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Abstract—Perfect alignment in chosen beam sectors at both
transmit- and receive-nodes is required for beamforming in
mmWave bands. Current 802.11ad WiFi and emerging 5G cellular
standards spend up to several milliseconds exploring different
sector combinations to identify the beam pair with the highest
SNR. In this paper, we propose a machine learning (ML) approach
with two sequential convolutional neural networks (CNN) that
uses out-of-band information, in the form of camera images, to (i)
rapidly identify the locations of the transmitter and receiver nodes,
and then (ii) return the optimal beam pair. We experimentally
validate this intriguing concept for indoor settings using the NI
60GHz mmwave transceiver. Our results reveal that our ML
approach reduces beamforming related exploration time by 93%
under different ambient lighting conditions, with an error of less
than 1% compared to the time-intensive deterministic method
defined by the current standards.

Index Terms—Millimeter wave (mmWave), out-of-band beam-
forming, machine learning, image processing, location inference.

I. INTRODUCTION

The looming spectrum crunch caused by billions of con-
nected devices as well as the escalating demand for wireless
resources to support high data rate, real-time multimedia con-
tent has resulted in immense interest in using mmWave fre-
quencies for communication. Emerging 5G standards are poised
to leverage frequencies in the 24–100GHz range within the
mmWave band, thus assuring multi-gigabit downlink data rate
for users [1]. However, since communication links in this band
attenuate rapidly, transmitters generally use phased arrays with
beamforming, so as to concentrate the electromagnetic energy
in a narrow aperture [2]. Hence, mmWave links must be formed
with optimal alignment of the beams between the transceiver
pair to be effective. Indeed, this first step consumes up to
several seconds in current WiFi standards. Thus, for widespread
deployment in time-critical applications, we propose a radically
different approach that uses camera images as input to a two-
stage CNN for guiding the beam selection process.

A. Need for Beamforming in mmWave Links

While narrow beams are better suited to combat the atmo-
spheric absorption and low penetration aspects of mmWave
links, highly directional transmissions require an exhaustive
search among different candidate beam orientations, concisely
represented as a codebook. Advanced phased arrays promise
codebooks in 3-dimensions with up to 64 sectors per phased

Fig. 1: A camera observes users to find the best beam pair config-
uration for data transmission. The images pass through two stages,
Detection and Prediction, in our pipeline, and the inferred best beam
pairs are sent to the users by the network controller.

array, according to the 802.11ad standard [3], which further
complicates a sequential search among all beam options.

Current mmWave standards incorporate the following
method for beam selection via the so called beam sweeping
procedure: Different pairs of transmitter-receiver beams within
a known codebook are successively chosen, and their perfor-
mance in terms of signal strength is evaluated to determine
the best pair for communication. For COTS 802.11ad routers,
this process takes at least tens of ms [4], an order of mag-
nitude above the 1ms maximum latency required by the 5G
Ultra-Reliable Low Latency Communications (URLLC) [5].
Moreover, in a dynamic scenario, beam sweeping must be
periodically repeated in order to ensure directional links. Every
time beam sweeping is performed, this action disrupts ongoing
communication.



B. Scenario Description
Given the undesirable delay arising from the standard beam-

forming procedure, we propose to leverage visual information
as a potential solution to mitigate the beam training overhead. A
schematic of our proposed approach is demonstrated in Fig. 1.
The control unit gets visual snapshots of the environment taken
by single/multiple cameras as input and directly predicts the
best beam configuration at both transmitter and receiver ends
that maximizes the SNR at the receiver.

The acquired visual information passes through our two-
stage pipeline in the Control Plane, as depicted in Fig. 1. In
the first stage, Detection, a deep convolutional neural network
generates bit maps to indicate the relative transmitter and
receiver location. The bit maps are then used in the second
stage, Prediction, to infer the best beam configuration. Finally,
the best beam pair predictions, (16,12) in the figure, are sent
to the transmitter and receiver by the network controller.

Our approach does not require any hardware modifications at
the user end. We specifically focus on indoor, dynamic, and rich
multipath environments, such as offices, that typically suffer
from high Non-Line-of-Sights (NLoS) probability. Notice that
in this type of scenarios, the presence of obstacles in the
Line-of-Sight (LoS) path causes certain beam pairs to achieve
the highest performance among all evaluated pairs, through
reflections on walls or certain surfaces.

