
1

Radio Frequency Fingerprinting on the Edge
Tong Jian, Yifan Gong, Zheng Zhan, Runbin Shi, Nasim Soltani, Zifeng Wang,

Jennifer Dy, Kaushik Chowdhury, Yanzhi Wang, and Stratis Ioannidis

Abstract—Deep learning methods have been very successful
at radio frequency fingerprinting tasks, predicting the identity
of transmitting devices with high accuracy. We study radio fre-
quency fingerprinting deployments at resource-constrained edge
devices. We use structured pruning to jointly train and sparsify
neural networks tailored to edge hardware implementations. We
compress convolutional layers by a 27.2× factor while incurring
a negligible prediction accuracy decrease (less than 1%). We
demonstrate the efficacy of our approach over multiple edge
hardware platforms, including a Samsung Gallaxy S10 phone and
a Xilinx-ZCU104 FPGA. Our method yields significant inference
speedups, 11.5× on the FPGA and 3× on the smartphone, as
well as high efficiency: the FPGA processing time is 17× smaller
than in a V100 GPU. To the best of our knowledge, we are the
first to explore the possibility of compressing networks for radio
frequency fingerprinting; as such, our experiments can be seen as
a means of characterizing the informational capacity associated
with this specific learning task.

I. INTRODUCTION

With billions of pervasively deployed and connected de-
vices, the oncoming IoT revolution will create a new paradigm
of sensing and actuation at the network edge. While certain
types of environmental, industrial and human-activity centric
sensing require relaying massive amounts of data from the
field sensor to the remote cloud, there are many scenarios that
can benefit from preliminary analysis and inference at the edge
itself [1]. An important but often overlooked aspect of sensing
is authenticating the identity of the sensors that generate the
field data by other peer devices. If this step can occur at
the edge, it may prevent power-constrained IoT devices from
incurring significant processing cycles and communication
overheads by restricting information flow towards the cloud,
where more complex and upper-layer security mechanisms are
available.

We focus on a specific example of radio frequency (RF)
fingerprinting to authenticate a transmitter by an edge ag-
gregation gateway or a trusted IoT device responsible for
further relaying of the sensed information. The concept of RF
fingerprinting, like its traditional human counterpart, rests on
the assumption that there are unique discriminative features
for an individual device, which can be used to identify it
from a pool of similar devices. Process variations in the
manufacturing supply chains impose subtle changes in the
tolerances and properties of the electrical components that
compose the front-end of a wireless transmitter [2]. These
variations, often occurring at multiple processing blocks of the
transmitter chain, shift the operating point of the transmitted
signal in the in-phase/quadrature (IQ) representation space [3].

The authors are with the Department of Electrical and Computer Engineer-
ing, Northeastern University, Boston, MA, USA.

Edge Deployment

NVIDIA TX2NVIDIA V100
DGX

Samsung
Galaxy S10

Collected
dataset

Preprocessing
and labeling

Dataset
Preparation

Pruning-based
Training

DNN Training

Pruned
 model

Inference

Progressive 
Weight Pruning 

via ADMM

Xilinx-ZCU104
FPGA

NVIDIA V100 DGX

Fig. 1. An overview of our edge RF fingerprinting framework. We first
preprocess an RF fingerprinting dataset and train a CNN architecture. We then
use a progressive weight pruning algorithm to jointly re-train and sparsify the
CNN. Finally, we execute the pruned model on different hardware platforms
to assess the computation and energy efficiency improvement at inference
time.

Some examples of such variations are IQ imbalance, DC
offset, non linear power amplifier gain, among others. Since
the specific discriminative function is unknown for a specific
transmitter, it is difficult to create analytical models tuned for
a particular device. Deep learning for RF fingerprinting, in
which a large dataset of signals collected from the transmitter
is used to train a convolutional neural network (CNN), has
been very successful [4]–[7] at extracting discriminative fin-
gerprints, indeed enabling authentication at the physical layer.

RF fingerprinting using neural networks typically performed
offline [8], [9]: data is collected and moved to a server where
the inference is performed using a powerful GPU. However,
moving the data to a remote server is not efficient for online
RF fingerprinting applications. In recent years, edge comput-
ing has developed solutions for bringing computations from
remote servers and the cloud closer to the sensors, cameras,
radio receivers, etc., in order to eliminate data transfer bottle-
necks, reduce latency, and accelerate inference. Our objective
is to train a deep CNN in the central cloud, and subsequently
deploy it on a low power edge device. Given that large
datasets, capable GPU clusters and massive power availability
are required for training, we leverage the cloud for this training
task. However, the trained model is to be disseminated to
the edge devices, to enable inference on site. Performing
fingerprinting at the physical layer on the edge device avoids
the delivery of GBs of IQ samples as packet payload over



2

a multi hop wireless link to the cloud, which is infeasible.
In addition to eliminating the data transfer bottleneck, edge
deployment of the models also opens up the opportunity for
low-latency inference directly on the edge device. In turn, RF
fingerprinting on the edge gives rise to challenges, precisely
due to the practical reality of limited processing power and
memory available in edge devices (compared to the GPU-
enabled cloud).

As a result, low-latency, efficient fingerprinting on the edge
requires a careful design of the neural network so that it (i)
attains the high prediction accuracy afforded by CNN archi-
tectures, while (ii) satisfying inherent hardware limitations.
This necessitates generating compressed, parsimonious net-
work representations, that fit (and can be executed efficiently
on) dedicated hardware, without a loss of accuracy due to par-
simony. In addition, efficiency necessitates a careful software-
hardware co-design: neural networks should be compressed, if
possible, in ways that exploit and are tailored to the hardware
characteristics of edge devices.

We make the following contributions:
• We use structured pruning [10], to produce highly com-

pressed versions of our RF fingerprinting neural networks
that are tailored to fast inference at the edge. In particular,
focusing on the (computatially intensive) convolutional
layers, we reduce weights by a 27.2× scaling factor while
incurring a negligible prediction accuracy drop (0.54% on
WiFi and 0.44% on ADS-B transmissions).

• We leverage an Alternating Direction Method of Multi-
pliers (ADMM) method for pruning the network during
training [11], as well as a progressive pruning tech-
nique [12], that increases model parsimony gradually.
Compared to training a parsimonious model directly
(i.e. without pruning), these combined methods lead to
a 9.20% accuracy improvement. We make our code
publicly available1 to accelerate community contributions
in this exciting topic.

• Our structured pruning approach is designed in a way that
leverages edge hardware characteristics, in particular by
enabling parallelizability despite its parsimony. We pro-
vide implementations on multiple edge device hardware,
including a Samsung GalaxyS10 cell phone and a Xilinx-
ZCU104 FPGA. Our FPGA implementation in particular
is custom-designed for our parsimonious fingerprinting
architecture.

• We extensively evaluate the performance of our approach.
Pruning yields significant speedups (∼11.5× on the
FPGA, and ∼3× on the smartphone). Moreover, FPGA
hardware achieves the best efficiency, which is 17×, 18×,
and 14× better than the V100, TX2, and smartphone-
GPU, respectively.

Our approach is summarized in Fig. 1. To the best of our
knowledge, our work is the first comprehensive investigation
of compressing an RF fingerprinting CNN architecture through
pruning; as such, our experiments can be seen as a means
of characterizing the neural network “informational capacity”
required to perform this learning task. Our work is also the

1https://github.com/neu-spiral/RFonEdge

first to provide a systems-level analysis of the implementation
of such a pruning architecture on edge devices.

The remainder of this paper is structured as follows. We
review related work in Section II. In Section III, we describe
our dataset and RF fingerprinting CNN architecture in detail.
In Section IV, we describe the progressive weight pruning al-
gorithm we use to jointly re-train and sparsify the CNN. Next,
we present three edge hardware implementations in Section V
and our experimental evaluation in Section VI. Finally, we
conclude in Section VII.

II. RELATED WORK

Limitations of RF Fingerprinting Techniques. RF finger-
printing enables device identification by learning unchanging,
hardware-based characteristics of the transmitter. A transmit-
ter’s processing chain introduces unchangeable and non-linear
artifacts in the transmitted signals, which are presented in
the in-phase (I) and quadrature components (Q) sequences.
These imperfections include information about IQ imbal-
ance, phase noise, and carrier frequency offset, all of which
serve as a unique identity, i.e. fingerprint, to the transmit-
ter [13]–[16]. Many existing works extract such fingerprints
through complex and protocol-specific feature extraction tech-
niques [17], [18]. These techniques require domain knowledge,
such as packet frame structures, channel bandwidths, modula-
tion choices, and coding schemes. This reduces robustness and
cross-protocol compatibility: these fingerprinting algorithms
require a manual redesign when exposed to new datasets or
protocols. To avoid these drawbacks, recent works explore
machine learning techniques that are robust to communication
protocol changes, and aim to automatically learn hardware-
specific features without hand-engineering via neural net-
works [19]–[22].

The success of CNNs in a variety of domains [23]–[25]
has led to considerable recent activity in their application
to RF fingerprinting. More broadly, there has been extensive
prior research [8], [20], [21], [26]–[31] has explored the
efficacy and performance of different classifiers applied to
RF fingerprinting. In particular, Riyaz et al. [20] and Ali et
al. [29] explored several popular architectures on RF finger-
printing and compared them with traditional ML techniques
(e.g., SVM and logistic regression). Deep CNNs consistently
outperformed these classifiers over several datasets [20]. Jian
et al. show that CNNs are resilient to MAC spoofing [22].
Jian et al. [8] compared several CNN architectures such as
AlexNet-1D [23], GoogleNet-1D [24], VGG16-1D [32] and
ResNet50-1D [25] over multiple datasets capturing different
environmental scenarios, including the impact of number of
classes, the channel variation, signal-to-noise ratio (SNR), and
training dataset size. We adopt the ResNet50-1D architecture
from Jian et al. [8] for our exploration on pruning as it was
shown to be the best-in-class in this earlier work.

Unfortunately, CNN-based RF fingerprinting comes at sig-
nificant computational costs induced by the depth of these
architectures. Close to our work, Soltani et al. [33] use Android
smartphones with TensorFlow Lite for RF fingerprinting, but
do not exploit hardware-software co-design. To the best of our

https://github.com/neu-spiral/RFonEdge


3

knowledge, we are the first in the field of RF fingerprinting
to explore the possibility of (i) using pruned, parameter-
constrained models (ii) on low-cost and resource-limited de-
vices.
Model Compression. The growth of the number of parameters
in modern CNNs [32], [34], [35] impedes the deployment
of models on devices that have limited on-chip resources.
Weight pruning is one of the major compression techniques to
reduce model size. Early works of unstructured weight pruning
achieve a considerable reduction in the number of weights of
representative CNNs with minor accuracy loss [10], [11], [36]–
[38]. However, as discussed in Sec. IV, the resulting irregular,
sparse matrices are not friendly to hardware acceleration
during inference.

