ACCEPTED IN IEEE COMMUNICATIONS MAGAZINE, SEPTEMBER 2020.

More 1s Better: Data Augmentation for
Channel-Resilient RF Fingerprinting

Nasim Soltani, Kunal Sankhe, Jennifer Dy, Stratis Ioannidis, and Kaushik Chowdhury
Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, USA
Emails: {soltani.n,sankhe.ku}@northeastern.edu,{jdy,ioannidis,krc } @ece.neu.edu

Abstract—RF fingerprinting involves identifying characteristic
transmitter-imposed variations within a wireless signal. Deep
Neural Networks (DNNs) that do not rely on handcrafting
features have proven to be remarkably effective in fingerprinting
tasks, as long as the channel remains invariant. However, DNNs
trained at a specific location and time perform poorly on datasets
collected under different channel conditions. This paper proposes
a data augmentation step within the training pipeline that exposes
the DNN to many simulated channel and noise variations that are
not present in the original dataset. We describe two approaches
for data augmentation: The first approach is applied to the
‘transmitter data’ when transmitter side data (i.e., pure signals
without channel distortion) is available. The second approach
is applied to the ‘receiver data’, when only a passive dataset
is available with already over-the-air transmitted signals. We
show that data augmentation results in 75% improvement in
the former case with a custom-generated dataset, and around
32-51% improvement in the latter case on a 5000-device WiFi
dataset, compared to the case of non-augmented data fed to
DNNs.

I. INTRODUCTION

RF fingerprinting is a process to identify radios by detecting
a characteristic signature embedded within their transmitted
electromagnetic waves. Traditionally, this process involves
handcrafting features that represent salient hardware charac-
teristics manifesting in the transmission. However, identifying
the most discerning features from a pool comprising multitude
of physical radios is challenging. It is protocol specific and
thus requires domain knowledge and advanced test equipment.
As opposed to this, deep-learning-based methods are gaining
traction due to their ability to automatically identify hardware
features in a protocol-independent fashion: only raw in-phase
(D and quadrature (Q) components of the samples suffice for
detection, which considerably simplifies the end-user appli-
cation of RF fingerprinting. While many works [1]-[3] have
made substantial strides in radio fingerprinting using raw 1Q
samples with DNNSs, they report classification accuracy only
with datasets where the training set and the test set are col-
lected under very similar wireless channels and environmental
conditions.

Wireless channel is a major contributor to accuracy degra-
dation in DNN-based RF fingerprinting. It effectively scales
up/down and rotates the IQ constellation due to attenuation,
reflections, and delays. These highly complex interactions are
unique to a particular channel and may not repeat in exactly
the same way in future channel conditions. Therefore, with
a training set collected under particular channel conditions,

the DNN ultimately ends up learning a channel-distorted
fingerprint instead of the pure inherent fingerprint. A DNN
trained thusly yields poor accuracy if tested under a different
channel. As evidence, our prior work ORACLE [2] shows
99% classification accuracy for 16 software defined radios
(SDRs) when training and test sets are collected under the
same channel conditions. However, this accuracy drops to 56%
when the DNN is tested under a different channel.

Popular methods to overcome the channel effect are transfer
learning [4], [5] and re-training [4]. These solutions are not
always possible, as training during deployment is resource and
time consuming. Therefore, a means of making the neural
network resilient to unseen channel and noise variations is
of paramount importance. More about these methods are
discussed in the next Section.

In image processing domain, a common approach to make
the neural network resilient to a specific type of variation and
avoid overfitting is data augmentation [4], that is, expanding
the training set with additional samples that resemble the
outcomes of that variation. For example, geometric transfor-
mations such as rotating, flipping and re-scaling the training
samples are common in image processing [4]; so is adding
salt-and-pepper and Gaussian noise [6]. However, these image
transformations do not account for the inherent properties of
wireless signals, and are not suitable for wireless domain.

