-Fi [5, 29, 69, 188–190],
acoustic [85, 86, 94, 123] and LoRa [19, 90]. To obtain the required resolution of distance from
the corresponding reflector, we can adjust the frequency bandwidth. Large bandwidth enables a
fine-grained sensing granularity. For example, RF-Pose, RF-Pose3D [29, 69, 188–190] select the chirp
signal with a total bandwidth of 𝐵 = 1.78𝐺𝐻𝑧 from 𝑓𝑚𝑖𝑛 = 5.46𝐺𝐻𝑧 to 𝑓𝑚𝑎𝑥 = 7.24𝐺𝐻𝑧, obtaining
a distance resolution of 8.4 cm. Then they incorporate the DL techniques with high-quality chirp
signals to achieve device-free multi-person pose estimation with the centimeter accuracy [188, 190].

Comparison and Connection: A high-quality signal status and an effective wireless system
are two key enablers for sensing. Depending on the sensing granularity, range, deployment cost,
and system robustness, RSSI, CSI, and chirp signals can be utilized in various sensing scenarios.
Specifically, RSSI suffers more than CSI from the Inter Symbol Interference (ISI) induced by the
multi-path effect, while the time-frequency analysis of the latter requires additional computation
resources, rendering a high computation complexity in mobile devices [174]. Besides, chirp can
provide much finer-grained spatial resolution than CSI, such as dedicated FMCW radios [74] used
for device-free human pose estimation [5, 188, 190]. However, CSI can be acquired using low-cost
commercial Wi-Fi devices readily, making the ubiquitous deployment much easier.

RSSI is widely used for computation-efficient but short-range indoor acoustic sensing on mobile
devices due to the limitation of computation efficiency and hardware deployment. For example,
Strata [174] delivers the device-free acoustic tracking system within a 1.0 cm median error but
the moving target is however less than 40 cm from the mobile phone. CaField [167] constructs the
“fieldprint" with the acoustic biometrics embedded in the RSSI distribution, achieving a detection
accuracy of 98.42% for user authentication among 19 human participants, but a displacement of
more than 4 cm shall be kept for the smartphone holding in hands. Besides, many researches have
adopted RSSI for low-cost but coarse-grained sensing tasks. SpotFi [58] estimates the Angle of
Arrival (AoA) with RSSI of Wi-Fi and achieves a median accuracy of 40 cm for device-based human
localization. Karanam et al. [56] further construct the 3D Wi-Fi imaging of meter-scale objects
by modelling RSSI distribution with the loopy belief propagation model [171] while SateLoc [72]
collects RSSI from LoRa nodes and improves the spatial resolution of RSSI using the fingerprinting
of the satellite images, achieving a median localization error of 47.1 m in a 227,500𝑚2 urban area.

To improve the sensing granularity and system robustness, CSI have been broadly utilized for Wi-
Fi sensing. Compared with SpotFi [58], which pinpoints the target with RSSI information available
from each of the Access Points (APs), RIM [150] employs the fingerprinting-like localization
system with the correlation of consecutive CSI measurements, achieving a median error in moving
distance of 2.3 cm and 8.4 cm for short-range and long-distance device-based tracking respectively.
Chronos [118] further emulates a wide-band radio by stitching 35 available Wi-Fi bands to alleviate
the impact of narrow-band CSI channel on the Synthetic-aperture Radar (SAR) model [31]. More
fine-grained WSSs have been developed such as material recognition [124, 181] and decimeter-level
device-free localization [70, 71, 97, 99, 160] at room scale.

Given the much finer-grained spatial resolution than CSI, chirp signals can be utilized for short-
range acoustic sensing with a narrow bandwidth (10KHz to 22KHz) [86, 87, 123]. To track the
tiny motion, BreathJunior [123] utilizes the phase change of the each frequency component of
the demodulated chirp signals to monitor the motion and respiration of infants. Furthermore,
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LoRa [13] has emerged as a promising technique for Low-Power Wide Area Network (LP-WAN).
To support the long-range communication (e.g., ∼ 𝑘𝑚) at low power consumption, LoRa employs
a variant of CSS modulation, which is an alternative PHY standard for IEEE 802.15.4a. And it
has similar principles with FMCW for sensing tasks except for modulation implementation [26].
The PHY technique of LoRa, CSS, is inherently robust to interference and noise in the ISM band
(e.g., Wi-Fi, RFID, etc.) [157]. Specifically, WideSee [19] integrates the LoRa technique with the
drone and delivers the single-transceiver system within the average localization error of 4.6m
in a high-rise building structure with a size of 20 × 42 × 85𝑚3. 𝜇Locate [90] further presents a
novel backscatter architecture enabling CSS backscatter at significantly lower power, achieving
meter-level localization accuracy at the building scale.

2.1.2 Application Goals as Outputs. WSSs can be employed for multiple applications, covering
coarse-grained detection&recognition, and fine-grained image generation, shown in Table 1.

Table 1. Summary of Existing Applications in terms of Applied Output

Detection & Recognition: Binary & Multiple Classification
Event Detection: Presence [8, 98, 196], Fall [41, 128, 182], Smoking [192, 193], Intrusion &
Attack [54, 73, 163]; Activity Recognition: Gesture [4, 63, 121, 184, 194], Sign [66, 83, 89],
Behavior [8, 34, 49, 52, 69, 78, 92, 138, 139, 145, 165, 166, 178]; Status Recognition: Material
[124, 173, 181], Sleeping [76, 77, 191], Emotion [187], User Identification & Authentication
[29, 48, 49, 57, 63, 114, 117, 125, 137, 161, 167, 177, 184–186, 201], Keystroke [11, 12, 67]
Numerical Analysis: Discrete Estimation
Anchor Estimation: Device-based localization & tracking [19, 58, 59, 72, 88, 90, 91, 110, 118,
119, 150], Device-free localization & tracking [7, 70, 71, 85, 87, 97, 99, 131, 195], Handwriting
[115, 151, 174], Walking Direction [153, 164, 180]; Physical Estimation: Human counting
[38, 95, 127], Queue Length [140, 141, 148], Breathing/Respiration Rate [3, 9, 123], Moisture &
Salinity [27], Protein [173]
Image Generation: Continuous Estimation
Spatial Image: Imaging [50, 56, 86, 124, 132, 199, 200], Holography [47], Floor Plane [14, 94],
Mesh [189]; Multi-target Sensing: Multi-person Localization and Tracking [6, 55, 160, 190],
Pose estimation [5, 53, 188, 190]

Detection & Recognition: Appendix A shows representatives for Detection & Recognition
sensing tasks, corresponding to the binary and multi-class classification. And we further divide
them into three groups, including event detection, activity recognition, and status recognition.
Given the ubiquitous and untraceable wireless signals, we can achieve the security and surveillance
monitoring, such as the detection of human presence, fall, smoking and intrusion. Besides, WSSs
can also be deployed for the smart home, smart factory and Virtual Reality (VR), make it more
efficient to interact with machines by gestures, activities, signs and some specific behaviors. Further,
we can employ the WSSs for the health care, such as the Emerald [1] from MIT, a touchless sensor
and ML platform for health analytic. And it can monitor the status of sleeping, vitals, and behavior
wirelessly, even for the current COVID-19 monitoring.

Numerical Analysis: Beyond classification, finer-grained sensing tasks require the concrete
measurements for the numerical analysis with the discrete estimation. Illustrated in Appendix B,
on one hand, the anchor based numerical estimation can measure the relative location or the motion
of targets with the anchors (e.g., transceivers), such as the localization & tracking, handwriting,
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Fig. 3. Evolution of AI approaches representing our scope and the initial deep learning model.

and walking direction. Note that localization & tracking can be divided into two categories, device-
based and device-free, depending on the need to carry transceivers with the target. On the other
hand, WSSs can be adopted to estimate physical parameters, including the queue length, the
breathing/respiration rate, the soil moisture & salinity and protein containment in liquids.

Image Generation: Compared with the discrete estimation of numerical analysis tasks, the
image generation is muchmore challenging for continuous estimations, shown inAppendixC. And
each measurement has the inter-connected relation across spatial vantages or temporal snapshots.
For example, the wireless imaging requires pixel-wise estimations distributed uniformly in space.
Moreover, we also have the multi-target sensing, such as multi-person localization & tracking and
pose estimation with key joints of the head, shoulder, elbow, chest and so on. In a conceptual sense,
image generation is analogous to the concurrent numerical analysis while each of the estimation is
correlated in space or time.

2.2 AI and Deep Learning
To demonstrate our scope from the view of the evolution of AI, we first illustrate the relation among
AI, ML and DL in Figure 3(a).

In the early days of AI, the field focused on problems that can be described by a list of formal,
mathematical rules [35], making it relatively straightforward for computers, such as recognizing
spoken words or faces in images. To incorporate the hard-code knowledge about the world in
formal languages for computers, several knowledge based approaches were proposed including
expert system [106], knowledge-based engineering [104], and rule-based system [175]. However,
difficulties faced by systems with hard-code knowledge suggest that AI systems require the ability
to acquire their own knowledge, by extracting patterns from raw data. And this capability is known
as ML [35], which essentially enables algorithms to make predictions, classifications, or decisions
based on raw data, without being explicitly programmed [179]. And we can divide them into
three categories including supervised learning, unsupervised learning, and reinforcement learning,
depending on their frameworks and data requirements. Note that most existing WSSs resort to ML
algorithms for feature extraction, such as k-Nearest Neighbor (k-NN) [91, 124, 132, 132, 161, 184]
and Support Vector Machines (SVM) [48, 114, 125, 137, 184, 186, 187] of supervised learning as well
as clustering [139, 201] of unsupervised learning.

Given the potential massive noises of wireless signals, the limited ability of pattern representation
prevents it from exploring more, especially for the high-level and abstract features of raw data.
Thus, DL techniques are proposed for representation learning by introducing hierarchy multi-
layer nonlinear processing units, namely feed-forward Artificial Neural Network (ANN). And
the basic idea is to render complex concepts out of simpler and predefined operations of units
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Fig. 4. Typical architectures of deep neural network integrated in wireless sensing systems.

(or neurons). Specifically, we leverage a weighted combination of layered hidden units with a
non-linear activation function, resembling the perception process in human brain, where a specific
set of units are activated given the current environment or task, influencing the output of the
neural network model [179]. And the initial ANN is the Multi-layer Perceptrons (MLPs), which
consist of more than one hidden layer of operations [23]. As shown in Figure 3(b), the input vector
is presented at the visible layer, followed by a series of hidden layers to extract increasingly
abstract features. These layers are called “hidden" because their values are not given in the data,
instead the model must determine which concepts are useful for explaining the relationships in
the observed data [35]. IntuWition [181] employs MLPs for Wi-Fi based material recognition and
achieves the average accuracy of 95% and 92% in classifying five types of materials for Line-of-sight
(LoS) and Non-line-of-sight (NLoS) scenarios. Besides, it also demonstrates that MLPs provide
the maximum classification accuracy, compared with conventional ML models: REF-SVM [45],
k-NN [37], PCA, and Naïve Bayes [103].

Convolutional Neural Network (CNN) employs several techniques to reduce themodel complexity
significantly while retaining the robust feature extraction ability, shown in Figure 4(a). First, CNN
adopts the small convolutional kernel corresponding to the receptive field (e.g., the pink dashed
rectangle) of the input layer for local connectivity 1 with the output layer (e.g., the pink solid
rectangle). Note that the receptive field can be defined as the region containing any input pixel
with a non-negligible impact on the output [80]. Second, the parameter sharing 2 is adopted
to reduce the number of parameters while mitigating the risk of over-fitting by employing the
same kernel to scan the whole input feature map. Third, CNN can work with inputs of variable size
3 adaptively by introducing the convolution operation. Fourth, convolution operations 4 are
invariant in terms of translation, scale, and shape, namely the equivariant representation. And it
can enhance the feature extraction since essential features may show up at different locations of the
input image, with various affine patterns [179]. Besides, several network structures are designed
for data adaption and over-fitting mitigation, including the pooling layer, the fully connected layer,
batch normalization, Dropout technique and so on. Owing to properties mentioned above, CNN
achieves remarkable performance for WSSs in multiple applied outputs. For example, SignFi [83]
feeds the pre-processed CSI measurements to a 9-layer CNN for feature extraction representing
sign gestures and the average recognition accuracy is 86.66% for 150 sign gestures performed by 5
different users. And Shi et al. [114] integrate the 3-layer CNN with SVM and achieves over 91% for
recognizing 11 activities.
CNN can be adopted for spatial feature extraction while Recurrent Neural Network (RNN) can

deal with the sequential data. Since RNN has an internal memory for temporal feature extraction
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from sequential input. Illustrated in Figure 4(a), RNN performs the same function for each state
with corresponding input while the output of the current states also depends on the past states. By
unfolding the recurrent structure of RNN, the output is copied and sent back into the recurrent
network from the previous states. RNN can model sequential feature of input data that each sample
can be assumed to be dependent on previous ones, enabling it suitable for massive sequential
wireless signals. For example, RTrack [87] leverages RNN to estimate the distance and AoA from
continuous acoustic signals, achieving the room-scale human tracking with 1.2cm-3.7cm error.
Another promising technique is the Generative Adversarial Network (GAN) [36], which trains

a generative model G : 𝑋 → 𝑌 and a discriminative model D(𝑌 ). Illustrated in Figure 4(b), the
former model seeks to approximate the target data distribution 𝑌 from training data while the latter
estimates the probability that a sample comes from the real training data 𝑌 rather than the output
G(𝑋 ) of G [36]. Give the imaging task of the human holding a phone, we can feed the wireless
signals as input to generate a fake image of the target person. Then we can input the ground truth
image derived by the computer vision algorithm (the black silhouette with a light blue chunk as the
phone) and the fake one into the discriminator network. Thus, we can refined the fake image by
inducing the generator network to generate more vivid images to fool the discriminator network.

Existing WSSs have incorporated GANs for sensing procedures, such as the adversarial architec-
ture for domain adaptation of signal processing [32].

3 RELATEDWORK
Most of surveys have explored the wireless sensing and DL techniques separately. On one hand,
existing contributions are scattered across different sensing modalities (e.g., Wi-Fi, acoustic, LoRa)
and focused applications (e.g., recognition, localization, health monitoring). On the other hand, none
of existing works demonstrates the evolution from traditional WSSs to DL techniques. And more
comparisons and connections are required for further combination from the view of the general
workflow for WSSs, covering the signal processing, algorithm design, and model generalization. To
make our contributions more clear, we summary existing works from three dimensions, including
the modality/input, application/output and topic focus, shown in Appendix D.

