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Abstract. Datacenter scheduling research often assumes resources as a
constant quantity, but increasingly external factors shape capacity dy-
namically, and beyond the control of an operator. Based on emerging
examples, we define a new, open research challenge: the variable ca-

pacity resource scheduling problem. The objective here is effective
resource utilization despite sudden, perhaps large, changes in the avail-
able resources.
We define the problem, key dimensions of resource capacity variation,
and give specific examples that arise from the natural world (carbon-
content, power price, datacenter cooling, and more). Key dimensions of
the resource capacity variation include dynamic range, frequency, and
structure. With these dimensions, an empirical trace can be character-
ized, abstracting it from the many possible important real-world gener-
ators of variation.
Resource capacity variation can arise from many causes including weather,
market prices, renewable energy, carbon emission targets, and internal
dynamic power management constraints. We give examples of three dif-
ferent sources of variable capacity.
Finally, we show variable resource capacity presents new scheduling chal-
lenges. We show how variation can cause significant performance degra-
dation in existing schedulers, with up to 60% goodput reduction. Further,
initial results also show intelligent scheduling techniques can be helpful.
These insights show the promise and opportunity for future scheduling
studies on resource volatility.
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1 Introduction

The extensive research studies on job scheduling and resource management gen-
erally focus on problems where the quantity of resources is fixed or constant. In
this paper, we define a new, open research challenge: the variable capacity
resource scheduling problem. That is, in data centers or clusters of the fu-
ture it will be common to have variable capacity, and that capacity determined
by external factors. Changing resource capacity is a challenge for job schedulers
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Fig. 1. Management to minimize carbon emissions or power cost combined with power
grid, power markets, and renewable generation producing variable capacity. This is
because changing power level directly affects the available computing resources [17,
34].

and resource managers because of the uncertainty about future resource capac-
ity. On one hand, this means that even if job runtime is known at start time, the
resources may not be available long enough to complete it. On the other hand,
resources can increase rapidly, challenging the availability of workload to utilize
them.

A wide variety of sources can produce variable resource capacities. For exam-
ple, power limits are constraining the scale of world’s largest supercomputers [6]
and already define datacenter size. With the largest supercomputers approach-
ing 50 megawatts, and predicted to grow well beyond 150 megawatts by 2025
[43]. These limits make dynamic power management for cost, cooling, sharing,
or simply to be a good citizen in a fluctuating or stressed power grid a source
of variable capacity for datacenters. At another level, carbon emission manage-
ment can give rise to dynamic capacity. Concerned about climate, governments
around the world have adopted policies to reduce carbon emissions whenever
possible at the same time hyperscale cloud operators (e.g. Amazon, Microsoft,
Google, etc.) are growing rapidly, accelerated further by exploding popularity of
machine learning [19, 36]. This means that they must reduce datacenter power,
perhaps on a dynamic basis in concert with use of renewable generation[27, 32,
29].

The importance of power and carbon as both a limit and a key cost has
spawned a large and vibrant body of research on synergizing use and load with
the grid (ZCCloud with renewables and low price [42, 8]) or with the availability
of local renewables [16, 20, 12]. These approaches all suggest that future data
centers will have variable capacity, determined by external factors such as the
general (grid-wide) or local (on site) availability of renewable generated power.
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Beyond power, there are a number of other scenarios where variable capac-
ity is of interest for resource management. For example, a dependent cloud (a
meta-cloud that forms its resource pool from spare resources of others) typically
experiences frequent capacity change. One example of this would be the meta-
cloud formed from a collection of AWS spot instances and Google’s preemptible
virtual machines. Another example source of variation might include partition-
shutdowns for software upgrades, response to a security emergency, and so on.
The latter examples may seem less compelling as they may perhaps be more
controllable in theory. However, in practice they may not be controllable.

These varied scenarios suggest clusters, availability zones, scheduling do-
mains, even entire data centers will have variable capacity, driven by external
factors such as power allocation, market prices, or even general (grid-wide) or
local (on-site) availability of renewable energy. This is the core motivation for
the variable capacity resource scheduling problem. As shown in Figure 1, an
external factor such as varying power creates variation in capability/capacity
and the resource manager must effectively manage this varying capacity as it
changes over time, as in Figure 2(b).