The main contribution in this paper is to propose a novel
methodology for data augmentation in the RF domain. In our
method, the training data is augmented in a principled manner
that makes the trained DNN resilient to channel variations and
noise levels. Data is sequentially passed through a channel
model and a noise model. The channel model is an FIR filter
—with filter taps drawn from a specific distribution— being
convolved with the signal passing through it. The noise model
is a noise generator, producing random values from a Gaussian
distribution with variance proportional to the noise power.
These random values are summed with the output of the
channel model. The DNN trained with the augmented training
set yields a channel-and-noise-resilient neural network for RF
fingerprinting.

Our contributions are as follows:

o We propose a data augmentation method integrated within
a deep learning pipeline for channel-resilient RF finger-
printing on both cases of ‘transmitter data’ (i.e., trans-
mitter data accessible) and ‘receiver data’ (i.e., only a
passive received dataset is available). The DNN trained

ACCEPTED IN IEEE COMMUNICATIONS MAGAZINE, SEPTEMBER 2020.

with this approach performs accurate RF fingerprinting
even under unseen channels.

o We provide a simulated dataset generated in MATLAB
using WiFi 802.11a PHY frames for 10 virtual trans-
mitters and different SNR levels. In addition, we show
how ‘receiver-side’ augmentation improves classification
accuracy in a DARPA-provided 5000 WiFi device dataset.

o For receiver-side augmentation, we provide a discussion
on the strategies for selecting the augmentation parame-
ters that retain the scale of the original signals, so that
the normalized test set can be fed to the DNN without
any augmentation. We also highlight the open research
challenges in this area.

II. RELATED WORK

Among the large body of works exploiting DNNs for RF
fingerprinting, we survey those approaches that attempt to
overcome the drop in classification accuracy when the channel
changes between training and test sets.

ORACLE [2] works on the ‘receiver-side’ data, where it
equalizes the received data before forming training and test
sets. Equalization estimates and compensates for the effect
of the channel. However, this approach needs full knowledge
of the waveform (i.e., modulation, sampling rate and frame
structure). Furthermore, it requires preprocessing the IQ sam-
ples, which increases delays. The data augmentation method
proposed in this paper, instead, can be applied to raw IQ
samples without any prior knowledge about the waveform.

DeepRadiolD [7] finds an FIR filter at the ‘transmitter-
side’ to negate the channel. The FIR filter at the transmitter-
side is optimized based on the current channel conditions
and the transmitter’s characteristics to synthesize a filtered
waveform. The overall outcome of this step is that the FIR
filter makes the transmitters more distinguishable to the trained
Convolutional Neural Network (CNN). However, a new FIR
filter must be computed for each transmitter every time the
channel changes. This step is computationally heavy as it relies
on back-propagation within the trained CNN to identify the
optimal filter taps. Moreover, it needs a reliable backchannel
to communicate filter taps obtained at the receiver to the
transmitter. As opposed to this, data augmentation neither
requires any live processing in the field, nor any receiver-
transmitter coordination.

Data augmentation specifically for wireless using Genera-
tive Adverserial Networks (GANs) is proposed in [8]. The
authors introduce variations in the training set by generating
synthetic data that resemble the original training set. However,
GANs may not be suitable to train channel-resilient neural
networks, since the channel-distorted signals do not resemble
the original data. Instead, our data augmentation scheme
creates distortions similar to channel and noise-induced effects
in the original training set.

III. DATASET GENERATION AND TRAINING THE DNN

In this section, we describe the two datasets used in this
paper, the steps for data generation and pre-processing, and
the neural network architectures.

A. Custom-Generated Dataset

We use MATLAB Communications Toolbox to simulate
10 virtual radios. We use a classical transmitter chain and
modify it by introducing RF impairments that are seen in
actual radio hardware. We set different levels of IQ imbalance,
and each choice results in one distinct virtual radio (simply
abbreviated as 71 to 71g). While real radios have a combination
of impairments, we focus on IQ imbalance as described in [2].
RF fingerprinting aims to distinguish these 10 radios using the
received 1Q samples. To create 10 virtual radios, we vary the
amplitude imbalance from 1 to 5.5dB with steps of 0.5dB
and phase imbalance from 1 to 82 with steps of 9 degrees.
Average bit error rate for these 1Q imbalance values is 0.0031
for SNR>4dB, which ensures the impairments do not disrupt
the communication [2], [3].