C. Proposed Approach
We use machine learning to estimate the best beam pair based

on input images. Our proposed method consists of a set of two
sequential CNNs and can be summarized as follows:
• Stage 1: We locate the transmitter and receiver radios

in the input images and discard non-relevant information.
In order to do that, we design a binary classifier trained
to classify each portion of the incoming image, taken
from our testbed on various light conditions, as either
Antenna array or Background. We then create a quantized
version of the input image by dividing it into small crops
and classifying them individually, arranging the binary
decision output of each crop in order to obtain a 2D bit
map.

• Stage 2: We use a second CNN that accepts bitmaps
obtained from the previous stage as input and predict
the best beam configuration index at both transmitter
and receiver. After predicting the best configuration pair,
the corresponding beam weights are extracted from the
codebook table.

D. Summary of Contributions
Our main contributions are as follows:
• We investigate the technical requirements for using visual

information to boost beam selection operation in the 60
GHz mmWave band. Then, we propose a two-stage deep
CNN architecture to properly map input images to the best
beam configuration which maximizes the SNR at the re-
ceiver. Our proposed method achieves up to 99% accuracy
on best beam pair prediction in low light conditions.

Fig. 2: Classification in visual information aided beamforming.

• We design a testbed to validate our proposed method
using National Instruments mmWave Transceiver [6]. To
the best of our knowledge, this is the first work that ex-
perimentally validates the beam selection approach using
visual information. All of the current beam prediction
literature are based on synthetic data driven by ray tracing
software. Such softwares for professional use come with
expensive licenses, and those that are freely available may
not consider side lobes and scattering/reflection from the
surrounding environments, which limits use in real-world
scenarios.

• We configure our setup to support simultaneous beam
alignment between transmitter and receiver. Moreover, we
demonstrate that our proposed approach outperforms the
exhaustive beam sweeping with 93% reduction in the time
required for beam initialization.

II. RELATED WORK

In this section, we review the out-of-band methods for
guiding beam sweeping, as they are the most comparable to
our proposed method. Fig. 2 shows a classification diagram of
out-of-band beamforming methods.

A. Cross Channel Correlation for DOA Estimation:
This method attempts to reduce the beam sectors for search-

ing by establishing a mapping between the channel measure-
ments in the mmWave band and other frequencies.
• Sub-6GHz band: In [7] the spatial correlations with sub-

6 GHz and mmWave band signals is used to speed up the
initial beam alignment process. Using MUSIC algorithm,
the AoA is estimated in the sub-6GHz, and the exhaustive
search runs only for angles in range Asub−6 ± 10 in the
mmWave band. Steering with eyes closed [8] exploits the
omni-directional transmissions at low frequencies to infer
the LoS direction between the communicating devices to
speed up the mmWave sector selection. Anum et al. [9]
incorporate sub-6GHz bands in the form of a weighted
sparse recovery approach with structured random code-
books to reduce the beam sweeping delay.

• RADAR band: [10] shows that the main DoAs for the
radar signal at 76.5 GHz and the mmWave signals at 65
GHz are comparable. As a result, the RADAR signals can
be used to estimate the covariance of the received signal
and channel information.



B. Sensor Data for Tx/Rx Geolocation:
Knowing the geographical location of the transmitter and

receiver can speed up the detection of best beam sector.
• GPS: There are several works on using GPS to speed

up the beam selection process [11]. We note that GPS
does not work in indoor environments. Furthermore, the
extracted locations need to be very precise and also include
the orientation of the antenna, which is not provided by
conventional GPS.

• Camera: The existing literature on image driven beam-
forming can be categorized into two parts:

1) Hand-over among multi base stations by blockage
prediction: In [12] a scenario with a single user
and multiple base stations is considered. The base
stations use the previous observations to predict
blockage on a certain link in the next few frames.
This allows the serving base stations to proactively
hand-over the user to another base station in case of
pending blockage.

2) Estimate power in the Next Time Slot: [13] proposes
an approach to predict the time series of the received
power at the receiver end. The transmitter and re-
ceiver are fixed, and a human, modeled as a cylinder,
blocks the line-of-sight path. The sequential images
are generated and labeled with received power in
several hundred milliseconds ahead and fed to a
neural network to predict the received power.