Today’s resource management systems and schedulers generally assume full
knowledge of resource capacity, and presume that it is stable going forward.
While resource managers have dealt with the addition and removal of resources,
these have typically been rare events with either unpredictable (failures) or sim-
ply structured (upgrade)[11]. Further, these are typically small-scale compared
to cluster size. In contrast, many of the sources of variation we consider are con-
tinually varying, have complex correlation with external factors (e.g. weather),
and have large-scale effect on cluster resources. It is not known how to achieve
high goodput (useful throughput) in the face of continual resource capacity vari-
ability.

To define the problem, in subsequent sections we first define the key dimen-
sions of resource capacity variation. With this framework of dynamic range, fre-
quency, structure, and foresight in place, an empirical trace can be characterized,
abstracting it as a generic problem. Second, we give several specific examples in
the natural world (carbon-content, power price, datacenter cooling, and more)
that give rise to variation. We illustrate how varied and challenging these exam-
ples are. Third, we present simulation results that show that variable resource
capacity presents new scheduling challenges. Without change, current schedulers
suffer significant performance loss, up to 60% goodput degradation. Finally, we
present initial studies which show that intelligent scheduling techniques can be
helpful.

Specific contributions of the paper include:

– Formal definition of a new scheduling problem, variable capacity resource
management in datacenters

– Examples of and empirical traces of sources that lead to resource capacity
variability

– Study of variable capacity that show today’s schedulers suffer significant
performance degradation
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– Study of scheduler improvements shows that intelligent scheduling tech-
niques are promising in regaining performance loss.

The rest of the paper is organized as follows. In Section 2 we formally define
the scheduling problem of variable resource capacity. In Section 3, we discuss
some empirical examples and cover metrics in Section 4. In Section 5, simula-
tion results show how resource variability impacts scheduler performance and
scheduling techniques that can mitigate performance degradation. We discuss
some future directions and opportunities in Section 6 and related work in Sec-
tion 7. Finally, we summarize in Section 8.

2 Scheduling Problem with Resource Capacity Variations

2.1 Scheduling Problem Definition

We formally state the job scheduling problem as follows. In a data center or
cluster, let M denote the number of total machines, where each machine m

has r(m) resources. We want to schedule a set of jobs J on M machines. Each
job j ∈ J has submission time s(j), resource requirement r(j) and execution
time t(j). The data centers need to decide jmt, which is the decision variable of
running job j on machine m at time t. In traditional systems, such placements
are subject to each machine’s resource constraint:

∀t ∈ T, ∀m ∈ M,
∑

j∈J

jmt × r(j) ≤ r(m) (1)

where the left hand side calculates the number of active resources that are pro-
cessing jobs on each machine.

However in the new scheduling problem with resource capacity variations,
the available resource capacity is a function of time t, denoted as R(t) where
R(t) ≤ M . Hence, all job placements are now subject to a time-varying resource
capacity constraint at each time slot t:

∀t ∈ T,∀m ∈ M,
∑

j∈J

jmt × r(j) ≤ r(m)

subject to

umt = 1 ⇐⇒ ∃j ∈ J s.t. jmt = 1
∑

m∈M

umt × r(m) ≤ R(t)

(2)

This constraint ensures that the total number of machines which have active
running jobs do not exceed current resource capacity R(t), where umt indicates
whether a machine is active or not.
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(a) Goodput (b) Hourly Capacity

Fig. 2. Scheduler goodput for a batch HPC workload under variable capacity (a); as
dynamic range increases, performance degrades. Example of hourly capacity variation
(b), assuming with enough capacity headroom.

2.2 Challenges of Job Scheduling

When resource capacity varies, even if the average capacity does not change,
significant losses in system goodput(useful resource utilization based on total
available resources) can result. In Figure 2(a), we present the resulting system
goodput under dynamic capacity, even when a state-of-the-art scheduler [9] is
used! As the dynamic range of variation increases from 0 to 0.6 (around an aver-
age capacity of 0.7), goodput decreases by 30%. Results are shown for capacity
variability with random walk structure with stepsize of one-fourth the dynamic
range. Figure 2(b) shows an example of capacity variation based on constant
hourly carbon emissions from the Germany electricity market on 12.03.2020[15].
The quantity of compute resources available R(t) can vary significantly and on
short time scales compared to job runtimes.