Given the general workflow in Figure 1, the break-through progress of wireless sensing usually
resorts to high-quality sourcing input as the sensing medium, such as Wi-Fi, acoustics, LoRa
as well as visible light. For example, Yang et al. [169] present a survey on the evolution from
RSSI to fine-grained CSI in terms of network layering, time & frequency resolution, stability,
and accessibility. In a conceptual sense, CSI is to RSSI what a rainbow (color spectrum) is to a
sunbeam, where components of different wavelengths are separated. However, it only focuses on basic
principles and research trends of CSI in the field of indoor localization. Given CSI of Wi-Fi as the
sourcing input, all the following six surveys [107, 130, 142, 152, 172, 202] focus on the device-free
human behavior recognition with respective emphasis, including the comparison between data-
driven and model-based Wi-Fi radar [202], performance improvement induced by Fresnel zone
model based approaches [152] as well as DL techniques [172]. By focusing on the human-centric
applications, Savazzi et al. [107] highlight new radio technologies and unexplored bands for more
practical deployment in assisted living applications while Wang et cl. [142] review the human
behavior recognition at three granularities of signal, action, and activity. Given the high-level
feature of wireless signals, Wang et al [130] further provide a comprehensive overview on the
working principle and system architecture of the device-free WSSs. Beyond Wi-Fi sensing, Liu
et al. [75] compare acoustic with inertial sensors, vision-based as well as RF signals and further
explore the feature design and model mechanisms for range-based localization. Systematically,
Cai et al. [17] present a general 3-layer framework to categorize main building blocks of acoustic
sensing system, including the physical layer, processing layer, and application layer. It however
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only focuses on conventional signal processing systems and regards the DL techniques as the future
direction. Sundaram et al. [112] further propose the research problems, current solutions, and open
issues for LoRa networking, especially for the link coordination, collision avoidance. Given the
highly accurate and noise-resilience visible light, the following three surveys [10, 43, 100] review
literatures for visible light positioning (VLP) with various topic focuses. Specifically, Hassan et
al. [43] provide a classification of VLP systems on the photodiode and camera based receivers,
covering the basic principle and architecture with associated position computation algorithms. To
further highlight challenges on real-world deployment from ideal simulations, Afzalan et al. [10]
focus on performance-based evaluation of real-world VLP systems as well as different components
and fundamental concepts, enabling the VLP system in the wild. Recently, Rahman et al. [100]
summarize the current advances in VLP for navigation, tracking and security, which can be divided
into solutions with modified and unmodified light source.

Given the growing research interest of wireless sensing, two surveys [158, 176] focus on indoor
localization, covering Wi-Fi, Acoustic, RFID, UWB, Bluetooth, etc. And the former [176] emphasizes
the comparison of input signals and work principle of localization systems while the latter [158]
analyzes smartphone-based methodologies of signal processing and data fusion techniques from the
device perspective, including the device based and device free WSSs. The most closely related to our
work are [20, 82, 129, 179] (painted blue in Appendix D). By covering sufficient applied outputs
such as detection & recognition, numerical analysis, and image generation sensing tasks, Ma et
al. [82] give a comprehensive survey on modeling and learning based Wi-Fi WSSs but however
mainly focus on the workflow of CSI of Wi-Fi and the traditional signal processing techniques.
To demystify the promising wireless sensing with multiple input signals, Chen et al. [20] provide
a general picture of this cross-disciplinary area, including the wireless communication, ML, and
Human-computer Interaction (HCI). While Zhang et al. [179] provide an encyclopedic review of
mobile and wireless networking research based on DL, covering exiting DL computing framework
and mobile data analysis. However, it emphasizes more on mobile networking (e.g., 5G) and DL
driven network problems. To alleviate the intensive training effort induced by DL techniques, Wang
et al. [129] mainly focus on deep similarity evaluation networks and deep GANs, delivering a
general framework of DL with less training efforts for WSSs.

To the best of our knowledge, none of existing works focuses on the topic of this survey, covering
the evolution, comparison and connection of traditional WSSs to DL approaches. Besides, it is
different from existing ones in that its scope is not limited to any specific type of sourcing input
or applied output. We hope this survey can provide a comprehensive review of the combination
of AI approaches toward wireless sensing. And more researchers can be inspired to employ DL
techniques to resolve intractable issues for WSSs in real life.

4 SIGNAL PRE-PROCESSING
Upon receiving the raw sourcing inputs, several signal processing algorithms are required to focus
on the components of interest, shown in Table 2. Given that wireless environments are increasingly
complex, heterogeneous and evolving, the noise reduction, data adaptation, and transform methods
are employed for further feature design and model formulation.

4.1 Noise Reduction
Depending on the target components of signals, we have multi-scale noises with various granularity,
which can also be beneficial sometimes. Due to the hardware heterogeneity and background
interference, raw measurements can be first mixed with multiple types of phase shifts. On one
hand, elaborate algorithms are required to mitigate or even remove the estimation error for further
feature extraction. On the other hand, those hardware-specific characteristics can also be utilized
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Table 2. Summary of Existing Algorithms in terms of Signal Processing

Noise Reduction
Model-driven: Power Model [97, 121, 138, 153], Linear Regression [9, 27, 56, 58, 70, 83, 85, 124,
160, 187], Conjugate Multiplication [53, 63, 71, 99, 194], Coordinate Transform [14, 53, 123, 194];
Data-driven: Background Subtraction [5–7, 27, 28, 28, 34, 49, 50, 71, 86, 86, 87, 181, 188, 190],
Filters [4, 7, 19, 34, 48, 49, 52, 63, 88, 97, 99, 110, 114, 123, 125, 137, 139, 151, 153, 161, 166, 167,
173, 177, 185, 194], Frequency Response Compensation [86, 88], Mathematical Operation [47, 52,
57, 59, 78, 83, 88, 117, 118, 124, 132, 151, 165, 186, 192].
Data Adaptation
Compression: PCA [48, 57, 63, 97, 121, 137, 138, 161, 184, 194], ICA [92], SVD [8, 33, 58, 71, 178],
Graph-based Path Matching [56, 63, 97, 99, 150], Component Selection [7, 70, 86–88, 90, 97, 114,
119, 125, 131, 167, 174, 177, 201]; Composition: Multi-devices [5–7, 47, 50, 59, 78, 86, 91, 117,
131, 132, 139, 165, 186, 188, 190, 194], Multi-channels [34, 118, 132, 181], Virtual Samples [8, 55,
58, 69, 121, 150, 184]
AI Approach
Domain-dependent Noise Removal [29, 52, 53, 63, 81, 134, 136, 165, 184, 191], Attention
Module [29, 69, 189], ROI Detection [29, 69, 189, 190]

for device recognition, such as collision avoidance for LoRa communication [28, 157]. Besides,
we have to deal with the multi-path interference for the path of interest due to the multi-path
effect. Specifically, SpotFi [58] proposes that the radiated signal could reflect off multiple objects
and arrive at the APs, typically within 6-8 significant paths [58, 99]. And such a path refinement
can be more important for the indoor localization problem [97, 99, 160], which generalizes the
target person as a single reflector. To make it worse, the targeting reflected path can sometimes
be much weaker than the uninterested ones. For example, those bouncing off the wall are much
stronger than the reflections from objects inside the room. Thus, the former can overwhelm the
distortions induced by the target object, preventing it from registering the minute variations.
This behavior is called the Flash Effect [8] since it is analogous to how a mirror in front of a
camera reflects the cameras flash and prevents it from capturing objects in the scene. Equivalently,
the near-far problem [6] indicates that the reflection off the nearest target can obfuscate the
signals from distant targets for multi-target sensing. Nevertheless, the multi-path effect can also be
useful for fine-grained sensing tasks, enabling more diversities for feature space such as activity
recognition [4, 52, 192, 194] and user identification [48, 125, 137, 161, 177, 185]. Finally, some
uninterested components can still be contained even if we can extract the target reflected path
accurately, say the environmental-dependent components. And it should be removed otherwise
it usually requires extra deployment cost such as data collection and model re-training when the
system is employed in a new environment, namely the cross-domain sensing [194]. Literately,
the aforementioned three types of noises with the increasing granularity can be eliminated as well
as utilized for specific purposes. And dedicated algorithms can be divided into two parts, including
the data-driven and model-driven algorithms.

4.1.1 Model-driven Reduction. To remove phase offsets induced by the hardware heterogeneity,
we can first formulate them with raw measurements of the souring input using the model-driven
reduction. Given the raw CSI measurement 𝐻𝑡,𝑓 ,𝑠 for the packet 𝑡 at the subcarrier 𝑓 of the antenna
𝑠 , one intuitive method to remove the offsets is to compute the power of 𝐻𝑡,𝑓 ,𝑠 [97, 121, 138, 153],
by which CARM [138] associates the power |𝐻𝑡,𝑓 ,𝑠 |2 with the path length change for further feature
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extraction. However, we can find that extra valuable information such as ToF and AoA can also
be reduced by computing the power of CSI for reflected paths of interest, which hinders some
other models (e.g., the trilateration/triangulation model and joint parameter estimation model)
for final applied outputs. Note that by focusing on the SFO and STO, the erroneous version of
CSI measurements can also be formulated [99] as 𝐻̂𝑡,𝑓 ,𝑠 = 𝐻𝑡,𝑓 ,𝑠𝑒

2𝜋 (Δ𝑓 𝜖𝑡+Δ𝑡𝜖𝑓 )+𝜉𝑠 , at subcarrier
𝑓 of antenna 𝑠 for packet 𝑡 , where 𝜖𝑡 and 𝜖𝑓 are the STO and SFO between transceivers. And
𝜉𝑠 is the initial phase of the receiver sensor, which can be manually calibrated since it keeps
constant every time the receiver starts up [162]. Observing the phase offset are linear across
subcarriers, SpotFi [58] proposes a linear fitting method for accurate ToF estimation. And multiple
following works [9, 27, 56, 58, 70, 83, 85, 124, 160, 187] adopt comparable linear regression
algorithms for noise reduction. For example, Karanam et al. [56] leverage the linear approximation,
namely the WKB approximation [21], to model the interaction interference of the transmitted
wave approximation with the area of interest for 3D Wi-Fi imaging. Wang et al. [124] first adopt
the phase unwrapping [42] to derive the adjusted phase at each subcarrier of CSI, delivering a
Wi-Fi based material detection system. We can also extend the linear regression with multiple
phase shifts, namely multiple linear regression [83]. Thus, it extracts the correlated spatial features
accurately using CNN to recognize 150 sign gestures.
Nevertheless, the linear fitting can eliminate the absolute ToF of the LoS signal, making it

impossible to extract the reflected path of interest using the jointly parameter estimation model [71,
99, 160]. Since the phase contributed by the absolute ToF are also linear across subcarriers [99].
Thus, the conjugate multiplication [71, 99] is proposed to filter out irrelevant noises while
retaining indispensable channel responses. And the basic idea is that the time-variant random
phase offsets are the same across different antennas on a Wi-Fi card [58, 70] as they share the
same RF oscillator. Therefore, we can select a antenna as the reference one 𝑠0 and calculate the
conjugate multiplication 𝐶 (𝑡, 𝑓 , 𝑠) = 𝐻̂ (𝑡, 𝑓 , 𝑠) ∗ 𝐻̂ (𝑡, 𝑓 , 𝑠0) = 𝐻 (𝑡, 𝑓 , 𝑠) ∗ 𝐻 (𝑡, 𝑓 , 𝑠0), resolving the
offset noise and multi-path interference simultaneously. Beyond that, the coordinates system
transform [14, 56, 123, 194] can also be utilized for noise reduction. One interesting design is
BreathJunior [123], which transforms the white noise into multiple FMCW signals at the receiver
while preserving the multi-path reflection information with a negligible SNR loss. Thus, it can
demodulate these orthogonal FMCW chirps to sense the minute respiration motion of infants
and compute their distance from the smart speaker, without any noise damage to infants. Besides,
DLoc [14] transforms the extracted 2D AoA-ToF profile into the global 2D Cartesian plane, which
represents the location probability spread out over the X-Y plane and can be further fed into
the designed neural network for imaging translation. And it outperforms the state-of-the-art,
SpotFi [58], for Wi-Fi based localization by 80% across the 2000 sq.ft. area. Finally, the remaining
challenge is the environment-dependent components of signals for cross-domain sensing, which
cannot be resolved due to the complex mapping functions in the high-level feature space. To filter
out the environment-dependent components while reducing the deployment cost such as data
collection, we introduce AI approaches for domain-independent feature extraction in § 4.3.

4.1.2 Data-driven Reduction. Another type of noise reduction algorithms is the data-driven reduc-
tion by mining the massive wireless signals. For example, we can remove the background noise by
recording it in advance for further calibration. And one intuitive method is to subtract directly the
pre-recorded interference from the raw sourcing input. For example, the background subtraction
widely used for human localization and tracking [5–7, 27, 28, 28, 34, 49, 50, 71, 86, 86, 87, 181, 188,
190]. To eliminate the reflections from static objects (wall, furniture), we can measure the interfer-
ence initially and subtract it for the following collected signals. Further, we can adapt the measured
interference iteratively for continuous calibration, namely the Successive Interference Cancellation
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(SSC) [6, 28, 181]. Besides, we can also leverage multiple types of filters for data-driven noise
reduction, such as the frequency response filter [97, 114, 123, 125, 137, 139, 161, 167, 177, 194], say
the Butterworth IIR filter with a flat amplitude response, Kalman Filter [88, 99], Savitzky-Golay
Filter [151, 153], Moving Average Filter [110, 185], even the wavelet filter [4, 22]. Specifically,
CapCam [173] convolvs the input image with the designed wavelet filter to extract the vertical
line of the symmetric neighbor pixels for reflection symmetry detection. To deal with the non-
flat frequency response in the acoustic channel of the speaker, we can measure the frequency
response and compensate for its effect, namely frequency response compensation [86, 88].
For example, AIM [86] develops an two-step phase gradient algorithm for acoustic imaging,
namely MPGA. And it first compensates for quantization errors and then estimates phase er-
rors using a stochastic method. Thus, it can remove the assumption of narrow beam signals and
capture the impact of closely spaced dominant reflectors [86]. The similar issue also bothers
the Wi-Fi sensing. Some works also employ mathematical operations to provides additional
resilience to noise [47, 52, 57, 59, 78, 83, 88, 117, 118, 124, 132, 151, 165, 186, 192], such as interpo-
lation [7, 52, 118, 192], ratio computation [117, 132, 151], Phase Unwrapping [83, 124, 186], and
Gaussian mask [47, 57, 96]. For example, Chronos [118] interpolates the continuous subcarriers of
CSI to estimate the offset-free zero-subcarrier, which overlaps with DC offsets in hardware that
are extremely difficult to remove [46]. FingerDraw [151] propose a novel CSI-quotient operation
which computes the quotient of two CSI signals from various antennas at the same receiver. And
it can cancel random phase offsets which are identical among the antennas of the same receiver
based on the model-driven algorithms in [71, 99, 128]. In addition, it effectively maximizes SNR so
that the resolution of CSI signals can be significantly improved [151] for tiny finger tracking.