C. Other Works Leveraging ML in Beamforming
In [14] a mobile user is served by a number of distributed

yet coordinating BSs. The user sends Ntr pilots using an omni-
directional antenna. Every BS switches between its legible
beam patterns in the codebook and calculates the achievable
rate of each direction. A deep neural network is then trained to
maximize the cumulative data rate. In other words, the received
signal is used as a signature to estimate the location of the
user. [15] uses the true geographical information derived from
a synthetic environment with moving vehicles to estimate the
best beam direction. Passing the geographical information of
the vehicles as input, the neural network predicts the received
beam power for each codebook element.

III. EXPERIMENTAL SETUP AND DATASET COLLECTION

We construct a testbed to examine the performance of our
proposed method on a real dataset. In this section, we explain
our approach for designing the experiment, collecting the
dataset, and creating the data processing pipeline. First, we
discuss the beam sweeping latency measured from two different
mmWave hardware in Section III-A. We describe National
Instruments mmWave Transceiver, with 2GHz bandwidth at 60
GHz frequency, in SectionIII-B. Then, in Section III-C, we
thoroughly describe implemention of our testbed, including the
experiment setup description. In Section III-D, we explain our
approach for collecting data and the parameter used to evaluate
the Quality of Link (QoL). Finally, we present an illustration
of our dataset structure in Section III-E.

TABLE I: Exhaustive beam sweeping time for two mmWave hardware

Device Terragraph NI
Possible codebook configurations 40 625

Beam sweeping delay 11 ms 12.5 sec
Beam sweeping delay per beam pair 0.2750 ms 20 ms

A. Beam Sweeping Latency

In Table I, we provide the measured beam sweeping time
from two mmWave hardware. In particular, we consider the
Terragraph channel sounders [16], a customized pair of nodes
from Facebook designed for the channel modeling of 60GHz
links, and the National Instruments mmWave Transceiver, that
we use in our experiments. From table I, we notice that the
delay for establishing a link is in the order of milliseconds, due
to the beam sweeping procedure. Moreover, values presented
in Table I only consider a fraction of the actual complete beam
sweeping time. This fraction corresponds to the less time-
consuming refinement stage, which assumes limited knowl-
edge on the relative position between transmitter and receiver,
bounded within a certain angular sector. However, in the WiFi
standard 802.11ad, the complete beam sweeping procedure can
take up to tens of seconds.

B. National Instruments mmWave Transceiver

For data collection, we use the mmWave transceiver system
from National Instruments that supports real-time over the air
mmWave communication. It operates in the 60 GHz frequency
band with a bandwidth of 2GHZ. It is comprised of PXIe
(PCI extensions for Instrumentation) chassis, controllers, a
clock distribution module, FPGA modules, high-speed ultra
wide-band DACs and ADCs, and LO and IF modules. The
NI mmWave transceiver is implemented using seven FPGAs,
each of which is responsible for an operation, such as coding,
modulation, etc. Modules are controlled and synchronized using
a central FPGA equipped with LabView software. It supports
a variety of modulation schemes from BPSK to 16QAM,
alongside with turbo coding. After being processed by FPGA,
the signal is converted using DAC and sent over the air using
RF front ends.

In our experiment, we use SiBeam RF heads, a phased
antenna array with 24 radiating elements. Each radiating ele-
ment consists of a squared patch antenna of dimension 0.1 cm.
Among the 24 antenna elements, half of them are used for trans-
mission, and the remaining for reception. The transmit power
of each element is 1 dBm, resulting in a total transmit power
of 12 dBm. The Sibeam antenna array supports only-azimuth
beam sweeping as well as 2D beam-sweeping in azimuth and
elevation. The azimuth codebook includes 25 beams designed
to horizontally sweep angles from −60◦ to +60◦ with an
angular resolution-separation between two consecutive beams
of 5◦ and 3dB-beamwidth of 25◦. Moreover, the 2D codebook
has a total of 11 beams, sweeping azimuth and elevation angles.
Fig. 3 shows the front panel of NI radio and Sibeam antenna
head. The radio and antenna head are connected by VHDCI and



(a) NI radio front panel (b) Sibeam connections

Fig. 3: The NI radio front panel and Sibeam phased antenna array
head. The SMA to MMPX cables are used for transferring I/Q
samples, while VHDCI cables pass the control commands, including
transmission direction.

