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Abstract—Convolutional neural networks(CNNs) have been
evolving with tremendous success in visual recognition, obtain-
ing human-level accuracy. The conventional hardware archi-
tecture, however, is facing difficulty in realizing real-time and
energy-efficient operations on CNN. To efficiently operate CNN
algorithms on the hardware, researchers are actively studying
processing-in-memory(PIM) withresistive random-access memory
(ReRAM). Digital PIM is particularly attractive because analog
designs struggle with undesirable device properties and require
additional circuits like analog-to-digital converter and digital-
to-analog converter. However, the massive area originated from
digital PIM is a hindrance to its applications. In this work,
we present athree-dimensional(3D) ReRAM convolution logic
processor design to tackle the limitation of digital PIM. At the
hardware level, we leverage 3D ReRAM to take advantage of
its area efficiency. The design simplicity without accuracy loss is
accomplished by exploitingbinarized weight networks(BWNs) at
the algorithm level. Specifically, our 3D ReRAM processor com-
putes the convolution of BWN based on a presumed full adder
and a split-half addition scheme, which are proposed in this
brief to maximize resource consumption efficiency. As a result,
theproposeddesignachieves3.7×to 5.7×and 5×to 42.5×area-
and time-saving according to the bit precision in comparison to
the original digital PIM.

Index Terms—Convolutional neural network, CNN, resistive
random-access memory, ReRAM, 3D ReRAM.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have been
quickly evolving, especially in image processing, due

to the high effectiveness of convolution at extracting spa-
tial features. ResNet, for example, reported 3.6% error rate
in theImageNet Large Scale Visual Recognition Challenge
(ILSVRC) contest, which even surpasses the human-level
performance (5%) [1]. The numbers of parameters and opera-
tions are also rapidly increasing when improving performance
or extending CNNs to other domains. However, increasing size
and complexity limits the execution of CNNs on hardware
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platforms because implementing large networks in the conven-
tional architecture—relying on its fundamental structure that
separates memory devices from processing units[2]—requires
frequent data movement and considerable resource consump-
tion. The conventional hardware is facing the limitation in
executing advanced networks.
To address the limitation, researchers have explored
processing-in-memory(PIM) hardware architecture that brings
computation and memory components closer together. Among
previously proposed designs, the architecture based onresis-
tive random-access memory(ReRAM) arrays is a particularly
compelling candidate [3], [4]. It is efficient in matrix-based
operations [5] thanks to its advantages of recording weight
values and performingin situcomputation. PIM designs with
an analog approach, however, demand complicated circuits for
communicating with other components, e.g.,analog-to-digital
converter(ADC) anddigital-to-analog converter(DAC) that
occupy a substantial area and power consumption. Logical
operation-based PIM is a different approach for eliminating the
necessity of additional circuits. By using ReRAM as a digital
device, it also removes the ambiguity coming from the device
variations, a representative non-ideal property of ReRAM [6].
FloatPIM [7] is a state-of-the-art work of the digital PIM,

which utilizes thememristor aided logic(MAGIC) [8] method
for its system. However, an evident limitation in FloatPIM is
its area cost. In that work, all the bits of required operands
should be placed in the same row and duplicated into multiple
rows because the parallel arrangement is essential to execute
the MAGIC method. The digital representation further con-
tributes to the area expansion. While the parallelism due to
the structural advantage was able to reduce the computation
cost, the area expansion remains a primary limitation.
Our work aims to address the limitation by integrating
three-dimensional(3D) ReRAM at the hardware level and
binarized weight network(BWN) at the algorithm level. 3D
ReRAM has been experimented to load all the parameters
and operations of large networks. The structure can dramati-
cally decrease the occupied area. BWN that utilizes binarized
weights has emerged to execute the learning algorithms on
portable devices [9]–[12]. Binarized weights eliminate the
need to multiply between multi-bit numbers and copy-and-
paste of all the bits of weights in a kernel. We will leverage
the complementary capabilities of the two approaches for
improving CNN execution efficiency.
In this brief, we propose a convolution processor design
integrating the two approaches. Two operation schemes are
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TABLE I
ERRORRAT E(%) ACCORDING TOBINARIZATIONSCHEMES AND

DATASETS:BINARYCONNECT(BC) [9], BINARIZEDNEURALNETWORKS
(BNN) [10], [11], XNOR-NET(XNOR) [12],AND

BINARY-WEIGHT-NETWORKS(BWN)

built to efficiently compute convolution layers of BWN. First,
we propose a presumed full adder scheme to simplify the addi-
tion in FloatPIM. The scheme can be easily implemented in
the crossbar architecture without additional cost for imple-
mentation. Second, a split-half addition method is proposed
by exploiting the structural advantage of 3D ReRAM. Also,
we suggest a bit representation converter to generalize our
method. Our experiment shows that the proposed design can
obtain 3.7×to 5.7×reductions of the execution area, in com-
parison with the original convolution of digital PIM in BWN.
According to the bit representation methods, 5×to 42.5×
time-saving effect can be obtained.

