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Abstract—We study an Open-World Class Discovery problem in
which, given labeled training samples from old classes, we need to
discover new classes from unlabeled test samples. There are two
critical challenges to addressing this paradigm: (a) transferring
knowledge from old to new classes, and (b) incorporating
knowledge learned from new classes back to the original model.
We propose Class Discovery Kernel Network with Expansion
(CD-KNet-Exp), a deep learning framework, which utilizes the
Hilbert Schmidt Independence Criterion to bridge supervised and
unsupervised information together in a systematic way, such that
the learned knowledge from old classes is distilled appropriately
for discovering new classes. Compared to competing methods,
CD-KNet-Exp shows superior performance on three publicly
available benchmark datasets and a challenging real-world radio
frequency fingerprinting dataset.

Index Terms—Class Discovery, Kernel Method, Deep Learning,
Hilbert Schmidt Independence Criterion

I. INTRODUCTION

In the conventional supervised learning setting, we assume
that we know all classes in advance; i.e., the classes that
appear in the test set will be a subset of classes in the training
set. This has been termed as the closed-world assumption
[1], [2]; recent advances in deep learning [3] have given im-
pressive performance on supervised learning problems where
the closed-world assumption holds, such as computer vision
[4], [5] and natural language processing [6]. However, in real
world applications, we often encounter an open-world [2], [7],
[8] setting, in which unlabeled test samples come from new,
previously unseen classes. This would be the case when a
trained classifier is deployed in a completely new environment.

As a concrete example, consider a classifier that has been
trained to distinguish between different breeds of dogs. An
open-world class discovery problem would arise if we had
access to this trained classifier, and we ask to classify a
wholly different test set, containing, e.g., different breeds of
cats. Ideally, we would like to somehow leverage the dog
classifier to distinguish between cat breeds. Though clearly,
we cannot name cat breeds in this setting, it is possible that,
by incorporating the knowledge learned from dogs, we would
be able to discover the new cat breeds, clustering samples
from the same breeds together.

This problem constitutes the open-world class discovery
problem [9], [10]. Open-world class discovery poses a sig-
nificant challenge, as transferring learned knowledge on old
classes to new classes is not straightforward. Machine learning
models may overfit to old classes; as a result, knowledge

learned, particularly through latent representations, may not
generalize well to new classes. The more dissimilar old and
new classes are, the more pronounced this problem becomes.
Identifying which knowledge to transfer and leverage from old
classes when trying to discover new classes is not trivial. This
is further exacerbated in the case of deep models, that are by
nature less interpretable. Coming up with an automated, prin-
cipled way of extracting commonalities among representations
is the main obstacle behind open-world settings.

We address these challenges via an algorithm for leveraging
deep architectures to solve the open-world class discovery
problem. We first train a classifier on known classes. We
subsequently retrain it in the presence of unlabeled samples of
new, previously unseen classes using an objective based on the
Hilbert Schmidt Independence Criterion (HSIC). Intuitively,
our scheme fine-tunes the latent representation obtained over
the old-class dataset so that, when used to map new-class
samples, the resulting images span a low rank subspace and are
(jointly) well-clusterable. This is accomplished even for deep
models, whose latent representation is difficult to interpret.

Formally, our contributions are as follows:

• We propose a deep learning framework which utilizes
HSIC to bridge supervised and unsupervised information
together in a systematic way, so that learned knowledge
from old classes is distilled appropriately for new classes.
Our approach addresses overfitting to old classes, leading
to improved class discovery, and can be generically
applied to a broad array of deep architectures.

• Our algorithm, CD-KNet-Exp, shows superior perfor-
mance on three benchmark datasets, including MNIST,
Fashion-MNIST, CIFAR-100, and also a real world radio
frequency fingerprinting dataset. In particular, it outper-
forms competitors over three benchmark datasets by a
2%-12% margin.

The rest of this paper is organized as follows. We present
related work in Section II. Next, in Section III, we formally
define the open world class discovery problem and introduce
our notation. We give an overview of HSIC and its uses
for supervised and unsupervised learning in Section IV. In
Section V, we present our three-stage framework in detail.
Our experimental results are provided in Section VII; finally,
we conclude in Section VIII.



II. RELATED WORK

Novelty Detection. A large body of prior work has been
focused on novelty detection [11], [12], where the task is
to design a model capable of both classifying instances that
belong to the known training classes, and detect instances
belonging to novel emerging classes at the same time. This
differs from our setting, as the goal is to detect from a mixture
of old and new samples which ones are old and which ones
are new, without clustering the latter. Recently, a number of
novelty detection methods were proposed based on kernel
density estimation [13], [14], nearest neighbor [15]–[17] and
recent advances in deep learning [18], [19]. Our setting is
orthogonal/complementary: once novel samples are detected,
our method can be applied to discover new classes.
Semi-Supervised Learning. Our problem setting seems close
to semi-supervised learning [20], [21], where some samples
are labeled and others are not. However, in semi-supervised
classification problem, all classes are known and every class
has a corresponding labeled portion: some of the samples for
each class are labeled and the others are unlabeled. Informa-
tion transfer can be achieved via deep learning models with
great representational power [22], [23]. Additional information
provided on the samples can be leveraged [24], [25], such
as must-link and cannot-link constraints. In contrast, our task
aims to discover unseen new classes with no direct constraint
information about these unseen new classes. All the knowledge
we have comes from the labeled old classes. Hence, in the
open-world class discovery problem, figuring out how to
transfer knowledge learned from old classes to new classes
is a critical challenge that needs to be addressed.
Open-World Class Discovery. To the best of our knowledge,
very limited research has been performed in the area of class
discovery. Recently, Nixon et al. [10] proposed to train a neural
network classifier on old classes, followed by applying the K-
means [26] algorithm to directly cluster the new classes on
the features extracted by the trained network. They provide
two strategies for adding the new discovered classes back
to the classifier: static, where all new classes are added at
once; and dynamic, where a single, most appropriate, class is
added. Shu et al. [9] use a pairwise network to learn a proper
distance metric from seen old classes and utilize that metric
for clustering the unsupervised data to discover new classes.
Nixon et al. [10] use a feature extractor that is trained only on
the seen old classes. Similarly, Shu et al. [9] train their distance
metric only on the seen old classes. Training only on the old
classes may not be appropriate for the new classes. CD-KNet,
on the other hand, discovers new classes by learning a feature
extractor that leverages information from both supervised seen
old classes and the unsupervised data.

