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Abstract—In lifelong learning, we wish to maintain and update
a model (e.g., a neural network classifier) in the presence of
new classification tasks that arrive sequentially. In this paper, we
propose a learn-prune-share (LPS) algorithm which addresses the
challenges of catastrophic forgetting, parsimony, and knowledge
reuse simultaneously. LPS splits the network into task-specific
partitions via an ADMM-based pruning strategy. This leads
to no forgetting, while maintaining parsimony. Moreover, LPS
integrates a novel selective knowledge sharing scheme into this
ADMM optimization framework. This enables adaptive knowledge
sharing in an end-to-end fashion. Comprehensive experimental
results on two lifelong learning benchmark datasets and a
challenging real world radio frequency fingerprinting dataset are
provided to demonstrate the effectiveness of our approach. Our
experiments show that LPS consistently outperforms multiple
state-of-the-art competitors.

Index Terms—Lifelong learning, Continual Learning, Model
Pruning, Knowledge Reuse

I. INTRODUCTION

Human beings have a natural ability to adapt to different
tasks sequentially without forgetting what they have learned.
They can also seamlessly leverage knowledge learned from
past tasks to tackle new tasks. This impressive ability is crucial
for learning systems deployed in the real world. Lifelong learn-
ing [1] aims to develop models that mimic this human ability
to learn continually without forgetting knowledge acquired
earlier. In concrete terms, in a lifelong learning setting, we
wish to maintain and update a model (e.g., a neural network
classifier) in the presence of new classification tasks that arise
sequentially. The model should both exhibit high accuracy on
new tasks as well as perform well on old classification tasks,
even if the old data is no longer accessible. However, learning
algorithms are often designed to operate under stationary
data distributions — typically, only a single task needs to
be addressed. Under the lifelong learning setting, applying
standard learning algorithms may lead to forgetting what
has been learned on old tasks: this phenomenon, known as
catastrophic forgetting [2], [3], results in severe performance
degradation on old tasks after adapting to a new task.

A large body of work has been proposed to address catas-
trophic forgetting, using a varied arsenal of techniques [4].
Despite advances in lifelong learning, there are still limita-
tions. Most of the methods, including, e.g., regularization-
based [5]-[9] and rehearsal-based [10]-[13] methods, mitigate
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catastrophic forgetting under relatively restictive conditions,
e.g., assuming a small number of highly related tasks. When
tasks differ drastically, and the number of tasks grows, these
methods suffer significant degradation. Another approach is
to increase the model capacity (i.e., add parameters, neurons,
layers, etc.), to accommodate new tasks, while preserving parts
of the model for old tasks [14]-[16]. However, increasing
complexity makes such methods prone to overfitting, and can
be undesirable when models are to be deployed over memory-
limited devices. Therefore, a competing objective of parsimony
is desirable.

Another related challenge in lifelong learning is how to
reuse learned knowledge to help the model learn future tasks
better. Current research work often ignores this critical point
by, e.g., independently considering different tasks [17], or by
addressing it only partialy, e.g., using past parameters as an
initialization during training [18]. However, the usefulness of
knowledge gained from old tasks may depend on the relevance
between old and new tasks. For example, a classifier trained for
classifying dogs may be more helpful for classifying cats than
digits. Thus, how to adaptively select useful past knowledge
is critical for improving the performance on a new task.

Our proposed method, named learn-prune-share (LPS), is
a novel deep learning framework aimed at addressing these
challenges. LPS learns sequential tasks without experiencing
catastrophic forgetting, by partitioning the neural network and
dedicating portions to each task. It also prunes the neural net-
work, thereby maintaining parsimony and avoiding overfitting.
Finally, it selectively shares knowledge from old tasks and
reuses them on new tasks. All of these happen simultaneously,
in a unified optimization framework trained in an end-to-end
fashion. Our contributions are as follows:

o We incorporate the state-of-the-art Alternating Direction
Method of Multipliers (ADMM) based pruning strategy
to solve the lifelong learning problem, maintaining a sin-
gle parsimonious neural network model and eliminating
catastrophic forgetting thoroughly.

e We design a novel knowledge sharing scheme, which
learns to select useful knowledge from old tasks and
adapt them to the current task. Our knowledge-sharing
scheme is seamlessly integrated with our ADMM pruning
strategy, and is trained jointly with the classifier parame-



ters. We make our code publicly available! to accelerate
community contributions in this exciting topic.

¢ Our method, LPS, shows superior performance on two
standard lifelong learning benchmark datasets as well as
a challenging real world radio fingerprinting dataset. LPS
beats state-of-the-art methods by a 2%—-54% margin.

II. RELATED WORK
A. Lifelong Learning

Regularization-based methods [5]-[9] limit plasticity of the
network via regularization terms or by limiting the learn-
ing rate on parameters learned from previous tasks. While
regularization-based methods mitigate catastrophic forgetting
to some extent, performance on previous tasks gets increas-
ingly worse when more diverse tasks are seen. By design, our
method deals with catastrophic forgetting problem more effec-
tively, as performance on previous tasks remains unchanged.

Rehearsal-based methods capture the data distribution in
previous tasks by learning a generative model. When a new
task arrives, data from previous tasks is simulated via the
generative model and combined with current data to reinforce
previous knowledge [10]-[13]. Though saving the generative
model is less memory intensive than saving data, such models
can still be big. Performance largely depends on the quality
generative model on careful tuning of the mix of generated
and new data. Our approach avoids the additional cost of
training and storing an external generative model, again while
experiencing no catastrophic forgetting.