Each radio transmits IEEE 802.11a WiFi frames generated
via MATLAB WLAN toolbox. For each payload, we modulate
a random bit sequence with QPSK modulation scheme and
1/2 coding rate. These packets, unmodified by the wireless
channel, are recorded at the transmitter-side. We refer to this
dataset as TxData from here on.

Next, we simulate different instances of an indoor wireless
channel using a 9-tap WlanTgn channel model implemented
in WLAN toolbox. Different instances of WlanTgn channel
are obtained by varying the ‘channel seed’ for each transmis-
sion. We vary the SNR from -10 to 20dB with steps of 2dB by
changing the Additive White Gaussian Noise (AWGN) level.
At each SNR level, a given radio transmits WiFi packets over
a specific instance of the channel until we collect 19.6 million
IQ samples from that radio at the receiver-side. This process
is performed for 10 radios at 16 SNR levels. We refer to this
dataset as Dayl, emulating the captured transmissions from 10
radios on a given day. We further repeat this one more time,
providing dataset Day2. This entire custom dataset including
TxData, Dayl and Day? is available in our collection [9].

B. DARPA Dataset

Our simulated dataset described above is used to demon-
strate data augmentation at the transmitter-side. However, in
many situations, we have access only to raw IQ samples at the
receiver-side, which have already traversed a wireless channel.
To show how augmentation works in this case, we use a dataset
provided by DARPA. While this dataset has dissemination
restrictions, it contains signals from 50, 250, 500 and 5000
WiFi devices transmitting IEEE 802.11a/g protocol. These
datasets are collected ‘in the wild” and contain on average 166
examples per device. There are 10900 to 110000 examples
in the training set, and 2750 to 30000 examples in the test
set, depending on the number of devices. Each example
corresponds to an independent transmission and has an average
length of ~18k IQ samples.

C. DNN Architectures and Training

We use 3 different DNN architectures in this paper, which
are shown in Figure 1. Among them, CNNI is a feed-forward
Convolutional Neural Network with ~1.1M parameters that

ACCEPTED IN IEEE COMMUNICATIONS MAGAZINE, SEPTEMBER 2020.

Long WiFi Packet

l 60% 20% 20%

Training | Validation | Testing |
| /example 1 | example 2 | example 3 | example 4 | --------
Ee——)

2000...-"" 2000 2000 2000

| example X |
1L 1 L 1 L
slice 4 slice 2 Slice 5 slice 6

slice 1

198 samples slice 3 slice 7
3, —
& & ¥ (o] (o
e) e S I < I
[ol |a| . _
e — SIS 88
OO e 5| & 5| |§
S S| = o) o}
. o |o al| |[a
H [[® N
OO L — 1.1M
x5 paramete
1
(M) (@)
o o)

' 5 1S 3 8
example1_slice1 2,8 8 s
example2_slice2 o = % 2
example3_slice3 = S| = |8

............... O O
............... e —
exampleN_slice128 X7
M (@)
q N (Z © @
5 = (= & N
—> | EL{2] 8 >E 853
dimensions = & gl % ab7 27 e
(128,198,2) | 18|l = |5 al |8
o O
L1 1M
x7 parameters CONVRNN
Figure 1. Forming tensors for the neural networks and 3 different neural

network architectures of CNN1, CNN2 and ConvRNN.

previously performed well for RF fingerprinting [10] and
modulation classification [11]. CNN2 is a more complex feed-
forward Convolutional Neural Network with ~7.9M param-
eters and ConvRNN is a Convolutional Recurrent Neural
Network with a SimpleRNN layer and ~1.1M parameters.
We train the neural networks using Adam optimizer with a
learning rate of 0.0001.