The rationale behind the data-driven reduction is to leverage the pre-measured interference for
the following calibration, whose performance depends on the granularity and adaptation of the
interference measurements. From the view of DL techniques, the calibration can be substituted
using the data-hungry network, which can distinguish the signals of interest and noise, such as
the phase offsets induced by hardware heterogeneity and background interference, the irrelevant
reflected paths induced by the flash effect and near-far problem, and the non-flat frequency response.
We however witness few works on this issue and the reason can be the difficult modification of DL
techniques for massive dirty wireless noise signals (See § 7).

4.2 Data Adaptation
To balance the computation efficiency and signal granularity, data adaptation is required for
further transform method and feature extraction. On one hand, we can leverage the compression
algorithms to remove the redundant components to improve computation efficiency. On the other
hand, composition algorithms can be utilized to acquire multi-dimensional information, rendering
it more sensible to fine-grained sensing variance.

4.2.1 Compression Adaptation. Given the massive sanitized sourcing inputs, employing transform
methods for further feature extraction directly can be too computation-intensive to be running
in real time [63, 194]. For example, the size of CSI measurement [82] can be 3 × 30 × 1000 ×
32/8 = 360𝐾𝐵/𝑠 for a 20 MHz Wi-Fi channel with each packet represented by 32 bits at the
sampling rate of 1000 from 30 subcarriers of 3 pairs of transceivers [63, 97, 194]. And traditional
compression algorithms include Principal/Independent Component Analysis (PCA/ICA) using the
linear transformation [48, 57, 63, 92, 97, 121, 137, 138, 161, 184, 194], Singular Value Decomposition
(SVD) [8, 33, 58, 71, 178], graph-based pathmatching [56, 63, 97, 99, 150], and component selection [7,
70, 86–88, 90, 97, 114, 119, 125, 131, 167, 174, 177, 201].
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Clap PCA #1 PCA #2 PCA #3

(a) The first three PCA components of the CSI spectrogram for gesture recognition (e.g., clapping).
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(b) Graph-based path matching of CSI for data compression.
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Fig. 5. Multiple compression algorithms, including PCA, graph-based path matching and frequency selection.

PCA is widely used for dimensionality reduction of data while retaining most of the most
information with selected primary components, which is a set of linearly uncorrelated variables
and ordered by the fraction of the total information each contains. Note that the input is assumed
to be a set of possibly correlated variables, such as the CSI matrix with multiple subcarriers.
And the number of selected primary components depends on the demanding granularity of the
specific sensing task. Note that more components contain more complementary information while
consuming more time for further processing. And most existing works select only one primary
component [97, 111, 122, 194], such as the first one[97, 194] after noise reduction using the filter
or the third one without the filter [111, 122]. Illustrated in Figure 5(a), the first three primary
components are plotted given the CSI spectrogram of Wi-Fi for gesture recognition [194]. We can
observe that different primary components contain diverse scales of information corresponding
to the motion of various body parts. Specifically, PCA #1 shows the dominant power distribution
(e.g., the torso) while PCA #3 provides finer-grained motion pattern which can represent the
symmetrical arm movements for the clapping gesture [64]. Similarly, we also have ICA [92] and
SVD (or eigen decomposition) using the coordinate transformation for data separation and
dimensionality reduction, respectively. For example, Ohara et al. [92] employ ICA to separate the
events caused by objects since CSI of Wi-Fi consists of the mixed effects of multiple indoor objects.
And the eigen decomposition is incorporated in MUSIC algorithm (See § 6.2) for AoA estimation
with the covariance or correlation matrix of the input [8, 58, 71, 178].

Given a continuous sequence of data, the graph-based path matching algorithm can also be
utilized for data compression [56, 63, 97, 99, 150]. For example, the optimal combination of multiple
parameters (e.g., AoA, ToF, velocity) should be estimated with continuous packets for human
localization and tracking. Illustrated in Figure 5(a). give the CSI spectrogram with 𝑖 to 𝑗 packets, we
can integrate the physical restrictions such as the velocity continuation for the parameter estimation
between each pair of adjacent packets, say the 𝑘 and 𝑗 packets. Specifically, Widar [97] properly
decimates the velocity change between adjacent packets with the knowledge of the maximum
acceleration of walking human, say 3.2𝑚/𝑠2. And it then can select the dominant velocity change
paths for human tracking. Further, we can also compress the data with the component selection,
including the frequency response [7, 87, 88, 90, 97, 119, 131] and time delay [86, 125, 174, 177]. The
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rationale is that subcarriers of CSI with different frequency are experiencing frequency-selective
fading [40] and the target reflection has a specific range for the propagation delay. Figure 5(c)
shows multiple waveforms of Channel Frequency Response (CFR) power measurements across
subcarriers of Wi-Fi, each of which has various dynamics while the target person is walking. To
choose appropriate subcarrier for maximizing the proportion of reflecting power while suppressing
the noise, selected subcarriers should have larger dynamics, especially compared with the latest
static one [97]. Besides, LiFS [131] adopts a threshold to filter out those “dirty" subcarriers based
on whether the power decrease is large enough for human tracking. Specifically, if a target is not
located on the LoS path, the threshold 𝛿𝑒 𝑓 𝑓 for power decrease is defined as the averaged standard
deviation over all subcarriers. Further, the frequency selection can also be employed initially such as
ReMix [119] for in-body deep-tissue backscatter, which can achieve optimal transmission efficiency
and safety limits by distinguishing the required weak frequency response from the backscatter
signals. As for the delay selection, Strata [174] estimates the channel impulse response (CIR) of
acoustic, which characterizes signal traversal paths with different delays in time domain. And
the delay selection is required to explicitly take into account the multi-path propagation since
each channel tap corresponds to the multi-path effects within a certain delay range. Additionally,
WiWho [177] extracts the CIR of Wi-Fi within the delay of less than 0.5 microseconds to remove
distant multi-path components and then converts the CIR back to CFR using FFT. Thus, we can
focus on the reflected path of the target gait within a room which is necessary for user identification.

4.2.2 Composition Adaptation. To provide additional resilience to interference, multi-dimensional
and orthogonal measurements are required for composition adaptation from multiple devices,
channels, and virtual samples. Specifically, Multiple-Input Multiple-Output (MIMO) used for Wi-Fi
cannot enhance a high throughput to meet the growing demands of wireless data traffic but also
provide multiple spatial vantage views of sourcing input collection for sensing tasks. Besides, all
those SAR [31] based WSSs [8, 47, 50, 56, 59, 86] require the mechanical scanning or a massive
antenna array as a filled 2D aperture. Ubicarse [59] proposes the circular SAR by moving a single
antenna in a circle to emulate a circular antenna array, delivering a transition-resilient SAR system
for the complex unknown trajectories. And it however increases the deployment cost significantly.
For example, Wision [50] employs a (8, 8) stationary antenna array while Karanam et al. [56]
demand on the antenna scanning to formulate a virtual antenna array equivalent to 150 × 150.
To alleviate the limitation of narrow bandwidth on the spatial resolution, multi-channel in-

formation is integrated [34, 118, 132, 181], such as the channel stitching for emulation of the
wide-band radio [118, 181]. The basic idea is to transmit packets on multiple Wi-Fi bands (35 avail-
able Wi-Fi bands) and stitch the information together to give the illusion of a wide-band radio [118].
Furthermore, virtual samples can also be utilized with the virtual antenna array [8, 58, 150]
or combination of separate samples [69, 121, 184]. Specifically, mainstream APs only have a few
antennas, limiting the resolution and robustness of the measurements. Thus, RIM employs a number
of virtual antennas emulated by the sequence of channel snapshots recorded by a moving antenna,
forming a virtual massive antenna array whose size is the number of channel snapshots [150]. And
it can further bootstrap the super-resolution feature extraction. Note that the virtual antenna array
requires the moving transceivers for multiple channel snapshots acquisition, say device-based
sensing [58, 150]. To recognize multi-user gesture using Wi-Fi, WiMU [121] generates virtual
samples for any plausible combination of gestures using the training samples collected from a
single user, which are identical to the real samples that would result from real users performing that
combination of gestures. Thus, it can reduce the deployment cost significantly while recognizing
the simultaneously performed gestures.
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4.3 AI Approach toward the Signal Pre-processing
Illustrated in Table 2, most researches leverage DL techniques for domain-independent feature
extraction [29, 52, 53, 63, 81, 134, 136, 165, 184, 191]. To mitigate the degradation induced by
the feature shift in new environments, DFAR [136] develops a maximum-minimum adversarial
approach for transferring the feature in cross-scenarios conditions. Then it customizes a multi-layer
CNN for the cross-scenario activity recognition via mmWave. Given the domain-dependent CSI of
Wi-Fi, DFGR [81] designs a deep feature extraction as well as a deep similarity evaluation network.
And the former learns discriminative deep features while the latter evaluates the transferrable
similarity from the training set to the new testing conditions. To further reduce the training effort
while being scaled up to cross-scenario conditions, CrossSense [184] employs the transfer learning
technique to remove the irrelevant components by designing a 7-layer feed-forward ANN roaming
model. Further, EI [52] and RF-Sleep [191] integrate the adversarial architecture into the feature
extractor, which can learn environmental-independent components by specially designed loss
functions for the generator and discriminator as the penalty. Unfortunately, all cannot eliminate
the deployment cost including data collection or model re-training. To achieve the zero-effort
cross-domain sensing, Widar3.0 [194] designs a Wi-Fi based gesture recognition system to be
deployed in cross-scenarios conditions such as new users, positions, orientations and environments
out of the training dataset without any deployment cost. It first derives the Body-coordinate
velocity Profile (BVP) with CSI measurements, which is a domain-independent physical feature
since BVP is inherently irrelevant to the domains such as the deployment of the transceivers or the
orientation of performers. It further enhances the domain-specific noise reduction by integrating a
CNN-based GRU model and achieves a comparable gesture recognition performance when applying
in new domains directly. Importantly, it demonstrates that the potential of incorporating signal
processing with DL techniques for noise reduction [29, 53, 63, 165, 194]. Subsequently, WiPose [53]
removes the posture-irrelevant noise using the 3D BVP and employs a 7-layer CNN-LSTM model
for enhancement while WiHF [63] designs a new domain-independent feature, the motion change
pattern, and a collaborative CNN-GRU model to recognize gestures and users simultaneously.
To further improve the computation-efficiency for sensing tasks in complex scenarios, DL

techniques can also be utilized for data compression, such as the attention module [120] and
the network for Region of Interest (ROI) detection. And the former is proposed to equip the
neural network with the ability to focus on a subset of its inputs while the latter is widely used
for object detection and segmentation in the field of computer vision. Specifically, given that the
human body is best modeled as a quasi-specular reflector [5], the attention module is employed in
the designed neural network to solve the missing body part for individual RF frames, rendering
a reliable WSSs for human mesh recovery [189], multi-person activity recognition [69], and fine-
grained user identification [29], especially through the wall. The basic idea of the attention module
is to emulate the working mechanisms of human brain for content awareness and compute a mask
for the input feature. And many related works have been proposed for further exploration, such as
bottleneck attention module [93] and convolutional block attention module [149] to be integrated
with any feed-forward CNN. The attention module achieves significant progress for computer
vision tasks and is supposed to compress massive wireless signals effectively. Further, the network
designed for ROI detection is also adopted to focus on signals of interest, such as the Region
Proposal Network (RPN) for multi-person detection [69, 189, 190]. Basically, it’s analogous to the
beamforming technique via directional antennas [6], which is used for multi-target segmentation.
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Table 3. Summary of Existing Measurements in terms of Feature Design

Spatial Vantages : AoA [14, 55, 58, 70, 71, 71, 87, 99, 110, 117, 160], Amplitude [19, 27, 34, 50,
56, 83, 91, 99, 110, 123, 124, 131, 139, 160, 161, 178], Power Distribution [5, 8, 19, 49, 56, 59, 72,
117, 137, 165, 185, 188–190], Wave Front [14, 47, 50, 86, 87], Sound Field [167], TRRS [150, 155]
Temporal Snapshots : ToF [6, 7, 9, 14, 27, 27, 58, 70, 87, 99, 118, 160], Frequency Shift [6, 7, 85,
88, 94], Phase [9, 34, 83, 90, 123, 124, 132, 138, 151, 153, 161, 174, 186], PLCR [71, 97, 121, 138],
Circularity [137, 177, 192, 201], Rhythm Motion Pattern [4, 63, 78, 139, 187, 192, 201]
Physical Properties : DFS [85, 88, 99, 160], Hardware Behavior [119, 157], Coherence [70],
BVP [53, 194], Polarization [181], Surface Tension [173], Soil Electrical Conductivity [27]
AI Approach: MLP [181, 184], CNN [14, 29, 34, 49, 52, 53, 65, 69, 83, 114, 135, 165, 166, 188–
191, 194], RNN [53, 63, 87, 92, 191, 194], Adversarial Architecture [29, 52, 134, 165, 191]

5 HIGH-LEVEL FEATURE
Given the sanitized signals of interest from the signal processing module, the next challenge is
to feature extraction for further model formulation. Table 3 presents multiple specially designed
features given the final applied output, such as the spatial feature for imaging, temporal feature for
tracking, and physical feature for material recognition.