II. BACKGROUND

A. Binarized Weight Network

Neural networks could be highly redundant. Algorithm-level
techniques like sparsity regularization and quantization are
emerging to reduce the redundancies of networks [13], [14].
Specifically, binarization, which is an extreme form of quan-
tization, is attractive for alleviating large resource demands.
Since Courbariauxet al.proposed binarizing only the weights,
related works looked towards binarizing both activations and
weights [9]–[11]. By limiting bit numbers of weights and/or
activations to a single bit, the storage, data movement cost, and
computation complexity greatly improve. Moreover, binarized
networks exhibit competitive accuracy. As shown in Table I,
binarizing only weights induces only a small accuracy drop
from the baseline, which can be concealed by the improved
efficiency.Binarized weight network(BWN), hence, is adopted
in this brief.

B. ReRAM-Based Logic

Kvatinsky et al.proposed a design composed of only
ReRAM devices to implement the logic gates in a crossbar,
called MAGIC [8]. Fig. 1(a) describes the method of NOR.
Input data are stored in the devices, and the output device
initially is set as alow resistance state(LRS, logic ‘1’). The
bottom electrodes of all the devices are connected without
any voltage sources. Then an operating source is applied to
the top electrodes of input devices, whereas the top of the out-
put device is grounded. According to the voltage distribution
law, the input states determine the voltage given to the out-
put device. If at least one input device is at LRS, the output
device state will be changed tohigh resistance state(HRS,

Fig. 1. NOR operation on various structures: (a) the basic structure; (b) the
2D crossbar array architecture; (c) two options in a 3D array:1plane- and
2pillar-wise NOR.

TABLE II
SUMMARY OFTWOCONDITIONS ANDCORRESPONDING

RESULTSWHENCOMPUTINGSum

‘0’); otherwise, remain at LRS. This behavior corresponds to
the NOR gate operation.
The basic NOR gate structure can be extended to 2D and
3D arrays, as depicted in Figs. 1(b) and (c), respectively. In
the 2D array, the horizontal word lines are connecting the top
of input and output devices, and the bit lines are biased, as
elaborated in the basic structure. Two options are available in
the 3D architecture: theplane-wiseandpillar-wiseNOR oper-
ations. The plane-wise NOR is indeed applying the 2D array
NOR method to each plane. With the vertical pillars connect-
ing the engaged devices, the pillar-wise NOR can be achieved
by applying voltages to the plane. Since the fabrication tech-
nology limits the number of layers, the plane-wise method is
more practical and intuitive.

III. METHOD

In this section, we will elaborate on the proposed convolu-
tion processor based on digital 3D ReRAM architecture. First,
the design concept of thepresumed full adderis described
in Section III-A. Section III-B introduces 3D ReRAM with
thesplit-half additionfor the multi-bit addition. At the end,
Section III-C presents the overall processor design compre-
hensively.

A. Presumed Full Adder

This work uses NOR as the primary operation because the
NOR function can be completed in one cycle. An addition
operation can be expressed by a set of NOR functions such as:

Cout=((A+B)+(B+C)+(C+A)) and (1)

Sum=(((A+B+C)+((A+B+C)+Cout))).(2)

whereAandBare input bits, andCrepresents the carry-in bit,
which isCoutfrom the previous one-bit addition. As shown
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Fig. 2. Simplified one-bit full adder implemented in crossbar architecture.

in Eq. (1),Coutis computed in four NOR operations. Eq. (2)
producesSum, which can be split into two cases according to
the value of((A+B+C)+Cout). When the term results in
0,Sumcan be simplified as(A+B+C); otherwise,Sum
will be 1. Table II summarizes the two conditions and the
corresponding results.
We can simplify the operation of the one-bit addition based

on this observation. Fig. 2 illustrates the one-bitSumprocess in
a row of the crossbar array. Each cell denotes one bit, and the
position of each bit is represented conceptually. Black, green,
blue, and red characters indicate inputs, intermediate values for
Cout, intermediate values forSum, and outputs, respectively.
The key of this design is to detect the values ofCoutand
(A+B+C)as a conventional detection circuit may degrade the
latency and area. Rather than adding a circuit detectingCout
and(A+B+C), here, we devise a new strategy by utilizing
I5in the calculation ofI6,I7, andI8. More specifically, we
obtain the correct results by NORing the input bits andI5.If
I5=0, NORing with each input is equivalent to the negation
of each bit; Otherwise, whenI5=1,I6,I7, andI8will be 0
regardless of the other operand. AfterI5is obtained, we only
need to negate every input to compute(A+B+C).Inthis
way,(I6+I7+I8)will always draw the correctSumoutput.
The one-bit addition can be achieved in 10 cycles without

any extra overhead, which is about a 16.7% reduction when
compared to 12 cycles of the original full adder [7]. The effect
of cycle reduction can further improve when expanding to
32-bit and 64-bit additions.