To overcome these limitations, later works [39]–[46] pro-
pose structured pruning, by incorporating regularity into
weight pruning. Structured pruning can be further categorized
into filter pruning [39], [47] and column pruning [48], [49].
Filter pruning removes whole filters, and column pruning
(filter shape pruning) prunes weights for all filters at the same
locations in a layer. Channel pruning [39], which prunes chan-
nels completely from the feature map, is essentially equivalent
to filter pruning, as pruning filters in a layer removes the corre-
sponding channels of the next layer. As convolutions in CNNs
is commonly transformed in hardware into GEneral Matrix
Multiplications (GEMMs) by converting weight tensors and
feature map tensors to matrices, structured pruning methods
can directly reduce the dimensions of weight matrices while
maintaining a full matrix format, thus facilitating hardware
implementations; we elaborate on this further in Sec. IV.
Nevertheless, the success of pruning, structured or otherwise,
depends directly on the capacity of the resulting network,
and the complexity of the inference task at hand. To the best
of our knowledge, we are the first to explore the possibility
of compressing networks for RF fingerprinting; as such, our
experiments can be seen as a means of characterizing the
informational capacity associated with this specific learning
task.

Besides weight pruning, there also exist other model com-
pression approaches including low-rank factorization [50],
[51], transferred/compact convolutional filters [52], [53], and
knowledge distillation [54]–[56]. Low-rank factorization meth-
ods leverage matrix/tensor decomposition to decompose an
original large model to a compact model with more lightweight
layers. However, these methods involve computationally-
expensive decomposition operations and can only be applied
layer by layer. Methods based on transferred/compact con-
volutional filters design special structural convolutional filters
to reduce storage and computation cost. As for knowledge
distillation, they compress deep and wide networks into
shallower ones that can mimic the function learned by the
complex model. The main idea is to transfer knowledge
from a large teacher model into a smaller student model
through learning the class distributions output. Compared
with other approaches, weight pruning (i) has a widely used
application scenarios, (ii) can be applied to different settings
with high performance, and (iii) can be easily combined with
other compression approaches for further improvements and

speedup. Thus we mainly focus on weight pruning as model
compression approach in this paper.
Inference Acceleration via Parallel Hardware. Even under
compression, CNN inference still incurs a tremendous compu-
tational workload, and therefore a long latency and high energy
cost, that impedes the real-time implementation over edge
devices. Parallel hardware, including signal instruction mul-
tiple data (SIMD) processors, graphic processing unit (GPUs)
and field-programmable gate arrays (FPGAs), are accessible in
modern devices, which can be leveraged to speed up inference.
Previous works on such hardware implementations study the
parallel acceleration of 2D convolutional layers [57], [58]; the
1D convolutions we employ in our architecture (see Sec. III)
have not received any attention. Our systematic design for RF
fingerprinting acceleration on FPGAs (Sec. V) addresses this.
Departing from the existing CNN accelerators [57], [58], we
design the architecture with dataflow optimization for 1D con-
volution and compressed weight streaming for our structured
pruning approach, illustrating that a tailored design can attain
high efficiency.

Accelerating CNN inference on edge devices has received
considerable attention in recent years, and has lead to frame-
works such as MCDNN [59], DeepMon [60], TFLite [61],
TVM [62], and Alibaba Mobile Neural Network [63]. How-
ever, most of these prior works do not explore optimization
opportunities such as computation and memory foot print
reductions offered by model compression techniques. Efforts
on accelerating CNN inference by model compression include
Liu et al. [64], DeftNN [65], SCNN [66], AdaDeep [67]. These
prior works either (i) attain a worse trade off pruning rate
and accuracy than the one we report here [67], (ii) do not
target edge devices [64], or (iii) require new hardware [65],
[66]. Finally, TensorRT [68] has been used to perform fast
and low-power inference on the edge GPU NVIDIA Jetson
TX2 in a variety of contexts [69]–[71]. A quintessential
example includes mounting the light-weighted TX2 board on
drones for fast object detection [70], [71]. To the best of our
knowledge, we are the first to profile TX2 implementations of
RF fingerprinting via Pytorch and TensorRT.

III. RF FINGERPRINTING ARCHITECTURE

We begin by describing the architecture we use for RF
fingerprinting. This is to be trained over a dataset of wireless
transmissions, and then deployed on edge devices. In this
section, we give an overview of the dataset, pre-processing
steps, and the CNN architecture (i.e., ResNet50-1D) that we
use for training and model pruning.

A. RF Fingerprinting Dataset

We consider a dataset that comprises wireless transmissions
collected from two different wireless standards: (i) commercial
off-the-shelf (COTS) 802.11b/g/n WiFi and (ii) the Automatic
Dependent Surveillance-Broadcast (ADS-B) standard used in
airplane status updates. Our WiFi dataset contains 500 devices
in total and 273 transmissions for each device collected in a



4

single day. A spectrum analyzer is used to record each trans-
mission, operating at a 2.4 GHz center frequency with sam-
pling rate 200 MS/s. Each recording consists of 15979 IQ sam-
ples, on average. The ADS-B dataset contains 50 devices and
273 transmissions for each device collected under high SNR
(ranging from 15.3 to 5.1dB). Each transmission is recorded
at a 1.09 GHz center frequency with sampling rate 100 MS/s.
Each recording file, besides IQ samples, contains metadata
such as the device ID, the transmission frequency, and the pro-
tocol used. We refer to the recordings of both WiFi and ADS-
B protocols as transmissions, for convenience. Hence, each
transmission is a variable-length vector of (two-dimensional)
IQ samples. Additional details regarding the dataset statistics
are provided in Section VI-A (see Table I).

B. Data Pre-Processing
Following Jian et al. [8], we perform three pre-processing

steps: band filtering, partial equalization, and slicing. The
former two are only applied to WiFi transmissions, while the
latter is applied to both WiFi and ADS-B transmissions.
Band Filtering. WiFi transmissions are collected in a multi-
device environment, i.e., multiple devices transmit signals on
multiple bands simultaneously. To remove signals generated
out of band and extract clear transmissions made by a specific
device, we apply band filtering using the central frequency in
the metadata. We perform band filtering on all WiFi trans-
missions in our datasets and refer the output, the “filtered”
transmissions, as raw WiFi data. For the ADS-B dataset, we do
not perform band filtering, because each transmission happens
in isolation without interference.
Partial Equalization. Partial equalization [8], [21] removes
channel effects from raw IQ samples while maintaining device-
specific imperfections. Specifically, we first estimate and com-
pensate the carrier frequency offsets, then estimate channel
using transmission pilot, and reapply the offsets to obtain
the final sequence of equalized transmission. Formally, let
y ∈ CL denote the sequence of I and Q components. We use
its preamble to estimate and compensate the carrier frequency
offsets as follows,

γ = fc(ypreamble)

ŷ[t] = y[t] · e−jtγ , t = 0, 1, 2, . . .
(1)

where fc is the estimation function of carrier frequency off-
sets [72]. Let Ŷ be the signal after Fast Fourier Transform
(FFT) from ŷ[t]. We estimate the channel using its transmis-
sion pilot and do equalization via:

Hk = fe(Ŷpilot), k = 0, 1, . . . , 63

Xk =
Ŷk
Hk

, k = 0, 1, . . . , 63
(2)

where fe is the channel estimation function [73] and Xk is
the equalized data. Finally, we reapply the offsets via:

x[t] = IFFT(Xk)

x[t] = x[t] · ejtγ , t = 0, 1, 2, . . .
(3)

where IFFT(·) denotes the inverse FFT. We perform partial
equalization on WiFi transmissions and refer to them as equal-
ized, as opposed to raw WiFi transmissions. We do not perform

x

1 × 1 Conv1D, N

1 × 3 Conv1D, N

1 × 1 Conv1D, 4N

relu

relu

+
relu

y

1 × 1 
Conv1D, 4N

Projection Block, N

x

1 × 1 Conv1D, N

1 × 3 Conv1D, N

1 × 1 Conv1D, 4N

relu

relu

+
relu

y

Identity Block, N

Input Slice

1 × 7 Conv1D, 64
max pool, /2

Proj. Block, 64

Id. Block, 64 × 3

Proj. Block, 256

Id. Block, 256 × 6

Proj. Block, 128

Id. Block, 128 × 4

Proj. Block, 512

Id. Block, 512 × 4
avg. pool, /7

Fc, # devices

Fig. 2. Our ResNet50-1D architecture contains 49 CLs and 1 fully-connected
layer. Compared to the original 2D version, we build ResNet50-1D by only
changing the filter width to 1×1 or 1×3 accordingly to match the dimension
of IQ slices.

partial equalization on the ADS-B dataset. This is because, in
our ADS-B dataset, channel conditions do not have prominent
effects.

C. CNN Architectures
Among popular deep and large size CNN models [23], [24],

[74], ResNet [25], as the Winner of ILSVRC 2015 in image
classification, has proved to be remarkably successful across
domains. In particular, its extended 1D version, i.e., ResNet50-
1D, has shown state-of-art performance in RF fingerprinting
domain [8], [9]. In this work, we use ResNet50-1D as the
basic architecture for general training and pruning.

As shown in Fig. 2, ResNet50-1D contains 49 convolutional
layers (CLs) and 1 fully-connected layer. Every 3 CLs are
grouped into a block by an identity mapping shortcut or a
projection shortcut, both of which carry forward the input
of the block to its output. Shortcuts mitigate the vanishing
gradient effect, which is the main cause of accuracy loss in
deep architectures. We adapt the original 2D version of con-
volutional filters to our RF inputs as follows: the filter width
of ResNet50-1D is set to 1 × 1 or 1 × 3 accordingly, to
match the dimension of IQ slices described in the next section.
Thus, each kernel learns a variation in time over the I and Q
dimension jointly.

D. CNNs for Variable-length Sequences
Slicing. Recall that each WiFi or ADS-B transmission is a
variable-length sequence of I and Q components. In order
to train and evaluate the (fixed input size) CNNs with these
transmissions, we follow the work of Sankhe et al. [21] and
Jian et al. [22]. These works use a sliding window approach
to cut transmissions into fixed length slices, which the CNN
can ingest. More specifically, a desired slice size l is defined
first. Given an entire transmission k of length Lk, we generate
Lk − l + 1 slices as shown in Fig. 3. We only use a random
fraction of slices to train a classifier. A parameter κ ∈ [1, l]
governs the number of slices that each IQ sample of trans-
mission k participates in during a training epoch. Slicing and
randomization (i) extend our CNN to variable length trans-
missions, (ii) enhance shift-invariance [22], and (iii) reduce
computation costs during training.



5

1 2 … 𝑙 𝑙+1 ... ... Lk

1 2 … 𝑙 𝑙+1 ... ... Lk

Sliding Window

I

Q

1 2 … 𝑙 𝑙+1 ... ... Lk

1 2 … 𝑙 𝑙+1 ... ... Lk

I

1 2 … 𝑙 𝑙+1 ... ... Lk

1 2 … 𝑙 𝑙+1 ... ... Lk

I

Q

Q

One slice

…

Fig. 3. An illustration slice generation from an arbitrary-length transmission.
Given a transmission of length Lk , we create Lk − l+ 1 slices by sliding a
window of size l over the IQ sequence with stride 1. This leads to inputs of
a fixed length, and enhances shift invariance.

Transmission Prediction. We describe now how to use the
CNN trained over slices to detect the device of the entire trans-
mission. Given a transmission, we slide a window across the
entire transmission with a designed stride (as shown in Fig. 3)
and evaluate our model on each slice. To predict the device that
generated the entire transmission, we sum the probability pre-
dictions of slices generated from this specific transmission and
declare the target device for which the entry is maximized [8].
Formally, let nk indicate the number of slices generated from
transmission k, and pij be the model prediction probability
that slice j was transmitted by device i. The prediction of
transmission k is calculated via î = arg maxi

∑nk

j=1 pij . In
practice, during testing, we use strides different than 1, treating
this as a hyperparameter.