1) Learning on the Custom Dataset: We next describe the
data preprocessing steps before feeding the 1Q samples to the
DNN. The dataset corresponding to any given Day consists of
signal transmissions from 10 radios collected at a fixed SNR
from a total of 16 distinct levels. Each of these transmissions
comprises a sequence of 19.6 million IQ samples. Thus, we
have 10 x 16 = 160 sequences for each Day. We partition
each sequence into non-overlapping sets of training (60%),
validation (20%) and test (20%). Each set is further divided
into several non-overlapping examples of length L to form
independent transmissions. Each example yields L — [+ 1
overlapping subsequences, referred to as slices, by sliding a
window of length [along it [10]. The sliding window approach
enhances the shift invariance of the features learnt by the
DNN [10]. We set each example to be of size L = 2000
to ensure it is long enough to yield multiple slices of length
l=198.

During training, we load a set of examples using Data
Generator class from Keras library. Inside the Data
Generator, 128 random slices with length 198 are chosen
from random examples, to form a data batch. The random

selection of examples and slices in every epoch contributes
to training more robust deep learning models [10]. Each data
batch forms a tensor with dimension (128,198,2), where I
and Q information is included via separate channels, in the
last dimension (see Figure 1).

We train CNN1 in Figure 1 with the training set from
Dayl and test it on the test set from Dayl and then Day?2.
We calculate per slice accuracy by dividing the number of
correctly predicted slices by the total number of slices. We
classify each example by summing the probability vectors
of all the slices in that example and choosing the class
with the highest value as the predicted class. We calculate
per example accuracy by dividing the number of correctly
predicted examples by the total number of test examples.

2) Learning on the DARPA Dataset: Since in the DARPA
dataset the non-overlapping examples are already formed,
tensors are extracted out of the examples in the same manner
as our custom dataset. More details are discussed in previous
work [10].

IV. DATA AUGMENTATION

The purpose of data augmentation in the training pipeline
is to make the DNN robust to channel and noise variations
in the test set. In this process, the training data is passed
through an augmentation block that captures different virtual
instances of the wireless channel and the receiver noise. Data
augmentation can be performed either on the transmitter data,
or the received IQ samples. After the network is trained,
classifying the radios (i.e., the test phase) happens using a
test set containing received IQ samples.

A. Data Augmentation on the Transmitter Data

For data augmentation on the transmitter data, no changes
need to happen in the transmitter processing chain. Instead,
transmitter data sequences —that contain the transmitter fin-
gerprint, but no channel or noise distortions— are recorded to
train the neural network. Sequences are chopped into non-
overlapping examples and data batches are created out of
examples (as described in the previous section) using Keras
Data Generator. In the classical approach for training,
we simply feed these batches to the DNN. However, with
our data augmentation scheme, each batch passes through
an augmentation block before being fed to the DNN (see
Figure 2). The augmentation block comprises: (i) a channel
model and (ii) a noise model.

1) Channel Model: The channel model is a mathematical
representation of a wireless channel that essentially captures
the effects of natural distortions (e.g., multipath fading on a
transmitted wireless signal). The multipath fading channel is
often modeled with a multi-tap FIR filter with appropriate
channel frequency response [12].

We use Wireless LAN TGn (WlanTgn) channel model
with delay profile of type Model-B. This model characterizes
a typical indoor, large open space and office environment
that has non line-of-sight wireless propagation of 15ns rms
delay spread [13]. The model is simulated using 9 taps of
complex channel coefficients, representing path gains and

ACCEPTED IN IEEE COMMUNICATIONS MAGAZINE, SEPTEMBER 2020. 4

Data augmentation engine

Channel model Noise model
(Hns 04) (Hn» 0,9
! Filter i :
Original . coeff ol : Augmented o
data batch Tx ! . : data batch Training mode
o @ ! ENormaIize 1 Normalize
Training set | Normalize | oo fraining oot Data: i per batch i perbatch | coerrrrerroerm
H [EEEEEEEEEEEEEEEE] ' I [EEEEEEEEEEEEEEEN)
on disk ; D gontains > = | HHHHHHEF———=>0= - =
[E=manasssassssas) E Complex filter | E 1 [Eannnssaassassas]

Rx 1Q
samples

E (M, th)i
1 Filter '
1 coeff !