Expansion-based methods accommodate new tasks by grad-
ually increasing capacity of the model [14]-[16]. These meth-
ods generally outperform regularization and rehearsal based
methods, which maintain a model with fixed capacity. How-
ever, the size of model parameters grows linearly with the
number of tasks. This limits their practical usage, and makes
them prone to overfitting. On the contrary, our approach fully
exploits the potential of a fixed-capacity model.

Our method is closest to Continual Learning via Neural
Pruning (CLNP) [19] and PackNet [18]. In these works, model
pruning techniques are utilized to compress the original model
iteratively to allocate free capacity for new tasks. However,
both of these methods use simple threshold-based heuristics
to prune the model with no structure constraint, resulting in
a sparse, irregular matrix which limits further acceleration at
inference time. Additionally, both of these methods consider
tasks independently, ignoring the relationship between the
current and previous tasks. In contrast, our approach adopts a
systematic pruning strategy via Alternating Direction Method
of Multipliers (ADMM), where structural constraints, e.g. filter
pruning or column pruning [20], can be specified as needed.
Moreover, our proposed novel knowledge inheritance scheme
adaptively select weights shared from previous tasks to facil-
itate learning the current and future tasks. Our experimental
results in Section V-B show that, due to these improvements,
LPS outperforms these two algorithms.

https://github.com/neu-spiral/LPSforLifelong

B. Neural Network Weight Pruning

The rich literature in neural network weight pruning
can be categorized into heuristic pruning algorithms and
regularization-based pruning algorithms. The former starts
from the early work on irregular, unstructured weight pruning
where arbitrary weights can be pruned. Han et al. [21] use an
iterative algorithm to eliminate weights with small magnitude
and perform retraining to regain accuracy. Guo et al. [22]
incorporate connection splicing into the pruning process to
dynamically recover the pruned connections that are found to
be important. Later, heuristic pruning algorithms have been
generalized to the more hardware-friendly structured sparsity
schemes. A Transformable Architecture Search (TAS) [23]
realizes the pruned network and knowledge is transferred from
the unpruned network to the pruned version. Luo et al. [24]
leverage a greedy algorithm to guide the pruning of the current
layer with input information of the next layer, while Yu et
al. [25] define a “neuron importance score” and propagate this
score to conduct the weight pruning process.

Regularization-based pruning algorithms, on the other hand,
have the unique advantage for dealing with structured pruning
problems through group Lasso regularization [26]. Early work
[27], [28] incorporate ¢; or {5 regularization in loss function
to solve filter/channel pruning problems. Zhuang et al. [29]
introduce an ¢>-norm variant indicating the number of selected
channels in each layer. A number of subsequent works are
dedicated to making the regularization penalty a dynamic
and “soft” term. The method in [30] selects filters based
on /o-norm and updates the filters that have been previously
pruned, while [31], [32] incorporate the advanced optimization
solution framework Alternating Direction Methods of Mul-
tipliers (ADMM) to achieve dynamic regularization penalty,
thereby improving accuracy. We take advantage of the state-
of-the-art ADMM-based pruning strategy by [31] and [32].
Moreover, we integrate a novel selective knowledge sharing
scheme into the ADMM optimization framework, captured
by learnable masks. Furthermore, our whole pipeline can be
trained in an end-to-end fashion performing learn, prune, share
simultaneously through ADMM.

III. PROBLEM FORMULATION

In supervised lifelong learning, we are given a sequence
of datasets D = {D! D2 ..., D"}, where each dataset
D' = {(xi,yi) }iv4, t = 1,...,n, contains tuples of the input
feature x € R? and its corresponding label y € N. Each dataset
corresponds to a distinct classification task: labels y € N are
disjoint across datasets D?. Datasets are revealed sequentially:
dataset D! becomes accessible only at the ¢-th task, which
corresponds to, e.g., moving to a new environment. Our goal
is to train a classifier sequentially on the datasets such that it
achieves good performance on all tasks.

Formally, we are given a feature extractor fi : RY — RY
parameterized by W € R™. After the network is trained on
D, along with a task-specific output layer, its parameters W
are updated. If W? are the parameters of the feature extractor
at task ¢, a final classifier is obtained after training the extractor


https://github.com/neu-spiral/LPSforLifelong

FC Layer

FC Layer

_
Multi-head

[ Task Queue
_

o o
Task 1 Task 2 nes Task n
bl 4 (&

D! D? D"

Fig. 1: An illustration of supervised lifelong learning. A feature
map fw is trained sequentially on datasets D = {D',D?,..., D"},
where each dataset becomes accessible only at the corresponding task.
A fully connected layer at the end of the classifier, denoted as one
‘head’, is attached to fy to handle the new task. This is commonly
referred to as a “multi-head” output later: faced with sequential n
tasks, the classifier branches in n heads/output layers.