E. Discussion

In our exploration of pruning, we assume the standard clas-
sification setting, whereby class (device) labels are identical in
the training and test set. Moreover, our focus is on accelarating
inference, not training: a trained network is to be compressed
so that detection of devices in the training set can be done
efficiently at dedicated hardware. In real-life scenarios, the set
of devices/classes may vary, and previously unseen devices
may need to be detected as such [75]–[77]; alternatively, the
classifier may also need to be re-trained to handle new classes
[78]–[81]. Addressing such questions while pruning requires
a departure from the setting we study here; we discuss exten-
sions in Section VII.

IV. MODEL PRUNING

In this section, we describe the model pruning algorithm
we use to achieve our goal of computation reduction and en-
ergy efficiency improvement at inference. We prune the model
only on convolutional layers (CLs); this is a common practice
(see, e.g., [11]). This is because CLs are repeatedly applied
during inference; as a result, they contribute the majority of
the computational load in state-of-the-art CNNs.

A. Problem Formulation

We use the following notation throughout the paper. For an
N -layer CNN, we use the subscript i ∈ {1, . . . , N} to indicate
layers. The 1D convolutional layer in our setting is represented
by a three-dimensional weight tensor, with each dimension

pi, qi, ri ∈ N representing the number of filters, channels,
and filter widths, respectively, in each layer i. GEneral Matrix
Multiplication operations (GEMMs) on accelerators operate
over a reshaped tensor of two dimensions Pi = pi and Qi =
qi×ri. We thus represent each layer via the (reshaped) matrix
Wi ∈ RPi×Qi and the bias vector bi ∈ RPi . We also define
W := {Wi}Ni=1 and b := {bi}Ni=1 as the set of all weights
and biases in the CNN. We denote the loss of the CNN under
dataset D by f(W , b;D).

Our objective is to prune non-important weights while pre-
serving the accuracy of the pruned model. Therefore, we mini-
mize the loss function subject to constraints specifying sparsity
requirements. More specifically, the weight pruning problem
can be formulated as:

Minimize:
W ,b

f(W , b;D),

subject to Wi ∈ Si, i = 1, · · · , N,
(4)

where Si ⊆ RPi×Qi is a weight sparsity constraint set applied
to layer i. A broad variety of constraints can be expressed
through sets Si. For example, in unstructured pruning, Si =
{Wi | ‖Wi‖0 ≤ αi},where ‖ · ‖0 is the size of Wi’s support
(i.e., the number of non-zero elements), and αi ∈ N is a
constant. This constraint indicates that the number of non-zero
elements of Wi should not exceed αi. However, the resulting
model is hard to implement efficiently on an edge device, as
it requires keeping track of arbitrarily located indices [10],
[11], [36]–[38]. This leads to performance degradation when
implemented over accelerators [42], [82].

To address this, we follow a structured pruning approach,
whereby sets Si are limited dimension-wise. Formally, given
matrix Wi, let [Wi]p,: ∈ RQi , [Wi]:,q ∈ RPi be the p-th
row and q-th column of Wi, respectively. Moreover, for φ a
boolean predicate, let 1φ to be 1 if φ is true, and 0 otherwise.
In structured filter pruning, for sparsity parameter αi ∈ N, the
set Si is defined as:

Si =
{
Wi |

(∑Pi

p=1 1([Wi]p,: 6=0)

)
≤ αi

}
. (5)

In other words, this constraint enforces that the number of
non-zero rows (filters) on the i-th layer does not exceed αi.
A similar constraint can be placed on columns; that is, for
sparsity parameter αi ∈ N, the corresponding column sparsity
constraint is:

Si =
{
Wi |

(∑Qi

q=1 1([Wi]:,q 6=0)

)
≤ αi

}
. (6)

Intuitively, this enforces that the number of non-zero columns
in Wi does not exceed αi. Both filter and column spar-
sity constraints are more “hardware friendly” compared to
unstrucured pruning [39], [42]: they reduce computations,
while still allowing for the benefit of parallelization over the
non-zero dimension. We discuss our custom edge hardware
implementations that exploit this in Section V.

B. Model Pruning Using ADMM

Problem (4) is non-convex with combinatorial constraints,
thus cannot be solved using stochastic gradient descent meth-
ods as in standard CNN training. To deal with this, we leverage
the Alternating Direction Method of Multipliers (ADMM) to



6

Pre-trained Model
{𝑊#

$, 𝑏#$}#()*

ADMM 
Weight Pruning

Masked 
Retraining

Round 1

{𝑆#)}#()* {𝑆#,}#()*

Pruned Model
{𝑊#

), 𝑏#)}#()*

…

Pruned Model
{𝑊#

-.), 𝑏#-.)}#()*
Pruned Model
{𝑊#

-, 𝑏#- }#()*
Round 2

ADMM 
Weight Pruning

Masked 
Retraining

Round r

ADMM 
Weight Pruning

Masked 
Retraining

{𝑀#) }#()*

{𝑆#- }#()*

{𝑀#-.)}#()*…

Fig. 4. An illustration of progressive pruning. We prune the network over multiple rounds. In each round, we execute the ADMM pruning algorithm and
a masked retraining process to the pre-trained model. The input to each round r is a pre-trained neural network as well as a constraint set {Sr

i }Ni=1. As
the number of round increases, stronger constraints are provided and added to the model. The output of the round r will be a pruned model, consisting of
the weight matrix Wr satisfies the constraint such that Wr

i ∈ Sr
i . Besides the pruned model, each round could output a mask {Mr}Ni=1 that contains

binary-valued elements with value 0 corresponding to the pruned weights and value 1 corresponding to the remaining weights. We could then prune the model
additionally conditioning on this passed mask.

decompose the original problem into two subproblems that can
be solved efficiently and separately [10], [11], [83]. We begin
by rewriting problem (4) in the ADMM form by introducing
auxiliary variables Zi:

Minimize:
W ,b

f(W , b;D) +
∑N
i=1 gi(Zi),

subject to Wi = Zi, i = 1, · · · , N,
(7)

where gi(·) is the indicator of set Si, defined as:

g(Zi) =

{
0 if Zi ∈ Si,
+∞ otherwise. (8)

The augmented Lagrangian of problem (7) is defined as [83]:

L(W , b,Z,U) = f
(
W , b;D

)
+
∑N
i=1 gi(Zi)+

+
∑N
i=1 ρi trace(U>i (Wi −Zi)) +

∑N
i=1

ρi
2 ‖Wi −Zi‖2F ,

(9)

where ρi is a penalty value and Ui ∈ RPi×Qi is a dual
variable, rescaled by ρi.

The ADMM algorithm proceeds by repeating the following
iterative optimization process until convergence. At the k-th
iteration, the steps are given by

W (k), b(k) := arg min
W ,b

L(W , b,Z(k−1),U (k−1)) (10a)

Z(k) := arg min
Z

L(W (k), b(k),Z,U (k−1)) (10b)

U (k) := U (k−1) + W (k) −Z(k). (10c)

The problem (10a) is equivalent to:

min
W ,b

f(W , b;D)+
∑N
i=1

ρi
2 ‖Wi−Z

(k−1)
i +U

(k−1)
i ‖2F . (11)

The first term in (11) is a standard CNN loss while the second
term is quadratic and differentiable. Thus, this subproblem can
be solved by classic stochastic gradient descent.

After solving problem (10a) at iteration k, we proceed to
solving problem (10b), which is equivalent to:

min
Z

∑N
i=1 g(Zi) +

∑N
i=1

ρi
2 ‖W

(k)
i −Zi + U

(k−1)
i ‖2F . (12)

As g(·) is the indicator function of the constraint set Si,
problem (12) is equivalent to:

Z
(k)
i = ΠSi

(
W

(k)
i + U

(k−1)
i

)
, (13)

where ΠSi
is the Euclidean projection of W (k)

i +U
(k−1)
i onto

the set Si. The special structure of Si allows us to find the

optimal analytical solutions. For filter pruning (Eq. (5)), the
solution can be obtained by first calculating

Op = ‖[W (k)
i + U

(k−1)
i ]p,:‖22, for p = 1, · · · , Pi,

then keeping αi rows in W
(k)
i +U

(k−1)
i , corresponding to the

αi largest values in {Op}Pi
p=1, and setting the rest to zero. For

column pruning (Eq. (6)), a similar solution can be obtained
by first calculating

Oq = ‖[W (k)
i + U

(k−1)
i ]:,q‖22, for q = 1, · · · , Qi,

then keeping αi columns in W
(k)
i +U

(k−1)
i with the αi largest

values in {Oq}Qi

q=1, and setting the rest to zero.

C. Final Masked Retraining

The parameters (W , b) produced by ADMM satisfy the
constraints {Si}Ni=1 only asymptotically. As a result, retraining
process is typically required to improve the accuracy of the
pruned model with the training dataset and attain feasibil-
ity [40], [42], [45]. To that end, we first construct a binary
mask Mi ∈ Si ∩{0, 1}Pi×Qi for each layer i to constrain the
retraining process. The mask Mi is constructed as follows
for filter pruning: first, we compute Z̄i = ΠSi

(Wi) , i ∈
{1, ..., N}; then, we set [Mi]p,: = 1, for all p s.t. [Z̄i]p,: 6=0.
A similar construction applies for column pruning. We then
retrain W using gradient descent but constrained by masks
{Mi}Ni=1. That is, during back propagation, we first calcu-
late the gradient ∇Wif(W , b;D), which is the same as the
standard CNN training process, then apply the mask Mi to
the gradient using element-wise multiplication. Therefore, the
weight update in every step during the retraining process is

Wi := Wi − ηMi ◦ ∇Wi
f(W , b;D), (14)

where η is the learning rate and ◦ denotes element-wise mul-
tiplication.

D. Progressive Pruning

When pursuing extremely high pruning rates (> 90×), the
weight pruning approach described in Sections IV-B and IV-C
has certain drawbacks. First, as feasibility is only asymptotic,
many weights are approximately (but not exactly) equal to zero
at the conclusion of ADMM. Second, rounding these to zero
after the termination of the algorithm often leads to accuracy
loss [12], even if one retrains using only the resulting sparse



7

weights (as described in Section IV-C). To attain high pruning
rates with negligible accuracy loss, we follow a progressive
weight pruning approach [12] that reaches a high pruning rate
gradually.

This progressive pruning is illustrated in Fig. 4. We prune
the network over multiple rounds. In each round, we exe-
cute the ADMM weight pruning algorithm (Eq. (10)) and a
masked retraining process (Eq. (14)) to the pre-trained model.
The input to each round r is a pre-trained neural network
{W r−1

i , br−1i }Ni=1, obtained as the output from the previous
round, as well as a set of constraints {Sri }Ni=1. As the num-
ber of rounds increases, stronger constraints are provided and
added to the model. Taking filter pruning as an example, recall
from Section IV-A that Sri is defined by Eq. (5), a stronger
constraint Sr+1

i should satisfy that αr ≤ αr+1
i , for all i =

{1, · · · , N}. The pre-trained model is thus pruned progres-
sively and reaches the high pruning rate gradually. The output
of the round r is a pruned model, consisting of the weight
matrix Wr that satisfies Wr

i ∈ Sri , i = 1, ..., N . We set the
input to the first round to be a model pre-trained without any
constraints.