SMA to MMPX cables that are used for implementing LabView
code and passing I/Q samples to antenna heads, respectively.

C. Experimental Setup

The testbed is deployed in a room of size of 310 cm×510 cm.
The transmitter and receiver are mounted on a mobile slider
each. These mobile sliders laterally move in the horizontal
direction with a range of 120 cm. The sliders are lifted up from
the ground by 1m, and the distance between two sliders is fixed
at 350 cm. The movement speed and the stop time of the sliders
are programmed using a controller. A red box is bonded on the
top of the antenna array, making it distinctive in the image.

An obstacle is located in between the sliders, blocking the
LoS path between transmitter and receiver in certain directions.
We collect the dataset for two types of obstacles, wood and card
box. The obstacles are rectangular with dimensions 33 cm ×
88 cm× 3 cm and 33 cm× 88 cm× 10 cm for wood and card
box, causing 30dB and 4dB attenuation while blocking the LOS
path, respectively.

Two GoPro Hero 4 cameras placed on at the height 169 cm
from the ground monitor the movements in the room. The
resolution of the cameras is 12Mp with FOV of 125◦. The
first angle, as shown in Fig. 5 has a clear perspective on the
transmitter and receiver. On the contrary, the second angle
cannot see the transmitter in some cases, as the obstacle blocks
the view. Fig. 4 shows the experiment setup from the camera
perspective for the wooden obstacle from the first angle. In
Fig. 4, the antenna array inside of the red and green boxes
are the transmitter and receiver, respectively. Fig. 5 depicts a
diagram from the testbed with experiment setting parameters.

D. Dataset Collection

For simplicity and ease of data collection, we consider 5
discrete, equally separated positions along the slider length. As
a result, the gap between two consecutive locations is 24 cm.
This results in 25 distinct configurations for the transmitter
and receiver locations. Each configuration is identified by a
pair representing the relative location of the transmitter and
receiver. We refer to the set of possible locations as the case
set, {(i, j)|i = 1, ..., 5 , j = 1, ..., 5}. For instance, case (3, 3)
(as shown in Fig. 4), is associated with a scenario in which the
transmitter and receiver are both located at the third point from
the wall.

Fig. 4: Testbed setup from the first camera angle perspective.

Fig. 5: A diagram representing experiment parameters. The transmitter
and receiver are mounted on two sliders and move in the horizontal
direction while an obstacle blocks the LOS path in some cases. The
cameras are located at the same height with different view angles.

We choose the azimuth codebook as our reference since the
beam switching is more tangible in one direction. Furthermore,
we reduce the codebook size to 13 beams, by dropping the odd
beam indexes from the default codebook. As a result, in order to
perform beam sweeping at both transmitter and receiver sides,
a total of 169 pairs of beams need to be evaluated for each
case to determine the best one.

We use the received SNR as our metric to evaluate the link
quality. For each case, we collect a certain number of samples
N for all possible beam configurations. To determine N , we
run a simple experiment: we fix the transmitter beam index
to be 12, which corresponds to the antenna broadside direction
(perpendicular direction to the axis containing the slider). Then,
we sweep all possible beam indexes at the receiver and record
the SNR for 1000 samples that we use as the reference. In
Fig. 6, the black line shows the mean SNR of the reference,
while each color depicts the marginal error in the logarithmic



Fig. 6: Marginal SNR error for three number of samples. The black
line shows our reference, the mean SNR over 1000 samples.

scale for three different sample numbers. We select N = 50
as the number of samples to be captured per beam pair, since
increasing the number of samples does not contribute to an
immense increase in measurement accuracy. The mean absolute
error for 50 samples is 0.1077 dB over all codebook elements
at the receiver.

We repeat the experiment for both obstacles, wood and card
box. For the wooden obstacle, we capture one image per case,
first angle in Fig. 4. For the card box, we take two images per
case from both first and second angles. We use this dataset to
explore the effect of blocked viewpoints in section V-C.