5.1 Spatial Vantages
Intuitively, various devices with corresponding spatial vantages can obtain the complementary in-
formation of surroundings. And recording the spatial distribution of transmitted wireless radiations
can help pinpoint the target by traversing or reflecting off it.AoA has been broadly used as a spatial
feature, which indicates the direction of the signal arriving at the receiver and can be estimated
using multiple antennas of the same receiver [14, 58, 70, 71, 71, 87, 99, 110, 117, 160]. Thus, we can
determine the target with multiple directions derived by corresponding devices. Besides, the concept
of the angle can also be extended to the angle of departure from the transmitter, namely Angle of
Departure (AoD). For example, md-Track profiles each single reflected path using the AoA, AoD,
Doppler Shift, and the attenuation. And it employs the joint parameter estimation model iteratively
to handle multiple reflected paths arriving along different propagation directions, illustrated in
Figure 6(a) for the device-free tracking task. Another representative is the amplitude attenuation
for computing the propagating fading such as the reflection, refraction, diffraction, absorption,
scattering, and shadowing fading [19, 27, 34, 50, 56, 83, 91, 99, 110, 123, 124, 131, 139, 160, 161, 178],
say LDPL model [109] used for RSSI. Specifically, LiFS [131] formulates the amplitude attenuation
between the transmitter and the receiver as the summation of the propagation fading, diffraction
fading and the target absorption fading. And it achieves a comparable performance with the finger-
printing but requires a dense deployment of devices by employing the radio tomography imaging
approach for localization, say 40 antennas [99]. Another example is the LANDMARK [91], which
scans the 8 discrete power levels of RFID and estimates the signal strength of tags. Since none of
the currently available RFID products provides the signal strength of tags directly at that time.
LANDMARK however employs a massive reference tag array and multiple readers as cooperated
eyes for the monitoring area. Thus, it can measure the similarity of the received signal strength
between the reference tags and the tracking ones, delivering the first sensing RFID system for indoor
objects localization. Further, the power distribution indicates the power heatmap in 2D plane,
such as the Cartesian plane [5, 49, 56, 72, 188–190] or the spectrogram [19, 57, 97, 137, 165]. Thus, it
can estimate the distributed probability for localization and tracking. To describe the signal power
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Fig. 6. Joint multi-parameter estimation and the temporal phase change for the time delay.

below the noise floor reliably, SateLoc [72] employs the Expected Signal Power (ESP) measurement
by incorporating the SNR information with RSSI, delivering the probabilistic power distribution
map for each target node of the monitoring area. And it outperforms the state-of-the-art localization
works using LoRa. Besides, XModal-ID [57] captures the gait characteristics of a person based on
Wi-Fi CSI spectrogram using STFT. Thus, it can identify users without the need to know the track
of the person, even through the wall.
Additionally, exploring the physical phenomenon across modalities and fields also enhance

the spatial feature design, such as the wave front [14, 47, 50, 86, 87], sound field [167], time
reversal focusing effect [150]. Given the propagating electromagnetic waves with a precisely
known amplitude and phase, a two-dimensional wave front is formed by radiations while encoding
the pixel-wise amplitude and phase distribution of the traversed or reflected plane [47]. Resembling
light, wireless signals inherently represent the intensity and direction information of each pixel with
a complex value[47] while the light can only record the pixel-wise intensity using the light amplitude.
Given the propagation mechanism of a wave field in the microscopy, the angular-spectrum relation
models the propagation of a wave field, rendering the light field at an arbitrary depth in space.
Thus, it can be utilized for the 3D hologram in the whole space, which is a prospecting problem for
wireless sensing. Besides. CaField [167] proposes the biometric feature with the voice propagation
stage as the “fieldprint", analogous to “voiceprints". And a fieldprint is extracted from the sound
field [16], which is a physical field of acoustic energy created by the propagation of sound over
the air. The sound field can be used for voice authentication (either a human or a loudspeaker)
since it is only affected by the physical structure, such as physiological features of the mouth, head,
and torso, or dimensions of the mechanical components. Another example is the time-reversal
focusing effect applied in the fields of ultrasonic, acoustics, light and electromagnetism [61, 62].
And it profiles the focused energy of the transmitted signal in both space and time domains when
combined with its time-reversed and conjugated counterpart [150]. To represent the effect with the
Wi-Fi CSI measurements, RIM [150] leverages the Time-reversal Resonating Strength (TRRS) [155]
for the multi-path profile which can underpin a high-resolution location map. Thus, it can compute
the fingerprinting of the multi-path effect for device-based tracking.

5.2 Temporal Snapshots
Sequential data is to spatial one what the video is to an image. And a temporal feature can capture
the temporal correlation among each frame of the sequential signals, analogous to continuous
snapshots of videos. One well-known temporal feature is the ToF, which records the propagation
time the targeting signal takes to travel along a particular path from the transmitter to the receiver.
Given the series of ToF estimations as snapshots, we can track the distance of the moving target
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continuously [6, 7, 9, 14, 27, 27, 58, 70, 87, 99, 118, 160]. To extract the ToF accurately, Chronos [118]
utilizes the multi-channel stitching to emulate a wide-band radio, achieving the sub-nanosecond
ToF estimation using Wi-Fi (See § 4.2) while Strobe [27] leverages the relative ToF to provide
a high accuracy distance measurements without requiring an ultra-wide bandwidth. Since the
resolution of relative ToF is only constrained by carrier frequency, not bandwidth [58]. And the
relative ToF error is 0.006 ns at 2.4GHz for Wi-Fi. Besides, we can also estimate the ToF using
the frequency shift of chirp signals due to the duality characteristic of chirps between time
and frequency [28, 157]. Given the FMCW radio, WiTrack [7] first integrates the ToF with the
direction information derived by three directional antennas. By recording multiple ToF snapshots
corresponding to different body parts, it achieves the 3D human tacking, elderly fall detection
and control appliances interaction. WiTrack2.0 [6] further designs a multi-shift FMCW scheme to
avoid interference among multiple transceivers and leverages the successive silhouette cancellation
based on the background subtraction (See § 4.1) to detect the ToF of weak reflection paths for
multi-person localization. To measure the frequency shift of acoustic [85, 88, 94], CAT first calibrates
the frequency shift induced by the sampling frequency offset using the least square regression
and incorporates the frequency shift estimation with Doppler shift over the time. Since the former
feature can give the distance estimationwithout incurring error accumulation and the latter provides
more accurate distance change in a short-term. And droneTrack [88] extracts the frequency shift
using the MUltiple SIgnal Classification (MUSIC) model, resolving multi-path and enhancing the
distance estimation.
Given the spectrogram of multi-FMCW reflected chirps at the receiver, each frequency bin

corresponds to reflections at different distances. To further improve the resolution of ToF impacted
by the bandwidth and themulti-path effect, BreathJunior [123] leverages the phase of each frequency
component of the demodulated acoustic signals for minute breathing motion detection of infants.
Since a tiny 1mm displacement will result in a significant 0.185 radian phase difference for the
measured spectrogram. And the phase change have been broadly adopted for minute distance
estimation [9, 34, 83, 90, 123, 124, 132, 138, 151, 153, 161, 174, 186]. For example, RF-Mehndi [186]
employs a RFID tag array as the authentication credential and extracts the unique phase change
induced by the fingertip touching for user authentication. Meanwhile, Wang et al. [124] reconstruct
the accurate amplitude and phase change from the reflected Wi-Fi signals for dangerous material
type detection. Illustrated in Figure 6(b), WiDir [153] further associates the phase changes with the
time delay between subcarriers of Wi-Fi CSI. Since the phase change overtime corresponds to the
time correlation between instant waveforms for computation. Thus, it can estimate the sign of the
time delay based on the Fresnel Zone [101] readily for walking direction detection.

Beyond the temporal snapshots of the phase change, several temporal features are also designed
with definite physical characteristics, including the Path Length Change Rate (PLCR) [71, 97,
121, 138], circularity [137, 177, 192, 201], and rhythm motion Pattern [4, 63, 78, 139, 177, 187,
192, 201]. Given the model-driven power model for noise reduction (See § 4.1), CARM [138] first
associates the power |𝐻𝑡,𝑓 ,𝑠 |2 with the path length change by dividing the multi-path channel
into static path 𝑃𝑠 and dynamic path 𝑃𝑑 . Then we can further derive the corresponding target
moving velocity based on the Doppler Frequency Shift [97, 121, 138]. Since we can find the total CSI
power is the sum of a constant offset and a set of sinusoids, where the frequencies of the sinusoids
are functions of the speed of path length change [121, 138]. Given the CSI-speed power model,
Widar [97] integrates the sanitized CSI power with the moving velocity and pinpoints the target
person consecutively using a geometrical tracing estimation (See § 6.1) for the following model
formulation while WiMU [121] leverages the frequency difference and combination of various
terms in the power for multi-person gesture recognition. To extract the personalized styles of the
biometric feature for user identification, AutoID [201] represents the gait circularity using the
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designed shapelet for CSI time series, which indicates the local, phase-independent sub-sequences
of time series that features the maximal discriminative power for time series classification [170].
Similarly, WifiU [137] correlates the movement speed of different body parts with the spectrogram
by extracting 170 user-specific gait features such as gait cycle time, achieving an average accuracy of
93.05% for the top-3 recognition among 50 users. Further, WiHF [63] and Smokey [192] extract the
rhythm motion pattern resembling the acceleration information representing unique performing
styles, enabling user identification and smoking detection, respectively.

5.3 Physical Characteristics
One common physical characteristic is the Doppler Frequency Shift (DFS), which indicates the
introduced frequency shift by movements of the transceivers or the reflector [85, 88, 99, 160]. And
droneTrack [88] estimates the target’s relative velocity with the drone by measuring the amount of
Doppler shift, delivering an automatic following system for drones. Note that the resolution of the
Doppler shift depends on the observation interval [160]. To acquire multi-dimensional information,
several works leverage the joint parameter estimation model [71, 99, 160] to provide extra resilience
to the power fading and the multi-path effect (See § 6.2), which incorporates Doppler shift with
ToF, AoA and amplitude attenuation. Besides, the hardware behavior, say hardware imperfection
or non-linearity which can also be utilized for physical feature extraction. FTrack [157] extracts
the frequency shift induced by the hardware imperfection and distinguish various devices for
transmission collision avoidance. To isolate the much weaker backscatter signal under deep tissues,
ReMix [119] employs the Schottky Diode as the tiny and passive backscatter radio for its non-
linearity response, delivering an in-body backscatter system for communication and localization.
Exploring physical characteristics can further turn waste into treasure. Given the device-free
scenarios, the signal of LoS and signals reflected by static objects are coherent with each other.
And coherency is usually considered harmful for the traditional MUSIC algorithm. Thus, different
schemes [58, 162] are proposed to remove the coherence among signals for accurate AoA estimation.
MaTrack [70] proposes the Dynamic-MUSIC method to utilize this ‘bad’ coherence to distinguish
signals reflected from the moving target intelligently. Meanwhile, RIM [150] leverages the time-
reversal focusing effect [61, 62] to transform the power distribution induced by the multi-path
effect to fingerprints. In other word, the more impact of the multiple paths on the power distribution,
the finer granularity of the fingerprinting map we can derive. We also have some effective scientific
observations to extend the range of wireless systems. IntuWition [181] extracts the polarization
of Wi-Fi signals bouncing off targets, which can sense the material type and surface texture of the
reflector. And CapCam [173] measures the surface tension by formulating its quantity relationship
with the focusing light of the vibrating water surface, achieving the water contamination and alcohol
concentration detection. Additionally, Strobe [27] associates the wave propagation characteristics
with soil properties, say the soil permittivity and electrical conductivity. Thus, it delivers the
Wi-Fi based sensing system for the soil moisture and salinity.

5.4 AI Approach toward the High-level Feature
Due to its high-level learning ability, DL techniques have been broadly utilized for feature extraction.
Illustrated in Table 3, multiple convolution based networks are designed for spatial vantages analysis,
including MLP [181, 184], CNN [49, 52, 53, 83, 165, 166, 191, 194] and some derivative networks
such as the encoder-decoder network [14, 29, 34, 69, 114, 188–190]. For example, intuWition [181]
recognizesmaterials using the polarization of the signals, a physical phenomenon of electromagnetic
waves. And it employs a simple MLP to enhance the polarization extraction from the processed
wireless signals. Experiments demonstrate that MLP outperforms the traditional ML based feature
extractor such as REF-SVM, k-NN, and Naïve Bayes. Compared with MLP, CNN demonstrates the
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powerful capability for automatic spatial feature optimization due to its design on local connectivity,
parameter sharing, input adaptation and equivalent representation (See § 2). Thus,WSSs incorporate
CNN for finer-grained spatial feature extraction. Specifically, Li et al [65] design a simple but
effective 6-layer CNN with the power distribution of CSI across multiple APs, outperforming the
SVM based model for human activity recognition. To avoid the handcraft feature design for a
specific application, Wang et al. [135] integrate the sparse auto-encoder network for the spatial
feature extraction of multiple applications, achieving a higher accuracy for location, activity, and
gesture recognition simultaneously. SignFi [83] further employs a 9-layer CNN to capture the
spatial correlation from the amplitude and phase of CSI measurements to recognize 276 sign
gestures. Given the conventional SVM spoofing scheme, Shi et al. [114] integrate the CNN to
extract the 9 manually designed physio-logical (e.g., body shape, height, and weight) and behavioral
characteristics (e.g., walking patterns) from daily activities, rendering distinctive spatial features
for authentication among 11 users. Further, DLoc [14] employs a CNN based encoder-decoder
network composed of a stack of CNNs for sequence-to-sequence translation in the natural language
processing. DLoc formulates the tracking problem in the monitoring area as the image translation.
The encoder-decoder network takes as input the heatmap in Cartesian plane after 2D FFT and
outputs the pixel-wise spatial probability distribution map for indoor navigation. We can see the
utilization of DL network can alleviate the cumbersome efforts for manually feature design and
further bootstrap applications of WSSs.