An alternative execution of progressive pruning is as fol-
lows. Besides the pruned model, each round could output
a mask {M r

i }Ni=1, as described in Section IV-C, that con-
tain binary-valued elements with value 0 corresponding to the
pruned weights and value 1 corresponding to the remaining
weights. The framework can pass this mask along with the
pruned model to next round. We could then prune the model
additionally conditioning on this mask passed. If we do this,
the non-zero entries of the pruned weights Wr

i will be a subset
of those of Wr−1

i in the next round. In practice, it is not
necessary to pass masks this way. Instead, we may allow the
algorithm reversing decisions made in previous rounds and
provide it with more freedom on which weights to prune.
In our implementation, we perform three rounds of column
pruning, without masks passed forward, and one round of
filter pruning, with a mask. The latter incorporates filter-wise
constraints while optimizing over column-wise constraints. We
describe these in detail in Section VI-A.

V. HARDWARE IMPLEMENTATIONS

To explore the facilitation of hardware implementation
on inference efficiency, we execute the pruned model on
three hardware-processing element, Smartphone GPU&CPU,
NVIDIA TX2, and FPGA. In this section, we provide a
detailed description of these three platforms and our modi-
fications to match the RF fingerprinting task.

A. Smartphone Acceleration Framework

We rely on and extend a compiler-assisted acceleration frame-
work on general, off-the-shelf mobile devices. The compiler-
assisted framework is written in C++ and uses the compiler-
level concept of automatic code generation. It takes the Open
Neural Network Exchange (ONNX) model as input, and au-
tomatically generates C++ based and OpenCL based executa-
bles for mobile CPU and mobile GPU, respectively. Similar
to [62], [63], [84], the ONNX model is first translated into

Offset
…2,0,2,1

…1,1,0,0

DataflowCtrl

Logic On-chip Mem
WMask MaskDec ActData

…1,0,1,1,1,0
Bit mask Base address

WData

WData

To

…

… 𝚺

𝚺

PSum

PSum

Ti

Off-chip DRAM

PE PEPE PE

… PE PEPE PE

Fig. 5. A dedicated hardware architecture designed for the proposed 1D conv.
with the structured pruned model.

computational graphs and weights at compiler level. Then
layerwise representation for CNN inference is extracted from
the computation graph, supporting layerwise code generation
and optimization for the final program executables.

We extend the compiler-assisted framework by supporting
different types of structured pruning, e.g., filter pruning and
column pruning. After such structured pruning, the layer-wise
computation is still in the form of GEMM [85], [86]. The
computation graph based code generation framework is ap-
plied, and parallelism in CNN inference can be maintained
without heavy control-flow dependencies. Besides, we adopt
two compiler-level optimization techniques that work for both
mobile CPU and GPU code generation: Vectorization and Pa-
rameter Auto-Tuning.

Vectorization achieves high parallelism on multi-core mo-
bile CPU/GPU. We use ARM NEON and OpenCL to auto-
vectorize CPU and GPU codes, respectively. The mobile CPU
and GPU have different numbers of vector registers. In or-
der to take full advantage of registers while avoiding regis-
ter spilling, we have designed a specific loop unrolling level
to pack computations and perform mapping accordingly. Pa-
rameter auto-tuning specifically tests candidate configurations
of the key performance parameters including: strategies of
placing data on CPU/GPU memories, different tile sizes, and
loop permutations for each CNN layer on CPU/GPU. Again
this is layerwise optimization with the flexibility of different
configurations for different layers of the target CNN, and the
best layerwise configuration is chosen accordingly.

B. FPGA Framework

Organization of Parallel Processing Elements (PEs). To
further improve the computational efficiency when perform-
ing inference on an FPGA, we propose a dedicated accel-
erator for our structured pruned model, leveraging the 1D
convolutional structure of our layers. As shown in Fig. 5,
the processing elements (PEs) are organized in a 2D array,
where each PE executes one multiply-accumulate (MACC)
operation. To propose a general architecture design that can
be implemented on FPGA devices with different hardware
resource, we parameterize the PE array with a size of To×Ti;
the horizontal Ti PEs compute the same filter, and thus the
MACC results are accumulated (

∑
in Fig. 5). In contrast,

the PE-rows compute To filters concurrently. Multiple on-chip
memories are connected to the PE array for dataflow.



8

Dataflow with Dedicated Memory Hierarchy. Due to the
limited size of on-chip memory, the DataflowCtrl module
exchanges the weights and input/output activations between
the on-chip memory and off-chip DRAM. The memory struc-
tures and the corresponding workflow are organized as follows.
In one iteration, the weight values of To filters are loaded from
DRAM and written to WData memory corresponding to each
PE-row. The zero values by column pruning are emitted in the
compressed weight stream. The weight mask stored in WMask

memory indicates the index of the skipped column. We use
a bit mask (1-bit for each column) to represent whether the
column is pruned or not. The stream of bit masks is sent to a
mask decoder module (MaskDec) that translates the codes to
offset and base address in reading the proper activation data in
ActData memory. In the 1D convolution with a filter size of 3,
for instance, the bit mask (binary) stream “0,1,1,1,0,1,...”(as in
Fig. 5) can be grouped to 3-bits tuples and each tuple indicates
the pruning pattern of an input channel. In this example, tuple
“{0,1,1}” for the first channel indicates the first sub-column is
pruned and the rest two sub-columns are remained. This stream
is then translated to an offset stream of “1,2,0,2,...”, where
“1,2” are the index of non-zero sub-columns corresponding to
the first channel and “0,2” are for the second one. Therefore,
the based address stream “0,0,1,1,...” is output simultaneously
and aligned to each element in offset stream to indicate the
index of input channel. With the base address and offset, the
proper activation values are read from ActData and broadcast
to To PE-rows. Note that Ti bit non-zero bit masks are de-
coded in each cycle that fetch multiple activation values for
Ti PEs concurrently. The PSum memory stores the partial sum
in computation with multiple input channels. This workflow
iterates to get all output filters in one layer and then stores the
results back to DRAM for the subsequent layers.

C. TX2 Framework (TensorRT)

We also implement our neural network on an edge GPU
NVIDIA Jetson TX2 (see Section VI-A for more details on
the platform). We run our methods using two frameworks: Py-
torch, which is the standard implementation we also use during
training, and TensorRT. TensorRT is briefly described below.
We note that both of these frameworks implement pruned
networks via masks of zeros and ones; as such, they do not a
priori exploit the sparse structure of our pruned network. We
thus only use Pytorch and TensorRT at the TX2 for comparison
purposes.

TensorRT is a compression and optimization framework de-
veloped by NVIDIA for running fast inference on NVIDIA
GPUs [68]. After the developer trains and saves the neural
network as a Pytorch model, the model can be optimized and
run for inference through TensorRT. We use ONNX [68] parser
to import the model from its saved format into TensorRT. Ten-
sorRT’s optimization tool makes several platform-specific op-
timizations. It merges concatenation layers by directing layer
outputs to the correct eventual destination and eliminates the
layers whose outputs are not used. It also fuses convolution,
bias and ReLU operations together. TensorRT also aggregates
operations with sufficiently similar parameters and the same

source tensor (for example, the 1x1 convolutions in GoogleNet
v5’s inception module) and removes the operations which are
equivalent to no-ops.

VI. PERFORMANCE EVALUATION

In this section, we discuss results on five benchmark datasets
of device transmissions and report the effectiveness of model
pruning and the inference speedup on different platforms.

A. Experimental Setup

Datasets. We use five benchmark datasets, summarized in
Table I, including three WiFi datasets (WiFi-50, WiFi-Eq-
50, WiFi-Eq-500), one ADS-B dataset (ADS-B-50), and one
mixture dataset (Mixture-50) containing both WiFi and ADS-
B transmissions. WiFi-50 and ADS-B-50 both contain trans-
missions of raw IQ samples, while WiFi-Eq-50 and WiFi-Eq-
500 are partially equalized, as described in Section III-B. We
pick 25 devices uniformly at random (u.a.r.) from WiFi-50
and ADS-B-50, respectively, and form Mixture-50. To ana-
lyze the effect of model pruning on equalized transmissions,
we also perform partial equalization on WiFi transmissions
and construct WiFi-Eq-50 based on WiFi-50. To measure the
pruning ability with respect to scaling the number of devices
the model classifies, we also perform partial equalization on
the whole WiFi dataset (500 devices) and form WiFi-Eq-500.
Recall from Section III-B that equalization involves down-
sampling; as a result, equalized transmissions are shorter than
raw transmissions.

Each benchmark dataset has a training set and a test set,
containing 218 and 55 transmissions per device, respectively.
We further separate 10% of the training set as a validation
set to tune hyper-parameters, such as slice and batch sizes.
During training and pruning, we evaluate the model on the
validation set and keep the best mong all epochs, which is
finally evaluated on the test set.
Evaluation Metrics. We evaluate the model performance on
five benchmark datasets via Top-1 Accuracy, considering that
classes are balanced. We report per-slice and per-transmission
accuracy, where transmission predictions happen as described
in Section III-D.

We evaluate the model pruning performance via pruning
rate, which is the ratio of unpruned size versus pruned size.
Formally, for n and n0 the total number and zero param-
eters, respectively, the pruning rate is n

n−n0
. We calculate

FLOPS (floating point operations per second) for pre-trained
and pruned models as well via the THOP Python module. We
also evaluate inference acceleration for the pruned models on
different platforms (described below in “Software and Hard-
ware”). Though both per-slice and per-transmission inference
acceleration are interesting, since the length of transmissions
is arbitrary, to make a fair and more general comparison, we
report the inference time per slice.
Parameters. We use the following hyper-parameters, which
we have determined using the validation set. We use a batch
size of 256 and 128 in ResNet50-1D model for WiFi-Eq-
50 and other datasets respectively. We use a slice size of
512 for raw datasets (WiFi-50, ADS-B-50, Mixture-50), and



9

TABLE I
RF FINGERPRINTING DATASET STATISTICS

Datasets L N M W̄
Per-trans. Accuracy

Random Guess RFNet VGG16-1D ResNet50-1D

WiFi-50 50 218 55 13071 2% 57.53% 58.13% 64.80%
ADS-B-50 50 218 55 9526 2% 91.85% 87.08% 88.53%
Mixture-50 50 218 55 11427 2% 74.72% 73.92% 79.51%
WiFi-Eq-50 50 218 55 514 2% 63.94% 64.31% 70.78%
WiFi-Eq-500 500 218 55 662 0.2% 47.82% 53.77% 61.40%

Here, L is the number of devices/labels, N is the number of training transmissions per device, M is the number of test transmissions per device, W̄ is
the average number of samples per transmission. We report the per-transmission accuracy of non-pruned ResNet50-1D models as well as the random guess,
RFNet, VGG16-1D for reference purpose. RFNet [8] is a custom-designed model inspired by AlexNet [23], which contains ten convolution layers and five
max pooling layers, organized in five stacks, followed by four fully connected layers. VGG16-1D is a modified version of the VGG16 [32] by setting each
filter width to 1× 3.