E. Preprocessing and Dataset Description

The NI mmWave transceiver reports SNR as NaN (Not-a-
Number) when the received power is lower than a threshold
(-48 dB). In order to incorporate this in our QoL assessment,
while processing the measured SNR samples, we interpret NaN
values as a case of severe attenuation causing connection loss.
We denote the codebook of possible beam configurations at the
transmitter and receiver by CTx and CRx defined as:

CTx = {t1, . . . , tM}, CRx = {r1, . . . , rN}, (1)

where M,N are the number of transmitter and receiver code-
book elements, respectively. We define the set of possible beam
configurations as:

S = {(tm, rn)|tm ∈ CTx, rn ∈ CRx}. (2)

With |S| = M × N , recall that the transmitter and receiver
need to sweep through all beam pair configurations in order
to discover the best one. For a specific beam configuration
(tm, rn) ∈ S, we define our quality metric Qtm,rn as follows:

Qtm,rn =
E [SNRk]

Nnull + 1
, k = 1, ...,K, (3)

Case Beam angles (t∗m, r∗n)
(i,j) Wood Card box
(1,1) (14,14) (12,12)
(1,2) (14,14) (14,14)
(1,3) (16,14) (14,14)
(1,4) (18,16) (16,14)
(1,5) (18,24) (18,18)
(2,1) (10,10) (12,14)
(2,2) (8,12) (14,12)
(2,3) (14,14) (14,14)
(2,4) (8,16) (16,14)
(2,5) (16,16) (16,12)
(3,1) (10,24) (8,10)
(3,2) (12,8) (14,14)
(3,3) (10,12) (14,14)
(3,4) (12,14) (16,12)
(3,5) (16,12) (6,14)
(4,1) (8,8) (8,8)
(4,2) (10,8) (8,10)
(4,3) (10,8) (14,12)
(4,4) (12,24) (6,12)
(4,5) (12,0) (22,12)
(5,1) (8,8) (8,6)
(5,2) (8,8) (12,10)
(5,3) (8,10) (8,8)
(5,4) (12,8) (12,8)
(5,5) (12,0) (14,14)

TABLE II: Best beam pair for two types of obstacles, wood and card
box. We use (6) to derive best beam pair based on our measurements.

where K is the total number of valid SNR values, E represents
the mean operator and Nnull is the number of NaN values ap-
peared while collecting data for beam pair (tm, rn). Using (3),
we assess the link quality of every discrete device positioning
(i, j), with transmitter at location i and receiver at location j,
in order to select the best beam index pair (t∗m, r∗n) ∈ S. The
result of this process is a set:

B = {bij(t∗m,r∗n)
} (t∗m, r∗n) ∈ S (4)

where each element is an ordered pair defined as:

bij(t∗m,r∗n)
= 〈(i, j), (t∗m, r∗n)〉 (5)

The first elements in (5) denote devices’ positions (i, j) and
the second element is the associated best beam configuration,
obtained as follows:

(t∗m, r∗n) = argmax
tm,rn∈S

(Qtm,rn). (6)

Table II represents the dataset structure for both obstacles.
For instance, from this table, we observe that the best beam pair
for case (i, j) = (3, 1), i.e. the case in which the transmitter
is at the third point and receiver is at the first point, is
(t∗m, r∗n) = (10, 24) for wood and (t∗m, r∗n) = (8, 10) for
card box as the obstacle. The dataset contains 25 different
cases. Recall that we want our beam configuration estimator
to be robust to light variations, while the other elements of the
environment remain static. Therefore, we augment our dataset
by applying 50 different light conditions, ranging from darker
to lighter versions of the original sample, on each image in the
dataset, resulting in 1250 training samples total.



Fig. 7: An overview of our two-stage CNN for fast beam prediction.
In Stage 1, we infer the locations of transmitter and receiver devices
in the input image, by dividing the image in crops and assigning them
either a Background (0) or Antenna array (1) label. We then arrange
the predictions into a 2D bit map that we input to the second CNN
model. In Stage 2, the generated bit maps from Stage 1 along with
best beam pairs are used to train a second CNN.

IV. PROPOSED METHOD

In this section, we present our two-stage CNN for finding the
best beam index pair based on input images. Fig. 7 summarizes
our proposed pipeline for fast beam alignment using images.