Figure 2. Data augmentation is performed in the training phase. The pipeline for augmentation on the TxData comprises the channel model and the noise
model. The pipeline for augmentation on the Rx IQ samples comprises the complex FIR filter.

path delays. Following the central limit theorem, we sample
these coefficients from a Complex Gaussian distribution with
mean g, and variance O’%. Parameters u; and cr% can be
estimated from different realizations of WlanTgn channel
model. However, in data augmentation on the transmitter data,
pn, and oF are compensated by normalizing the data batch, at
the input of the noise model. Therefore, we use typical values
of up, = 0 and o} = ﬁ, to ensure total power distribution
of 9 complex taps equals 1 unit.

During training, in every epoch, per batch of size
(128,198,2), a new set of 9 complex taps (representing
the channel model) are independently drawn from Gaussian
distribution. Each slice is convolved with this FIR filter.
The output slices are stacked together to form a batch with
the same dimension as the input batch (128,198,2). The
output batch is thus the transmitter IQ samples passed through
wireless channel model. Choosing new filter taps per batch
and per epoch exposes the DNN to hundreds of thousands
of different channel instances during training. While with
classical training, validation accuracy saturates after several
epochs, with data augmentation the accuracy keeps improving
as we continue training.

2) Noise Model: After the data batch passes through the
channel model, it is fed to the noise model that emulates the
additive receiver noise. The level of noise is chosen based on
the SNR variations we expect in the test set. In our case, our
objective is to study how robust the DNN is to SNRs in range
[—10, 20]dB with steps of 2dB.

In the noise model, first the data batch is normalized to
ensure power = 1. Next, an SNR value is randomly drawn
from the above range, which determines the power (variance
afL) of noise. Then, a batch of noise with the same dimensions
as the input is generated from Gaussian distribution with mean
tn = 0 and variance o2 inversely proportionate to the SNR
level.

The batch of white Gaussian noise is finally summed with
the filtered batch of signal. This completes the process of
distorting the signal by both channel and noise models. We

ensure that the resulting batch of data is always normalized
before being fed to the DNN. It should be noted that in data
augmentation on the transmitter data, the training set is never
passed through a simulated channel in MATLAB. Instead, the
channel and noise are modeled in data augmentation engine
in the deep learning framework, as explained earlier.

In the test phase, since the received 1Q samples already
passed through simulated channel and noise in MATLAB, no
further processing is needed in the deep-learning pipeline. Test
data batches only need to be normalized before entering the
DNN, as the DNN is trained with normalized data batches.

B. Data Augmentation on the Receiver Data

The complex FIR filter in the data augmentation block can
be used also for augmentation on the receiver data. In this case,
the convolution of the FIR filter does not conceptually reflect
the action of the wireless channel. The main contribution of the
filter, instead, is to provide substantial variety in the training
set by distorting the received IQ samples through a random
selection of FIR taps per data batch. This variety in the training
set, prevents the DNN from overfitting and, hence, improves
the test accuracy.

In data augmentation on the receiver data, similar to a
conventional classification problem, we normalize the training
set across all IQ samples in it. Then we load training batches
and pass them through a randomly chosen FIR filter with 11
complex taps (see Figure 2). Similar to “Data Augmentation
on Tx Data”, the FIR taps are drawn from Complex Gaussian
distribution with mean s, and variance o7. Here, to prevent
the scale of training batches from changing after filtering, we
consider g, and o} for an 11-tap complex Identity filter. This
filter has one element with real part ‘1’ and imaginary part
‘0’, and ten elements equal to ‘0’. For this filter, pj, = 0.045
and o7 = 0.0434. We use these statistics for the Gaussian FIR
filter in the training pipeline, so that the scale of training data
does not change after filtering. In this way, the normalized test
set can be fed to the DNN without passing through a filter.

ACCEPTED IN IEEE COMMUNICATIONS MAGAZINE, SEPTEMBER 2020.

N Dayl1/Day?2
—o— TxData/Day2
0.8 | —e— TxData+aug/Day2

)
2
g
g
o 0.6
5
= 04
Q
=
7 0.2
=
S 9
10 -5 0 5 10 15 20
SNR (dB)

Figure 3. Classification accuracy versus SNR for different cases of Train-
ingSet/TestSet.