III. OPEN WORLD CLASS DISCOVERY

In this section, we provide a precise formulation of the open
world class discovery problem; Table I summarizes our nota-
tion. First, we are given a labeled dataset Dl = {(xi, yi)}ni=1,
where xi ∈ Rd0 is the input sample and yi ∈ L is the class
label, from ml = |L| classes. We are also given an unlabeled

TABLE I: Notation Summary
Notation Description
Dl A labeled dataset
xi Input sample i from Dl
yi Corresponding label of sample i from Dl
n Number of samples in the labeled dataset Dl
L Set of known labels
ml Cardinality of set L (number of old classes)
Du An unlabeled dataset
xj Input sample j from Du
n′ Number of samples in the unlabeled dataset Du
L′ Set of new classes
mu Cardinality of set L′ ( number of new classes)
d0 Dimension of input samples xi, xj
KP Kernel matrix of input samples matrix P
KQ Kernel matrix of labels matrix Q

H(P,Q) Hilbert Schmidt Independence Criterion between two
datasets, P and Q – Eq. (3)

tr(·) Trace of a matrix
θ Parameter of feature extractor

fθ(X) Latent feature embedding of data X parametrized by θ
d Reduced dimension after applying feature extractor
Xl Data matrix of labeled dataset Dl
Xu Data matrix of unlabeled dataset Du
Y Label matrix of labeled dataset Dl
X Data matrix of both labeled and unlabeled datasets
U latent emebeding of X
Ho CD-KNet objective (Eq. (9))
λ Control parameter in Eq. (9)
ŷj Pseudo-labels/cluster assignments for n′ samples
γ Learning rate
D Degree matrix (Eq. (6))
n1 Number of samples from Dl used in computing Ho
n′
1 Number of samples from Du used in computing Ho

dataset Du = {xj}n
′

j=1, where xj ∈ Rd0 . These unlabeled
samples belong to wholly distinct new classes, that are not
present in Dl. That is, each sample xj ∈ Du is associated
with class label yj ∈ L′, where L′ is again a finite set of size
mu = |L′| such that L ∩ L′ = ∅. Our goal is to (a) train a
classifier on Dl, and (b) leverage it over Du, so that we can
discover (latent) ground truth classes in Du. Of course, L′
cannot be discovered per se. Our objective is to therefore more
precisely stated as clustering groups of xj ∈ Du if they share
the same (unseen) label in L′. We assume that the number of
new classes mu is known.

Note that we have made two assumptions: (a) unlabeled
samples only come from new classes and (b) the number of
new classes are known. We can relax the first assumption, for
example, by applying a novelty detector first to filter out old
classes (see, e.g., [11], [27]). Moreover, we can discover mu

through standard methods from clustering literature (see, e.g.,
[28]).

IV. HILBERT SCHMIDT INDEPENDENCE CRITERION

The Hilbert Schmidt Independence Criterion (HSIC) [29]
is a statistical dependence measure between two random
variables. Just like Mutual Information (MI), it captures non-
linear dependencies between the random variables. Compared
to MI, its empirical computation is easy, avoiding the explicit
estimation of joint probability distributions. On account of this,
it has been widely applied in different domains, such as fea-
ture selection [30], dimensionality reduction [31], alternative
clustering [32], and deep clustering [33].



Formally, consider a set of i.i.d. sample tuples {(pi, qi)}Ni=1,
where pi ∈ Rd, qi ∈ Rc. Let P ∈ RN×d and Q ∈ RN×c be the
matrices whose rows are the corresponding samples. Also, let
kp : Rd×Rd → R and kq : Rc×Rc → R be two characteristic
kernel functions for pi and qi, respectively. Examples are

kP (pi, pj) = e−
‖pi−pj,‖

2

2σ2 (1)

i.e., the Gaussian kernel, and the linear kernel

kQ(qi, qj) = q>i qj . (2)

We further define KP ,KQ to be the kernel matrices for P
and Q respectively, where KP = {kP (pi, pj)}i,j ∈ RN×N
and KQ = {kQ(qi, qj)}i,j ∈ RN×N .

The HSIC between P and Q is estimated empirically with
kernels kP , kQ via:

H(P,Q) =
1

(N − 1)2
tr(KPHKQH), (3)

where Hi,j = δi,j − N−1. Intuitively, HSIC measures the
dependence between the random variables p, q from which
the i.i.d. samples {(pi, qi)}Ni=1 where generated.