(and the n correponding output layers) on all datasets in D
sequentially, as illustrated in Fig. 1. The overall performance
of fyy~ is then assessed via the average classification accuracy
on separate testsets, one for each task ¢. Note that, at test time,
we are aware of which task/environment fyy~ is operating
over, so that we can classify using the appropriate output layer.
While the problem setting is straightforward, we need
to point out three desiderata that must be addressed by a
supervised lifelong learning solution.
Catastrophic Forgetting. Catastrophic forgetting is the
widely reported phenomenon [2], [3] that models, especially
neural networks, tend to “forget” information from previous
tasks when incorporating knowledge from new tasks. This is
observed in accuracy performance degradation on previous
tasks after being exposed to new tasks. Addressing catas-
trophic forgetting is a central issue, and the main objective
of most lifelong learning algorithms [14]-[16], [18], [19].
Parsimony. Due to limited computation and memory in real
world applications, but also to avoid overfitting, the model fy
should be as compact as possible. It is therefore desirable to
maintain a single model and adapt it to various tasks, instead
of, e.g., training multiple specialized models.
Knowledge Reuse. Related to both parsimony and catas-
trophic forgetting, beyond memorizing knowledge acquired
from previous tasks, we also want to exploit it when encounter-
ing new tasks. For example, parts of the model could be shared
across tasks; this leverages relevant/reusable features across
tasks, leading to further parsimony and avoiding overfitting,
while also ameliorating catastrophic forgetting. Thus, it is
important to strike a balance between reuse vs. growth or
plasticity in a network, in a way that performance improves.

IV. LEARN-PRUNE-SHARE

We propose a learn-prune-share (LPS) algorithm, a novel
deep learning framework for lifelong learning incorporating
neural network pruning via ADMM. Our method maintains a
single neural network for the sequence of tasks, while learning
the tasks, pruning the neural network, and sharing knowledge
among tasks; these three happen synergistically. Departing
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Fig. 2: Split of network weights at task 2. Task designated weights
W1, W? have disjoint support, and a lot of excess capacity in the
network remains free.

from conventional regularization-based or network-expansion-
based methods, LPS fully exploits the capacity of the neural
network by splitting it into disjoint partitions specialized for
each task via pruning; in turn, this mitigates catastrophic for-
getting. Simultaneously, to exploit earlier knowledge obtained
from previous tasks, LPS shared parameters between different
partitions of the network, in an adaptive, tunable fashion.

A. Architecture Overview

We assume that we are given a legacy neural network
architecture fy : R? — R? (e.g., ResNet [33]), parameterized
by weights W € R™. Recall that the support of a vector is
the set of its non-zero coordinates. Our solution satisfies the
following two properties: first, at the conclusion of task t,
the weights of the network are partitioned into task-specific
weights W1, W2 ... W' € R™ that have disjoint supports.
Formally, for all 1 <i4,j <t with ¢ # j:

supp(W*) N supp(W7) = 0. (1)

Second, these disjoint weights do not exhaust the entire
representation capacity of the network: the union of their
supports is smaller than m. The remaining weights are treated
as excess capacity, to be utilized in future tasks. Formally, let

Wt=3"_ WieR™, 2)
be the sum of the task-specific weights.> Then,
supp(W?') = Ule supp(W?) < m. 3)

Figure 2 illustrates the weight split for a single layer at task ¢t =
2. Weights W2 = W, + W, are partitioned to two classes W'
and W?2 with disjoint support. Moreover, the excess capacity
(the complement of W2°s support) can be used for future tasks.

Under this configuration, to make predictions for task ¢, our
network uses W, i.e. the portion of the network representing
task-specific knowledge, as well as as many of the weights
W1 dedicated to previous tasks as we wish to leverage.

Formally, the network we use for task ¢ has weights
Wi+ M oWt fort=1,...,n, 4)

where © represents element-wise multiplication and M? €
{0,1}"™ are a set of learnable knowledge sharing masks.

2As W', i =1,...,t have disjoint supports, W* can also be thought of
as their superposition.
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Fig. 3: Overview of the proposed LPS method. For each task ¢, given W' from previous tasks till (t — 1), we learn the task, prune the
neural network to obtain task specific weights W?, and share knowledge among tasks via mask M, simultaneously. Note that for task 1, we
only need to learn W, as there is no previous knowledge yet; and for the last task N, we do not need to prune unless there is requirement

of leaving free capacity for future tasks.

Our solution, and in particular the weight design in Eq. (4),
has several advantages, each addressing directly the issues of
catastrophic forgetting, parsimony, and knowledge reuse. First,
our approach does not experience any catastrophic forgetting.
This is precisely because additional tasks are accommodated
in excess capacity; classification for earlier tasks (also through
Eq. (4)) remains unaltered. Second, by utilizing only a portion
of the overall capacity of the network, we attain parsimony.
As we discuss below, this happens at almost no accuracy
loss: we learn the small-support parameters W¢, i = 1,...,¢
through state-of-the art pruning methods. Finally, the use of
masks M* € {0,1}™ enables arbitrary levels of reuse: setting
them to 1 fully reuses weights learned from previous tasks,
while setting them to O limits the network for task ¢ to only
its dedicated weights. Note that this flexibility comes at the
expense of parsimony, as we also need to keep track of masks
for each task. As these are binary, however, they are not as
memory-intensive as the model weights.

B. The Learn-Prune-Share (LPS) Algorithm

Our learn-prune-share algorithm learns task-specific weights
Wt as well as knowledge-sharing masks M? as the datasets D;
are revealed. It is an iterative process, summarized in Figure
3. At each task, we use the full excess capacity of the network
to train a dense network. Using a state-of-the-art pruning
method, we reduce this to weights with small support W?;
simultaneously, we determine how much of the old weights to
reuse via mask M?. This process is repeated until we run out
of tasks.

Formally, at each task ¢, the input to the algorithm consists
of (a) earlier weights from previous tasks 1 through (¢ — 1),
ie, Wit—1 = Zz;} W? e R™, as well as, (b) the dataset of
task ¢ , i.e., Dt. Our goal is to learn sparse, small-support
task-specific weights W?, as well as the knowledge-sharing
mask M?. Note that for task 1, we only need to learn W1, as
there is no previous knowledge yet. As our pruning happens
layer-wise, we introduce the following notation. We re-write
the weights and masks as W = {W;}, € R™ and M =
{M;}E | € {0,1}™ where W}, M, are the weights and masks,
respectively, corresponding to the [-th layer, for [ =1,... L.