A. Stage 1: Inferring Transmitter and Receiver Locations
In our experiment, all the elements in the room are static

except for the transmitter and receiver. Consequently, we con-
clude that the main cause of best beam variations is the relative
movement between them. In Stage 1, we carefully infer the
location of transmitter and receiver devices in the input image.
In contrary to a simple image classification approach (i.e. by
treating every pixel information in the picture as relevant to our
task), our approach tries to identify the portions of the image
that represent more relevant features, in this case, the antenna
arrays positions.

We design and train a binary classifier with two outputs,
namely Background, which corresponds to non-relevant por-
tions, and Antenna array. To construct the training dataset for
the binary classifier, from each input image, we create a set of
windowed image crops having size W×W pixels. Starting from
the upper left pixel, after generating the first crop the window
moves by a step of S pixels, referred to as stride size, until the
entire image is swept. Each crop is labeled as Background or
Antenna array. If the input image has the shape of H×L, then
each image is reduced to a certain number of crops, according
to the following equation:

NCrops = b
H −W

S
+ 1c × bL−W

S
+ 1c. (7)

Since the antenna arrays comprise only a small portion of
the image, we expect to have more samples for the Background

Fig. 8: Model architecture for Stage 1 (detection) and Stage 2 (best
beam pair prediction).

rather than the Antenna array class. In order to obtain model
robust to the light variations and obtain a balanced dataset,
we exploit data augmentation by (1) applying different light
conditions on fly while generating the training dataset and
(2) keeping multiple copies of Antenna array class input
samples under different light conditions until we reach the same
number of samples as Background class. We split our dataset as
(70%, 15%, 15%) for train, validation and test sets, respectively,
and train a CNN binary classifier on the generated W×W input
samples and relative labels, i.e. Antenna array and Background.

The network architecture after hyper-parameter tuning is
shown in Fig. 8. The crops, which are RGB images, are passed
to a two-dimensional convolutional layer with 12 filters of
kernel size (5,5). The next layer is a max-pooling layer with
the pool size of (2,2). After being flattened, the output is fed to
a dense layer with 128 neurons. Finally, the output layer with
two outputs is passed through the softmax activation function
for classification purposes. In order to prevent overfitting, we
added two dropout layers after convolutional and dense layers
with the rate of 0.25 and 0.5, respectively. Furthermore, in order
to minimize the inference time, we intentionally searched for
the simplest model embodiment that ensured the desired level
of accuracy in our experiments.

Note that our designed binary classifier gets a W×W image
as input and predicts the corresponding label, i.e. Background
or Antenna array. Given an input images to our pipeline, first,
the input image is cropped with the window size of W and
stride size of S, as described previously. Second, Each crop is
fed to the trained binary classifier to decide if the input crop
is background or not. If the predicted label of the window is
Background the entire window is mapped to 0; however, the
Antenna array window is mapped to 1. Finally, the decisions
are put together, in the same order as crop generation, to create
a bit map. The resulting bit map will have the height bH−WS +1c
and width bL−WS + 1c, according to (7) and represents the
location of transmitter and receiver in the image. We evaluate
the performance of this stage in the Sec. V-A1.



B. Stage 2: Predicting Best Beam Pairs

Using the binary classifier derived from the Stage 1, the bit
map of the input image is generated and used as input to the
second CNN to predict the labels, best beam configuration as
described in table II. Note that, while in the first stage the input
is an RGB image with three channels, in the second stage each
bit map has only one channel. We preserve the model structure
from Stage 1 and adjust the hyperparameters as shown in Fig. 8.
We increase the number of neurons in the classifier layer to
169, which is the number of possible beam combinations. It
should be noted that while collecting data for wood and card
box as the obstacle, only 18 and 20 out of 169 classes are
emerged in the dataset collected in our experiments. We shuffle
our expanded dataset on various light conditions and split it
as (75%, 15%, 15%) to generate the train, validation, and test
sets, respectively. Finally, we train the model to predict the best
beam pair configuration at the transmitter and receiver side. The
performance of this stage is assessed in section V-B.

C. Handling Camera Field of View Obstructions

Since we use visual information for inferring the best beam
pair, our prediction accuracy depends on how visible the
transmitter and receiver devices are in the input image. In the
case of obstructed view, multiple cameras can be deployed to
reduce blind spots. Our algorithm can be trivially extended to
collectively extract relevant features from multiple view angles
and reinforce the performance.