A. Supervised learning setting

Consider a data matrix X ∈ RN×d0 , containing N
d0-dimensional samples per row, and label matrix Y ∈
{0, 1}N×m, representing the one-hot encoding of m labels. We
can utilize HSIC to perform dimensionality reduction in this
supervised learning setting [34]. We can do so by maximizing
the dependency between a non-linear feature mapping of input
X and labels Y as follows. Let f : Rd0 7→ Rd, where d� d0,
be a feature extractor, e.g. neural network, parameterized by θ.
Denote by f(X) ∈ RN×d the matrix of images of rows (i.e.,
samples) in X . We can substitute fθ(X), Y for P,Q in Eq. (3),
We set KX as a Gaussian kernel and KY as a linear kernel.
Then the solution of the following optimization problem:

max
θ

H(fθ(X), Y ), (4)

maximizes the dependence of fθ(X) and Y . Intuitively, this
forces the feature extractor to be maximally correlated with Y .
Having reduced dimensions thusly, a shallow classifier (e.g.,
logistic regression) can be used to learn the labels from the
lower dimensional images fθ(X).

B. Unsupervised learning setting

In the unsupervised case, we are only given data matrix X ∈
RN×d0 . We can utilize HSIC to perform unsupervised learning
by maximizing the dependency between a non-linear feature
mapping of input X and a learnable latent cluster embedding
matrix U ∈ RN×c (see [31], [33]). We substitute P,Q with
X,U . Under the unsupervised setting, we set the kernel matrix
for X as a normalized Gaussian kernel:

K̃X = D−
1
2KXD

− 1
2 , (5)

where D is the degree matrix defined by:

D = diag (KX1N ) ∈ RN×N . (6)
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Fig. 1: Overview of the CD-KNet-Exp algorithm. In Stage
1, we train a classifier (deep convolutional neural network) on
labeled data Xl from seen old classes. In Stage 2, we fine tune
the feature extractor by leveraging both labeled data Xl and
unlabeled data Xu through two HSIC-based penalties. We then
cluster the unlabeled data in the learned feature embedding
fθ(Xu) to generate pseudo-labels Ŷ . Finally, in Stage 3, the
classifier’s penultimate (feature embedding) and last (softmax
classification) layers are expanded to adjust the model to learn
from both the old and new classes.

We also use linear kernel KU = UU> for U . Consider the
following optimization problem:

max
U

H(X,U), (7a)

s.t. U>U = I. (7b)

The optimal solution U0 is the spectral clustering embedding
of X (see [31] for a proof). Thus, HSIC provides an alternative
perspective to perform spectral clustering.

Moreover, analogous to the supervised setting, when feature
extractor fθ is introduced, we can joint optimize θ, U via :

max
θ,U

H(fθ(X), U), (8a)

s.t. U>U = I. (8b)

HSIC enforces the feature extractor to learn a non-linear
mapping fθ(X) of input X to match to spectral clustering
embedding U [33].

V. PROPOSED CLASS DISCOVERY
KERNEL NETWORK APPROACH

In this section, we provide an overview of our proposed
approach, describe Class Discovery Kernel Network (CD-
KNet) for solving the open-world class discovery problem,
and present a neural network expansion scheme that introduces
information feedback from (discovered) new classes.

A. An Overview of CD-KNet with Expansion

In this paper, we propose Class Discovery Kernel Network
(CD-KNet) and Class Discovery Kernel Network with Expan-
sion (CD-KNet-Exp). Our framework breaks the open-world



class discovery problem into three stages, shown in Figure 1.
We describe them in detail below.

During stage one, we train a deep neural network (DNN) [3]
classifier from the labeled dataset Dl. One can view the DNN
as a combination of a non-linear feature extractor followed
by a softmax classifier: the first layer until the penultimate
layer of a DNN constitutes the feature extractor. Assuming
the penultimate layer has d dimensions (neurons), we denote
this feature extractor as fθ : Rd0 → Rd, parameterized by
θ. As usual, we refer to the output of this feature extractor
fθ(·) ∈ Rd as the latent embedding.

In stage two, we use the unsupervised data Du. Our goal
is to learn from both the labeled dataset Dl and the unlabeled
data Du for discovering the new (unseen) classes. To that end,
we fine tune our feature extractor fθ through our CD-KNet
algorithm described in the next section. CD-KNet bridges
both the supervised old classes and the unsupervised cluster
(new class) discovery task through a use of two HSIC-based
penalties. In addition to learning an updated latent embedding
fθ(X), CD-KNet also learns cluster assignments to data
samples from Du. We refer to these new labels as pseudo-
labels, as they abstract the newly discovered classes.

In stage three, we expand our deep network, CD-KNet-
Exp, by expanding the original network with additional latent
embedding nodes and output nodes to learn from both the
old and new classes utilizing labels in Dl and the pseudo-
labels in Du. This further fine-tunes both the network and
our classification outcomes; it is also attuned to (and exploits)
the linear separability of the latent embeddings learned by our
feature extractor. Thus, whenever a new test sample comes, as
long as it belongs to the (ml + mu) classes, CD-KNet-Exp
can provide the prediction via the expanded neural network.

We elaborate on the details of CD-KNet and CD-KNet-Exp
in the following subsections.

B. Stage 1: Pre-training the model

As discussed above, pre-training the model involves train-
ing feature extractor fθ : Rd0 → Rd, as well as a final
dense/softmax layer. This can be trained over Dl via classic
methods, e.g., via stochastic gradient descent (SGD) over
standard loss functions (square loss, cross-entropy, etc.).