We denote the loss of a network with weights W under dataset
D as L(W,Wr,1;D), where Wp1 € RPE+1XQu+1 g the
final (classification) layer. In light of Eq. (4), we formulate
the learning process determining W* W}, M" at task ¢ as
an optimization problem:

Min.:  L(W+MoW™  Wi;DY),  (5a)
W,2WpL1,M
subj. to: Wy €S}, l=1,--- L, (5b)
MeS) 1=1,--,L, (5¢)
supp(W) Nsupp(W'™") =0, (5d)
supp(M) C supp(W'™1), (5e)
W e R™ W}, € RFte1x@uir (5)
M e {0,1}™ (52

where S! are sparsity constraints on W{, and S;' are
knowledge-sharing constraints on M]. We describe both in
detail below, in Sections IV-C and IV-D, respectively.

The constraint in Eq. (5d) enforces that weights are indeed
disjoint: the weights of W € R™ are taken from the current
excess capacity pool — the complement of supp(W*~1). Sim-
ilarly, the constraint in Eq. (5e) enforces that the knowledge-
sharing mask M € {0,1}™ are applied to the past weights
W= only. Note that, together, they imply that W* and M*
have disjoint supports. Finally, the fully connected classi-
fier/output weights W +1 are unconstrained.

C. Task-Specific Weight Constraints

To obtain W, we need to create constraints on W =
{W,}E, € R™ in Prob. (5) that enforce sparsity. Recall that
we denote the weights of the [-th layer of our neural network
as W;. In convolutional layers, the weight for [-th layer is
represented by a four-dimensional tensor, where dimensions
i, q1,71, 81 € N correspond to the number of filters, number
of channels, filter width, and filter height, respectively. In fully
connected layers, weights are P; x (J; matrices, where P; and
@, represent the input and output layer size, respectively. We
nevertheless assume that all layers are represented in a GEneral
Matrix Multiplication operations (GEMMs) format, which is
a standard practice in tensor framework implementations: that
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Fig. 4: Pruning strategy illustration. By converting weights to the
format of GEneral Matrix Multiplication operations (GEMMs), we
represent both CV and FC layers via the (reshaped) weight matrix
W e RP*?. We can then choose from irregular or structured (i.e.
column and filter) pruning.

is, we assume all tensors are reshaped to two dimensional
P, x Q; matrices. This is already the case for fully connected
layers; for convolutional layers, the reshaping can take the
form P, = p; and Q; = ¢, - r; - s;. We thus assume every layer
is represented by a (reshaped) weight matrix W, € R *@t  as
illustrated in Figure 4. Note that, under this assumption, the
total number of weights in the model is m = Zle P - Q.
Under this representation, we consider the following sets of
constraints S} for layer I:
Irregular Pruning. For irregular pruning, we have:

St ={Wy e RPX | [Wilo < o}, ©)

where || - ||o the size of W)’s support (i.e., the number of
non-zero elements), and o € N is a constant limiting the
proportion of non-zero elements. Intuitively, this implies that
W, has no more than af non-zero elements.

Structured Pruning. Given ¢ a Boolean predicate, let 14 to
be 1 if ¢ is true, and O otherwise. Moreover, given matrix
W, € RPXQu et [W)]. , € R be the g-th column of W;. In

column pruning, the constraint set Slt is defined as:

St={W e RPQ | (T2 Ty 20) <ot} (D

where o) € N. This enforces that the number of non-zero
columns in the [-th layer’s GEMM representation does not
exceed of. A similar constraint can be placed on filters/rows
of W, to form structured filter pruning, which enforces that
the number of non-zero filters does not exceed .

All three types of constraints (irregular, column, and filter
pruning) are illustrated in Fig. 4. They all lead to disjoint
supports if used consistently across tasks: for example, filter
pruning ends up partitioning rows of the GEMM representa-
tion of every later, column pruning partitions columns, etc.,
while irregular pruning partitions individual matrix entries.

D. Knowledge-Sharing Mask Constraints

To control knowledge sharing, we impose a sparsity con-
straint on M as well, allowing only 3} € N of entries in the
mask to be non-zero. Formally:

St ={Mie {0, Mo =B} ®)

Adjusting the “sharing parameter” 3} allows us to limit the
proportion of old weights shared (i.e., the non-zero elements
of M;). By forcing M to be sparse, we force training to select
the most beneficial weights for the current task from previ-
ously learned weights. Sharing parameter 3} also conveys the
usefulness of previous knowledge: e.g. when tasks are similar,
previous knowledge would indeed be useful for subsequent
tasks, thus Bf should be big; conversely, for dissimilar tasks
we expect fewer sharing opportunities.

E. Solving LPS via ADMM

The optimization problem defined in Eq. (5) for LPS has
non-convex constraints, and solving it via standard stochastic
gradient descent is not possible. We use the widely deployed
Alternating Direction Method of Multipliers (ADMM) [34],
that has been extensively applied in pruning literature [31],
[35]. For completeness, we describe the ADMM solution
to Problem (5) in detail in Appendix A. In short, ADMM
decomposes the original non-convex problem with constraints
into subproblems that can be solved separately. It alternates be-
tween (a) standard gradient descent with a quadratic proximal
penalty (Eq. (13)), that forces the solution to be close to a value
in the (non-convex) constraint space, and (b) an orthogonal
projection operation to the constraint space (Eq. (14a)). Hence
starting from full weights W and masks M set to 1, we can
progressively prune and constrain both, producing a feasible
solution at convergence. Most importantly, the weights and
masks can be trained jointly and dynamically.