DL techniques can also be used to capture the temporal snapshots of sequential signals, such as
RNN, LSTM, and GRU [53, 63, 87, 92, 191, 194]. Given the noisy 2D AoA-ToF profiles, RTrack [87]
designs a RNN to map the error-prone 2D AoA-distance profile derived by the 2D MUSIC [144] to a
fine-grained one of the target reflector, even under low SNR. The rationale is that RNN can exploit
the temporal structure among consecutive 2D profile and correct the impact of noise, multi-path
and mobility issues [87]. Note that most WSSs [14, 58, 99, 160] incorporate the temporal snapshots
with the spatial vantages for distance and direction estimation collaboratively. And it also applies
to neural networks, say CNN based GRU network designed by Widar3.0 [194] to extract the spatial
and temporal features. Furthermore, WiPose [53] employs a stacked 4-layer CNN followed by a
3-layer LSTM, which can capture relatively long movements of body parts for pose estimation
using commercial Wi-Fi. Eventually. comprehensive evaluations are also presented to verify the
effectiveness of RNN for temporal feature extraction. RTrack [87] demonstrates the increasing
correlation between the output of a deeper intermediate layer of RNN and the ground truth.
Meanwhile, Widar3.0 [194] verifies that the simple single-layer GRUs are sufficient for capturing
temporal dependencies for short-time human gesture. Note that exploring the design of the neural
network cannot only optimize the selection of DL models, but also enhance the interpretability of
AI approaches. Thus, we can tailor DL techniques for wireless signals, such as the design of loss
functions [52, 53, 63], to further narrow the gap between them.
To extract the physical features efficiently, the adversarial architecture such as GAN [29,

52, 165, 191] can be utilized to learn the hidden connection between the sourcing inputs and the
applied outputs. For example, RF-Sleep [191] leverages the conditional adversarial architecture
to distinguish the fake samples from the ground truth, rendering a CNN-RNN feature extractor
to learn the optimal feature for sleep stage detection. EI [52] employs a GAN model to remove
the irrelevant components from the CNN feature extractor, reducing the deployment cost for
cross-domain scenarios. Integrating GANs to WSSs is a promising direction. While it demands on
numerous ad hoc “tricks" to achieve model convergence [179]. Nevertheless, the rapid development
of GAN in the field of computer vision, such as the Pix2pix GAN [51] and Cycle-GAN [198], inspires
us to exploit the potential combination of GANs and WSSs for the future work (See §6).
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6 SENSING MODEL FORMULATION
Given the specially designed features, the remaining challenge is to formulate a model to bridge
the “illuminated" sourcing input with the final applied output.

Table 4. Summary of Existing Methodologies in terms of Model Formulation

Geometrical Model: Trilateration/Triangulation [7, 7, 58, 90, 118, 151, 174, 190, 190], Tracing
Estimation [63, 78, 85, 97, 123, 150, 192], SARModel [5, 8, 50, 56, 59, 86], Fresnel Zone Model [131,
151, 153], Skeleton Model [5, 53, 188, 190]
StatisticalModel: JointMulti-parameter Estimation [19, 55, 71, 99, 160], LagrangeMultiplier [25,
53, 56, 118, 181, 185, 194, 201], MUSIC [8, 27, 55, 58, 70, 71, 87, 88, 162], Propagation Model [47,
56, 72, 110, 119, 124, 131, 132]
ML-based Model : k-NN [91, 124, 132, 132, 161, 184], SVM [48, 65, 114, 125, 137, 184, 186, 187],
Hidden Markov Models [92, 117, 138], Random Forest [72], Decision Tree [177, 178];
AI Approach: Customized Network [29, 49, 63, 65, 69, 114, 134, 135, 188–191, 194], Image
Translation [14, 51, 53, 87, 87, 96, 126, 198], Multi-task Learning [29, 63, 126], Transfer Learn-
ing [134, 184]

6.1 Geometrical Model
Given the extracted features for distance and direction estimation, the geometric properties of
triangles can be utilized to estimate the location with a direct (shortest) path for the transmitted
signal, covering trilateration and triangulation. And the former locates the target with the
distance measurement frommultiple reference points while the latter leverages the AoA information
with respect to the reference point for localization. The basic idea is to pinpoint the intersection
of the potential curves corresponding to each pair of transceivers, say the intersection of ellipses
for the device-free sensing or circles for the device-based sensing, illustrated in Figure 7(a). For
example, given the ellipse whose foci are the transmit antenna and the receive antenna with ToF,
WiTrack [7] can uniquely localize the target person using the intersection of two ellipses. It can be
further extended into 3D using the intersection of three ellipsoids. To enhance the accuracy and
reliability of geometrical trilateration, Chronos [118] first refines the distance measurements by
utilizing geometrical constraints, imposed by the physical layouts of transceivers. Then it formulates
the trilateration computation as a quadratic optimization problem. Besides, we can also extract
the motion of the target using the continuous tracing estimation [63, 78, 85, 97, 123, 150, 192].
Specifically, Widar [97] extracts the PLCR of the target representing the radial moving velocity (See
§ 5.2) and formulates the tracking path as continuous splines of the segmented uniform motion,
namely the successive tracking. And LANDMARK2.0 [78] explores the sequential frequency pattern
conveyed by the RFID array and estimates the binary frequency trace sequence for the first tag-free
RFID system for activity monitoring. Further, several works [5, 8, 50, 56, 59, 86] borrow the idea of
the imaging radar system (e.g., SAR [31, 116]) for power distribution of the monitoring area, which
can transmit a short narrow pulse and waits for the pulse to hit an object and return back [50]. And
SAR model employs a massive antenna array (or equivalently, the antenna scanning) as receiver
for the imaging task, illustrated in Figure 7(b). Besides, they develop the modified SAR model for
wireless sensing. Specifically, Wision [50] integrates the beamforming at the transmitter to extract
the depth information beyond the power distribution for Wi-Fi imaging. To provide the required
accuracy of the moving path for the antenna scanning, Ubicarse [59] enables handheld devices to
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Fig. 7. Illustration of the geometrical model such as trilateration for device-based localization, SAR for imaging,
and Fresnel zone model indicating the most reinforced (red) and degraded (blue) locations of reflector.

emulate large antenna arrays by twisting them along coarse-grained paths. Moreover, it combines
the SAR based localization system with stereo-vision algorithms for object localization.

Another geometrical model is the Fresnel Zone model used for localization and tracking [131,
151, 153], representing one of a series of confocal prolate ellipsoidal regions of space between a
transmitter and a receiver [101]. Illustrated in Figure 7(c), the Fresnel Zone model indicates a series
of concentric ellipsoidal regions of alternating reinforced strength and weakened strength of the
wave superposition. And it is caused by the phase change of the reflected path induced by the
moving target, resulting in constructive and destructive interference for the phase of the wave
superposition. Since the phase change 2𝜋𝑑/𝜆 corresponds to the path of length 𝑑 with the radio
wave of wavelength 𝜆. Given the multi-path effect for Wi-Fi sensing, the received signal can be
expressed as a summation of all the paths, namely the wave superposition

∑
𝑎𝑖𝑒

−𝑗2𝜋𝑑𝑖/𝜆 , where
𝑖 is path number and 𝑎 means attenuation coefficient of each path [153]. By focusing on the LoS
and reflected paths for the target person, WiDir [153] observes that when the target person is
along a radio propagation path, radio waves bouncing off those surfaces may either weaken or
reinforce the phase with the signal that travels directly to the receiver, depending on the target’s
relative location to the pair of transceivers. Thus, it measures phase change dynamics from multiple
Wi-Fi subcarriers and infers the walking direction of the target person in a device-free manner.
Meanwhile, FingerDraw [151] employs the data-driven noise reduction, the CSI quotient (See
§ 4.1), for the Fresnel Zone model, achieving the sub-wavelength level finger motion tracking.
LiFS [131] extracts the designed spatial power fading from CSI measurement, delivering a complex
non-linear Fresnel model for the device-free localization. The last introduced geometrical model is
the skeleton model [5, 53, 188, 190], widely used for inertial sensor measurements, in which the
human body is formulated as individual rigid bodies with fixed length. WiPose [53] incorporates
the skeleton knowledge [2] with the DL neural network and designs specific loss functions to
represent the model restrictions, such as the connection and fix-length of the rigid bodies.

6.2 Statistical Model
Statistical models formulate the mapping from inputs to outputs for numerical optimization, which
relies on empirical measurements or probability functions to characterize wireless channels [82].

To acquire the multi-dimensional and complementary information for sensing tasks, one intuitive
idea is to extract multiple features to provide additional resilience to the noise, covering the spatial
vantages, temporal snapshots and physical characteristics. Thus, we can leverage the joint multi-
parameter estimation [19, 71, 99, 160] to integrate various features and derive the final results.
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Specifically, IndoTrack advances MaTrack [70] by incorporates the Doppler shift into the existing
AoA estimation of MaTrack. Widar2.0 further integrates the ToF, AoA, Doppler shift and amplitude
attenuation and employs the sage [24] algorithm for computation efficiency. To improve the
accuracy of the joint estimation, especially under the severe multi-path effect, md-Track [160]
adds the extra AoD and designs a path separation algorithm to analysis each group of estimated
parameters for the corresponding path iteratively, achieving the state-of-the-art in real time.
Another track is the Lagrange Multiplier [53, 56, 118, 181, 185, 194, 201], which resolves the

under-determined problems by employing the regulation term to control the sparsity of solutions.
To estimate the frequency response, Chronos [118] leverages the Non-uniform Discrete Fourier
Transform (NDFT) [15] for measurements of multiple channels spaced uniformly, which can be
re-formulated using the Lagrange multipliers as𝑚𝑖𝑛𝑝 | |ℎ̂ − F𝑝 | |22 + 𝛼 | |𝑝 | |𝑘 , where ℎ̂ is the measured
wireless channels at different zero-subcarriers (See § 4.1) and F denotes the Fourier Matrix [118].
And | | · | |𝑘 is the 𝐿𝑘 norm while the factor 𝛼 enforces the level of sparsity. It has been well-studied
in convex optimization theory that the 𝐿1 norm of a vector favors sparse solutions [118, 181] while
others [53, 194] adopt the idea of compression sensing by applying the 𝐿0 norm.
As an exemplar of the statistical model for numerical estimation, MUSIC [108] is proposed

to extract the spatial feature accurately such as AoA and has multiple variants accordingly [8,
27, 58, 70, 71, 87, 88, 162]. Mathematically, we compute the eigenvectors of 𝑋𝑋𝐻 that correspond
to the eigenvalue zero and that they are orthogonal to the steering vectors [58], where 𝑋 is the
measurement matrix corresponds to the CSI matrix itself. To make the derivation more robust
and accurate, the number of antennas has to be larger than the number of propagation paths
indoors [108]. And SpotFi [58] observes the multiple OFDM subcarriers can be equivalent to
antennas for channel measurements. Given the “bad" coherence (See § 5.3), MaTrack [70] further
proposes the Dynamic-MUSIC model to detect the subtle reflected signals from the human body
while differentiating them from those signals bouncing off static objects (furniture, walls, etc.).
Beyond deriving the AoA using multiple antennas, MUSIC can also be utilized for acoustic sensing,
which usually lacks of a microphone array. And droneTrack [88] integrates the MUSIC model for
FMCW detection to significantly improve the capability of resolving multiple paths and enhance
the distance estimation. Additionally, RTrack [87] extends the MUSIC to the 2D AoA-distance
profile, which jointly estimates the distance and AoA even under low SNR at the room scale.
Finally, multiple fading effects can also be utilized for applied outputs with the propagation

model [47, 56, 72, 110, 119, 124, 131, 132]. Specifically, Karanam et al. estimate the binary occupancy
state of each voxel in the 3D monitoring area by using loopy belief propagation [171], delivering a
drone based 3D imaging system. Depatla et al. [25] achieve the similar 3D binary imaging through
the wall by collecting signals of Wi-Fi and UWB via unmanned vehicles. And it associates the power
measurement with each voxel with the Lagrange multiplier [21] and compress sensing techniques.
And ReMix [119] models the signal refraction propagating through multiple in-body mediums by
segmenting the propagation path with splines of piece-wise segments. Thus, it can localize the
deep-tissue medical implant with 1.4cm accurately in the surface and depth error.

6.3 Machine Learning based Model
Machine learning, or shallow learning based models are often employed to find the boundaries of
sourcing inputs for applied outputs. Illustrated in Table 4, multiple WSSs resort to ML for model
formulation, especially the detection & recognition sensing tasks, including k Nearest Neighbor
(k-NN) [91, 124, 132, 132, 161, 184], SVM [48, 114, 125, 137, 184, 186, 187], and Self-Organizing Map
(SOM) [133]. Specifically, k-NN determines the classification with the majority vote of the ground
truth labels if its k nearest neighbors. TagScan [132] extracts the designed feature representing
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the ratio of RSSI and phase change only dependent on the target material, namely RP-rate. And it
employs the k-NN for material recognition using RFID. While Wang et al. adopt k-NN to select
good subcarriers of CSI for object risk estimation. And SVM separates sampling points of sourcing
input by a set of hyper-planes in a high dimensional space to maximize the functional margin, such
as the distance to the nearest training data points of any class [82]. For example, EQ-Radio [187]
designs the 𝑙1 − 𝑆𝑉𝑀 [197] for final applied outputs from the inputs while previous works treat
the mapping problem as a search problem, which is computation-intensive due to exponentially
large searching space. And it extracts the emotion-specific features from FMCW and differentiate
among various emotional states automatically. Moreover, RF-Mehndi [186] employs the SVM with
the polynomial kernel to analyze the impact of fingertip touching on the RFID tag array, achieving
higher than 99% accuracy for user authentication among 15 users.

We also have other WSSs with various ML based models, say Hidden Markov Models (HMM) [92,
117, 138], Random Forest [72], Decision Tree [177, 178], and Naive Bayes [178]. Mathematically,
HMM formulates the classification problem as a Markov process wherein the true states are hidden.
CARM [138] constructs a HMM for each activity to estimate the mean vector and covariance matrix
corresponding to each state and the transition probabilities for the HMMwhile Duet [117] represents
the absolute locations of target as symbolic ones and extracts the entry and exit boundaries to such
symbolic spaces (e.g., the doors to each room and the side of the couch for sitting). It then leverages
a HMM for each symbolic space to reason about entry and exit events in a probabilistic manner.
Besides, Decision Tree and Naïve Bayes can be utilized to find a branching rule to predict the
target classes and construct a lightweight classifier based on the Bayes’ theorem [82], respectively.