B. 3D ReRAM With Split-Half Addition

2D designs demand all bits computed in order, and accord-
ingly, large resource consumption is still inevitable. We
exploit 3D ReRAM as our basic structure to offset the
resource consumption caused by the sequential bit-wise addi-
tion. Specifically, after inputs are split into halves, each half
is stored in different layers. The first half bits, including the
most significant bit(MSB), are duplicated and stored in both
Layer 1 and Layer 2, assuming carry-in is 0 and 1, respec-
tively. The rest bits are in Layer 3. All the layers are computed
simultaneously, and then final values are chosen according to
Coutfrom Layer 3.
In an example of adding 0010 and 0101, Layer 1 and Layer

2 are for 00 and 01 (the first half bits), and Layer 3 is for
10 and 01 (the rest of the inputs). Layer 1 computes as if
the carry-out from Layer 3, that is, the carry-in to Layer 1
is 0; whereas, Layer 2 outputs a result based on the carry-in

1. After completing the addition of the halves, either Layer 1
or Layer 2 will be chosen following the real carry-out from
Layer 1. Therefore, in this example, Layer 1 will be adopted
because the carry-out from Layer 3 is 0. As such, a 32-bit
addition shows an effect of 16-bit addition by processing the
layers simultaneously.

C. Overall Process

Fig. 3(a) illustrates the overall data processing flow with the
following three steps: (1) Multiply the activation and the bina-
rized weight; (2) Convert the multiplied number to our custom
bit representation; and (3) Execute thesplit-haft additionwith
thepresumed full adder3D ReRAM.
In BWN, a weight value could be+1or−1; thus, the multi-
plication with weights only affects the sign bit. The controller
of the processor determines the sign of the input after detecting
the weight value. The multiplied values are given to the con-
verter in order to support the proposed method, as illustrated
in Fig. 3(b).
Our bit representation adjusted the bit numbers from the
original fixed-point representation: our custom representation
has 1-, 7-, and 24-bit for the sign, integer, and fractional
parts, respectively. While the fixed-point can be used with-
out converting, the IEEE-754 representation is processed by
our conversion. At first, the sign bit is stored, and then, the
mantissa part is shifted leftward or rightward according to
the most significant bit of the exponent bits. The last three
insignificant bits of the exponential part determine how many
the mantissa bits will be shifted. Then ‘1’, which was omit-
ted in the floating-point representation, is appended in front of
the shifted mantissa bits. Except for the sign bit and shifted
bits, the rest of the bits are filled by 0s to be 32-bit numbers.
For negative signed numbers, we follow the 2’s complement
method in the end. According to the required range for the
networks, the bit allocation for the integer and fractional part
can be adjusted. Our shifter supports the conversion from the
floating-point representation to such a custom representation
method.
Our 3D ReRAM is composed of the three layers as a result
of the split-half addition method. While the conventional ver-
tical 3D ReRAM consists of stacked 2D layers with upright
standing devices, we utilize a modifiedvertical cross-point
ReRAM(VRRAM) [15] for our purpose. VRRAM is denser
and more cost-effective due to the smaller number of critical
fabrication steps, lithography and etch [16]. In the architec-
ture, two devices, which are colored gray in the lump, are
placed along the lines between two electrode lines (blue).
Each device is located between a pillar (black) and an elec-
trode row (blue). Every two ReRAM rows and two electrode
rows are separated from each other, as shown in the subfig-
ures of Fig. 3(c). Furthermore, we modified the structure by
splitting the electrode lines to avoid the undesired correlation
between the ReRAM lines that share the same electrode line.
The approach increases the area slightly, which can be made
up of the doubled density of the 3D structure compared to the
2D ReRAM array.
Afterward, the stored numbers are summed up according to

our presumed full adder scheme, and each half is computed
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Fig. 3. (a) The overall flow with the converter and the 3D ReRAM architecture and (b) a schematic of the suggested converter to support our method. (c)
Top- and side-view details of 3D ReRAM.

as explained previously in 3D ReRAM. The final values of
allmultiply-accumulate(MAC) operations will be read and
propagated to the other layer within two cycles. We adopt
the designs in [7] for other operations, such as pooling and
activation.