From an implementation standpoint, to incorporate our
constraints to ADMM, it suffices to produce polynomial-
time functions that compute the orthogonal projection into
constraints (5b) — (5c). For (5b), polynomial algorithms are
well known for irregular, column, and filter pruning constraints
[31]. For example, for irregular pruning, the orthogonal pro-
jection of a matrix Z € RP*@ (o set S given by Eq. (6)
can be computed by keeping the o entries of Z of largest
absolute value intact, and setting the rest to zero. For column
pruning (Eq. (7)), projection of Z to can S} be computed by
similarly keeping the o} columns with largest ¢2 norm intact,
and setting all other rows to 0.

Our mask constraint (8) is more complex, as projection
requires not only enforcing sparsity exactly, but also that the
values of the matrix become binary. Nevertheless, we can
compute the projection of Z € R *% to Sl't in polynomial
time via the following steps:

Sort elements of matrix Z from smallest to largest;

Map the largest 3} entries to 1; set the rest entries to 0.

We prove the correctness of this algorithm in Appendix B.



V. EXPERIMENTS

In our experiments, (a) we show that our method outper-
forms current state-of-the-art methods on both benchmark and
real datasets; (b) we assess the importance of the knowledge-
sharing mask under different task settings; and (c) we explore
how different pruning strategies affect the prediction accuracy.

A. Experimental Setting.

Datasets. To evaluate the performance of our approach em-
pirically, we experiment with two standard lifelong learn-
ing benchmark datasets, permuted MNIST [36], [37] and
split CIFAR-10/100 [38], and a real world radiofrequency
fingerprinting dataset (split RF) [39], summarized in Table
I. The original MNIST dataset [36], [37] contains 28 x 28
black and white images of handwritten digits of 10 classes.
Following [6], we construct 10 tasks by applying the same
random permutation across all MNIST images, using a dif-
ferent permutation for each task. CIFAR-10 [38] comprises
10 classes of 32x32 colour images. CIFAR-100 is just like
CIFAR-10 in image format and total number of images, but
has 100 classes. Following [6], we set the first task as the
whole CIFAR-10 dataset. We then create 5 additional tasks,
each containing 10 consecutive classes from the CIFAR-100
dataset. Finally, the split RF dataset [39], [40] contains radio
transmissions from 50 WiFi devices recorded in the wild. We
randomly partition these 50 classes into 5 tasks.

Lifelong Learning Methods. We compare LPS to the follow-
ing methods:

Elastic Weight Consolidation (EWC) [5]: EWC applies
Laplace Approximation to estimate the importance scores of
parameters for previous tasks and uses a quadratic regularizer
weighted by the importance scores.

Intelligent Synapses (IS) [6]: 1S uses an importance score
based regularizer similar to EWC. However, a path integral
based method is proposed to evaluate the importance score.

Learning without Forgetting (LwF) [7]: LwF maintains
responses for previous tasks via a knowledge distillation loss.

Deep Generative Replay (DGR) [10]: DGR uses generative
adversarial networks (GAN) [41] to mimic the data distribu-
tion for each task. A generator is updated at every task to
incorporate its data distribution. A corresponding classifier is
trained using the mixture of generated and new data.

Gradient Episodic Memory (GEM) [11]: GEM proposes an
episodic memory saving a portion of previous data and use
the loss on this data a constraint when training a new task.

PackNet [18]: PackNet iteratively prunes the model to
accommodate new tasks by removing parameters of smaller
magnitude heuristically. Similar formulation is proposed by
[17] under a lifelong learning setting.

We use the implementation from the original authors for all
methods, including the recommended hyperparameter settings
or tuning strategies. The same network architectures are used
among all methods for fair comparison.

Architectures. We implement different architectures for per-
muted MNIST, split CIFAR-10/100, and split RF, respectively.
The architecture for permuted MNIST dataset [6] contains two

TABLE I: Dataset and Parameter Summary.

Datasets
Stat. & Param. Permuted MNIST |  Split CIFAR Split RF
n=1 n#1l
# tasks (n) 10 6 5
# classes per task 10 10 10
# train samples per task 60,000 50,000 5,000 1,410
# test samples per task 10,000 10,000 1,000 550
af (% total layer params) 10% 50% 10% 20%
ﬂlt (% total Wlt71 params) 90% 92% 90%
Pruning strategy Irregular Irregular Column
LPS Epochs
30/90/30 200/600/200 20/60/20
(warm-up/ADMM/final)
Architecture Two FC layers CIFAR-10 ResNet50-1D
# params (m) 5,568,000 884,576 15,901,568
# layers (L) 2 5 49

hidden layers, each with 2000 neurons and ReL.U activations.
For split CIFAR-10/100 dataset, we use the default CIFAR-
10 architecture from Keras [6]. For split RF dataset, we use
ResNet50-1D [42], which is the 1D-convolutional version
of ResNet50, targeting inputs as 2D fixed-length sequences.
For all three architectures, we learn the biases and batch
normalization parameters for the first task and keep these terms
fixed for subsequent tasks.