6.4 AI Approach toward the Sensing Model Formulation
Compared with the aforementioned three conventional methodologies for the model formula-
tion, DL models can bridge the “illuminated" sourcing input with the final applied output more
effectively, especially for highly fine-grained sensing tasks, say skeleton recovery, multi-person
activity recognition and mesh reconstruction of humans. Multiple DL techniques can be transferred
from other fields, such as image translation [14, 51, 53, 87, 87, 96, 126, 198], multi-task learn-
ing [29, 63, 126], and transfer learning [134, 184]. To demonstrate the effectiveness of tailoring
processing for integration, we wrap up this part by presenting several WSSs with customized
networks [29, 49, 63, 65, 69, 114, 134, 135, 188–191, 194]
Given the noisy RF signals, the spatial resolution keeps low due to the narrow bandwidth and

the multi-path effect, such as the decimeter-level indoor human localization [70, 71, 97, 99, 160].
And the centimeter-level pose estimation and skeleton recovery seems impossible with existing
signal processing methodologies, especially through the wall. For example, RF-Capture [5], the first
work to capture the human skeleton without carrying any devices through the walls, leverages
the voxel information of FMCW radar and coarse-to-fine antenna scan for the scratched skeleton
reconstruction. Then RF-Pose [188] captures vertical and horizontal two-dimensional heatmaps
of human skeleton using the reflected chirp signals and feeds them into the teacher-student
DNN for 14 keypoints estimation of human body. Further, RF-Pose3D [190] achieves the multi-
person 3D skeleton recovery by integrating the Region Proposal Network (RPN), used for object
detection in the computer vision, for multi-target separation and feature extraction. And it achieves
an average error of 4.5 cm for the keypoint estimation in the 3D Cartesian coordinate system.
Further, the fine-grained pose estimation can bootstrap multiple wireless sensing tasks through
occlusions. Resembles RF-Pose3D [190], RF-Action [69] designs the hierarchical co-occurrence
network by introducing the attention module [120] and multi-proposal module for multi-person
activity recognition. Meanwhile, RF-Avatar [189] integrates the skinned multi-person linear mesh
representation model [79] and builds the trajectory-CNN model with the attention module for
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the 3D human mesh recovery. To extract more persistent human-identifying features like the
body size and shape for user identification, RF-ReID [29] incorporate the hierarchical attention
module [168] and an environmental discriminator. Note that we observe that multiple matured DL
models can be transferred from other fields for wireless sensing. For example, Proffitt et al. [96]
incorporate the vision-based Mask R-CNN [44] on the recovered wave front of the imaging plane,
rendering the static imaging objects with the classification. Given the raw wireless signals, Wang et
al. [200] customize the multi-task DNN [105] with tailored loss functions of body segmentation and
joint estimation for person perception and pose estimation. Based on the similarity of the images
and wireless signals, specific wireless sensing tasks [14, 53, 96, 126] confront the similar problem
formulation (e.g., image translation [51, 198], pose estimation [44, 105]) and adopt unmodified DL
technique in computer vision. And we will explore more in § 8.2.

7 ISSUE & CHALLENGE
While DL techniques demonstrate the promising ability for WSSs, several important issues and
challenges are still remained to be addressed with the employment of DL techniques. And we sum-
marize them with the existing works, covering issues of the collaboration between traditional signal
processing and DL techniques for scalability and generalization, interpretable and comprehensive
systems design for privacy and security as well as robustness and sensibility, respectively.

7.1 Scalability & Generalization
DL techniques rely on massive high-quality data for a scaled and generalized performance. As
the architecture increasingly complex and evolved, a larger data volume and a higher quality are
required with more parameters to be learned and configured. Compared with other fields such as
computer vision and natural language processing, wireless measurements are inherently massive
but noisy (e.g., RSSI and CSI) from commercial devices (e.g., 5300 Wi-Fi NIC, Semtech SX1276 LoRa
node). Since most wireless data collected by sensors and network equipment are frequently subject
to loss, redundancy, mislabelling and class imbalance [179], rendering it much more difficult for
the scalability and generalization of training and learning processes. For example, trained wireless
systems generally suffer from the interference by multiple targets and transceivers as well as the
background noise when transferred into a large-scale scenario [81, 134, 136, 184].

To make the WSSs scalable and generalizable, more efficient integrations between the traditional
signal processing and DL techniques are required with the inherently massive but noisy wireless
measurements. On one hand, we can extract components of wireless signals with definite physical
characteristics by the traditional signal processing, such as PLCR, polarization, BVP, motion
change pattern [53, 63, 194] (See § 5). Since they are inherently consistent when transferred to large-
scale problems and new environments, free from the domain-dependent interference (See § 4.1). On
the other hand, we can tailor the deep learning technique for the specific sensing task, especially
to fuse multi-dimensional information with customized loss functions. In a conceptual sense, we
cannot only give a more definite components of wireless measurements via traditional signal
processing for learning efficiently, but also teach the neural network to learn what should be learnt
with specially designed loss functions of deep learning technique. For example, Widar3.0 [194]
designs the domain-independent BVP to represent the hand motion in the body coordinates while
WiHF [63] proposes the motion change pattern to indicate the personalized arm motion and pause
for the cross-domain gesture recognition. WiPose [53] incorporates the skeleton model for the
cross-domain pose estimation via customized loss functions. It first designs the smooth loss to
guarantee the smooth movement of joints across time. Then the rotation loss is added to penalize
the deformed estimated joints given the rigid skeleton model. Further, more well-defined DL
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techniques can be transferred from other fields, such as the GANs, transfer learning in computer
vision [52, 68, 81, 134, 184]. And more details can be found in § 4.3 and § 8.3.

7.2 Privacy & Security
While the untraceable WSSs provides a non-intrusive and non-obtrusive sensing method for the
real world, it also brings many privacy and security concerns, such as the multiple supervision
applications including daily activities, breathing and respiration rate estimation, and pose estimation
of humans, even through the wall. And it can cause serious damages to the victims if these sensing
information is leaked and obtained by malicious hackers and attackers. Note that DL techniques
can also be utilized to improve the wireless network security since it has been a hot topic for the AI
security, which leverages AI to autonomously identify and respond to potential cyber threats based
on similar or previous activity. Privacy and security issues can be however exacerbated with the
introduced DL techniques. For example, we can fool the WSSs, especially the deep neural network,
using faking signals. On one hand, it has been noticed most of the mainstream neural networks
can be easily fooled into misclassification by adding only a small amount of noise into the original
data. On the other hand, we can also forge the high-level wireless signals on purposes, such as the
fake CSI spectrogram generated by XModal-ID [57].
To further alleviate privacy and security concerns, especially introduced by DL techniques, we

have to make the processing and function of the deep neural network much more interpretable.
For example, RTrack [87] evaluates the correlation between the expected motion parameters with
the feature extracted by each layer of the specially designed RNN. And various PCA components
corresponds to the target distance, AoA, radial and tangential speed, respectively. Thus, new
protocols, policies, architectures, and algorithms can be designed accordingly given the knowledge
of each procedure for the WSSs.

7.3 Robustness & Sensibility
The robustness and sensibility of the WSSs can be balanced by adapting the interference resilience
and sensing granularity, depending on the sensing task. Specifically, the target person can be
generalized as a single point with themoving torso for localization and tracking while themovement
of body parts and joints has to be considered for the gesture recognition and pose estimation. And
various PCA components [63] can be selected to represent corresponding body parts (See § 4.2).
On one hand, robust WSSs require the extraordinary resilience to the interference and noise by
sacrificing the spatial resolution, such as the CSS of LoRa resilient to the multi-path effect. On the
other hand, sensitive WSSs adopt fine-grained CSI and FMCW for accurate sensing while relying
on specially designed procedures for noise reduction, such as imaging [50, 86, 124, 199, 200] and
multi-person localization and tracking [6, 55, 160, 190].
To achieve the balanced performance for the specific sensing task, a comprehensive system is

in demand to adapt the robustness and sensibility of the sensing system. In a conceptual sense, a
trade-off can be optimized between the interference resilience and the sensing granularity.

8 FUTURE TREND
Issues and challenges provide promising research topics with AI approaches toward wireless
sensing. And we present the future trends to bootstrap the deep AI enabled ubiquitous wireless
sensing across modalities, fields and frameworks, respectively. Specifically, the cross-modality
sensing enhances the signal pre-processing with multiple kinds of input signals while cross-field
sensing incorporates knowledges of other fields for high-level feature extraction. Further, the
cross-framework sensing relies on well-defined deep AI frameworks transferred from vision or
audio processing to optimize the sensing modal formulation.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: November 2020.



Deep AI Enabled Ubiquitous Wireless Sensing: A Survey 111:27

8.1 Cross-modality Sensing
Each kind of input signals provides multi-dimensional and complementary measurements for
the ubiquitous sensing. Beyond the focused signals status such as RSSI, CSI and FMCW of Wi-Fi,
acoustic, and LoRa in this survey, multi-modality techniques can provide a promising research trend
for further incorporation, covering the ultrasound, RFID, visible light, laser, mmWave, Bluetooth, the
vision-based images and Inertial Measurement Units (IMU). And the feasibility and potential of the
cross-modality sensing have been demonstrated in recent works [18, 52, 57, 59, 85, 96, 117, 126, 150].
Specifically, AmphiLight [18] integrates the laser light with ultrasound to deliver a bidirectional
air-water wireless communication systems, achieving up to 5.04 Mbps at 6.5 m in the air and 2.5 m
underwater. Since the laser light is capable of adapting to water dynamics for high-throughput
communication while the ultrasonic can recover the dynamical wave surface for high-accuracy
localization. Besides, CAT [85] incorporates IMU measurements (e.g., accelerometer and gyroscope)
with the FMCW radio of acoustic to improve the localization accuracy while Ubicarse [59] combines
the RF localization systems with the stereo-vision algorithms for object Geo-tagging. To meet the
rigid time deadline for anti-wave generation, MUTE [113] deploys an extra RF device to forward the
ambient noise over the wireless radio, rendering a glimpse into the actual sounds at the receiver side
for instant noise cancellation. Since wireless signals travel much faster than sound. Systematically,
the integration of cross-modality technique can improve existing WSSs in multiple aspects by
providing a larger coverage, reducing the deployment cost and improving the robustness and
generalization as well.

8.2 Cross-field Sensing
Exploring the cross-field observations cannot only extend the application range of wireless sensing
but also provide more signal processing techniques and physical phenomenon for further ubiquitous
sensing. For example, Radio Tomographic Imaging (RTI) has been researched broadly for imaging
the attenuation caused by physical objects in wireless networks [25, 56, 96, 146, 147]. All however
can only achieve the decimeter-level imaging for moving objects due to the low spatial resolution
of wireless signals as well as the interfering background noise. A finger-grained wireless sensing
has been encouraged by observations from other fields, covering the medical communication,
PhotogAcoustic Tomography (PAT), micro-scale material, and coherent light propagation. On one
hand, medical communication require to explore the potential for in-body wireless communication
at the centimeter level, such as implant localization and charging [30, 119]. On the other hand,
principles of PhotogAcoustic Tomography (PAT) and micro-scale material in physics verify the
feasibility of finer-grained imaging of at the cellular level. Physically, PAT is an emerging imaging
modality for preclinical research and clinical practice. The rationale is the acoustic detection of
optical absorption from either endogenous chromophores or exogenous contrast agents, enabling
the super-resolution observations of cellular and subcellular structures [156]. Since ultrasound
scatters much less than light in tissue. Guo et al. [39] further leverage the property of the scattering
medium for single-shot compression PAT, in which it can increase the imaging efficiency greatly
with one-time optical illumination for the imaging target. We expect it the principal of PAT can
guide the finger-grained wireless sensing for medical research. Besides, Holl et.al [47] explore the
principals of the coherent light propagation and microscope imaging, indicating the feasibility of
indoor holography via Wi-Fi radiations. And we regard it as a future trend for multi-dimensional
and multi-level wireless sensing.
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8.3 Cross-framework Sensing
From the perspective of both spatial and temporal dimensions, we point out that wireless signals
have important similarities with videos or speech [179]. Specifically, both videos and massive
packets of wireless signals are composed of sequences of “snapshots", which suggests that well-
established frameworks for CV and NLP can be transferred into existingWSSs. We however observe
that current DL techniques employed in the wireless sensing community largely rely on supervised
learning. Given the large-scale of unlabelled and mislabeled wireless signals, unsupervised learning
can be adopted to further enhance sensing ability of the WSSs, such as auto-encoder, restricted
Boltzmann machine and GAN. For example, Cycle-gan [198] leverages the cycle consistency for the
unpaired image-to-image translation, in which the image data used for training has no need to be
paired for the original input and the ground truth. Thus, it can fully explore the unlabelled images,
which is exactly suitable for massive unlabelled wireless signals for the imaging sensing task.
Besides, we have multiple variants of GAN, which have been evaluated comprehensively in CV and
NLP, such as the StackGAN [183] for the text-to-image synthesis, the 3D-GAN [154] to generate
new 3D models of different objects, the Age-cGANs [143] to explore the face variance as aging as
well as the AF-DCGAN [68] to accelerate the fingerprint dataset construction for Wi-Fi positioning.
And we believe all have the potential to be utilized in a comparable wireless sensing problem.
Another matured technique is to employ the transfer learning for the cross-domain scenarios in
WSSs. And it can learn a transferable knowledge from a source domain to aid learning in a target
domain, enabling the directly deployment of the trained model in new scenarios [134, 184]. For
example, DFHGR [134] develops a scenario transferring network by designing a single scenario
GAN to generate virtual samples of the recognized gestures, delivering a general gesture recognition
system with less training effort, especially in new scenarios.

9 CONCLUSIONS
AI approaches have been increasingly employed in multiple fields and demonstrate significant
potentials for applications, making it indispensable in WSSs toward the ubiquitous sensing. In
this paper, we focus on the evolution, comparison and connection of AI approaches applied in
existing WSSs and show several open and challenging issues. Given a comprehensive workflow
for the general processing of WSSs, various modalities of sourcing inputs are discussed about
respective advantages and limitations. We further summarize and compare existing researches
and AI approaches from aspects of signal processing, feature design and model formulation and
delivering multiple applied outputs, separately. To provide an encyclopedic view of AI approaches
in the wireless sensing community, we present the remaining issues and challenges induced by DL
techniques. Drawing from our experience, we discuss potentials and future trends of DL techniques
toward WSSs by pinpointing the crossovers between wireless sensing and AI approaches across
modalities of sourcing inputs, fields of applications and frameworks of matured DL techniques.
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Note that we list the abbreviations used throughout Table 6, 7, 8 in Table 5.