In order to incorporate the information from different angles,
first we use our proposed method in Stage 1 to infer the location
of transmitter and receiver in the images taken from different
angles, obtaining multiple bit maps. After generating the bit
maps, we stack them in different channels and pass it to Stage
2 for inferring best beam pair. To adopt our proposed method
for multiple camera case, we only need to change the input
shape to the second stage and increase the number of channels
to total number of cameras. We use our dataset collected with
card box as obstacle to evaluate the performance of multiple
camera deployment in section V-C.

D. Enhancements to CNN Architecture

In our proposed method, we create small crops from the
input image and feed it to our classifier. As a result, in
Stage 1, the model needs to predict the label for total number
of (7) crops that might not be time efficient. We employ
two different approaches to decrease the inference time. First,
we compress our model as much as possible to reduce the
number of operations, as shown in Fig. 8. Second, we convert
our model to a fully convolutional network (FCN) by taking
steps presented in Algorithm 1. This conversion allows us to
slide the original model very efficiently across all possible
spatial positions on the entire image, in a single forward pass.
Although this transformation does not eliminate the need for
training on crops, it can speed up the prediction speed while
testing. We evaluate the performance of both original and fully
convolutional architectures in section V-D.

Algorithm 1: Convert CNN to FCN
Input: Convolutional neural network
Output: Equivalent fully convolutional network
for Dense layers in CNN do

dinw ← Get size of Dense input;
doutw ← Get size of Dense output;
Wd ← Get weights of Dense layer;
if First Dense layer after Flatten layer then
(f in

w , f in
h , f in

d ) ← Get shape of Flatten input;
W ′d ← Reshape Wd from (dinw , doutw )

to (f in
w , f in

h , f in
d , doutw );

Remove Flatten layer;
Convert Dense to Conv2D layer with f in

d filters
of size (f in

w , f in
h ) and load new weights W ′d;

else if Other Dense layer then
W ′d ← Reshape Wd from (dinw , doutw )

to (1, 1, dinw , doutw );
Convert Dense to Conv2D layer with doutw filters

of size (1, 1) and load new weights W ′d;
end if

end

V. PERFORMANCE EVALUATION

In this section, we will provide the results of our proposed
method on the dataset described in section III-C. We used
Keras 2.1.6 on top of Tensorflow backend (version 1.9.0) to
implement and train the classifiers.

A. Stage 1 (Detection)

1) Binary Classifier Accuracy: We resize the original
RGB images from the camera with shape (3000, 4000, 3) to
(750, 1000, 3) and use it as input of our pipeline. The first step
is to train our binary classifier on W ×W samples of Antenna
array and Background. The window size needs to be large
enough to extract useful information from the crops, and small
enough at the same time to differentiate two adjacent cases. We
empirically determine the window size of 12 and stride size of 5
for our experiment. The dataset for Stage 1 includes 732603 and
733903 cropped samples of Background and Antenna array,
respectively, and the binary classifier achieves the accuracy of
99% on the test set, demonstrating effective separation of the
antenna arrays from the background in the input image.

Consider case (1,5) as an example, (see Fig. 9a). The output
of the Stage 1 binary classifier is a prediction matrix with
the shape of (29304,2), i.e. number of crops dervied from (7)
and number of classes. Each row represents the probability
of belonging to Background or Antenna array class for the
corresponding crop. Fig. 9b shows the heat map of prediction
probability for Antenna array class. In this figure, the brightness
of each pixel decreases as the crop has a higher prediction
probability for our class of interest, i.e. Antenna array. We
separate the top 60 candidates for the Antenna array class and
arrange them in the same order we cropped the image and
create a 2D bit map with the shape (148,198) as described
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Fig. 9: The input image (a) of case (1,5) passes through Stage 1 in our design. The heat map (b) is generated using our binary classifier and
shows the location of transmitter and receiver.

in (7). Although the output feature maps present some mis-
classifications, we note that it does not have a major impact on
the system performance.