LPS Implementation. For each task, we run LPS in three
phases. In the warm-up phase, we first train a W over the
full free parameters with M = 1. In the ADMM phase,
we then prune the network Eq. (11). In the final stage, we
do a final projection to the constraint sets of both masks
and weights, and retrain the weights, changing only non-
zero values. We set all p; = 1072 and increase by a factor
of 10 at equal intervals during ADMM iterations. We use
the following hyperparameters, which we determine using a
validation set. Unless otherwise noted, sparsity parameters o/
and 3} are as shown in Table I. We explored the impact of
both in Section V-B. For all experiments, we use a batch size
of 128 and Adam [43] as an optimizer with default values
and initialize the learning rate to 0.001. Our proposed LPS
approach is implemented in Python using PyTorch [44] and
NVIDIA CUDA support. All experiments are carried out on
an Tesla V100 GPU with 32 GB memory and 5120 cores.
Evaluation Metrics. We evaluate the final obtained model
(associated with masks and multi-head output layers) on all
tasks testsets via (Top-1) accuracy.

B. Results on Benchmark Datasets

Effectiveness of the proposed LPS approach. Table II shows
the overall performance, in terms of the final average accuracy
across all tasks, of all lifelong learning methods. For reference
purposes, we also include the accuracy attained when training
a full-capacity (non-parsimonious) single model separately for
each task (SM). LPS outperforms all competitors across all
datasets. Most methods perform well on permuted MNIST; the
margin is wider on the remaining two datasets, that are more
challenging. To further scrutinize the performance of LPS
across tasks, we show in Table III-IV the per task accuracy.


https://raw.githubusercontent.com/fchollet/keras/keras-2/examples/cifar10_cnn.py

TABLE II: Overall performance on three benchmark datasets. For
all the methods, we report the final average accuracy (%) across all
tasks. We include SM (column 2) for reference purpose, which trains
a full-capacity single model separately for each task. LPS parameters

TABLE IV: Split RF: For all the methods, we report the task-specific,
and the final average accuracy (%) across all tasks. LPS parameters
are set as in Table II.

are set as in Table 1. Methods Tasks

task 1 | task2 [ task3 | task4 | task5 [ Avg.

Datasets Methods [ sm [ 7633 | 7350 [ 8530 | 8560 | 8500 [ 8115 ||
SM [[EWC IS LwF DGR GEM PackNet| LPS EWC 2573 35.32 30.85 4581 47.24 37.01
Permuted MNIST [[98.80 || 96.81 97.52 68.22 90.73 93.03 98.14 |98.58 IS 27.08 40.72 37.25 50.66 57.34 42.63
Split CIFAR-10/100 || 75.14 || 71.13 74.97 54.68 63.61 66.05 77.79 |80.13 LwF 14.62 20.37 23.45 33.58 46.72 27.75
Split RF 81.15 || 37.01 42.63 27.75 48.27 68.38 79.37 |81.22 DGR 43.50 49.37 43.87 50.25 54.38 48.27
GEM 67.24 63.45 68.53 70.26 72.44 68.38
TABLE III: Split CIFAR-10/100: For all the methods, we report the PackNet 78.15 74.14 82.56 80.54 81.45 79.37
task-specific, and the final average accuracy (%) across all tasks. LPS LPS 78.33 77.55 84.19 82.63 83.39 81.22

parameters are set as in Table II.

Methods Tasks

task 1 [ task 2 [ task 3 [ task 4 [ task5 [ task 6 H Avg.
[ sm ][ 8232 ] 7540 [ 7020 [ 7590 [ 7170 [ 7530 [[ 75.14 ||

EWC 7123 | 7250 | 6925 | 7134 | 6752 | 7493 || 71.13
IS 7459 | 7428 | 74.19 | 7554 | 7558 | 75.62 || 74.97
LwF 4032 | 5677 | 48.60 | 53.94 | 60.04 | 6843 || 54.68
DGR 6436 | 62.01 | 63.02 | 6734 | 6528 | 59.64 || 63.61
GEM 68.52 | 6534 | 63.88 | 70.12 | 6523 | 6323 || 66.05
PackNet || 82.33 | 7930 | 73.90 | 78.80 | 7430 | 78.10 || 77.79
LPS 8297 | 80.00 | 76.50 | 79.90 | 78.40 | 83.00 || 80.13

Interestingly LPS outperforms all competitors across all tasks
on both datasets; we also observed this on the 10 tasks of
the permuted MNIST, which we omit for brevity. Overall, our
LPS approach achieves both the best average and the best
task-specific accuracy for all three datasets.

We further observe that regularization-based methods like
EWC and IS perform relatively well on benchmarks, while
they fail on split RF. One possible explanation may be that
when tasks are more diverse and model is large, regularizers
do not suffice to keep the learned information. Evidence of
forgetting is present in LwF, for split CIFAR, and almost
all methods (except LPS and PackNet) on split RF. This is
expected, as both LPS and PackNet are immune to forgetting.

We also observe that LSP even outperforms the full-capacity

SM trained from scratch on each task for split CIFAR-10/100
and split RF, and is very close to it over permuted MNIST.
This happens despite the fact that it uses only a small fraction
of the m parameters used by SM, indicating that it avoids
overfitting. Also, we see a clear benefit of reuse of parameters
across tasks in split CIFAR (Table III): by partially utilizing
past weights, prediction on later tasks improves under LPS
compared to SM.
Share Parameter Effects. We further explore the impact of
knowledge-sharing in Figure 5. The figure shows how average
and per task accuracy changes as we modify 3/: the z-axis is
the share ratio, indicating the ratio of the parameter over the
total number of past weights per layer on the CIFAR dataset.
The optimal value is at 92%. Moreover, we clearly see that a
large reduction in sharing has a bigger impact on later tasks-
which otherwise would benefit from knowledge reuse.