C. Stage 2: Class Discovery Kernel Network (CD-KNet)

At the conclusion of stage one, we have learned the feature
extractor fθ from the DNN. In stage two, our goal is to
discover new classes. A simple solution would be to leverage
the learned feature extractor fθ to map Du to the learned
feature embedding space and directly perform clustering in
this space (see, e.g., [10]). However, it is possible that the
feature embedding space learned from the old classes in Dl
are highly biased to the old classes. As a result, the learned
embedding may not generalize well toDu. In our work, instead
of using fθ from stage one directly, we update it, forcing it to
jointly adapt to both the supervised old classes in Dl as well
as the unsupervised new data in Du.

Formally, following the notations in Section IV, let Xl ∈
Rn×d0 , Y ∈ Rn×ml be the data and label matrix for the
labeled dataset Dl respectively, where Y comprises the one-hot
encoding representation of labels. Similarly, let Xu ∈ Rn′×d0
be the data matrix for the unlabeled dataset. We concatenate
Xl and Xu to get X ∈ R(n+n′)×d0 , a matrix containing
both labeled and unlabeled datasets. We also denote by U ∈
R(n+n′)×r, the corresponding latent embedding of X , where
r = ml + mu ∈ N is the predefined dimensionality of the
latent embedding. We learn the updated feature extractor fθ
and discover new classes by solving the following CD-KNet
optimization problem:

max
U,θ

Ho(θ, U) = H(fθ(X), U) + λH(fθ(Xl), Y ), (9a)

s.t. U>U = I, (9b)

where H is defined in Equation (3) and λ ≥ 0 is the control
parameter between the supervised and unsupervised objectives.
We describe how to solve Prob. (9) below, in Section V-E.
Intuitively, the first term encourages the separation of all
classes, old and new; both should be “clusterable”, as captured
by the high dependence with low-rank, orthogonal matrix U .
The second term introduces supervised information, ensuring
that the latent embedding maintains the separation between
old classes, as the latter remain aligned with their labels.

As a final step of the second stage, we take fθ(Xu),
the latent embedding of the new dataset, and cluster it. In
more detail, upon convergence, the feature extractor fθ has
been refined to an extent that incorporates the information
from labeled old classes as well as unlabeled new classes,
resulting in a feature space which is able to separate both
old and new classes well. In order to discover new classes,
we feed all samples from Du to the feature extractor to get
fθ(Xu), the matrix whose rows are latent feature embedding
representations of samples from Du. We then can perform any
clustering method, e.g. K-means, to get the cluster assignments
{ŷj}n

′

j=1 ∈ {1, . . . ,mu}n
′
. Note that these mu clusters consti-

tute our new classes. We refer to labels ŷj as pseudo-labels,
as they correspond to our discovered classes (that are, ideally,
consistent with the ground truth classes L′).

The entire pipeline is illustrated in Figure 1, Stage 2. We
call the pipeline as CD-KNet; the output of this stage, namely,
the pseudo-labels, can be used as our final class discovery
outcome. In practice, however, we further refine this with one
additional stage, involving a network expansion. We describe
this below. Note that, via Prob. (9), we leverage supervised
information in two ways: first, via pre-training of the feature
extractor, which is used as a starting point for the algorithm
solving Prob. (9) below, as well as through enforcing the joint
“clusterability” of both old and new latent embeddings.

D. Stage 3: Network Expansion: CD-KNet-Exp

In our final stage, once all new samples Xu ∈ Du are
assigned with pseudo-labels by CD-KNet, we use these labels
to retrain the network, under an appropriate network expansion
[35]. We describe this in detail here. As mentioned earlier, a



DNN can be regarded as the composition of a feature extractor
fθ and a softmax layer, i.e., the final dense layer with softmax
activation. A simple heuristic to expand the network is just
to expand the softmax layer by adding as many nodes as the
number of new classes we have discovered. This strategy has
been adopted in some prior works under a different context,
such as transfer learning [36].

However, we also need to consider is the representation ca-
pacity of fθ. When old classes and new classes are combined,
a feature extractor will naturally need more capacity, i.e. more
parameters, to represent a more complex dataset. As suggested
by Zeiler et al. [37], shallower layers in DNN always extract
general, abstract features which are common among different
tasks, while deeper layers capture specific features closely
related to the task/dataset. So we decide to only expand the
final layer of the feature extractor, i.e. the penultimate layer
of the whole DNN, and keep the rest of the feature extractor
unchanged. In practice, we find that expanding shallower
layers does not affect the final performance much as overfitting
may happen easily at shallower layers.

To that end, in the third stage, we expand the network by
adding mu to the last layer, and 25% to the penultimate layer.
The expanded model is then fine-tuned over both Dl and Du.
In particular, the model is fine-tuned on Du with pseudo-labels
Ŷu to incorporate new classes. In addition to learning from Du
and the new classes, we also include a fraction p% of the old
classes Dl to strengthen previous learned knowledge from seen
old classes. We refer to this as fine-tuning rather than training,
because we lower the learning rate of the expanded model,
except its expanded two final layers. It is also possible to just
retrain a new model, however, in our experiments, we find
that fine-tuning the model always converges better and faster
than retraining a model from scratch. Overall, the process of
network expansion is summarized and presented in Stage 3
in Figure 1. We refer to the complete 3-stage pipeline as CD-
KNet-Exp. The final outputs of this process are the labels
produced by the expanded model over Du.