Table 5. List of abbreviations in alphabetical order

SS Signal Status DB Device-based DF Device-free
DR Detection&Recognition NA Numerical Analysis IG Image Generation
NR Noise Reduction DA Data Adaptation TM Transform Method
SF Spatial Feature TF Temporal Feature PF Physical Feature
GM Geometrical Model SM Statistical Model MM Machine Learning Model

A DETECTION & RECOGNITION

Table 6. Summary of Wireless Sensing with AI Approach: Detection & Recognition

Ref. Input & Output Signal Pre-processing High-level Feature Model Formulation

APsense
[178]

SS: CSI Wi-Fi; DR:
Device Motion
Recognition

DA: Eigen Decompo-
sition; TM: Correla-
tion;

SF: Multiple Sta-
tistics with Ampli-
tude;

MM: Naïve Bayes &
Decision Tree

AutoID
[201]

SS: CSI Wi-Fi; DR:
Gait-based User
Identification

DA: Component
Selection (Regular-
ization Term); TM:
DWT;

TF: Rhythm
Motion Pattern
(Shapelet [170]);

MM: Lagrange Multi-
plier (Clustered Con-
current Shapelets)

CaField
[167]

SS: Single-carrier
Channel Acoustic;
DR: Speaker Verifi-
cation

NR: Filterbank; DA:
Long-time Average
Fieldprint; TM: STFT,
FFT;

SF: Directivity; PF:
Sound Field [16]

GM: Gaussian Mix-
ture Model for Like-
lihood Matching

CARM
[138]

SS: CSI Wi-Fi;
DR Activity
Recognition:

NR: Power; DA: PCA;
TM: DHT, DWT;

TF: PLCR; PF:
Phase

SM: Hidden Markov
Model for Likelihood
Matching

Cross
Sense
[184]

SS: CSI Wi-Fi; DR:
Gait & Gesture
Recognition across
Scenarios

DA: PCA, Virtual
Samples; TM: DWT,
DTW

PF: Statistical
Features; AI: ANN
Roaming Model

MM: Expert Mixture
Model (k-NN, SVM);
AI: Transfer Learn-
ing

Deep
Fusion
[166]

SS: CSI Wi-Fi,
Ultrasound; DR:
Human Activity
Recognition

NR: Filter; DA: Cross-
sensor Correlation;
TM: FFT;

AI: CNN-
based Sensor-
Representation
Module;

AI: Weighted-
Combination Module
& Cross-Sensor
Module

DeepMV
[165]

SS: CSI Wi-Fi,
Ultrasound; DR:
Device-Free Hu-
man Activity
Recognition

AI: Adversarial
Network with the Do-
main Discriminator;
NR: Normalization,
Standardization;

SF: Power Distribu-
tion (Spectrogram);
AI: CNN-based
Feature Extractor;

AI: Hierarchically-
Weighted-
Combination Module

DFAR
[136]

SS: 24GHz FMCW
mmWave; DR:
Cross-scenario DF
Activity Recogni-
tion

TM: FFT with Mul-
tiple Time Series Sig-
nals

AI: A Maximum-
minimum Adver-
sarial Architecture

AI: Multi-layer CNN
with A Center Align-
ment Strategy
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DFGR
[81]

SS: CSI Wi-Fi DR:
Cross-scenario DF
Gesture Recogni-
tion

TM: Low-pass Fil-
ter; DA: Radio Im-
age across Subcarriers
and Packets

PF: Power Distri-
bution; AI: Deep
Feature Extraction
Network

AI: Deep Similarity
Evaluation Network
for Transfer Learning

DFHGR
[134]

SS: 24GHz FMCW
mmWave; DR: DF
Gesture Recogni-
tion

DA: Virtual Samples
Augmentation

AI: Four Conv
Blocks, Four Max-
pooling Layers,
and Two FCN

AI: Transfer
Learning; SS & ST
GAN [134]

DFLAR
[34]

SS: CSI Wi-Fi;
DR: DF Localiza-
tion & Activity
Recognition

NR: Background Sub-
traction, Filter; DA:
Multi-channel Infor-
mation;

SF: Amplitude; TF:
Phase;

AI: Sparse Auto-
Encoder Neural
Network

Duet
[117]

SS: CSI Wi-Fi,
FMCW Radio; DR:
DF Tracking with
the Identification

NR: Ratio of Chan-
nels; DA: 8-antenna
Switched Array

SF: AoA, Power
Distribution;

MM: Hidden Markov
Model, Probabilistic
Logic Framework

E-eyes
[139]

SS: CSI Wi-Fi; DR:
DF Activity Recog-
nition

DA: Data Fusion
across multiple
links; TM: Multi-
dimensional DTW,
EMD

SF: Amplitude; TF:
CSI Time Series
Pattern

MM: Cluster-based
Semi-supervised Ap-
proach

EI [52]

SS: CSI Wi-Fi,
Ultrasound,
mmWave, Vis-
ible Light; DR:
Human Activity
Recognition

NR: Filter, Interpola-
tion; AI: Loss Func-
tions for Constraints
(Confidence, Smooth-
ing, Balance)

AI: Domain-
independent
Feature Extractor
(CNN)

AI: GAN (Activity
Recognizer, Domain
Discriminator)

EQ-
Radio
[187]

SS: FMCW Radio;
DR: Emotion
Recognition

Resemble Vital-
Radio [9]

PF: Statistical Fea-
tures for the Se-
quential Pattern

MM: 𝑙1-SVM Classi-
fier [197]

intu
Wition
[181]

SS: CSI Wi-Fi; DR:
Material Recogni-
tion

NR: Dynamic Back-
ground Subtraction;
DA: Channel Stitch-
ing;

PF: Polarization
AI: Multi-layer
Perceptrons; SM: 2D
NDFT

LAND
MARK
2.0 [78]

SS: RSSI RFID; DR:
Activity Monitor-
ing

NR: Detection
Threshold; DA:
Reference Tag Array;

TF: Frequent Tra-
jectory Finding for
Motion Pattern

GM: Fault-tolerant
Tracing Mining using
Depth-first Search

Marko
[49]

SS: FMCW Radio;
DR: Identification
& Behavioral Sens-
ing

NR: Background
Subtraction, Filtering
Mask;

SF: Power Distri-
bution (Vertical &
Horizontal);

AI: 2-branch 10-layer
CNN Architecture

RF-
Action
[69]

SS: FMCW Radio;
DR: Activity
Recognition

Resemble RF-
Pose3D [190]; AI:
Attention Module
[120];

AI: Multi-proposal
Module; Hierarchi-
cal co-occurrence
Network

AI: Modality-
independent Action
Detection Network
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RF-
Mehndi
[186]

SS: Backscatter
RFID; DR: DB User
Identification

NR: Phase Unwrap-
ping, Phase Shifting
Calibration DA: 3×3
Tag Array;

TF: Phase Dif-
ference of Tags
(PDoT)

MM: SVM Classifier
using Sequential Min-
imal Optimization

RF-
ReID
[29]

SS: FMCW Radio;
DR: User Identifi-
cation

Resemble WiTrack
[7] AI: Hierarchical
Attention Module
[168];

AI: Spatial-
temporal Convolu-
tion

AI: Multi-task Learn-
ing & Environment
Discriminator

RF-
Sleep
[191]

SS: FMCW Radio;
DR: Sleep Stages

AI: Adversarial Dis-
criminator

AI: CNN-RNN Fea-
ture Extractor

AI: Conditional
Adversarial Architec-
ture [32]

SignFi
[83]

SS: CSI Wi-Fi;
DR: Sign Gesture
Recognition

NR: Phase Unwrap-
ping, Multiple Linear
Fitting

SF: Amplitude &
Phase

AI: 9-layer CNN
Classifier

Smokey
[192]

SS: CSI Wi-Fi; DR:
Smoking Detection

NR: Foreground De-
tection, Linear Inter-
polation;TM: Correla-
tion;

TF: Periodicity,
Rhythmic Com-
posite Smoking
Patterns

GM: Composite
Motion & Threshold
Smoking Detection

Widar
3.0 [194]

SS: CSI Wi-Fi; DR:
Gesture Recog-
nition Across
domains

NR: Filter, Coordinate
Transform; DA: PCA;
TM: STFT, EMD Simi-
larity;

PF: 2D BVP AI: the CNN-based
GRU Network

WiFi-ID
[185]

SS: CSI Wi-Fi; DR:
Gait-based User
Identification

NR: Silence Removal
using Median Filter;
TM: FFT, CWT;

PF: Power Distri-
bution, 10 Statisti-
cal Features

SM: Lagrange Multi-
plier (Sparse Approx-
imation)

WifiU
[137]

SS: CSI Wi-Fi; DR:
Gait-based User
Identification

NR: 2D Gaussian
Low-pass Filter; DA:
PCA; TM: STFT;

SF: Power Distribu-
tion (Spectrogram
Signatures)

GM: LibSVM with
Radial Basis Function

WiGest
[4]

SS: RSSI Wi-Fi;
DR: Gesture
Recognition

NR: Wavelet Filter;
TM: FFT, DWT;

SF: Gesture Mov-
ing Pattern

SM: Action Mapping
using Count and Fre-
quency

WiHF
[63]

SS: CSI Wi-Fi; DR:
Gesture & Identify
Recognition

NR: Conjugate Multi-
plication, Filter; DA:
PCA, Graph-based
Path Matching; TM:
STFT;

PF: Arm Motion
Change Pattern

AI: Dual-task CNN-
GRU Network

WiMU
[121]

SS: CSI Wi-Fi; DR:
Multi-user Gesture
Recognition

NR: Power Model;
DA: PCA, Virtual
Samples; TM: STFT;

PF: Primary & Sec-
ondary Frequency

SM: Threshold with
Jaccard Similarity

Wi-Vi
[8]

SS: CSI Wi-Fi; DR:
Through-wall Mo-
tion Recognition

NR: MIMO Nulling;
DA: Eigen Decompo-
sition, Virtual Time
Samples;

SF: Power Distribu-
tion;

GM: Inverse SAR,
MUSIC [108]

WiWho
[177]

SS: CSI Wi-Fi; DR:
Gait-based User
Identification

NR: Bandpass Filter;
DA: Delay Selection;
TM: FFT, DTW;

TF: Periodicity,
Walking Pattern of
Gait

GM: Decision-tree
based Classifier
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XModal-
ID
[57]

SS: CSI Wi-Fi; DR:
Through-wall User
Identification

NR: Gaussian Mask;
DA: PCA; TM: STFT;

SF: Power Distri-
bution (12 Spectro-
gram Features)

GM: 1-layer Neural
Network with 30
Units

C. Shi
’17 [114]

SS: CSI Wi-Fi; DR:
User Identification

NR: Filter; DA: Sub-
carrier Selection; TM:
FFT;

PF: 9 Physiological
& Behavioral Char-
acteristics

MM: SVM Spoofing
Scheme AI: 3-layer
Stacked Autoencoder

H. Li ’17
[65]

SS: CSI Wi-Fi; DR:
Human Activity

Raw CSI Measure-
ments from Multiple
APs

SF: Power Distribu-
tion across Packets
and Subcarriers

MM: SVM;AI: Multi-
layer CNN

K.
Ohara
’17 [92]

SS: CSI Wi-Fi;
DR: Indoor Object
Event

NR: Background
Subtraction, Filtering
Mask; DA: ICA for
Signal Separation;

AI: Convolutional
LSTM Network;

AI: Knowledge-
based HMM for Error
Correction

B NUMERICAL ANALYSIS

Table 7. Summary of Wireless Sensing with AI Approach: Numerical Analysis

Ref. Input & Output Signal Pre-processing High-level Feature Model Formulation

Breath
Junior
[123]

SS: FMCW Acous-
tic; NA: Infant Lo-
calization & Respi-
ratory Rate

NR: FIR Filter; DA:
Circular Microphone
Array, ; TM: FFT;

SF: Amplitude;
TF: Phase;

SM: Progressive
Ternary Search for
Beamforming

CapCam
[173]

SS: Capillary Wave;
NA: Liquid Testing

NR: Wavelet Filter;
TM: Reflection Sym-
metry Detection;

PF: Surface Ten-
sion

GM: Capillary Wave-
length Inference us-
ing Virtual Lenses

CAT
[85]

SS: FMCW Acous-
tic; NA: Motion
Tracking

NR: Linear Fitting;
TM: FFT;

PF: Peak Fre-
quency Shift, DFS,
IMU

SM: Tracing Estima-
tion by Combining
Velocity and Distance

Chronos
[118]

SS: CSI Wi-Fi; NA:
DB Localization

NR: Interpolation for
Zero-subcarrier; DA:
Channel Stitching;
TM: 𝑙1 Norm

TF: Sub-
nanosecond
ToF;

SM: Inverse NDFT
& Quadratic-
constrained Tri-
lateration

CUPID
[110]

SS: CSI Wi-Fi; NA:
DB Localization

NR: Moving Average
Filter; TM: IFFT;

SF: AoA, Energy
of the Direct Path

SM: Propagation
Model (LoS Path)

DLoc
[14]

SS: CSI Wi-Fi; NA:
Indoor Mapping &
Localization

TM: 2D FFT, Coordi-
nates Transformation;

SF: AoA; TF: ToF;
PF: Wave Front

AI: Encoder-decoder
DNN

drone
Track
[88]

SS: Sine Waves,
FMCW Acoustic;
NA: Following
drone

NR: Response Com-
pensation, Filter, Sub-
sampling; DA: Chop-
ping, Peak Frequency
Selection; TM: FFT;

PF: DFS, Peak Fre-
quency Shift SM:Root-MUSIC
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Finger
Draw
[151]

SS: CSI Wi-Fi; NA:
Finger Drawing
Tracking

NR: Differential,
Savitzky-Golay Filter;
TM: FFT, DTW;

TF: CSI Quo-
tient Between
Antennas, Phase
Changes

GM: Triangulation,
Fresnel Zone Model

Indo
Track
[71]

SS: CSI Wi-Fi; NA:
DF Tracking

NR: Conjugate Multi-
plication; DA: Eigen-
value Decomposition;

SF: AoA; TF:
PLCR

SM: Doppler-AoA
Joint Parameter
Estimation, MUSIC

Ma
Track
[70]

SS: CSI Wi-Fi; NA:
DF Localization

NR: Linear Fitting;
DA: Coherence Merg-
ing

SF: AoA; TF: ToF;
PF: Coherency

SM: Dynamic-
MUSIC

LAND
MARC
[91]

SS: Signal Strength
RFID; NA: DB Lo-
calization

DA: Reference TagAr-
ray; TM: Euclidean
Distance for Spatial
Similarity;

SF: Amplitude;
MM: k-Nearest
Neighbor Model with
Reference Tags

LiFS
[131]

SS: CSI Wi-Fi; NA:
DF Localization

DA: Frequency Se-
lection, Reference
Transceivers (40
Links); TM: DTW;

PF: Amplitude
with Multiple
Fading

GM: Complex Non-
linear Fresnel Model

ReMix
[119]

SS: Backscatter
RFID ; NA: In-body
DB Localization

DA: Frequency Selec-
tion;

PF: Non-linearity
of Schottky Detec-
tor Diode

SM: Spline-wise
Propagation Model
with Multiple Con-
straints

RIM
[150]

SS: CSI Wi-Fi; NA:
Inertial Measure-
ments

DA: Virtual Antenna
Array; TM: Cosine
Similarity;

PF: Time-reversal
Resonating
Strength [155]