What accounts for this degradation in goodput? Traditional schedulers as-
sume constant resource capacity. Based on the assumption that current capacity
will continue, these schedulers make decisions that commit resources into the
future. Because they have been designed to maximize goodput, they strive to fill
as much of this capacity as possible. So if resource capacity decreases, expressed
as R(t) < R(t−1), the schedule reflects an overestimate, and the resource capac-
ity constraint in Equation 2 can be violated. This results in that some scheduled
jobs may have to be terminated (fail) to release the machine. If resource ca-
pacity increases, the situation is a little better. No jobs need to be disturbed,
but the schedule reflects an underestimation, and the scheduler has missed an
opportunity to increase goodput.

In this new world, key open research questions include:

1. How do current schedulers respond to capacity variation?
2. How can scheduler performance be improved in these challenging situations?
3. How should we best limit or shape capacity variability for performance and

other benefits?
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Fig. 3. Modeled dimensions of capacity variation include (1) dynamic range, (2) vari-
ability structure and (3) change frequency (temporal granularity) on a time-sequence
of datacenter capacity from Figure 2(b).

2.3 Approach

To characterize the challenge to conventional schedulers under dynamic resource
capacity, we study workloads and schedulers drawn from both HPC and commer-
cial environments. These workloads are well-known exemplars of their respective
environments. For each workload, we use a system model that varies the resource
capacity available to the scheduler and evaluate performance. Constant resources
is a simple model; variable resources can have many different dimensions of vari-
ation. We consider three:

– Dynamic range: minimum to maximum capacity
– Variability Structure: random uniform, random walk
– Change Frequency: frequency of capacity variation

We consider these key dimensions as abstract framework, where specific ex-
amples can be characterized and generalized. Dynamic range captures the dis-
tance over which resource capacity varies – from a low to high watermark and
back. It is the most foundational element of resource capacity change. Variability
structure reflects how capacity is constrained to change from one time period to
the next. Such constraints often reflect the realities of physical systems - induc-
tance, momentum, inertia and more – that prevent large instantaneous change.
Change frequency reflects our choice to model time discretely – capacity varies
only at time period boundaries – so change frequency reflects the size of those
periods. In a real system, periods could be defined by external structures (power
markets), datacenter physicals (cooling and power sharing control systems), or
other factors.

Using these workloads and schedulers, we execute a set of scheduler exper-
iments that explore this multi-dimensional capacity change space, characteriz-
ing scheduler performance. In effect, each experiment explores scheduler perfor-
mance when actual resource capacity diverges from the scheduler’s simple fixed
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Fig. 4. Power price ($/MWh) (left) and resulting resource capacity for a 200 megawatt
datacenter (right), using constant cost purchase approach. Exemplar 24-hour day from
MISO January 9, 2018, CIN.Marklnd grid node.

estimate of stable resources. Our goal is to understand the capabilities of ex-
isting state-of-the-art schedulers. With a broad characterization of the negative
impacts of capacity variation, we explore several scheduling ideas for how to
mitigate performance degradation due to capacity variability.

3 Resource Capacity Variations from Empirical Traces

We focus on a few such factors that give rise to variable resource capacity and
derive variable resource traces from them that can be used to evaluate scheduling
systems. For each of these sources, we produce a set of sample traces of one-year
duration with a variety of temporal resolutions (spanning 5 minutes to hourly).
These exemplar capacity traces are generated based on several simple policies,
e.g. constant (hourly) carbon budget.

3.1 Variation from Price

In order to manage a supply cost (e.g. power), a common strategy is to constrain
expenditures to a constant rate for an operating period. In datacenters or many
types of machinery, this couples dynamic market price to resource capacity as
illustrated in Figure 4, showing capacity variation of 5-fold [0.2,1.0] or more.
Variation can be large over time periods as short as 5-minutes, and with very
low (even negative) prices variable capacity may be limited by physical capacity.