E. Solving the CD-KNet Optimization Problem

We adopt an alternating optimization strategy to learn θ and
U iteratively. The whole process is shown in Algorithm 1.
Initialization: θ is initialized by the supervised training in
stage one. We initialize U by conducting spectral clustering
on fθ(X), which is equivalent to (7) [31].
Updating θ: Assuming U is fixed, we update θ via gradient
ascent. In practice, we would like to update θ using stochastic
gradient ascent via mini-batches. However, if we randomly
sample mini-batches among all samples, we need to keep
track of labeled and unlabeled parts inside each mini-batch.
Thus, we simplify the process by optimizing the supervised
and unsupervised part of Ho iteratively. First, we sample an
unlabeled mini-batch Xb from X , updating θ by:

θ := θ + γ∇H(fθ(Xb), Ub), (10)

Algorithm 1: CD-KNet Algorithm
Input: whole dataset matrix X , labeled dataset matrix
Xl and its corresponding label matrix Y ∈ Rn×ml

Output: parameter of feature extractor θ, cluster
assignments of Du

Initialization: initialize θ by training on Dl;
initialize U by spectral embedding of fθ(X)
while θ has not converged do

Update θ via one epoch of SGD via Eq. (10) and
(11) alternatingly, while keeping U fixed.

Update U via eigendecomposition according to Eq.
(14).

end
Cluster fθ(Xu) to get cluster assignments.

where γ is the learning rate and Ub is the corresponding latent
cluster embedding for this mini-batch. Then, we sample a
mini-batch Xb from Xl, updating θ by:

θ := θ + λγ∇H(fθ(Xb), Yb), (11)

where the learning rate γ remains the same as in the previous
step and Yb is the corresponding label matrix for this mini-
batch. We update θ for an epoch before we update U .
Updating U : When θ is fixed, the optimization in Equation (9)
w.r.t U alone is equivalent to:

max
U

tr(U>HD−1/2Kfθ(X)D
−1/2HU), (12)

s.t. U>U = I, (13)

where here we used KU = UU>, tr(·) to represent the
trace of a matrix and applied the cyclic property of the
trace. This maximization problem of U can be solved via
eigendecomposition. The optimal solution for U is given by
the top r eigenvectors of the following matrix:

Lθ = HD−1/2Kfθ(X)D
−1/2H, (14)

where H is as in Eq. (3), and D is the degree matrix given
by Eq. (6).
Subsampling: While the number of labeled and unlabeled
samples n, n′ could be very large, it is often time and
resource consuming to compute Ho using all of the data.
As an alternative, we perform subsampling to compute and
optimize Ho. Specifically, we sample n1 labeled samples from
Dl and n′1 unlabeled samples from Du, where n1 � n and
n′1 � n′. We then form labeled data matrices Xl1 ∈ Rn1×d0

as well as its corresponding label matrix Y1 ∈ Rn1×ml , and
unlabeled data matrix Xu1 ∈ Rn′1×d0 . We concatenate Xl1 and
Xu1 to get X1 ∈ R(n1+n

′
1)×d0 and define latent embedding

U1 ∈ R(n1+n
′
1)×r. Finally, we replace X,U,Xl, Y with

X1, U1, Xl1, Y1 in Equation (9) and solve the corresponding
optimization problem. Our experiments show that using only
5% of the original dataset suffices to get a good performance.



VI. EXPERIMENTS

In this section, we investigate how our proposed method
CD-KNet-Exp compares against competing methods on three
benchmark datasets and one real world radio frequency finger-
printing dataset. We also conduct comprehensive experiments
to explore the effects of different controllable parameters on
the performance of our algorithm.

A. Datasets

Our proposed Class Discovery Kernel Network with Expan-
sion (CD-KNet-Exp) method is evaluated on three benchmark
datasets, MNIST, Fashion MNIST and CIFAR-100, as well as
a real world dataset of radio frequency transmissions (RF-50).
MNIST. MNIST is a well-known database of grayscale im-
ages of handwritten decimal digits [38]. The dataset contains
60, 000 digits in the training set, and 10, 000 digits in the
test set. In our experiments, we select the first 5 digits as the
labeled, old classes, while the rest last 5 digits to constitute a
set of unlabeled, new classes.
Fashion MNIST. Fashion MNIST was first introduced by
Xiao et al. in [39], and contains grayscale images of 10 types
of fashion products, including clothes, shoes, and accessories.
Fashion MNIST follows the original MNIST dataset in image
size and structure of training and test splits; however, each
class is represented by exactly 7, 000 images. Again, a set of
labeled classes consists of the first 5 fashion products, while
the rest 5 classes are treated as unlabeled.
CIFAR-100. CIFAR-100 is another imaging dataset that con-
tains 60, 000 color images of 100 categories of objects, with
6, 000 images per category. Here, the dataset comprises of
50, 000 training and 10, 000 testing images. In analogy to
MNIST datasets, object categories in CIFAR-100 are split into
labeled and unlabeled, with the first 70 classes belonging to
the former group and 30 included in the latter one.
RF-50. This dataset contains 8, 800 radio transmissions from
50 WiFi devices recorded in the wild [40], [41]. Wireless sig-
nals undergo equalization [41]. The dataset is split as follows:
141 recordings from each device constitute the training subset,
while 35 are used for testing. Also, we randomly choose 35
devices and mark them as labeled, i.e. they form Dl part of
data, and the other 15 devices are considered as unlabeled, i.e.
form the Du dataset.