V. EVALUATION

In this section, we show the accuracy drop when the test set
is collected under unseen channels, and how data augmentation
presents a viable solution. For data augmentation on the
transmitter data, we use the custom-generated dataset with
CNNI1 in Figure 1. For data augmentation on the receiver 1Q
samples, we use the DARPA dataset with CNN1, CNN2 and
ConvRNN shown in Figure 1.

A. Accuracy Drop with Unseen Channels

Here, we quantitatively demonstrate the drop in classifica-
tion accuracy if we train the CNN1 on one Day but test it
with data from another Day. When we train the DNN with the
training set from Day! (described earlier in Custom-Generated
Dataset subsection) and test it with test set from Dayl, classi-
fication accuracy is 99% for SNRs>12dB. Thus, the virtual
radios can be well distinguished when the training and test
sets are collected using the same wireless channel. Next, after
training CNN1 with Dayl, we test it using Day2. Classification
accuracy versus SNR for this case is shown in Figure 3
as ‘Dayl/Day2’. We see that the accuracy drops to 52%
even in the comparatively high SNR=20dB. This is because
when we train the model with Dayl, we are in part learning
the wireless channel along with the radio fingerprints, which
impacts the classification accuracy in generalized, different-
day test scenarios.

B. Data Augmentation on Tx Data

To show how data augmentation addresses this problem,
we train CNN1 with pure transmitter-side 1Q samples before
passing through the channel (called as TxData) for 10 radios
without data augmentation in the pipeline. The network trained
thusly is not able to classify radios from unseen channels (see
plot ‘TxData/Day?2’ in Figure 3). We train CNN1 on TxData,
this time with data augmentation scheme and test it with Day?2.
In this case, the network is able to detect devices from unseen
channels and noise levels (see plot ‘TxDatat+aug/Day2’ in
Figure 3). The resulting 91% accuracy at SNR=20dB shows
75% improvement, compared to 52% for the earlier case of

Dayl1/Day2, when CNNI is trained on one Day and tested on
another.

Figure 4 shows the confusion matrices for CNNI trained
with TxData (without data augmentation engine) and with
TxData passing through the cascade of the channel model and
the noise model. Both trained models are tested with Dayl
data at SNR 20dB. As we can see, if the network is trained
with pure transmitter data without the augmentation block
and tested with the test set in Dayl, the classification would
be randomly performed. This happens due to the absence of
channel and noise variations in the training set. In this case,
the confusion matrix does not show any particular pattern.
However, if the network is trained with transmitter data with
the channel model and the noise model in the pipeline, the
highlights around the diagonal of the confusion matrix shape
vividly. The diagonal highlights represent each true label being
predicted correctly which yields high classification accuracy.

C. Data Augmentation on Rx Data

As described earlier, we use WiFi raw IQ samples from the
US Defense Advanced Research Projects Agency (DARPA)-
provided dataset, for 50, 250, 500 and 5000 devices. Fig-
ure 5 shows per example accuracy without and with data
augmentation in the training pipeline, for different dataset
sizes. Augmentation in all dataset sizes is validated using
CNNI1. For the 50-device dataset, two additional DNNs of
CNN2 and ConvRNN are also used to show the performance
across different architectures. The results for the 50-device
dataset show that data augmentation improves accuracy for
different DNNs up to 35%.

The overall results for different dataset sizes in Figure 5
show a boost of 35%, 51%, 32% and 41% for 50, 250, 500
and 5000 device datasets, respectively. In these cases, data
augmentation prevents overfitting by providing variety in the
training set, which boosts the test accuracy.

VI. OPEN RESEARCH CHALLENGES

We identify the following research challenges for the ap-
plication of data augmentation in the training pipeline in RF
fingerprinting:

1. Type of filter: Our data augmentation scheme uses FIR
filters that present several advantages: First, they do
not rely on future inputs, only past and present ones.
Second, they are easy to implement and can approximate
a function through appropriate weighting and a finite-term
sum. Whether alternate filters such as Infinite Impulse Re-
sponse (IIR) filters that combine FIR filters with recursive
loops also work, is an open question.