3.2 Variation from Carbon Emissions

Concern is increasing about climate change, and thereby associated carbon emis-
sions with power consumption. Carbon budgets must be managed against power
grids with large fluctuations in carbon content. A basic strategy is a constant
carbon budget for each time period as shown in Figure 5. Carbon emissions of-
ten vary not only daily, but also with patterns that differ by month of the year.
Note that workload SLOs such as “catchup by end of day” can have difficult
interactions with the shape of variation curves.
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Fig. 5. Carbon-emissions rate (mT/MWh) (left) and resulting resource capacity at
Constant Carbon purchase approach (December 2019, right).

3.3 Variation from Stranded Power

A different approach to lower carbon emissions is stranded renewable power [8,
42], where excess renewable energy (power with zero-marginal carbon) can be
used to power datacenters intermittently. This excess case may be important for
combatting climate [42, 43], and produces a nearly binary on-off resource capac-
ity (Figure 6, ERCOT), while operating at zero carbon emissions. The graphs
illustrate 15-minute intervals, and reflect variation over a weeklong period. The
power availability variation is day-to-day, week-to-week, and also by season of
the year.
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Fig. 6. Stranded Power (curtailed and negative priced power) in 15-minute intervals for
a node in the ERCOT power grid (left, each line is a different week), and the resulting
resource capacity for a 200 megawatt datacenter for the week in December (right).

4 Metrics

In this section, we discuss the metrics for resource capacity variation and mea-
suring system performance.
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4.1 Capacity Variation

Since resource capacity variation is produced by external sources, such as power
prices, carbon footprint rates, and renewable generations, it can be viewed as
a stochastic process. To better characterize and explore capacity variation, we
look at three dimensions:

– Dynamic range: the range over which the resource capacity can vary.
We define the lower and upper bound of resource capacity, expressed as
lbound, ubound, as a fraction of the maximum datacenter capacity. There-
fore, R(t), the resource capacity at any time t, will be within the dynamic
range, lbound ≤ R(t) ≤ ubound.
We consider variation ranges of 0 (constant), 0.2, 0.4 and 0.6 as a fraction
of maximum datacenter capacity. To normalize average capacity at 0.7, this
produces dynamic ranges and intervals: 0: [0.7], 0.2: [0.6, 0.8], 0.4: [0.5, 0.9],
and 0.6: [0.4, 1.0].

– Variability Structure: defines how much the capacity can change between
adjacent time periods. Random Uniform: Resource capacity can be any level
within the dynamic range at each interval and is drawn from a uniform dis-
tribution U([lbound, ubound]), and Walk: Resource capacity can be any level
within the dynamic range, but can only change by a maximum of stepsize
in adjacent time intervals. Stepsize is one-fourth of the dynamic range.

R(t) =

{

U([lbound, ubound]), if Random Uniform

R(t− 1)± stepsize, if Random Walk

– Temporal Granularity represents the length of each time slot t. Between
any time t and t−1, the capacity is constant. We vary the change frequency
from 0.25 per hour (every 240 minutes) to 4 per hour (every 15 minutes).

4.2 Performance

Scheduling performance is measured by a group of widely-adopted metrics. Here
we formally define these metrics which address system expectation and user
experiences.

– Goodput is a measure of useful cluster utilization. It is calculated as total

completed work divided by total available resource capacity:

∑
j∈Jcompleted

r(j)
∑

t∈T R(t) .

– Failure Rate represents the percentage of jobs that fail to complete due to

resource capacity changes. It is calculated as
|Jfailed|

|Jcompleted|+|Jfailed|
.

– Average Job Wait Time measures the average of interval between job
arrival time in the queue and job start time, which can be expressed as∑

j∈J STARTj−ARRIV ALj

|J| .

– SLO Miss Rate represents the percentage of jobs that fail to complete
before Service-Level-Objective (SLO) required deadline. For each job j, SLO
miss SM(j) is true if FINISHj−ARRIV ALj−t(j) ≥ X%×t(j), where X%
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Fig. 7. Goodput for 12 exemplar days, comparing fixed and variable capacity.

is a threshold and usually set to 10%. The total SLO miss rate is therefore

calculated as
∑

j∈J SM(j)

|J| .

There are many other widely-used metrics targeting different goals, such
as response time and slowdown for cloud workloads and scheduling fairness.
In addition to metrics, there are also various constraints that a system must
consider. For example, ”catch-up” constraint that bound the maximum start
time of jobs, and hardware constraints that limit system’s ramping capabilities
or headroom limits that constrain system’s maximum capacity.