B. Competing Methods

As mentioned in the related work section, open-world class
discovery is a relatively new problem that is insufficiently in-
vestigated at the moment, and only one direct competitor with
reproducible code is available [10]. Nevertheless, we devise
simple baselines via variations of our own framework. We
also compare against state-of-the-art deep clustering methods
to strengthen our empirical results.
Our variants:
CD-KNet-Exp. CD-KNet-Exp is our proposed class discovery
kernel network approach as described in Section VI-B and
summarized in Figure 1. Next, we perform an ablation study
and describe three modifications of our framework designed

to understand the importance of each core component.
CD-KNet. To understand the importance of network expansion
to accurately predict new classes Ŷ , we compare against CD-
KNet which is a variant of our approach without the expansion
(i.e., it only completes the first two stages of the framework).
UCD-KNet-Exp. Another crucial component of the proposed
method is the incorporation of both supervised old class data
and the unlabeled data in learning our feature extractor fθ
based on Objective 9a. To evaluate the influence of supervi-
sion, we set λ = 0 in Eq. 9a, and treat this unsupervised
variant, UCD-KNet-Exp, as another competitor.
UCD-KNet. Finally, we remove both network expansion and
supervised components of the proposed CD-KNet-Exp frame-
work, and consider this simplest unsupervised variant as UCD-
KNet.
We compare against the current state-of-the-art approach
to class discovery, Semi-Supervised Class Discovery
(SSCD) [10].
SSCD. Nixon et al. [10] propose a framework for a new class
discovery based on the idea of (a) training a classifier on
known classes, (b) applying it to unseen classes, (c) detecting
new classes via K-means clustering, and (d) expanding the
classifier via pseudo-labels. This is can be seen as a simple
“clustering plus supervised learning” baseline compared to
CD-KNet-Exp, skipping the additional retraining via HSIC.
Originally, the SSCD framework adopts the work of Hendrycs
and Gimpel [42] to detect ‘new class’-candidate data samples.
However, because novelty detection is not the focus of this
paper, and in order to perform a fair comparison with our
method, we assume that all test samples do not belong to the
known classes, eschewing the novelty detection component.
SSCD-Exp. For their method, Nixon and others propose
to expand a classification model solely in the last layer to
accommodate the increased number of classes, and then
retrain the model on data with both original and clustered
labels. Here, we adapt/modify the original SSCD method
with our proposed strategy to expand their classification
model. As in the 3rd stage of our method, we expand their
neural network both in the penultimate and ultimate layers.
Hereinafter, we refer to this method as SSCD-Exp. Both
SSCD and SSCD-Exp are implemented in accordance with
the description and parameter settings provided in the original
paper. We did not compare to Shu et al. [9], as no code is
publicly available; we note however that the NMI they report
on MNIST is 0.48, far lower than CD-KNet-Exp (0.856) and
other competitors.
Finally, we also compare against two state-of-the-art deep
learning-based clustering algorithms.
Deep Embedding Clustering (DEC). In [43], the authors
use stacked autoencoder to map the input Xu to the low-
dimensional feature space and then perform K-means clus-
tering to initialize mu cluster centroids. The main idea behind
DEC is to obtain probabilistic cluster assignments and then
iteratively update them using the Kullback-Leibler divergence
between the distribution of such “soft” assignment values and
some auxiliary distribution.
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Fig. 2: Network architectures used for MNIST/fashion MNIST,
CIFAR-100, and RF-50 datasets.

TABLE II: Number of epochs for each dataset at different
stages. We use the same numbers for MNIST and Fashion-
MNIST.

Dataset Pretraining CD-KNet Network Expansion
(Fashion) MNIST 50 20 30

CIFAR-100 70 20 30
RF-50 25 10 25

Deep Adaptive Clustering (DAC). DAC [44] re-casts a
clustering task to a binary pair-wise classification problem.
DAC is an iterative method for assigning a pair of inputs to
the same class if their embeddings are similar enough, assign
to different classes if embeddings are different enough; oth-
erwise, it discards the pair from the current training iteration.
The similarity and dissimilarity thresholds in DAC are changed
adaptively after each iteration. In the experiments, we utilize
the original implementations provided by the authors for both
DEC and DAC methods.

C. Implementation Details

For both MNIST, Fashion MNIST, and CIFAR-100 datasets,
we employ convolutional neural networks suggested in the
official Keras Examples Directory for the corresponding
datasets [45]. For the RF-50 dataset, we applied the baseline
convolutional neural network proposed in [40]. All three
models are illustrated on Figure 2.

We determined all the hyperparameters on a validation set
via holding out 10% of the training data. For all experiments,
we use the same learning rates for Stages one and two. For
Stage three, the network expansion stage, we use the same
learning rate again to train the expanded last two layers and
0.1 of the learning rate to fine tune the rest of the network. The
proportion of Dl samples used in training network expansion
is 20%. For MNIST and Fashion-MNIST, we use Adam [46]
optimizer with a learning rate of 0.01. For CIFAR-100, we
use Adam optimizer with a learning rate of 0.0001. For RF-
50, we followed the suggested hyperparameters by Jian et
al. [40]. The training epochs for Stage one (pretraining), Stage
two (CD-KNet), and Stage three (network expansion) are
summarized in Table II. We set λ = 10 and the subsampling

rates for MNIST, Fashion-MNIST, CIFAR-100 and RF-50 as
3%, 5%, 5%, 5%, respectively. We implement our method
using Keras 2.2.4 [47] and TensorFlow 1.14.0 [48]. Our source
code is publicly available.1