IV. EXPERIMENT ANDRESULT

We simulated the 3D ReRAM circuit by HSPICE to vali-
date the functionality of the presumed adder on the 3D stacked
layers. The ReRAM device was modeled by the generalized
modeling method [17], [18] in Verilog-A. We trained and
tested the MNIST dataset in BWN via PyTorch. After then,
we implemented the overall process by using MATLAB and
performed convolutions with extracted values from PyTorch.
The same results were obtained from both platforms.
We tested the NOR operation with several models by vary-

ing parameters. It turned out that the ReRAM device models
could be used as long as the applying voltage was consid-
ered withRONandROFFto match the NOR behavior. When
measuring one of the models used to examine the presumed
addition scheme,RON andROFF were 17.5 and 1.75k.
The set, reset, and applied voltages were 3V,−1 V, and a
value between 2V and 3V, respectively. We then checked the
state variable,x, which directly reflects the state of the device
among the modeling parameters. Whenxis almost 0, it cor-
responds to HRS, logically 0. If the state is close to 1, the
device is LRS. Based on [8], we evaluated the device state
after every cycle, and distinguished between LRS and HRS
by whether the state is under the half state or not. The final
results corresponded to the original full adder’s output.
Before estimating the effect of the overall process, we first

evaluated the BWN impact to discriminate it from the overall
effect. Then the effect of the presumed full adder and split-half
addition was estimated. By avoiding the use of ADC/DAC that
consumes significant power and area, the overhead of periph-
eral circuits was negligible; therefore, we compared only the
crossbar array component for our evaluation. The following
data are based on 1-MAC operation since the convolution

TABLE III
ENERGY ANDTIMECONSUMPTION PERMAC OPERATION TOESTIMATE

THEEFFECT OFBWN, COMPARING TOFLOATPIM [7]

kernel size is varied according to layers and network models.
We compared energy and time of before and after BWN, based
on the cost functions of multi-bit addition and multiplication
provided by [7] and [19], respectively. Table III summarizes
the estimated energy and latency per MAC operation, before
and after applying BWN.
It is noteworthy that, in energy, the fixed representation
shows a more considerable reduction, while the floating-
point numbers exhibit a small difference. The reason is that
whereas high energy consumption is required on multiplica-
tion in the case of fixed-point representation, floating-point
numbers need high resources for addition. In other words,
fixed-point numbers take more advantage of BWN because
applying binarization gets rid of the necessity of multiplica-
tion of full-precision bits. As a result, the eye-catching effect
in energy can be observed in the fixed-point only. In the time
comparison, although fixed-point still shows the significant
impact of binarization, a large time-saving effect is achieved in
both representation methods because the resource consumption
in floating numbers depends less on addition. The presumed
and split-half methods don’t reduce energy much due to the
increase of cells, but the time can be further saved with both
schemes: 1.2×and 2×, that is, 2.4×in total. Hence, as con-
sidering the number above as well as the results in Table III,
5×to 42.5×time-saving can be expected after the overall
convolution processing.
While energy and time largely depend on each device’s
property, the area based on the number of cells is constant.
Thus, we estimated the area in every stage and plotted in
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Fig. 4. The number of cells occupying area per MAC in accordance with
the schemes and different representation methods.

TABLE IV
THENUMBER OFTOTALMACS[20]INLENET-5 [21], ALEXNET[22],

VGG-16 [23], RESNET[1]

Fig. 4. The required cells for fixed precision multiplication
and floating-point addition are calculated based on the data
from [19] and [7], respectively. BWN leads to about or over
2×saving effect in all cases. The presumed adder with enough
bits and split-half addition schemes show 1.17× and 2×
decrease effect, respectively. Both schemes give the 2.34×
area-saving consequently. Hence, the predicted total effect of
converting an original convolution in CNN to our proposed
method in BWN further increases: we can save the area from
3.7×to 5.7×according to the bit representation method.
Despite various overwriting options, the overall saving will
be proportional to the total MACs. As Table IV presents,
advanced networks include a large number of MACs across
all the layers. Accordingly, the networks with more MAC
operations will benefit more from our methods.

V. CONCLUSION

This brief presents an efficient 3D ReRAM convolution
processor design for BWN. In ReRAM-based analog PIM
systems, the resource consumed by the additional components
has emerged as a limitation. Undesirable properties of devices
also hinder the practical use of ReRAM. In this work, we
design the convolution processor with two main approaches:
3D architecture with digital PIM and BWN for design sim-
plicity. To be specific, our processor computes the convolution
layers with two efficient schemes:presumed adderis a sim-
plified full adder design based on two operation cases; and
split-half additionexploits the structural advantage of 3D by
placing split operand bits in different layers and computing
them simultaneously. As a result, the original digital PIM
convolution exhibits from 3.7× to 5.7× area-saving effect
with our proposed processing. 5×to 42.5×time-saving effect
is also estimated. This work is applicable to PIM designs
entailing the NOR-based full adder.
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