5 Example studies of Variable Resource Capacity Data

Centers

5.1 Experiment methodology

We considered a variety of publicly available workloads. While all of them are
relevant and useful to study, we pick a few examplars that are widely-studied
with distinct characteristics to understand new scheduling challenges. We use
a month-long production trace from ALCF/Mira with a full range of job run-
times and large parallelism as the exemplar of large-scale HPC workload[5]. We
pick Azure[10], Borg V2 traces [33] as node-sharing commercial cloud workload.
Compared to Azure, the Borg trace has more small and short jobs, as well as
significant load from long-running jobs.

For the Mira workload, we study the corresponding Cobalt[9] scheduler with
the Mira supercomputer, a 10-petaflops IBM Blue Gene/Q system, deployed
at the Argonne Leadership Computing Facility. Mira contains 49,152 nodes
(786,432 cores) and 760 TB memory [28]. We model an Azure commercial cluster
with 1,250 nodes (20,000 cores) and 160 TB of memory. This system is a close
match in scale in resource utilization to the Mira system. We also model a Borg
cluster with 630 nodes (336 GCU - Google-Compute-Unit) and 300 normalized
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bytes of memory. This system is sized to match the sampled Borg V2 trace used.
Both cloud clusters use a FCFS first-fit scheduling policy.

5.2 Impact of Capacity Variation Dimensions

To illustrate the impact of variable resource capacity on scheduling performance
in a real-world scenario, we consider a hypothetical 40-megawatt datacenter,
which dynamically acquires power and resource capacity based on carbon emis-
sion rate, operating in the German Power Market[15]. Because the power market
varies every day, and has a strong seasonal structure, we pick a set of exemplar
days from the 12 most recent months (Sept 2019 - August 2020). When using
constant carbon emissions per hour, they have power variation such as shown
in Figure 5. These twelve days have 24-hour capacity increases from 6% to 16%
with an average of 11%.

We use an HPC Mira workload, Mira system, and Cobalt HPC schedulers.
For reference, we include a baseline mode (fixed power), comparing the vari-
able capacity resulting from constant hourly carbon emissions, and showing the
resulting goodput in Figure 7. Each blue bar depicts the results for a single
exemplar day. Shifting from fixed to variable capacity produces a large drop in
goodput as large at 24% on some days and 12% on average.

To further understand the impact on scheduling performance, we systemat-
ically vary the variability dimensions of dynamic range, structure, and change
frequency while keeping average available capacity constant to understand how
features of capacity variation affect scheduler performance, so we can highlight
what is most important to address with scheduling techniques.

Dynamic Range First, let’s consider how resource capacity variation impact
varies as we increase dynamic range. In Figure 8, we first consider random walk
structure (blue, left), comparing to no variation (patterned). The x-axis shows
different dynamic ranges, and stepsizes are always one-fourth of the dynamic
range. As the dynamic range increases, the scheduler performance degrades, and
with the largest range, 0.6: [0.4,1.0], the goodput has declined by 25-45%.

Variability Structure We consider two variability structures, random walk
and random uniform. Now we compare random uniform (yellow, right in Figure
8). The resource schedulers experience goodput degradation as much as 35% (for
a total degradation of 55%). This is because random uniform allows large jumps
in capacity, disrupting the job schedule with terminations or wasted resources. It
appears variation structure can be as important as dynamic range in degrading
scheduler performance.

Change Frequency Change frequency is another dimension of capacity vari-
ation, so we start with a low rate (0.25 changes/hour), and increase to a high
rate (4 changes/hour). Note that all prior experiments used a change frequency
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(a) HPC

(b) Azure (c) Borg

Fig. 8. Scheduling performance with random walk and random uniform resource vari-
ability structure, varying dynamic range.

of 1 change/hour. We focus on dynamic range of 0.6: [0.4, 1.0] with stepsize of
0.15 first. In Figure 9, significant goodput drop is observed across all structures
and workloads as frequency increases. For HPC workload, goodput has fallen
by as much as 50%. For Azure workload, higher change frequencies cause clear
degradation in goodput (up to 30% overall, but 15% attributable to frequency);
Borg V2 exhibits clear, but lesser degradation. These commercial workloads are
less sensitive to resource variation because of their lower parallelism and shorter
duration.