D. Evaluation Metrics

We assess the quality of the clusters discovered by our
proposed class discovery approach, CD-KNet-Exp, and the
other competing methods described in Section VI-B on the
unlabeled data Du using clustering evaluation metrics. In
particular, we report the following three clustering external
evaluation metrics: clustering accuracy (ACC), normalized
mutual information (NMI) and adjusted Rand index (ARI).
These external evaluation criteria measure how well the dis-
covered clusters match the ground truth unseen class labels.
ACC is the standard clustering accuracy measure. NMI is
the normalized mutual information between the estimated
cluster pseudo-labels ŷu and the ground-truth labels yu:
NMI(ŷu, yu) = I(ŷu,yu)√

H(ŷu)H(yu)
, where I(a, b) is the mutual

information between a and b, and H(a) and H(b) are the
entropies of a and b respectively. Both I and H here are
computed from empirical distributions. Finally, ARI is the
adjusted Rand index, which measures the amount of overlap
between two clustering solutions as follows:

ARI =
RI− E[RI]

max(RI)− E[RI]
, where RI =

a+ b

Cn2
, and (15)

where a is the number of pairs of data samples that belong to
the same class w.r.t. both the ground-truth and pseudo-labels,
b is the number of data samples that belong to the different
classes w.r.t. both the ground-truth and pseudo-labels, and Cn2
is the total number of data sample pairs in the dataset. All
three metrics have values between zero and one. The higher
the value, the better the clustering agreement with the true
labels.

VII. RESULTS AND DISCUSSION

A. Results on Benchmark Datasets and Radio Dataset

Class Discovery Performance. In Table III we report the
class discovery performance, in terms of ACC, NMI and ARI,
of our proposed CD-KNet-Exp method, along with all other
competing methods on all datasets. Note that in all datasets,
CD-KNet-Exp performs the best against all methods w.r.t. all
three clustering metrics.

From this table, we can also observe the effect of network
expansion compared to versions without (‘Exp’). Note that
all the methods which incorporate network expansion gain
performance increase over their counterpart, showing the ef-
fectiveness of this strategy.

Another interesting observation from Table III is that our
CD-KNet-Exp and UCD-KNet-Exp achieve the 1st and 2nd
best performance consistently on all datasets. This demon-
strates that (a) only using the unsupervised part in our HSIC

1https://github.com/neu-spiral/OpenWorldKNet

https://github.com/neu-spiral/OpenWorldKNet


TABLE III: Class discovery performance on all datasets.
Datasets MNIST Fashion-MNIST CIFAR-100 RF-50

Methods\Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
SSCD 0.840 0.629 0.649 0.552 0.386 0.316 0.201 0.193 0.064 0.524 0.194 0.184

SSCD-Exp 0.887 0.791 0.812 0.596 0.477 0.376 0.213 0.204 0.066 0.578 0.230 0.220
UCD-KNet 0.849 0.645 0.664 0.587 0.476 0.403 0.220 0.216 0.078 0.553 0.244 0.273

UCD-KNet-Exp 0.926 0.794 0.829 0.622 0.518 0.470 0.247 0.237 0.091 0.585 0.279 0.309
CD-KNet 0.869 0.683 0.707 0.655 0.535 0.463 0.232 0.228 0.080 0.587 0.453 0.456

CD-KNet-Exp 0.945 0.856 0.869 0.679 0.603 0.529 0.269 0.256 0.102 0.610 0.481 0.485

objective already leads to better separable latent feature em-
beddings than other methods; and (b) introducing supervised
knowledge from old classes further improves the performance
of only using unsupervised information.
Comparing with Unsupervised Deep Learning Methods. In
order to show that our method provides an effective way of
incorporating knowledge learned from old classes, we compare
our method with two state-of-the-art deep learning based
unsupervised clustering methods, DEC [43] and DAC [44], on
three benchmark datasets in Table IV. To mimic our problem
setting, we pretrain the deep neural networks used in DEC and
DAC with old classes, and then we perform these algorithms
on new classes. Table IV shows that CD-KNet-Exp beats both
of the methods on all three benchmarks. Although we enforce
DEC and DAC to incorporate knowledge from old classes by
pretraining, our method still outperforms both DEC and DAC.
Visualization of Latent Embeddings. In Figure 3, we inves-
tigate the latent embeddings learned by our method CD-KNet-
Exp against the state-of-the-art method for class discovery
SSCD-Exp on the MNIST dataset. We plot the embeddings
using t-SNE [49] visualization of the latent feature embedding
after expansion for all classes, where ‘+’ represents new
classes, ‘•’ represents old classes, and different colors rep-
resent different classes. Observe that CD-KNet-Exp separates
the classes better than SSCD-Exp. Also, we notice that SSCD
mixes one of the new classes (light blue) and old classes
(green) together. This explains why there is an accuracy drop
on the old classes (which we will explain later in Table VI).
Recall that SSCD directly uses feature extractor learned on
old classes, so that it has an underlying drawback of mistaking
new classes to old ones when their samples are similar in the
latent embedding space. In contrast, CD-KNet-Exp takes both
labeled old classes and unlabeled new classes into considera-
tion, pulling them apart in the learned latent embedding space
by optimizing the CD-KNet HSIC based objective.

B. Influence of Controllable Parameters.

Our method, CD-KNet-Exp has several controllable pa-
rameters: the control parameter λ between supervised and
unsupervised HSIC, network expansion, and the subsampling
factor. In this subsection, explore how these parameters affect
the final class discovery performance.
Influence of λ. In Equation (9a), we have a balance factor λ to
control how much weight to put on the supervised part of our
HSIC based objective. In practice, we find that the algorithm is
not sensitive to the value of λ for a wide range (λ ∈ [1, 100])
of values, so we just set λ = 10 as a representative value
in our experiments. However, we observe clear differences

in performance when there is only unsupervised information
(λ = 0), supervised and unsupervised information (λ = 10)
and only supervised information (λ = ∞, in practice, we
enforce this by removing the unsupervised term).