TABLE II
THREE SPARSITY SETTINGS FOR RESNET50-1D

Depth Sparsity Ratio Depth Sparsity Ratio
I II III I II III

1 0% 0% 0% 27 65% 85% 95%
2-3 30% 50% 60% 28-39 60% 80% 90%
4-5 50% 70% 80% 40-41 62% 82% 92%
6-13 55% 75% 85% 42-43 65% 85% 95%

14-16 60% 80% 90% 44-48 60% 80% 90%
17-20 65% 85% 95% 49 50% 70% 80%
21-26 68% 88% 98% Prun. Rate 2.6× 5.4× 11.8×

Each column of the table describes the sparsity ratio for different layers i,
defined as 1−αi/Pi and 1−αi/Qi for filter and column pruning respectively.
The resulting pruning rate n/(n− n0) for CLs is shown in the last row.

TABLE III
AN ILLUSTRATION OF PROGRESSIVE WEIGHT PRUNING PROCEDURE.

Models Rounds Description Pruning Rate
(CLs only)

V1 1 C (I) 2.6×
V2 2 C (I) → C (II) 5.4×
V3 3 C (I) → C (II) → C (III) 11.8×
V4 4 C (I) → C (II) → C (II) + F (II) 27.2×

We present 4 different versions of the execution (V1-V4). In the first three
(V1-V3), Column (C) pruning, is sequentially applied with more stringent
constraints (I–III) in each round, without masks. In V4, a final Filter (F)
pruning round is applied, further constrained via masks.

a smaller slice size 198 for WiFi equalized datasets, due to
the shorter equalized transmission length caused by down-
sampling. We use Adam [87] as an optimizer with default
values and initialize the learning rate to 0.0001. To reduce the
evaluation cost, we set the κ = 16 and a stride of 16 for slicing
at training and testing stage, respectively.
ADMM In each model pruning round, we run 50 iterations of
ADMM (Eq. (10)). In each iteration, step (10a) is implemented
by one epoch of SGD over the dataset, solving Eq. (11) ap-
proximately. We set all ρi = 10−4 initially; every 10 iterations
of ADMM, we multiply them by a factor of 10, until they reach
1. Finally, we retrain the network under a pruned mask for 10
epochs with a batch size of 64 as described in Section IV-D.

Progressive Model Pruning. Recall from Section IV-A that
the sparsity constraint sets {Si}Ni=1 are defined by Eq. (5) for
filter pruning and by Eq. (6) for column pruning, with sparsity
parameters αi ∈ N determining the non-zero rows or columns,
respectively per layer. We define three different sparsity set-
tings (I–III) for ResNet50-1D, summarized in Table II. In each
setting we indicate the sparsity ratio for different layers i,
defined as 1 − αi/Pi and 1 − αi/Qi for filter and column
pruning respectively.

To set the sparsity ratio for each layer, we built upon the
intuition/lessons learned from pruning ResNet50 over image
classification on the CIFAR10 dataset, reported in [10], [40],
[49]. In particular, these works empirically observed that spar-
sity ratios should should be higher on middle layers, that are
less sensitive to pruning, while earlier and later layers should
lower pruning rates, as they have greater impact on pruning. To
that end, we started from the sparsity ratios reported in [49];
for each group in Table II, we fine-tuned these selections to
our RF-fingerprinting dataset. In particular, we explored 5%
perturbations of the values reported in [49], and selected the
best performing values w.r.t. validation set accuracy. We stress
again that the sparsity constaint sets are applied to all CLs,
including the CLs in projection and identity blocks, as well as
the shortcuts in projection blocks, as shown in Fig 2.

These constraints are used in different rounds of progressive
pruning, as illustrated in Fig. 4. We have 4 different versions
of this execution (V1-V4) summarized in Table III. In the first
three (V1-V3), Column (C) pruning, is sequentially applied
with more stringent constraints (I–III) in each round, without
masks (see Section IV-D). In V4, a Filter (F) pruning round
is applied, further constrained via masks {M2

i }Ni=1 from the
column layer. In all cases, the first round operates on a pre-
trained ResNet50-1D model without constraints. Note that, in
V4, the combined application of Column and Filter pruning
results in a model with final overall pruning rate 27.2× for
CLs.
Software and Hardware. We use GNU Radio Toolkit [88]
for data equalization. Training, pruning and prediction are
implemented in Python using Pytorch and NVIDIA CUDA
support. All training and pruning experiments are carried out
on an NVIDIA DGX workstation with 1 Tesla V100 GPU with
32 GB memory and 5120 cores, operating at a frequency of



10

TABLE IV
PROGRESSIVE MODEL PRUNING ON WIFI-EQ-50 AND WIFI-EQ-500 DATASETS

Datasets Benchmark Accuracy Pruning Rate # Parameters FLOPS
Per-slice Per-trans. CLs only All CLs only All

WiFi-Eq-50

ResNet50-1D 85.71% 70.78% 1× 1× 15.90M 16.06M 0.63G
progressive pruning (V1) 87.47% 71.80% 2.6× 2.5× 6.15M 6.30M 0.24G

ResNet50-1D-Lite 82.62% 64.73% - - 6.22M 6.36M 0.25G
progressive pruning (V2) 87.44% 71.23% 5.4× 5.1× 2.97M 3.13M 0.12G

ResNet50-1D-Lite 79.63% 61.37% - - 3.05M 3.23M 0.13G
progressive pruning (V3) 84.77% 68.95% 11.8× 10.5× 1.38M 1.54M 0.06G

ResNet50-1D-Lite 76.29% 57.50% - - 1.39M 1.55M 0.06G
progressive pruning (V4) 85.59% 70.24% 27.2× 15.8× 0.59M 0.74M 0.02G

ResNet50-1D-Lite 80.05% 55.83% - - 0.59M 0.74M 0.02G

WiFi-Eq-500

ResNet50-1D 45.38% 61.40% 1× 1× 15.90M 16.98M 0.64G
progressive pruning (V1) 44.83% 61.26% 2.6× 2.1× 6.15M 7.18M 0.25G

ResNet50-1D-Lite 42.32% 53.69% - - 6.21M 7.26M 0.26G
progressive pruning (V2) 44.51% 60.44% 5.4× 4.3× 2.97M 3.99M 0.13G

ResNet50-1D-Lite 37.86% 51.04% - - 3.33M 4.35M 0.15G
progressive pruning (V3) 38.77% 51.38% 11.8× 9.2× 1.38M 2.41M 0.06G

ResNet50-1D-Lite 30.11% 42.64% - - 1.30M 2.33M 0.06G

We also evaluate a group of ResNet50-1D-Lite models, which contain fewer filters in each CLs while maintain the ResNet50-1D structure. These ResNet50-Lite
models are deliberately designed to have similar number of parameters as pruned models.

1230 MHz and 250W peak power. Besides NIVIDIA V100,
we also evaluate the dedicated architectures on a TX2 plat-
form, a smartphone, and an FPGA. NVIDIA Jetson TX2 is
an industrial-graded GPU aided computer designed for GPU
computations. It features an integrated NVIDIA Pascal GPU
with 256 CUDA cores, a hex-core ARMv8 64-bit CPU com-
plex, and 8GB of LPDDR4 memory with a 128-bit interface,
at 7.5W peak power and Max-Q frequency of 854 MHz. Our
smartphone experiments are conducted on a Samsung Galaxy
S10 cell phone with the latest Qualcomm Snapdragon 855
mobile platform that contains a 2.8 GHz Qualcomm Kryo
485 Octacore CPU with 8 cores and a Qualcomm Adreno 640
GPU, operating at a frequency of 585 MHz. The peak power
consumption of Qualcomm Snapdragon 855 mobile platform
is 5W. We use the FPGA platform Xilinx-ZCU104 [89], with
an operating frequency of 200MHz and 14W peak power con-
sumptions, under a 256-PE design (Ti = 4, To = 64, as
described in Section V-B). To explore performance gains in
detail, we build a cycle-level emulator for the proposed design
and connect it to a DRAM simulation model [90].

B. Performance Evaluation

Effectiveness of Model Pruning. We first apply our progres-
sive structured pruning method on the WiFi-Eq-50 and WiFi-
Eq-500 datasets. Predictions (per-slice and per-transmission
accuracy) and pruning performance (pruning rate, number of
model parameters, and FLOPS) are summarized in Table IV.
We report the pruning rate and number of model parameters
in terms of convolutional layers (CLs only) as well as the
entire model (All). We stress again that CLs are of greater
impact on inference time than remaining parameters, as they
are used repeatedly during inference. Overall, our approach
prunes a large fraction of weights with only minimal test accu-

V1
V2

V3
V4 Pre-trained

ResNet50-1D

ResNet34-1DResNet18-1D

VGG16-1D
RFNet

(a) WiFi-Eq-50

Pre-trained
ResNet50-1D

V1V2

ResNet34-1D

ResNet18-1D

V3

VGG16-1D

RFNet

(b) WiFi-Eq-500

Fig. 6. Performance comparison between the pruned ResNet50-1D, full
ResNet(50/34/18)-1D, RFNet [8], VGG16-1D, and ResNet50-1D-Lite on (a)
WiFi-Eq-50 and (b) WiFi-Eq-500 datasets. Each point on the plot represents
the change of per-transmission accuracy of the corresponding model, when
compared to a (non-pruned) pre-trained ResNet50-1D, vs. the pruned model’s
number of FLOPS. The pruned model outperforms full ResNet(34/18)-1D and
its corresponding ‘Lite’ version in all cases, attaining a considerably higher
accuracy at even lower FLOPS.

racy degradation. In particular, progressive structured pruning
yields a 27.2× pruning rate on CLs, with only 0.54% per-
transmission accuracy drop on WiFi-Eq-50 (under V4), and a
5.4× pruning rate on CLs with only 0.96% per-transmission



11

TABLE V
PROGRESSIVE MODEL PRUNING ON PROTOCOL-MIXTURED DATASETS

Datasets Benchmark Accuracy Pruning Rate # Parameters FLOPS
Per-slice Per-trans. CLs only All CLs only All

WiFi-50

ResNet50-1D 44.52% 64.80% 1× 1× 15.90M 16.36M 1.61G
progressive pruning (V1) 44.83% 64.82% 2.6× 2.5× 6.15M 6.61M 0.63G
progressive pruning (V2) 44.74% 64.44% 5.4× 4.8× 2.97M 3.43M 0.31G
progressive pruning (V3) 44.43% 64.00% 11.8× 8.9× 1.38M 1.85M 0.15G
progressive pruning (V4) 44.23% 63.61% 27.2× 15.7× 0.59M 1.05M 0.07G

ADS-B-50

ResNet50-1D 73.83% 88.53% 1× 1× 15.90M 16.36M 1.61G
progressive pruning (V1) 73.55% 88.49% 2.6× 2.5× 6.15M 6.61M 0.63G
progressive pruning (V2) 73.40% 88.25% 5.4× 4.8× 2.97M 3.43M 0.31G
progressive pruning (V3) 73.14% 88.18% 11.8× 8.9× 1.38M 1.85M 0.15G
progressive pruning (V4) 72.86% 88.09% 27.2× 15.7× 0.59M 1.05M 0.07G

Mixture-50

ResNet50-1D 66.19% 79.51% 1× 1× 15.90M 16.36M 1.61G
progressive pruning (V1) 65.94% 79.55% 2.6× 2.5× 6.15M 6.61M 0.63G
progressive pruning (V2) 65.86% 79.13% 5.4× 4.8× 2.97M 3.43M 0.31G
progressive pruning (V3) 65.27% 78.60% 11.8× 8.9× 1.38M 1.85M 0.15G
progressive pruning (V4) 64.79% 78.01% 27.2× 15.7× 0.59M 1.05M 0.07G

For Mixture-50 dataset, the per-transmission accuracy (79.51%) is slightly above the average of it on WiFi-50 (64.80%) and ADS-B-50 (88.53%); and the per-
transmission accuracy after the progressive pruning (78.01%) is still higher than the average of 63.61% and 88.09% on WiFi-50 and ADS-B-50, respectively.
These two observations indicate that the informational capacity of the pruned network is not adversely affected by the exposure to protocol mixtures.