We combine change frequency with the other parameters (dynamic range and
structure), putting it all together in Figure 10. With very low change frequency of
0.25 changes/hour, performance approaches the fixed capacity case. The negative
impact of increasing change frequency on goodput remains but less extreme
across all dynamic ranges.

We find that resource capacity variation can have a large impact on goodput,
reducing it by up to 60%. Goodput in HPC and both commercial resource models
are particularly sensitive to dynamic range, structure (and stepsize), and change
frequency.
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Fig. 9. Goodput versus change frequency (dynamic range 0.6: [0.4, 1.0]).

5.3 Scheduling Potential for Improvement

To show there is opportunity, we examine scheduling policies to mitigate perfor-
mance degradation from capacity variation. When capacity decreases below the
scheduled workload, to meet the capacity constraint, jobs must be terminated
(fail). We explore how to choose the jobs for termination with the goal of maxi-
mizing goodput. Selective terimination or preemption is frequently adapted while
facing mis-estimates based on priority or resource consumption[38, 30]. Here we
consider three policies:

– Random: Select a node randomly, terminate the associated job, and free its
resources.

– Least Wasted Work (LWW): Select the job whose termination wastes
least work (smallest nodes × (t − start time), where t is the current time)
and free its resources.

– Least Fraction Done (LFD): Terminate the job which is least fraction

completed (minimum (t−start time)
runtimej

, where t is the current time) and free its
resources.

For each policy, we repeat until the desired (lower) resource level is reached.
For the HPC workloads, we use the requested runtime to compute LFD; for
the commercial workloads we use the trace information for actual job length.
However in production, this information is not generally available. We compare
the termination policies, using scheduler performance metrics of goodput and
failure rate.

Broadly, Figure 11 presents goodput results for a variety of dynamic ranges
and variability structures. The results show that intelligent termination policies
make a big difference. For HPC both intelligent termination algorithms improve
performance, but best performance is achieved with LWW (rightmost, gray). The
goodput achieved by LWW approaches the stable resource capacity, and is an
average of 44% improvement over Random. For Azure and Borg V2 workloads,
the algorithm preference is similar, with LWW producing highest goodput, but
with smaller benefits.
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(a) HPC

(b) Azure (c) Borg

Fig. 10. Goodput versus change frequency, varying dynamic range and structure of
capacity variation.

These policies show that scheduling strategies can provide improvement, and
in this case increase performance to match the fixed-resource scenario (no varia-
tion), increasing goodput by 30% on average. These results show that intelligent
scheduling techniques are of interest in variable capacity data centers.

6 Further Directions and Opportunities

While we have outlined the core aspect of the open scheduling problem variable
capacity, where resource capacity changes under external control on time scales
shorter than many scheduled jobs. There are several dimensions that significantly
broaden the space of interesting research.

Complex SLO requirements Many workloads have complex dependencies amongst
jobs and tasks that constrain scheduling, and correlate task failures [37]. Com-
plex dependence structures make variable capacity scheduling challenging. Fur-
ther, service-level objectives for jobs and tasks create further constraints on
scheduling and opportunities for improvement. For example, a 24-hour time
shifting model might have an asymmetic “catch-up” constraint.
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(a) HPC

(b) Azure

(c) Borg

Fig. 11. Goodput versus termination policy, varying dynamic ranges and structures

More Sources of Variability and Correlation Another dimension of challenges
comes from different sources of variability. Beyond power management, weather
can produce variation in time and space, power availability and cooling efficiency
(external temperature or humidity). Variation can be correlated across space
and time – cloud cover can be correlated with weather, affecting solar and wind
and temperature. Power grid element failures have correlated, cascading effects,
and load changes can spill over from one cloud network to another. Unlike local
failures, resource capacity variations coming from various external factors can be
informed, estimated, or predicted through other correlated information. Power
grid carbon-content can be correlated with price, and power availability can
depend on competition.



16 Chaojie Zhang and Andrew A. Chien

Resource Heterogeneity The addition of heterogeneity to the variable capac-
ity problem creates new challenges. Variants include fixed ratios, dictated ra-
tios, partially controlled, or even fully controlled ratios of each type as capacity
changes. All of these problems represent interesting challenges, both creating
more complex and changing scheduling problems or in some cases added new
critical decisions such as to invest the power relative to the potential hetero-
geneity.