Table V reports the class discovery performance in terms
of ACC, NMI and ARI of CD-KNet-Exp for λ = 10, λ = 0,
and λ = ∞ on Fashion-MNIST dataset. When Comparing
λ = 10 and λ = 0, we are actually comparing CD-KNet-Exp
and UCD-KNet-Exp. The better performance of CD-KNet-Exp
over unsupervised UCD-KNet-Exp showcases the importance
of supervision in our HSIC based objective, which is also
demonstrated in Table III. Interestingly, λ =∞ results in the
worst performance, indicating that only using supervised HSIC
to tune the network tends to overfit to old classes, resulting in
poor performance on the new classes.
Influence of Network Expansion. We have already shown
how network expansion helps new class discovery in Table III.
In this subsection, we investigate the effect of expansion
on the classification accuracy on the previous old classes.
Table VI shows the cluster accuracy and classification accuracy
of new and old classes respectively, before expansion and after
expansion on the MNIST dataset. Both CD-KNet-Exp and
UCD-KNet-Exp incorporate network expansion strategy well
with clustering accuracy increase on new classes and almost
no classification accuracy decrease on old classes. In contrast,
although SSCD achieves better cluster accuracy on new classes
after expansion, the classification accuracy of SSCD on old
classes drops by about 10%.
Comparing Different Expansion Strategies. To justify the
reason why we choose to expand the last two layers of
the DNN, we compare 3 different expansion strategies and
completely no expansion. The 3 expansion strategies are:
(a) Expand only the last layer; (b) Expand the last two
layers (ours); and, (c) Expand all layers in the DNN (for
convolutional layers, we double its number of filters). Fig-
ure 4 demonstrates that our strategy, expanding the last two
layers, indeed performs the best. Moreover, note that an all
expansion strategy performs better than no expansion. On
MNIST dataset, expanding only the last layer is comparable
with our strategy. However, on Fashion-MNIST and CIFAR-
100, there is a performance gap between expanding only the
last layer and the last two layers. This observation suggests
that the feature extractor has enough representation capacity
for relatively simple datasets like MNIST, but for complex
datasets, we need to expand the feature extractor to allocate
more representation power for new classes. On the other
hand, expanding all layers which increases the representation
capacity of the DNN leads to worse performance than just



TABLE IV: Comparing with full unsupervised learning methods.
Datasets MNIST Fashion-MNIST CIFAR-100

Methods\Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI
DEC 0.873 0.835 0.822 0.620 0.566 0.522 0.205 0.166 0.073
DAC 0.894 0.843 0.865 0.642 0.588 0.543 0.247 0.195 0.088

CD-KNet-Exp 0.945 0.856 0.869 0.679 0.603 0.529 0.269 0.256 0.102

(a) CD-KNet-Exp (b) SSCD-Exp

Fig. 3: t-SNE visualization of latent embeddings of CD-KNet-Exp and SSCD-Exp. CD-KNet-Exp 1) produces better separable
latent embeddings than SSCD-Exp; 2) has clearer boundaries between old and new classes.

TABLE V: Influence of λ on Fashion MNIST dataset.
Metric\λ 10 0 ∞

ACC 0.655 0.587 0.544
NMI 0.535 0.476 0.375
ARI 0.463 0.403 0.276

Fig. 4: Comparison of different expansion strategies and no
expansion. Expansion of the last two layers of the network
performs the best among all strategies.

expanding the last two layers. This is a case of overfitting,
which may harm the performance when we expand the DNN
too much.
Influence of Subsampling Factor. As mentioned in Section
V-E, calculating the kernel matrix for all the data is compu-
tationally expensive, so we adopt a subsampling strategy [33]
to reduce the computation. In Fig 5, we explore how the
subsampling factor will affect the final performance. For each
benchmark dataset, we set the subsampling factor from 0%
(equivalent to SSCD) to 10%. The trends are very similar for
all datasets: There is a notable jump in accuracy from 0% to

TABLE VI: Influence of Network Expansion on MNIST
dataset w.r.t. ACC measure

New Classes Old Classes
Method\Stage Before After Before After

SSCD-Exp 0.840 0.887 0.988 0.892
U-KNet-Exp 0.849 0.926 0.988 0.983

CD-KNet-Exp 0.869 0.945 0.988 0.983

1% and then the accuracy increase slows down until it reaches
the best performance (3% for MNIST and 5% for Fashion-
MNIST and CIFAR-100). After that, the accuracy tends to
be stable. These empirical results show that CD-KNet only
needs a small portion of the data to capture the whole picture,
generalizing well to the entire dataset.

VIII. CONCLUSIONS

In this paper, we introduced CD-KNet-Exp for addressing
the open-world class discovery problem. Empirical results on
MNIST, Fashion-MNIST, CIFAR-100 and a real-world radio
frequency fingerprinting dataset, RF-50, show that CD-KNet-
Exp can discover new classes with clustering performance
better than all competing methods. In particular, it outperforms
competitors over three benchmark datasets by a 2%-12%
margin.
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Fig. 5: Influence of subsampling factor w.r.t. ACC measure. CD-KNet-Exp is able to perform well using only 3%, 5%, 5% of
the MNIST, Fashion-MNIST and CIFAR-100 datasets, respectively.
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