2. FIR coefficient range: We showed that data augmenta-
tion works without the need to filter the test set if the
FIR taps are chosen from Complex Gaussian distribution
with specific u, and o7. However, if the test set also
passes through an FIR filter with the same statistics as
the FIR filter in the training phase, this uj, and o} can
vary. Nevertheless, there are permissible upper and lower
bounds for choosing the FIR coefficients for each dataset.
Going beyond these thresholds may actually reduce the

ACCEPTED IN IEEE COMMUNICATIONS MAGAZINE, SEPTEMBER 2020.

Trained with: Tx Data
0 0 0 8 21 27 0 60

rlio o

210 o 0o 4 8
r3jo o

r4{18 2 2 2 18 10 19 22 8 0
500 0 o0
r6 12 4
r7 3 4

10 19 24 0

0 0 1 8 21 32 o 50

v
v

2 12 20 W O

3 6 8 20 0 30

True label
FENS

6
9 9 13 4 8 O
4 1 2 2 3 0

1 2 3 6 23 22 0 10
2 2 6 4 11 10 B
0
©

<t 0 ~
PR G e

r9
r10

rlioe o
r2{o o
r3
r8
r9

Predicted label

Trained with: Tx Data + Channel + Noise
rl
r2
r3
r4
r5
r6
r7
r8
r9

rio

True label

rl1fo ©o o o o o o N ©
S

2{o o o o o o o ©
3lo o o o o o o

Predicted label

Figure 4. Confusion matrices for augmentation on TxData, trained without and with augmentation engine. Both models are tested with Day/ data at SNR=20dB.

0 Test results across different dataset size and different NNs

1.
72 Without DA
> CNN1 ConvRNN i
08 NI e R =3 With DA
g R O e 5l
<06).] CNN1
o .
a
Eo4
o
L CNN1
9 0.2 _
00 N A A - ;1
50 50 50 250 500 5000

Number of devices

Figure 5. Per example accuracies without and with Data Augmentation (DA)
for the DARPA dataset.

accuracy. For example, signals from different classes may
be confused with each other after filtering with a set of
coefficients with arbitrary variance, which decreases the
classification accuracy.

3. Number of FIR filter taps: For data augmentation on the
receiver IQ samples, we are not confined to a particular
channel model. Hence, the number of taps for the FIR
filter can vary to arbitrarily large numbers. We have not
yet explored the effect of this parameter on the accuracy.

4. Training indoors, testing outdoors: With our simulated
data, we showed data augmentation works, but within
the boundaries of a single channel model, even when
specific instances of the channel are different. This is
analogous to the situation when the same indoor environ-
ment is instantiated on different days. However, one of the
main challenges in deep-learning-based wireless signal
classification is transitioning between environments. It
remains an open question if the training dataset collected
in static indoor environment, even with extensive data
augmentation, can help if testing is done in an outdoor
environment.

VII. CONCLUSION

This paper describes how data augmentation can improve
classification accuracy in situations when a DNN is trained
with data from one wireless channel and tested on data from

another channel. Our data augmentation block works on both
pure transmitter-side IQ samples (before transmission over the
wireless channel) as well as receiver-side 1Q samples (that
have gone through a wireless channel). Data augmentation
enhances the training set by introducing different distortions
resembling instances of the channel and noise. The DNN
trained with augmented data is robust to unseen channels and
noise variations in the test set. We demonstrated upto 75% and
51% increase in signal classification accuracy over the non-
augmented case in a custom dataset and the DARPA dataset,
respectively. Thus, we believe data augmentation can help to
train channel-resilient DNNs. This will enhance not only RF
fingerprinting, but also other wireless signal classification tasks
in practical deployments beyond controlled laboratory tests.

VIII. ACKNOWLEDGMENT
This work is supported by the NSF grant CCF-1937500.

REFERENCES

[1] J. Yu, A. Hu, G. Li, and L. Peng, “A robust RF fingerprinting approach
using multisampling convolutional neural network,” IEEE Internet of
Things Journal, vol. 6, no. 4, pp. 6786-6799, 2019.

[2] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and
K. Chowdhury, “ORACLE: Optimized radio classification through con-
volutional neural networks,” in I[EEE INFOCOM 2019, pp. 370-378.