Complex external metrics; e.g. overall cost optimization, overall carbon optimiza-

tion One more additional dimension is the notion that metrics might depend
on the input metrics that cause variation. Such a dependence not only affects
the assessment of success, but therefore may also affect the scheduling strategies
used. For example, power costs might be passed through to cloud users, and
likewise responsibilty for carbon-emissions. Combinations of these metrics com-
bined with traditional time-based techniques – 5s at high carbon, but overnight
latency at low carbon – might make sense for some applications.

7 Related Work

We study resource management for both supercomputer and datacenter scenar-
ios responding to capacity changes that could arise from carbon-emission-aware
dynamic power acquisition. Other potential sources of resource capacity varia-
tion include cluster, datacenter, and site power management [34] or power grid
dynamics [42, 22, 8]. While many other scheduling studies have also dealt with
variations and uncertainty, they mainly focus on fluctuation of the load and job
information[35, 14, 18]. It is an open question how well these techniques apply
to the variation that is our focus, and perhaps more interesting if they can be
adapted to cope better by exploiting the properties of the variation.

Burstable Instances and Turbo Modes In several cloud environments, virtual
machines can have variable performance [1], but the resource consumption is
typically controlled by the application. Bursting credit is accumulated over time
and expended as the application demands. Turbo modes are similar, where heat
capacity is akin to credit. This differs from variable capacity where resource
constraint is enforced on the workload/resource manager.

Resource Revocation Many systems have volatile resource management (e.g.
PC’s in desktop grids [26, 7], and more recently AWS Spot Instances[3] and
Google Preemptible VM’s[4]), employing checkpointing and a range of statistical
techniques to achieve high throughput through revocations [39, 40]. Commercial
versions include [2, 21]. Most of these systems are application-oriented, and deal
with collections of single-node jobs. The capacity variation problem is large-scale
resource-oriented, and formulated for a job scheduler managing a workload with
complex mixes of co-run, run-before, and other kinds of task dependencies in
the face of a rich set of service-level objectives (SLO’s).
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Meta-schedulers There have been some systems that do this, but they typi-
cally manage batch queue delay (Condor Glideins with known durations). These
systems schedule revocable resources, but the focus has traditionally been on
managing across several resource pools and assumes new resources can be imme-
diately obtained while revocations happen, not the scheduling efficiency within
one (our focus here).

Power Capping and Large-scale Power Management Power capping generally
limit power, a fixed capacity. Then, the challenge is managing the performance
of the applications within a fixed cap [13, 31, 23]. Large-scale power management,
power oversubscription, and power capping is common in commercial datacenters
to improve power efficiency (e.g. Facebook’s Dynamo[41], IBM’s CapMaestro[25],
and Google [34]). These studies do not model schedulers, and interestingly sug-
gests that smaller and therefore more variable power pools may be preferrable,
suggesting variable capacity.

Green Scheduling Researchers have also explored the use of local renewables or
integration of grid demand-response with job scheduling [16, 24]. Local renew-
ables are a simpler instance of the variable capacity scheduling problem – many
variants exist. The grid demand-response examples are also related – but deal
with rare circumstances (e.g. 4 hours a year). Our formulation of the variable
capacity problem admits a rich, general externally imposed variation. It can vary
at many time scales, with correlation or dependence across sites, and focuses on
typical performance, but could perhaps include rare events.

8 Summary

We have proposed a new scheduling challenge: the variable resource capacity
scheduling problem. We have defined the key dimensions (dynamic range, fre-
quency, and structure) of resource capacity variations and provided empirical
traces of such variation from several real-world scenarios. Using real HPC and
commercial workloads, our results show that the negative impact of resource
variability on goodput can be severe – as much as 60%, and 30% on average.

Further, we find that intelligent scheduling techniques such as job termination
policies can reduce goodput losses for both workloads. These results not only
show that variable resource capacity imposes new challenges, but also suggest
that intelligent scheduling solution is of benefit. And we look forward to both
exploring this space, and exploring the coupling of these studies with the complex
systems which are also producing capacity changes [34, 22].
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