TABLE VI
EFFECTIVENESS OF PROGRESSIVE PRUNING

Benchmark Accuracy Pruning Rate
Per-slice Per-trans. CLs only All

ResNet50-1D 85.71% 70.78% 1× 1×
V4 85.59% 70.22% 27.2× 15.8×

direct pruning 79.32% 61.02% 27.2× 15.8×

Performance comparison between a progressive pruned model (V4) and
a single-round pruned model (directly to 27.2×) on WiFi-Eq-50 dataset.
Progressive pruning improves accuracy by 9.2%.

accuracy drop) on WiFi-Eq-500 (under V2).
We also demonstrate pruning while training, in a progressive

fashion, is imperative for maintaining high accuracy while
constructing a parsimonious model. To show this, we construct
a class of models that has fewer parameters than the original
ResNet50-1D, and explore the resulting accuracy-compression
trade-off. We term the first class of models as ‘ResNet50-Lite’:
these models have the same architecture ResNet50 but contain
fewer filters in each convolutional layer (resulting in fewer
parameters in total). These ResNet50-Lite models are deliber-
ately designed to have similar total number of parameters as
pruned models V1-V4. To make a fair comparison, we set the
number of filters in each layer corresponding to the sparsity
settings shown in Table 2. Specifically, the sparsity ratio for
each layer i reported in Table 2 is defined as 1−αi/Pi, where
αi is sparsity parameter defined in Eq. (3) and (4). For each
layer i, We set the number of filters in each ResNet50-1D-Lite
model equal to the corresponding αi. We train these ‘Lite’
models until no improvement was observed on the validation
set (typically, ∼20 epochs). The performance of ResNet50-
Lite models on WiFi-Eq-50 and WiFi-Eq-500 datasets is pre-

sented in Table IV. The pruned model outperforms its corre-
sponding ‘Lite’ version in all cases, attaining a considerably
higher accuracy at even lower FLOPS.

To further demonstrate this, we plot the change of accu-
racy (i.e., the accuracy achieved by the corresponding model
minus the accuracy of the pre-trained ResNet50-1D model)
vs. FLOPS of our pruned models and the ResNet-1D-Lite
models described above in Fig. 6. As an additional class of
parsimonious competitors, we also include the change of ac-
curacy and FLOPS of the ResNet34-1D and ResNet18-1D
architectures [25] (which are shallower than ResNet50, and
contain fewer parameters). Our pruned ResNet50-1D outper-
forms ResNet(34/18)-1D and ResNet50-1D-Lite in all cases,
clearly demonstrating the advantage of pruning compared to
directly training parsimonious models from scratch.
Saturation and Bias vs. Variance Tradeoff. As seen on
Table IV there is a slight accuracy increase during pruning in
V1, V2, for WiFi-Eq-50. This is because pruning reduces the
complexity of the model, and hence, to some extent, avoids
overfitting (reducing variance without affecting model bias).
However, increasing the pruning rate beyond a critical point
can lead to sharp drop in accuracy; this is expected, as reducing
the model capacity significantly hampers its expressiveness
and starts to introduce bias in predictions. As indicated in
Table IV, this critical point occurs on WiFi-Eq-500 at pruning
rate 11.8×/V3, observed as a sharp accuracy drop (51.38%
at 11.8×/V3 vs. 60.44% at 5.4×/V2). Not surprisingly, this
critical point occurs earlier for WiFi-Eq-500 when compared
to WiFi-Eq-50, for which no saturation happens for pruning
rates up-to 27.2×.
Inference on Protocol Mixtures. Table V summarizes perfor-
mance of progressive structured pruning for ResNet50-1D on
WiFi-50 and ADS-B-50 datasets, as well as on Mixture-50,



12

TABLE VII
INFERENCE ACCELERATION

Datasets Benchmark
Overall
Comp.
Rate

Acc.
Degra.

NVIDIA V100 NVIDIA TX2 Phone(GPU) Phone(CPU) FPGA
5120-cores 256-cores 384×2 ALUs 8-cores 256-PE
1230MHz 854MHz 585MHz 2.8GHz 200MHz

250W 7.5W Max. Power: 5W 14W
Pytorch (ms) Pytorch TensorRT (ms) (ms) (ms)

WiFi-50 ResNet50-1D 1× 0.00% 9.22±0.19 28.93±2.47 11.81±0.88 37.60 63.20 15.60
pruned (V4) 15.7× 1.19% 9.18±0.16 29.09±3.14 11.62±0.59 11.50 21.17 1.36

ADS-B-50 ResNet50-1D 1× 0.00% 9.24±0.20 29.10±2.66 11.87±0.82 37.26 63.49 15.60
pruned (V4) 15.7× 0.44% 9.13±0.21 28.79±2.76 11.66±0.89 11.59 21.83 1.36

Mixture-50 ResNet50-1D 1× 0.00% 9.19±0.24 29.16±2.79 12.00±0.95 37.32 63.44 15.60
pruned (V4) 15.7× 1.50% 9.16±0.22 29.04±3.09 11.46±0.47 11.15 21.30 1.36

WiFi-Eq-50 ResNet50-1D 1× 0.00% 9.15±0.17 29.40±1.26 9.67±0.99 24.07 40.18 6.04
pruned (V4) 15.7× 0.54% 9.07±0.12 29.34±1.18 9.37±0.78 7.24 16.21 0.53

WiFi-Eq-500 ResNet50-1D 1× 0.00% 9.20±0.18 29.34±1.13 9.45±0.87 24.13 40.32 6.06
pruned (V2) 4.3× 0.96% 9.18±0.14 29.15±1.07 9.47±0.77 13.05 24.15 2.13

Inference acceleration for the pruned models on four platforms: NVIDIA V100, NVIDIA TX2, a Samsung Galaxy S10, and a Xilinx-ZCU104 FPGA. Among
four platforms, V100 maintains the best performance (∼9ms) on non-pruned model. In contrast, FPGA achieves the best performance under a pruned model
and attains a speedup of as much as 11.5× over the non-pruned model, demonstrating the benefit of our design over this accelerator. The low power smartphone
has the worst inference performance among all platforms; nevertheless, pruning achieves a 3× speedup.

a dataset comprising both protocols. In general, we observe
that the accuracy for ADS-B data is higher than for WiFi
data, indicating they are easier to identify; this is consistent
with observations made, e.g., in [9]. For Mixture-50 dataset,
the per-transmission accuracy (79.51%) is slightly above the
average of it on WiFi-50 (64.80%) and ADS-B-50 (88.53%);
and the per-transmission accuracy after the progressive prun-
ing (78.01%) is still higher than the average of 63.61% and
88.09% on WiFi-50 and ADS-B-50, respectively. These two
observations indicate that the informational capacity of the
pruned network is not adversely affected by the exposure to
protocol mixtures.

Effectiveness of Progressive Pruning. To evaluate the effec-
tiveness of progressive pruning, we present results obtained
from a model pruned to 27.2× in a single round in Table VI,
as opposed to progressively pruning as in setting V4. Progres-
sive pruning improves 9.2% on per-transmission accuracy on
WiFi-50-Eq dataset, which demonstrates the effectiveness of
progressive vs. direct pruning.

Influence of Equalization. We observe an interesting phe-
nomenon comparing raw WiFi transmissions (Table V) and
their equalized versions (Table IV). Specifically, (non-pruned)
ResNet50-1D shows much higher per-transmission accuracy
for equalized data (70.78%), compared to the raw WiFi
transmissions (64.80%). Moreover, progressive pruning on
ResNet50-1D is more stable on equalized data, exhibiting a
lower per-transmission accuracy drop (0.54%) at large prun-
ing rate (27.2×), compared to the corresponding accuracy
drop (1.19%) observed when training over raw data at the
same pruning rate. This indicates that equalization helps both
inference and compression. Put differently, by removing the
effect of the channel from raw IQ samples, the equalized
transmissions carry more concentrated features, which require
less capacity and can be captured by pruned models (with
fewer parameters) effectively.

Hardware Speedup Comparisons. Table VII illustrates the
inference acceleration for the pruned models on our four
platforms. We list the first two for reference purposes, as
they do not support pruned models: evaluations on both V100
and TX2 involve multiplications via masks containing zeros,
and therefore do not yield any performance improvements via
pruning.

For all platforms, except the FPGA, we evaluate one slice
103 times with a batch size of 1 and report the inference
speed means and standard deviation. Our FPGA emulation
experiments measure clock cycles/clock frequency, so they
are deterministic. The CL pruning rate and per-transmission
accuracy degradation are also provided for reference.

As shown in Table VII, V100 maintains the best perfor-
mance (∼9ms) on non-pruned model; this is not surprising,
given the power consumption and specifications of DGX
machines. In contrast, the FPGA achieves the best performance
under a pruned model, outperforming even V100 in this case.
It also attains a speedup of as much as 11.5 times over the
non-pruned model over the FPGA, demonstrating the benefit
of our design over this accelerator. Not surprisingly, the low
power smartphone has the worst inference performance among
all platforms; nevertheless, our pruning achieves an almost
3× speedup in this platform as well. We note again that no
speedup is observed on V100 and TX2 hardware, as these
platforms do not support pruned models.

We also make a comparison over different platforms. Using
the numbers reported on Table VII, the dedicated FPGA
hardware achieves the best efficiency, as its processing time
of the V4-pruned model over WiFi-Eq-50 is 0.53s: this is
17×, 18×, and 14× better than the V100, TX2-TensorRT
and smartphone-GPU, respectively. This is due to both the
model compression as well as the fully customized hardware
for the pruned model outlined in Section V-B. In particular, the
compression storage with bit mask and its decoder logic not



13

only reduces the bandwidth requirement on off-chip DRAM,
but also avoids the branching overhead (for zero-column
skipping) present in the GPU/CPU cases.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we study radio frequency fingerprinting
deployments at resource-constrained edge devices. We use
structured pruning to jointly train and sparsify neural networks
tailored to edge hardware implementations. Under only neg-
ligible accuracy loss (less than 1%), we can achieve at most
27.2× pruning rate on overall convolutional layers for 50-
device classification; this is reduced to 5.4× for 500 devices.
We demonstrate the efficacy of our approach over multiple
edge hardware platforms, including a Samsung Gallaxy S10
phone and a Xilinx-ZCU104 FPGA. Our method yields sig-
nificant inference speedups, 11.5× on the FPGA and 3× on
the smartphone, as well as high efficiency.

Variability in wireless channel conditions and SNR levels
have been observed as two major contributors to accuracy
degradation in CNN-based RF fingerprinting [8], [27]. Data
augmentation tailored to RF signals has been been shown to
ameliorate both (see, e.g. [91]). In short, one can expose the
CNN to many simulated channel and noise variations that are
not present in the original training set. By doing this, the CNN
will be more robust and less affected by the presence of unseen
channels/noise in the test set. This approach can be combined
with pruning to increase robustness against channel variations.