[3] K. Sankhe, M. Belgiovine, F. Zhou, L. Angioloni, F. Restuccia,
S. D’Oro, T. Melodia, S. Ioannidis, and K. Chowdhury, “No radio left
behind: Radio fingerprinting through deep learning of physical-layer
hardware impairments,” IEEE Transactions on Cognitive Communica-
tions and Networking, vol. 6, no. 1, pp. 165-178, 2019.

[4] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60,
2019.

[5] S.J. Pan, V. W. Zheng, Q. Yang, and D. H. Hu, “Transfer learning for
wifi-based indoor localization,” in Association for the advancement of
artificial intelligence (AAAI) workshop, vol. 6. The Association for the
Advancement of Artificial Intelligence Palo Alto, 2008.

[6] T. S. Nazaré, G. B. P. da Costa, W. A. Contato, and M. Ponti, “Deep
convolutional neural networks and noisy images,” in Iberoamerican
Congress on Pattern Recognition. Springer, 2017, pp. 416-424.

[7]1 F. Restuccia, S. D’Oro, A. Al-Shawabka, M. Belgiovine, L. Angioloni,
S. Ioannidis, K. Chowdhury, and T. Melodia, “DeepRadiolD: Real-time
channel-resilient optimization of deep learning-based radio fingerprint-
ing algorithms,” in Proceedings of the Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 2019, pp.
51-60.

ACCEPTED IN IEEE COMMUNICATIONS MAGAZINE, SEPTEMBER 2020.

[8] B. Tang, Y. Tu, Z. Zhang, and Y. Lin, “Digital signal modulation
classification with data augmentation using generative adversarial nets
in cognitive radio networks,” IEEE Access, vol. 6, pp. 15713-15722,
2018.

[9] Genesys Lab,
lab.org/mldatasets.

T. Jian, B. C. Rendon, E. Ojuba, N. Soltani, Z. Wang, K. Sankhe,
A. Gritsenko, J. Dy, K. Chowdhury, and S. Ioannidis, “Deep Learning
for RF Fingerprinting: A Massive Experimental Study,” IEEE Internet
of Things Magazine, vol. 3, no. 1, pp. 50-57, 2020.

N. Soltani, K. Sankhe, S. Ioannidis, D. Jaisinghani, and K. Chowdhury,
“Spectrum Awareness at the Edge: Modulation Classification using
Smartphones,” in /[EEE DySPAN 2019, pp. 1-10.

A. Alimohammad, S. F. Fard, and B. F. Cockburn, “Filter-based fading
channel modeling,” Modelling and Simulation in Engineering, vol. 2012,
2012.

V. Erceg, “IEEE P802.11 wireless LANs TGn channel models,” IEEE
802.11-03/940r4, 2004.

“Genesys lab ML datasets,” http://genesys-

[10]

[11]

[12]

[13]

Nasim Soltani is a PhD student at the department of Electrical and Computer
Engineering of Northeastern University, Boston. Her current research focuses
on deep learning algorithms for signal classification.

Kunal Sankhe is currently pursuing the Ph.D. degree in computer engineering
with Northeastern University, Boston. His research interests are implementing
deep learning in wireless domain and developing a cross-layer communication
framework for the IoT.

Jennifer Dy is a Professor at the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA. Her research spans both
fundamental research in machine learning and their application to biomedical
imaging, health, science and engineering, with contributions in unsupervised
learning, dimensionality reduction, feature selection, learning from uncertain
experts, active learning, Bayesian models, and deep representations.

Stratis Ioannidis is an Associate Professor in the Electrical and Computer
Engineering Department of Northeastern University, in Boston, MA, where
he also holds a courtesy appointment with the Khoury College of Computer
Sciences. His research interests span machine learning, distributed systems,
networking, optimization, and privacy.

Kaushik Chowdhury is a Professor at Northeastern University, Boston,
MA. His research interests involve systems aspects of networked robotics,
machine learning for wireless communications and networking, wireless
energy transfer, and large-scale experimental deployment of emerging wireless
technologies.