We also show the results of models with no (0%) and full
(100%) share on all datasets as well as our best performing
model with selective sharing in Table V. We follow the same

parameter searching strategy as in split CIFAR-10/100 to get
the best performing model on validation set. Interestingly, for
all three datasets, we observe the best performance achieved
by setting share ratio around 90%. This also indicates that
many (not all) past weights are valuable or meaningful for
new tasks.

To explore this notion of knowledge re-use further, we
conducted an experiment in which tasks vary drastically. To
do so, we construct a 5-task “mixed” dataset, where tasks
1,3,5 are from the MNIST dataset, with different permutation
patterns and tasks 2, 4 both contain 10 different classes from
CIFAR-100. Images from permuted MNIST are augmented to
RGB images by repeating 3 channels using the original image
and resized to 32 x 32 to be compatible with CIFAR images.
Similar to Figure 5, Figure 6 shows the effect of the sharing
ratio on the mixture dataset. Not surprisingly, the behavior is
quite different from Fig. 5. The highest accuracy (89.22%) is
achieved by 20% share, which demonstrates that LPS does
adaptively select useful knowledge for the current task. Note
that, faced with these dissimilar tasks, full share (88.15%)
performs even worse than no share (88.23%), indicating the
share strategy choice should be flexible and guided by the
inter-task similarity.

Comparing different pruning strategies. We compared three
different pruning strategies (i.e., column, filter, and irregular
pruning) on split CIFAR-10/100 and split RF datasets, sum-
marized in Table VI and Table VII, respectively. Both irregular
and column pruning obtain satisfactory performance, achiev-
ing 80.13% and 79.56% on split CIFAR-10/100, 80.55% and
81.22% on split RF, respectively. However, filter pruning re-
flects an unstable performance, obtaining 68.11% and 80.12%
on split CIFAR-10/100 and split RF datasets, respectively.

Impact of Model Capacity. Figure 7 measures how model
capacity usage affects the accuracy on the split CIFAR-10/100
dataset. For this experiment, instead of using the whole model
capacity for the 6 tasks, we use only a fraction (e.g., %) of
the full model by the n-th task, leaving 1—x% parameters free
for future growth; all other parameters are set as in Table I.
Figure 7 shows the impact on average and per task accuracy as
we vary fraction x. We clearly observe that a model performs
better when more capacity is available. Nevertheless, accuracy
performance is also robust to this shrinkage — it achieves
75.32% accuracy with only 50% model capacity, which is even
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TABLE V: LPS with no (0%), full (100%) and selective share on three benchmark datasets. For selective share, we follow the same parameter
searching strategy as in split CIFAR-10/100 to get the best performing model. To make a fair comparison, we start experiments from the
learned model on task 1 (no previous knowledge yet), then sequentially train this model on remaining tasks with different share ratio 3f.

D t Tasks
atasets B,
task 1 [ task 2 [ task 3 [ task 4 [ task5 [ task 6 [ task 7 [ task 8 [ task 9 [ task 10 H Avg.
0% 98.92 | 98.77 | 98.47 | 9851 | 98.58 | 9849 | 9829 | 9791 | 97.78 85.82 97.15
Permuted MNIST 100% 98.92 | 9856 | 98.51 | 9839 | 9835 | 98.24 | 98.26 | 98.19 | 98.25 98.14 98.38
90% 98.92 | 98.68 | 98.71 | 98.64 | 98.55 | 98.61 | 98.49 | 98.51 | 98.42 98.23 98.58
0% 8297 | 7240 | 6420 | 75.70 | 68.90 | 69.60 - - - - 72.30
Split CIFAR-10/100  100% 8297 | 79.70 | 76.10 | 80.50 | 76.60 | 78.70 = - - - 79.10
92% 82.97 | 80.00 | 76.50 | 79.90 | 78.40 | 83.00 - - - - 80.13
0% 7833 | 77.33 | 83.29 | 81.90 | 82.20 - - - - - 80.61
Split RF 100% 7833 | 77.59 | 84.93 | 81.90 | 83.12 - - - - - 81.17
90% 7833 | 77.55 | 84.19 | 82.63 | 83.39 - - - - - 81.22

better than the best non-pruning method IS (74.97%) with full
model capacity. Surprisingly, at only 10% of the total capacity
of the network, accuracy does not collapse, but still remains
above 72.5%. This indicates that our method has the potential
capacity to scale to even more future tasks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the learn-prune-share (LSP) al-
gorithm for lifelong learning. Our method maintains a parsi-
monious neural network model and achieves exact no forget-
ting by splitting the network into task-specific partitions via
ADMM-based pruning method. Moreover, a novel selective
knowledge sharing scheme is integrated seamlessly into the

ADMM optimization framework to address knowledge reuse.
Experiments on permuted MNIST, split CIFAR10/100 and
split RF demonstrates our approach achieves significant im-
provement over the state-of-the-art methods. Future directions
include applying more advanced pruning strategies on the
lifelong learning problem and exploring how to measure the
capacity of a model quantitatively.
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TABLE VI: Three pruning strategies on split CIFAR-10/100.