Incorporating additional compression techniques, such as
quantization [92], has the potential of improving network
efficiency even further; such approaches can be incorporated as
additional constraints in our ADMM framework. In addition,
they can also yield to hardware-friendly implementations.
Investigating such extensions, further driving inference effi-
ciency, is an interesting future direction for this work. Another
promising future direction is to explore other network archi-
tectures that may be appropriate for fingerprinting tasks on
the edge, providing stable and high accuracy with high speed;
sequence-based models (e.g., LSTMs) [93], [94] with pruning
applied to RF fingerprinting tasks are one such example.

Finally, departing from the standard ML setting, in which
the devices in training and test set are the same and a priori
known, is an additional interesting future direction. Techniques
such as new device detection [77], lifelong learning [81], and
open world discovery [95] go beyond the standard setting we
consider here; applying pruning to such settings in the context
of RF fingerprinting, is an important open question.

VIII. ACKNOWLEDGEMENTS

The authors gratefully acknowledge support by National
Science Foundation under grants CCF-1937500 and CNS-
1923789.

REFERENCES

[1] B. Korany, C. Karanam, H. Cai, and Y. Mostofi, “Xmodal-id: Using wifi
for through-wall person identification from candidate video footage,”
in Proceedings of the 25th ACM International Conference on Mobile
Computing and Networking, 2019.

[2] D. Zanetti, S. Capkun, and B. Danev, “Types and origins of fingerprints,”
in Digital Fingerprinting, 2016, pp. 5–29.

[3] Y. Huang and H. Zheng, “Radio frequency fingerprinting based on the
constellation errors,” in APCC, 2012, pp. 900–905.

[4] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning
for rf device fingerprinting in cognitive communication networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–
167, 2018.

[5] J. Stankowicz, J. Robinson, J. M. Carmack, and S. Kuzdeba, “Complex
neural networks for radio frequency fingerprinting,” in WNYISPW, 2019,
pp. 1–5.

[6] E. Mattei, C. Dalton, A. Draganov, B. Marin, M. Tinston, G. Harrison,
B. Smarrelli, and M. Harlacher, “Feature learning for enhanced security
in the internet of things,” in GlobalSIP, 2019, pp. 1–5.

[7] G. Baldini, C. Gentile, R. Giuliani, and G. Steri, “Comparison of
techniques for radiometric identification based on deep convolutional
neural networks,” Electronics Letters, vol. 55, no. 2, pp. 90–92, 2018.

[8] T. Jian, B. C. Rendon, E. Ojuba, N. Soltani, Z. Wang, K. Sankhe,
A. Gritsenko, J. Dy, K. Chowdhury, and S. Ioannidis, “Deep learning
for rf fingerprinting: A massive experimental study,” in IEEE Internet
of Things Magazine, 2020.

[9] A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B. C. Rendon,
N. Soltani, J. Dy, S. Ioannidis, K. Chowdhury, and T. Melodia, “Ex-
posing the fingerprint: Dissecting the impact of the wireless channel on
radio fingerprinting,” in INFOCOM, 2020.

[10] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in ECCV, 2018, pp. 184–199.

[11] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“Admm-nn: An algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers,” in ASPLOS, 2019, pp. 925–
938.

[12] S. Ye, T. Zhang, K. Zhang, J. Li, K. Xu, Y. Yang, F. Yu, J. Tang,
M. Fardad, S. Liu, X. Chen, X. Lin, and Y. Wang, “Progressive
weight pruning of deep neural networks using admm,” CoRR, vol.
abs/1810.07378, 2018.

[13] O. Ureten and N. Serinken, “Wireless security through RF fingerprint-
ing,” Canadian Journal of Electrical and Computer Engineering, vol. 32,
no. 1, pp. 27–33, 2007.

[14] W. C. Suski II, M. A. Temple, M. J. Mendenhall, and R. F. Mills,
“Radio frequency fingerprinting commercial communication devices to
enhance electronic security,” International Journal of Electronic Security
and Digital Forensics, vol. 1, no. 3, pp. 301–322, 2008.

[15] V. Lakafosis, A. Traille, H. Lee, E. Gebara, and M. M. Tentzeris, “RF
fingerprinting physical objects for anticounterfeiting applications,” IEEE
Transactions on Microwave Theory and Techniques, vol. 59, no. 2, pp.
504–514, 2011.

[16] S. U. Rehman, K. W. Sowerby, and C. Coghill, “Analysis of imperson-
ation attacks on systems using rf fingerprinting and low-end receivers,”
Journal of Computer and System Sciences, vol. 80, no. 3, pp. 591 – 601,
2014.

[17] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identi-
fication with radiometric signatures,” in Proceedings of the 14th ACM
International Conference on Mobile Computing and Networking, 2008,
pp. 116–127.

[18] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir, “Fingerprinting Wi-Fi
devices using software defined radios,” in Proceedings of the 9th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2016, pp. 3–14.

[19] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for
RF device fingerprinting in cognitive communication networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–
167, 2018.

[20] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning
convolutional neural networks for radio identification,” IEEE Communi-
cations Magazine, vol. 56, no. 9, pp. 146–152, 2018.

[21] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and
K. Chowdhury, “ORACLE: Optimized Radio clAssification through
Convolutional neuraL nEtworks,” in IEEE International Conference on
Computer Communications, 2019.

[22] T. Jian, B. C. Rendon, A. Gritsenko, J. Dy, K. Chowdhury, and S. Ioan-
nidis, “MAC ID spoofing-resistant radio fingerprinting,” in GlobalSIP,
2019.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1097–1105.



14

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[26] F. Restuccia, S. D’Oro, A. Al-Shawabka, M. Belgiovine, L. Angioloni,
S. Ioannidis, K. Chowdhury, and T. Melodia, “Deepradioid: Real-time
channel-resistent optimization of deep learning-based radio fingerprint-
ing algorithm,” in ACM International Symposium on Mobile Ad Hoc
Networking and Computing (ACM MobiHoc), Catania, Italy, 2019.

[27] H. Jafari, O. Omotere, D. Adesina, H. Wu, and L. Qian, “Iot devices
fingerprinting using deep learning,” in MILCOM, 2018, pp. 1–9.

[28] J. Yu, A. Hu, G. Li, and L. Peng, “A robust rf fingerprinting approach
using multisampling convolutional neural network,” IEEE Internet of
Things Journal, vol. 6, no. 4, pp. 6786–6799, 2019.

[29] A. M. Ali, E. Uzundurukan, and A. Kara, “Assessment of features
and classifiers for bluetooth rf fingerprinting,” IEEE Access, vol. 7, pp.
50 524–50 535, 2019.

[30] J. Han, C. Qian, P. Yang, D. Ma, Z. Jiang, W. Xi, and J. Zhao,
“Geneprint: Generic and accurate physical-layer identification for uhf
rfid tags,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 846–858, 2016.

[31] B. W. Ramsey, T. D. Stubbs, B. E. Mullins, M. A. Temple, and
M. A. Buckner, “Wireless infrastructure protection using low-cost radio
frequency fingerprinting receivers,” International Journal of Critical
Infrastructure Protection, vol. 8, pp. 27–39, 2015.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[33] N. Soltani, K. Sankhe, S. Ioannidis, D. Jaisinghani, and K. Chowdhury,
“Spectrum awareness at the edge: Modulation classification using smart-
phones,” in DySPAN, 2019, pp. 1–10.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NeurIPS, 2012, pp. 1097–
1105.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[36] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[37] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” in NeurIPS, 2017, pp. 4857–4867.

[38] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[39] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in ICCV, 2017, pp. 1389–1397.

[40] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[41] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in ICCV,
2017, pp. 2736–2744.

[42] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in NeurIPS, 2016, pp. 2074–2082.

[43] M. Yang, M. Faraj, A. Hussein, and V. Gaudet, “Efficient hardware
realization of convolutional neural networks using intra-kernel regular
pruning,” in ISMVL, 2018, pp. 180–185.

[44] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational
convolutional neural network pruning,” in CVPR, 2019, pp. 2780–2789.

[45] X. Zhu, W. Zhou, and H. Li, “Improving deep neural network sparsity
through decorrelation regularization,” in IJCAI, 2018, pp. 3264–3270.

[46] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, “Discrimination-aware channel pruning for deep neural
networks,” in NeurIPS, 2018, pp. 875–886.

[47] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in ICCV, 2017, pp. 5058–5066.

[48] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autoslim: An
automatic dnn structured pruning framework for ultra-high compression
rates,” arXiv preprint arXiv:1907.03141, 2019.

[49] T. Zhang, K. Zhang, S. Ye, J. Li, J. Tang, W. Wen, X. Lin, M. Fardad, and
Y. Wang, “Adam-admm: A unified, systematic framework of structured
weight pruning for dnns,” arXiv:1807.11091, 2018.

[50] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li, “Coordinating
filters for faster deep neural networks,” in ICCV, 2017, pp. 658–666.

[51] A. Tulloch and Y. Jia, “High performance ultra-low-precision convolu-
tions on mobile devices,” in NeurIPS, 2017.

[52] S. Dieleman, J. De Fauw, and et.al., “Exploiting cyclic symmetry in
convolutional neural networks,” in ICML, vol. 48, 2016, pp. 1889–1898.

[53] S. Zhai, Y. Cheng, and et.al., “Doubly convolutional neural networks,”
in NeurIPS, 2016, pp. 1082–1090.

[54] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[55] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models with knowledge distillation,” in Advances in
neural information processing systems, 2017, pp. 742–751.

[56] G. K. Nayak, K. R. Mopuri, and et.al., “Zero-shot knowledge distillation
in deep networks,” in ICML, 2019, pp. 4743–4751.

[57] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing fpga-based accelerator design for deep convolutional neural
networks,” in Proceedings of the ACM International Symposium on
Field-Programmable Gate Arrays, 2015, pp. 161–170.

[58] S. Mittal, “A survey of fpga-based accelerators for convolutional neural
networks,” Neural Computing and Applications, pp. 1–31, 2018.

[59] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “Mcdnn: An approximation-based execution framework for
deep stream processing under resource constraints,” in MobiSys, 2016,
pp. 123–136.

[60] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications,” in
MobiSys, 2017, pp. 82–95.

[61] https://www.tensorflow.org/mobile/tflite/.
[62] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,

L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in the USENIX Symposium on
Operating Systems Design and Implementation, 2018.

[63] https://github.com/alibaba/MNN/.
[64] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse

convolutional neural networks,” in CVPR, 2015, pp. 806–814.
[65] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano,

S. Mahlke, L. Tang, and J. Mars, “Deftnn: Addressing bottlenecks for
dnn execution on GPUs via synapse vector elimination and near-compute
data fission,” in MICRO, 2017, pp. 786–799.

[66] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 27–40, 2017.

[67] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in MobiSys, 2018, pp. 389–400.

[68] Nvidia, “TensorRT developer guide,” http://https://docs.nvidia.com/
deeplearning/sdk/tensorrt-developer-guide/index.html, accessed: 03-15-
2020.

[69] X. Li, Y. Zhou, Z. Pan, and J. Feng, “Partial order pruning: for best
speed/accuracy trade-off in neural architecture search,” in CVPR, 2019,
pp. 9145–9153.

[70] M. Vandersteegen, K. Van Beeck, and T. Goedemé, “Super accurate low
latency object detection on a surveillance uav,” in 16th International
Conference on Machine Vision Applications, 2019, pp. 1–6.