2) Intersection Over Union: Each bit map can be interpreted
as a set of points with two major clusters, representing the
location of transmitter and receiver. We use Intersection over
Union (IoU) metric to assess the performance of Stage 1, i.e.
Detection. While detecting an object in an image, the ground
truth area is referred to a rectangle around the object of the
interest which contains the entire object, denoted as Bgt. A
predictor, a CNN for instance, is then used to estimate the
location of the object in the image. A rectangle around predictor
estimated pixels denotes the detector prediction for the object
location, Bp. The IoU evaluates the object detection accuracy
and defined as:

IoU =
Area{Bp ∩Bgt}
Area{Bp ∪Bgt}

. (8)

In order to measure the detection area for each bitmap, we
extract the index of non-zeros elements and find the centroid
of the transmitter and receiver clusters. We draw a rectangle
around the centroids and increase its dimensions by one pixel
in each iteration. We stop when there is no point to be added to
the rectangle. Fig. 10 shows the IoU metric for the transmitter
and receiver localization over 6 different scenarios. When IoU
exceeds 0.5, the object detection is accomplished, also known
as true positive. On the other hand, detection fails with a false
positive outcome when IoU is below 0.5. From Fig. 10, we
see that the IoU is higher than the 0.5 threshold, for all cases.
Thus, we conclude that our proposed algorithm successfully
tracks the relative location of the transmitter and receiver.

B. Stage 2 (Beam Classifier Accuracy)

The structure of the dataset for Stage 2 contains the bitmaps,
for all 1250 cases in our expanded dataset, and the associated
best beam pair as presented in table II. In our setting, the labels
are tuples depicting the best beam pair at the transmitter and
receiver. In order to adapt them for training, we map each
pair to a unique number and then apply one-hot encoding on

Fig. 10: Intersection over Union metric for six cases from dataset.

new labels. By following the instruction provided in section
IV-B, we divide the dataset into (75%, 15%, 15%) and train our
model, shown in Fig. 8, for 10 epochs. Our designed classifier
achieves 99% accuracy while predicting the best beam pairs
on the test set. For both stages, we use batch size of 256 and
Adam optimizer with a learning rate of 0.001.

C. Handling Transceiver View Obstruction

In our testbed, the first camera is positioned such that it has
a clear view of the transmitter and receiver while the second
camera has a blocked view of the transmitter for 250 cases
out of 1250 cases included in the dataset. We observed a drop
from 99% to 80% accuracy while switching from the first to
second angle. Fig. 11 shows the confusion matrix on best beam
pair estimation for the blocked angle and the improvement
achieved by using multiple cameras, as proposed in section
IV-C. Our experiment shows that the accuracy reaches back to
99% by stacking the bitmap of different angles. Thus, we can
use multiple cameras to compensate for the blocked angles.

D. Prediction Time

Fig. 12 denotes the original and transformed model, derived
from Algorithm 1, for Stage 1. We observe that the equivalent
FCN passes the entire image in a single forward path and
generates a single (370,495,2) prediction matrix. In order to
evaluate the inference speed, we pass a single image hundred
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Fig. 11: Confusion matrix for using (a) single bit map from blocked
angle; (b) stacked bit maps from both angles.

Fig. 12: Transferring trained model in Stage 1 to a fully convolutional
architecture to speed up inference using algorithm 1. The equivalent
fully convolutional network generates the bit map in a single forward
pass, while the original model needs to predict the label (7) times.

times through our pipeline and measure the prediction time by
setting a timer and subtracting the time stamp before and after
prediction. We report the average prediction time taken over
all samples as the required time for prediction. The NVIDIA
V100 GPU with 32GB memory is used to run the experiments.

We reduce the prediction time from 4.47s to 2.0544ms in
Stage 1 by converting our model to a fully convolutional
one, explained in section IV-D. For Stage 2, the conversion
does not bring any benefit in terms of computing time as we
evaluate a single input and produce a single output. So, we keep
the initial structure with 1.05ms prediction time. Accordingly,
our proposed method predicts the best beam pair in 3.104ms,
approximately. This outperforms other approaches in Table I by
93% reduction in time taken for beam alignment, considering
the same number of possible codebook configurations.

VI. CONCLUSION

In this paper, we introduced the concept of using visual
information as an alternative for exhaustive beam sweeping
algorithm proposed by 802.11ad standard. We proposed a two-
stage approach to extract the location of transmitter and receiver

from the images and map them to the best beam pairs. We
validated our method on a real-world dataset collected using
National Instruments mmWave transceiver. Our method can
predict the best beam pair with 99% accuracy in 3.104ms for
the hardware used in the testbed.
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