Prun. Bt Tasks
Appr. ! task 1 [ task 2 [ task 3 [ task 4 [ task5 [ task 6 H Avg.
I SM [[ 8232 ] 7540 ] 7020 [ 75.90 [ 71.70 [ 75.30 [[ 75.14 ]|
0% 82.97 | 72.40 | 64.20 | 75.70 | 68.90 | 69.60 72.30
Irresular 100% 82.97 | 79.70 | 76.10 | 80.50 | 76.60 | 78.70 79.10
¢ 92% 82.97 | 80.00 | 76.50 | 79.90 | 78.40 | 83.00 80.13
0% 82.04 | 68.80 | 56.50 | 71.00 | 63.90 | 63.00 67.54
Column 100% 82.04 | 80.80 | 76.20 | 80.30 | 76.40 | 77.90 78.94
92% 82.04 | 80.90 | 76.30 | 80.60 | 77.10 | 80.40 || 79.56
0% 79.95 | 56.50 | 50.40 | 62.20 | 54.60 | 55.80 59.91
Filter 100% 79.95 | 60.20 | 60.00 | 60.40 | 58.90 | 61.10 63.43
92% 79.95 | 62.10 | 61.70 | 67.70 | 66.50 | 70.70 68.11
TABLE VII: Three pruning strategies on split RF.
Prun. Bt Tasks
Appr. ! task 1 [ task 2 [ task 3 [ task 4 [ task 5 H Avg.
I SM [[ 7633 [ 7350 | 8530 [ 85.60 | 85.00 [[ 81.15 ||
0% 78.33 75.14 83.74 82.19 73.03 78.49
100% 78.33 75.14 84.01 79.71 82.20 79.88
Irregular
90% 78.33 74.21 84.56 83.00 82.65 80.55
0% 78.33 77.33 83.29 81.90 82.20 80.61
100% 78.33 77.59 84.93 81.90 83.12 81.17
Column
90% 78.33 77.55 84.19 82.63 83.39 81.22
0% 71.59 70.32 82.64 80.36 82.39 78.66
Filter 100% 71.59 73.65 82.90 80.44 82.85 79.49
90% 77.59 74.54 83.64 81.72 83.12 80.12
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APPENDIX A
SOLVING PROBLEM (5) VIA ADMM

To begin with, constraints (5d), (5c) are easy to satisfy: we
basically partition variables of W and M to sets supp(W*~1)
and its complement, and only optimize over the appropriate set
(the complement of supp(W*~!) for W and supp(W?*~!) for
M). We thus ignore these constraints below. We similarly omit
W41, which is unconstrained and can be learned via SGD.
Rewriting the loss as £(W, M), we convert the non-convex
optimization problem formulated in (5) into the ADMM form
by introducing auxiliary variables Z; and Y; for constraints
(5b) and (5c¢) respectively:

min: - LW, M) + 3212, 9(Z) + X212y (YD), (9a)
subject to: W;=2;, l=1,---,L, (9b)
Ml:)/la lzla"'aLv (9C)

where g;(-) and h;(-) correspond to the indicator functions for
constraints (5b) and (5¢) respectively, i.e.,:

0, it Z,€5¢,

+00, 0.W.,

0, ifY; €51,

gz(Zz) - +00, 0.W.

h(Y1) = (10)

The augmented Lagrangian of (9) is:

L.(W,M,Z,UY,K)=L(W,M)
L9 Z) o T (U] (W= 2)) + 2 W= 2|3} (1)
A8 () 7 Te(K]T (M= Y1)+ 2| M =i |2}

where p; and 7; are penalty terms, and U; € R %% and K €
RF1%Qu are dual variables, rescaled by p; and 7, respectively.
ADMM proceeds iteratively as follows; at the n-th iteration:

(W, M)+t =arg Iﬁin Lo(W.M,Z"U"Y" K™) (12a)
(Z,Y)"tl1= arégnn Lo (WM™ z U"Y,K™)  (12b)
Urtt = U”’ + wntt - zntl (12¢)
Kntl = K™ 4 gt -yt (12d)

The problem (12a) is equivalent to:
min LW, M) + 522, §1Wi— 27+ U3 )

L
+ 2L BIM =Y + K| %

The first term in (13) is a standard DNN loss while the second
and the third terms are quadratic and differentiable. Thus,
this subproblem can be solved by classic stochastic gradient
descent. Problem (12b) is equivalent to:

zntt = s (Wt +up), foralll=1,...,L, (l4a)
Yt = Mg/ (M + KJ'), foralll=1,...,L, (14b)

where ITg¢, g+ are the Euclidean projections onto sets S, Sl/,
. !
respectively.

APPENDIX B
PROOF THE CORRECTNESS OF MASK PROJECTOR

For simplicity, we prove this for the projection to the set:
S = {z € {0,1}" : |lzllo = k}. i.., the set of n binary
elements containing k zeros. Let y € R", then TIg(y) is
computed by: (a) sort all elements y; € y from smallest to
largest; (b) set the k largest values to 1 an the rest to 0. We
make use of the following lemma.

Lemma 1. For a,b € R, where a < b, a®> + (1 — b)? <
(a—1)% + b2

This can be easily proved by considering all positional cases
of a,b € R. Let §y € S be the solution of the algorithm, and
y* € argmin,g ||z — y|l2 be an optimal solution. Assume
indices are order based on the elements of y, as in the
algorithm. Let ¢ be the first position at which y; # y. Then,
y; is mapped to O in ¢ and y; is mapped to 1 in y;. Moreover,
as both have exactly k ones, there must be a j such that (i)
Y; = ¥, (1) §; = 1, and (iii) y;-* = 0. By the lemma, since
y; = i, we have y2 + (y; — 1)? < (y; — 1)? +yj2-. So, setting
y; = 0 and y; =1 would only improve distance from y. As
y* is optimal, this swap must maintain optimality; repeating
this procedure as long as there exist indices at which ¢ and y*
differ will convert y* to ¢, while maintaining optimality. [
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