GM: Dynamic Pro-
gramming Tracing
Model

RTrack
[87]

SS: FMCW Acous-
tic;NA: Room-scale
Hand Tracking

NR: Interference Can-
cellation, Filter; DA:
MIC Array, Frequency
Selection; TM: FFT,
DTW;

SF: AoA; TF: ToF;
PF: Wave Front;

SM: 2D MUSIC; AI:
RNN with the Spe-
cially Designed State
Unit;

SateLoc
[72]

SS: RSSI LoRa; NA:
DB Localization

NR: Weighted Aver-
age Method;

SF: Power Distri-
bution;

GM: Propagation
Model (Expected
Signal Power Map);
MM: Random Forest

SpotFi
[58]

SS: RSSI Wi-Fi, CSI
Wi-Fi; NA: DB Lo-
calization

NR: Linear Fitting;
DA: Virtual Antenna
Array, Eigenvalue De-
composition

SF: AoA; TF: ToF;
GM: Triangulation
with AoA and RSSI;
SM: MUSIC [108]

Strata
[174]

SS: Single-carrier
Wave Acoustic; NA:
Finger Tracking

NR: Least-square
Channel Estimation;
DA: Delay Selection;

TF: Phase Change
SM: Triangulation
with Two Micro-
phones

Strobe
[27]

SS: CSI Wi-Fi; NA:
Soil Moisture &
Salinity

NR: Linear Fitting;
DA: Frequency Band
Selection;

SF: Relative Am-
plitude & TF: ToF
across Antennas;

SM: MUSIC for
Resolving Multi-path
[108]
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Ubicarse
[59]

SS: CSI Wi-Fi; NA:
DB Localization

NR: Relative Chan-
nels across antennas ;
DA: Circular Antenna
Array;

PF: Power Distri-
bution

SM: Translation-
resilient SAR [31]

Vital-
Radio
[9]

SS: FMCW Radio;
NA: Breathing &
Heart Rate Monitor-
ing

NR: Linear Regres-
sion; TM: FFT;

TF: ToF with
Buckets; PF:
Phase Variation

SM: Tracing Estima-
tion with IFFT of the
corresponding FFT
bins

Widar
[97]

SS: CSI Wi-Fi; NA:
Human Tracking

NR: Power, Filter;DA:
Graph-based Match-
ing, Frequency Selec-
tion, PCA; TM: STFT;

TF: Path Length
Change Rate

GM: Tracing Model
(Velocity Composi-
tion)

Widar2.0
[99]

SS: CSI Wi-Fi; NA:
Human Tracking

NR: Conjugate Mul-
tiplication, Filter;
DA:Graph-based Path
Matching;

SF: AoA, Ampli-
tude; TF: ToF; PF:
DFS

SM: Joint Parameter
Estimation (Sage Al-
gorithm [24])

WiDir
[153]

SS: CSI Wi-Fi; NA:
Walking Direction

NR: Power, Savitzky-
Golay Filter; TM:
Cross-correlation;

PF: Fresnel Direc-
tion (Phase Shift)

GM: Fresnel Zone
Model [101]

WideSee
[19]

SS: CSS LoRa; NA:
Building-scale
Localization

NR: Filter; DA: Re-
configurable Directed
Antenna System;

SF: Amplitude,
Power Distri-
bution (Power
Spectral Density);

SM: Jointly
Direction-related Pa-
rameter Estimation,
Global Optimum
Search

WiTrack
[7]

SS: FMCW Radio;
NA: 3D Human
Tracking

NR: Background
Subtraction, Filter,
Interpolation; DA:
Frequency Selection;

TF: ToF; GM: 3D Triangula-
tion

𝜇 Lo-
cate
[90]

SS: CSS LoRa; NA:
3D localization for
sub-cm Objects

DA: Dynamic Fre-
quency Selection;TM:
FFT

TF: Below-Noise
Backscatter Phase

SM: Triangulation us-
ing the Least Squares
Estimation

J.
Wang
’17
[135]

SS: RSSI Wi-Fi;
DR: DF Location
and Gesture Recog-
nition

NR: Wavelet Filter

AI: Sparse
Autoencoder
Network with
Layer-by-layer
Initialization

MM: Softmax-
regression-based
Machine Learning
Framework

C IMAGE GENERATION

Table 8. Summary of Wireless Sensing with AI Approach: Image Generation

Ref. Input & Output Signal Pre-processing High-level Feature Model Formulation

AIM
[86]

SS: FMCW Acous-
tic; IG: 2D imag-
ing

NR: Background
Subtraction, Response
Compensation, Filter;
DA: Delay Selection;
TM: 2D FFT

SF: Wave front
(Intermediate-
frequency Signal)

SM: SAR with the
Range Mitigation
Algorithm
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mD-
Track
[160]

SS: CSI Wi-Fi;NA:
DF Multi-target
Tracking

NR: Linear Fitting;
DA: Iterative Path Pa-
rameter Refinement;

SF: AoA,AoD; TF:
ToF; PF: DFS

SM: Joint Multi-
dimensional
Estimator

RF-
Avatar
[189]

SS: FMCW Radio;
IG: 3D Human
Mesh Recovery

Resemble RF-
Pose3D [5]; AI:
Attention Module
[120], Recurrent RPN
[102],

SF: Power Dis-
tribution; AI:
Trajectory-CNN

GM: Skinned Multi-
person Linear
Model [79]; AI:
Trajectory Proposal
Network

RF-
Capture
[5]

SS: FMCW Radio;
IG: 3D Position of
Body Parts

NR: Background Sub-
traction; DA: Coarse-
to-fine Antenna Scan-
ning, Snapshot Syn-
thesis; TM: FFT;

SF: Power Distri-
bution;

GM: Skeletal Stitch-
ing with the Skele-
ton Knowledge

RF-Pose
[188]

SS: RF Radio; IG:
2D Pose Estima-
tion

Resemble RF-
Capture [5];

AI: Spatial-
temporal Convo-
lution

AI: Encoder-
Decoder Network
with skeleton
Association

RF-
Pose3D
[190]

SS: RF Radio; IG:
3D Multi-person
Pose Estimation

Resemble RF-
Capture [5]; AI:
Region Proposal
Network [102]

SF: Power Dis-
tribution; AI:
ResNet-based
Network;

SM: 3D Skeleton
Triangulation

SAMS
[94]

SS: FMCW Acous-
tic; IG: Indoor
Space Mapping

NR: Geometric Con-
straints & Polynomial
Fitting; TM: FFT;

SF: Frequency
Shift; PF: Sur-
rounding Depth,

SM: Contour Con-
struction Model,
Dead Reckon-
ing with Inertial
Measurements

TagScan
[132]

SS: RSSI RFID; IG:
Imaging & Mate-
rial Identification

NR: RP-Rate (Ra-
tio of RSS and
Phase Change); DA:
Weighted Tags and
Channels;

SF: RSS; TF: Phase
Change

SM:Propagation
Model; MM: k-NN
Classifier [37]

WiPose
[53]

SS: CSI Wi-Fi; IG:
Pose Estimation
on the Spot

NR: Conjugate Multi-
plication, Coordinate
Transform; TM:
STFT;

PF: 3D BVP [194]

GM: Forward Kine-
matics [2] (Skeleton
Model); AI: 4-layer
CNN & 3-layer
LSTM

Wision
[50]

SS: CSI Wi-Fi; IG:
2D Imaging

NR: Interference
Cancellation; DA:
Antenna Scanning;
TM: 2D FFT;

SF: Wave Front; MM: SAR& Beam-
forming

C.
Karanam
’17 [56]

SS: RSSI Wi-Fi; IG:
3D Binary Imag-
ing via Unmanned
Drones

NR: Linear Fitting
[21]; DA: Graph-
based Markov
Random Field; TM: 𝑙2
Norm

SF: Attenuation,
Power Distribu-
tion

SM: Loopy Belief
Propagation Model
[171], Lagrange
Multiplier
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S. De-
patla ’17
[25]

SS: UWB, Wi-Fi;
IG: 3D Binary
Imaging via Un-
manned Vehicles

NR: Linear Fitting
[21]; DA: Antenna
Scanning

SF: the first-path
power; TF: ToF

SM: Sparse Signal
Reconstruction via
Lagrange Multiplier

WiTrack
2.0 [6]

SS: FMCW Radio;
NA: Multi-person
Tracking

NR: Background
Subtraction, Suc-
cessive Silhouette
Cancellation

TF: ToF Profile;
SM: Multi-shift
FMCW for Propaga-
tion

C.
Karanam
’19 [55]

SS: CSI Wi-Fi; IG:
Multi-person DF
Tracking

NR: Particle Fil-
ter with a Joint
Probabilistic Data
Association Filter;
DA: Virtual Arrays

SF: Amplitude, 2D
AoA

SM: Joint parameter
estimation, 2D MU-
SIC

C. Wang
’18 [124]

SS: CSI Wi-Fi;
NA: Volume
Estimation &
Tomography

NR: Phase Unwrap-
ping [42], Linear Fit-
ting

PF: Waveform
(Amplitude &
Phase)

SM: Propagation
Model; MM: k-NN
Classifier

F. Wang
’19 [126]

SS: CSI Wi-Fi; IG:
Person Perception
and Pose Estima-
tion

Raw CSI Signals
SF: Multi-task
DNN including
CNN, U-Net [105];

AI: Mask R-
CNN [44]

P. Holl
’17 [47]

SS: CSI Wi-Fi; IG:
Indoor Hologra-
phy

NR: Digital Dark-
filed Mask; DA:
Antenna Scanning;
TM: 2D FFT

SF: Wave Front;
SM: Angular-
spectrum Propaga-
tion

P. Prof-
fitt ’18
[96]

SS: CSI Wi-Fi; IG:
Static Object Imag-
ing

NR: Gaussian Filter;
DA: Automatic An-
tenna Scanning

SF: Wave Front; AI: Mask R-
CNN [44]

D COMPARISON STUDY

Table 9. Summary of Related Surveys on Wireless Sensing

Reference Modality/Input Application/Output Topic Focus

Z. Yang et
al. [169]

Wi-Fi (RSSI &
CSI)

Numerical Analysis: device-
free and device-based indoor
localization

Evolution from RSSI to CSI for basic
principles, resolution, accessibility,
and future trends

Y. Zou et
al. [202]

Wi-Fi (CSI)

Detection &
Recognition: device-free
human behavior
recognition

Wi-Fi radar with data-driven and
model-based system design

D. Wu et
al. [152]

From pattern-based applying ma-
chine learning techniques to Fresnel
zone model based approaches

S. Yousefi
et al. [172]

Evolution and performance im-
provement from machine learning
to deep learning techniques
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S. Savazzi
et al. [130]

Detection & Recognition: ac-
tivity and gesture recog-
nition, Numerical Analysis:
device-free localization and
motion tracking

Leading-edge research and develop-
ments with a special focus on as-
sisted living applications

Z.Wang et
al. [142]

Detection & Recognition: ac-
tion & activity recognition,
Numerical Analysis: signal
recognition

Basics and insights on CSI based be-
havior recognition applications clas-
sified by three granularities

J. Wang et
al. [107]

Wireless Sig-
nals (RSS,
phase, AOA,
TOF, and CSI)

Detection & Recognition:
security monitoring, emer-
gency rescue, intelligent in-
teraction and monitoring.

A comprehensive overview on
working principle and system archi-
tecture of the device-free WSSs

M. Liu et
al. [75] Acoustic

(Sine wave &
FMCW)

Numerical Analysis: abso-
lute and relative range-based
indoor localization

Feature design and model mecha-
nisms for range-based localization.

C. Cai et al.
[17]

Detection & Recognition:
human-computer interface,
Numerical Analysis: context-
aware application

A general categorization framework
from the physical layer, processing
layer, and application layer

J. Sun-
daram et
al. [112]

LoRa (chirp
spread spec-
trum)

Numerical Analysis: LoRa
networking such as collision
avoidance, channel estima-
tion

Research problems, current solu-
tions, and open issues on LoRa net-
working and sensing

N. Hassan
et al. [43] Visible Light

(RSSI)

Numerical Analysis: photo-
diode and camera based in-
door localization

Basic principle and architecture via
various receivers alongwith various
position determination algorithms

M. Afza-
lan et al.
[10]

Numerical Analysis: range-
based, range-free, and finger-
printing indoor localization

Performance-based evaluation of
the deployed VLP systems in real-
world, covering different compo-
nents and fundamental concepts of
systems

A. Rah-
man et al.
[100]

Numerical Analysis: indoor
localization with modified
and unmodified light source

reviews on recent advances of VLP,
covering common architecture as
well as potential directions

F. Zafari et
al. [176]

Wi-Fi, Acous-
tic, RFID, UWB,
Bluetooth, etc

Numerical Analysis: Local-
ization and positioning of
human users and devices

Evaluation and comparison of input
techniques covering range, scalabil-
ity and tracking accuracy. Working
principles of localization systems

J. Xiao et
al. [158]

Wi-Fi, Acous-
tic, Bluetooth,
UWB, RFID, etc

Numerical Analysis: device-
free and device-based indoor
localization

Conventional methodologies for ba-
sic principles of signal processing,
and data fusion techniques

Y. Ma et al.
[82] Wi-Fi (CSI)

Detection & Recognition,
Numerical Analysis, Image
Generation

Signal processing, modeling-based
and learning-based algorithms, ap-
plications, performance results
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X. Chen et
al. [20]

Wi-Fi, RFID,
UWB, acoustic,
LoRa, Visible
light, etc

Detection & Recognition,
Numerical Analysis, Image
Generation

A general picture of the across-
disciplinary wireless sensing, cover-
ing wireless communication, signal
processing, machine learning, ubiq-
uitous computing, and HCI

C. Zhang
et al. [179]

Mobile big data
of cellular net-
work,Wi-Fi, etc

DL driven mobile network-
ing, likemobile data analysis,
wireless sensor network, net-
work control, and security

DL backgrounds, framework and ap-
proaches toward mobile network-
ing problems, tailoring DL tomobile
networks

J. Wang et
al. [129]

Wireless Sig-
nals (RSS,
Phase, ToF)

Image Generation: Radio Im-
age Construction

Deep Learning for wireless sensing
with less training efforts via a deep
similarity evaluation networks and
deep GANs

This
survey

Modalities
covering Wi-Fi,
acoustic, LoRa

Detection & Recognition,
Numerical Analysis, Image
Generation

Evolution of model-based methods
to deep learning approaches and
comparison of multiple sourcing in-
puts for various applied outputs
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