[71] H.-H. Wu, Z. Zhou, M. Feng, Y. Yan, H. Xu, and L. Qian, “Real-time
single object detection on the uav,” in ICUAS, 2019, pp. 1013–1022.

[72] E. Sourour, H. El-Ghoroury, and D. McNeill, “Frequency offset estima-
tion and correction in the ieee 802.11a wlan,” in IEEE 60th Vehicular
Technology Conference, vol. 7, 2004, pp. 4923–4927.

[73] https://github.com/bastibl/gr-ieee802-11.
[74] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in ICLR, 2015.
[75] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review

of novelty detection,” Signal Processing, vol. 99, pp. 215–249, 2014.
[76] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the good, the bad

and the ugly,” in CVPR, 2017, pp. 4582–4591.
[77] A. Gritsenko, Z. Wang, T. Jian, J. Dy, K. Chowdhury, and S. Ioannidis,

“Finding a ‘new’needle in the haystack: Unseen radio detection in
large populations using deep learning,” in 2019 IEEE International
Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE,
2019, pp. 1–10.

[78] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in ICML, 2017, pp. 3987–3995.

[79] G. M. van de Ven and A. S. Tolias, “Generative replay with feedback
connections as a general strategy for continual learning,” in COSYNE
Workshop, 2019.

[80] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” in ICLR, 2018.

[81] Z. Wang, T. Jian, K. Chowdhury, Y. Wang, J. Dy, and S. Ioannidis,
“Learn-prune-share for lifelong learning,” in 2020 IEEE International
Conference on Data Mining (ICDM), 2020, pp. 641–650.

https://www.tensorflow.org/mobile/tflite/
https://github.com/alibaba/MNN/
http://https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
http://https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://github.com/bastibl/gr-ieee802-11


15

[82] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” ACM SIGARCH Computer Architecture News, vol. 45, no. 2,
pp. 548–560, 2017.

[83] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[84] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“Patdnn: Achieving real-time dnn execution on mobile devices with
pattern-based weight pruning,” in ASPLOS, 2020.

[85] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” in Proceedings of the 19th annual ACM symposium on
Theory of Computing, 1987, pp. 1–6.

[86] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Transactions on Mathematical Software, vol. 34,
no. 3, pp. 1–25, 2008.

[87] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[88] M. Müller. (2018, Aug.) Gnu radio v3.7.13.4 (press
release). [Online]. Available: https://www.gnuradio.org/news/
2018-07-15-gnu-radio-v3-7-13-4-release/

[89] Xilinx. (2020, mar) Zynq ultrascale+ mpsoc zcu104 evaluation kit.
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
zcu104.html

[90] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob, “Dramsim: a memory system simulator,” ACM SIGARCH
Computer Architecture News, vol. 33, no. 4, pp. 100–107, 2005.

[91] N. Soltani, K. Sankhe, J. Dy, S. Ioannidis, and K. Chowdhury, “More is
better: Data augmentation for channel-resilient rf fingerprinting,” IEEE
Communications Magazine, vol. 58, no. 10, pp. 66–72, 2020.

[92] S. Ye, T. Zhang, K. Zhang, J. Li, J. Xie, Y. Liang, S. Liu, X. Lin, and
Y. Wang, “A unified framework of DNN weight pruning and weight
clustering/quantization using ADMM,” CoRR, 2018.

[93] S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, and S. Chang,
“Acceleration of lstm with structured pruning method on fpga,” IEEE
Access, vol. 7, pp. 62 930–62 937, 2019.

[94] X. Dai, H. Yin, and N. K. Jha, “Grow and prune compact, fast, and
accurate lstms,” IEEE Transactions on Computers, vol. 69, no. 03, pp.
441–452, 2020.

[95] Z. Wang, B. Salehi, A. Gritsenko, K. Chowdhury, S. Ioannidis, and
J. Dy, “Open-world class discovery with kernel networks,” in 2020 IEEE
International Conference on Data Mining (ICDM), 2020, pp. 631–640.

Tong Jian is currently pursuing the Ph.D. degree
in the Department of Electrical and Computer En-
gineering, Northeastern University. She received her
M.Sc. (2016) in Electrical Engineering from Rens-
selaer Polytechnic Institute, NY. She works under
the guidance of Prof. Stratis Ioannidis in the field of
machine learning. Her current research efforts are
focused on the application of machine learning in
the domain of wireless communication.

Yifan Gong is currently pursuing the Ph.D. de-
gree under the guidance of Prof. Yanzhi Wang in
the Department of Electrical and Computer Engi-
neering, Northeastern University. She received her
M.A.Sc degree from Department of Electrical and
Computer Engineering, University of Toronto, in
2019. Her current research area focuses on real-
time and energy-efficient deep learning and artificial
intelligence systems and model compression of deep
neural networks.

Zheng Zhan is currently a Ph.D. candidate in the
department of Electrical and Computer Engineering
of Northeastern University, Boston. He works under
the supervision of Prof.Yanzhi Wang.

His research interests include model compression,
representation learning, resource management, and
Single Image Super-Resolution (SISR).

Runbin Shi received the BEng and MEng degrees
from Soochow University, Suzhou, China, in 2013
and 2016, respectively. He has been pursuing his
PhD degree with the Department of Electrical and
Electronic Engineering, The University of Hong
Kong, Hong Kong, since September 2016. His re-
search interest is on modeling and optimization for
FPGA-accelerator design.

Nasim Soltani is currently a PhD student at the
department of Electrical and Computer Engineering
of Northeastern University, Boston. She is pursuing
her PhD under guidance of Professor Chowdhury
in wireless communication. Her current research
area focuses on deep learning algorithms for signal
classification. She is interested in algorithms and
methods for implementing deep learning on resource
constrained devices.

Zifeng Wang is currently pursuing the Ph.D. de-
gree in the Department of Electrical and Computer
Engineering, Northeastern University, Boston. He
received his B.Sc. (2014) in Electronic Engineering
from Tsinghua University, China. He works un-
der the guidance of Prof. Jennifer Dy in machine
learning. His current research focuses on lifelong
learning, representation learning and the application
of machine learning in the domain of biostatistics
and wireless communication.

http://arxiv.org/abs/1412.6980
https://www.gnuradio.org/news/2018-07-15-gnu-radio-v3-7-13-4-release/
https://www.gnuradio.org/news/2018-07-15-gnu-radio-v3-7-13-4-release/
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html


16

Jennifer Dy is Professor at the Department of
Electrical and Computer Engineering, Northeastern
University, Boston, MA, where she first joined the
faculty in 2002. She received her M.S. and Ph.D.
in 1997 and 2001 respectively from Purdue Uni-
versity, and her B.S. degree from the University of
the Philippines in 1993. Her research spans both
fundamental research in machine learning and their
application to biomedical imaging, health, science
and engineering, with research contributions in unsu-
pervised learning, dimensionality reduction, feature

selection, learning from uncertain experts, active learning, Bayesian models,
and deep representations. She received an NSF Career award in 2004. She
has served or is serving as Secretary for the International Machine Learning
Society, associate editor/editorial board member for the Journal of Machine
Learning Research, Machine Learning journal, IEEE Transactions on Pattern
Analysis and Machine Intelligence, organizing and or technical program
committee member for premier conferences in machine learning and data
mining (ICML, NeurIPS, ACM SIGKDD, AAAI, IJCAI, UAI, AISTATS,
SIAM SDM), and program co-chair for SIAM SDM 2013 and ICML 2018.

Kaushik Chowdhury is Associate Professor at
Northeastern University, Boston, MA. He was
awarded the Presidential Early Career Award for
Scientists and Engineers (PECASE), DARPA Young
Faculty Award, the Office of Naval Research Early
Career Award in 2016, and the NSF CAREER
in 2015. He received best paper awards at IEEE
GLOBECOM’19, IEEE DySPAN’19, IEEE INFO-
COM’18, ACM SenSys’18 (runners up), IEEE
ICC’09, ’12 and ’13, and ICNC’13. He is presently
a co-director of the Platforms for Advanced Wireless

Research (PAWR) project office. His current research interests involve systems
aspects of networked robotics, machine learning for agile spectrum sens-
ing/access, wireless energy transfer, and large-scale experimental deployment
of emerging wireless technologies.

Yanzhi Wang is currently an assistant professor at
Dept. of ECE at Northeastern University, Boston,
MA. He received the B.S. degree from Tsinghua
University in 2009, and Ph.D. degree from Univer-
sity of Southern California in 2014. His research
interests focus on model compression and platform-
specific acceleration of deep learning applications.
His recent research achievement, CoCoPIE, can
achieve real-time performance on almost all deep
learning applications using off-the-shelf mobile de-
vices, outperforming competing frameworks by up

to 180X acceleration. His work has been published broadly in top conference
and journal venues (e.g., DAC, ICCAD, ASPLOS, ISCA, MICRO, HPCA,
PLDI, ICS, PACT, ISSCC, AAAI, ICML, CVPR, ICLR, IJCAI, ECCV, ICDM,
ACM MM, FPGA, LCTES, CCS, VLDB, PACT, ICDCS, Infocom, C-ACM,
JSSC, TComputer, TCAS-I, TCAD, TCAS-I, JSAC, TNNLS, etc.), and has
been cited over 7,400 times. He has received four Best Paper Awards, has
another ten Best Paper Nominations and four Popular Paper Awards. He has
received ARO Young Investigator Program Award (YIP), Massachusetts Acorn
Innovation Award, and other research awards from Google, MathWorks, etc.
Three of his Ph.D./postdoc alumni become tenure track faculty at Univ. of
Connecticut, Clemson University, and Texas A&M University, Corpse Christi.

Stratis Ioannidis is Associate Professor in the
Electrical and Computer Engineering Department of
Northeastern University, in Boston, MA, where he
also holds a courtesy appointment with the Khoury
College of Computer Sciences. He received his B.Sc.
(2002) in Electrical and Computer Engineering from
the National Technical University of Athens, Greece,
and his M.Sc. (2004) and Ph.D. (2009) in Computer
Science from the University of Toronto, Canada.
Prior to joining Northeastern, he was a research
scientist at the Technicolor research centers in Paris,

France, and Palo Alto, CA, as well as at Yahoo Labs in Sunnyvale, CA. He is
the recipient of an NSF CAREER Award, a Google Faculty Research Award,
a Facebook Research Award, a Martin W. Essigmann Outstanding Teaching
Award, and best paper awards at ACM ICN 2017 and IEEE DySPAN 2019.
His research interests span machine learning, distributed systems, networking,
optimization, and privacy.


	Introduction
	Related Work
	RF Fingerprinting Architecture
	RF Fingerprinting Dataset 
	Data Pre-Processing
	CNN Architectures
	CNNs for Variable-length Sequences
	Discussion

	Model Pruning
	Problem Formulation
	Model Pruning Using ADMM
	Final Masked Retraining
	Progressive Pruning

	Hardware Implementations
	Smartphone Acceleration Framework
	FPGA Framework
	TX2 Framework (TensorRT)

	Performance Evaluation
	Experimental Setup
	Performance Evaluation

	Conclusions and Future Work
	Acknowledgements
	References
	Biographies
	Tong Jian
	Yifan Gong
	Zheng Zhan
	Runbin Shi
	Nasim Soltani
	Zifeng Wang
	Jennifer Dy
	Kaushik Chowdhury
	Yanzhi Wang
	Stratis Ioannidis


