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ABSTRACT Probabilistic decision-making is a fundamental problem considered in many disciplines from
engineering to social sciences. In this article, we address decision-making in contexts where the law of
large numbers (LLN) does not apply. Non-LLN regimes include almost all high-impact decisions. The rise
of artificial intelligence (AI) decision making is further increasing the importance of developing principled
approaches for such problems. In this regard, we first introduce a method called bounded expectation (BE) to
apply the accepted principle of ignoring negligible probabilities.We show that BE provides some satisfactory
results and insights into some decision-making problems. Pointing out some shortcomings of BE, we then
turn to a much more general setting, using change-of-probability measures. We show that the proposed
approach can be considered a generalization of expected utility theory (EUT) from two different perspectives.
First, the approach converges to EUT as the number of repetitions grows. Additionally, when the fundamental
distortion parameter, ε, is set to zero, the proposed theory reduces to EUT. We then propose a systematic
approach to applying the developed framework to non-LLN decisions. Finally, through a real-world example,
we compare the decisions made with the proposed method and the conventional methods. It is speculated that
due to the complexity and multidimensionality of decision-making under non-LLN regimes, the presented
ideas can potentially lead to considerable further research, some of which is discussed in this article.

INDEX TERMS Decision-making, decision theory, expected utility, probability, risk analysis, St. Petersburg
paradox, statistics, utility theory, uncertainty.

I. INTRODUCTION
Probabilistic decision-making has been studied in
different disciplines, such as engineering, computer science,
philosophy, economics, and other social sciences. In a typ-
ical scenario, an intelligent agent (human or AI), analyzes
its environment and takes actions to achieve some goals.
When the probabilities of the potential outcomes are known
or could be estimated, such decisions are referred to as
decisions under risk [1]. While such decisions are already
central in decision theory, their importance is increasing
as the role of AI becomes more prominent. The output of
machine learning (ML) algorithms can usually be interpreted
in terms of probabilities. For example, a classification algo-
rithm normally outputs the probability that the input belongs
to a certain class. Therefore, many AI-based decisions are
probability-based decisions, i.e., decisions under risk.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shyi-Ming Chen.

Another major shift is that an increasing number of high-
impact decisions are being made by AIs. This makes the issue
of having a sound and rigorous foundation for probabilistic
decision-making even more important than before. There has
been significant and influential work in decision theory and
related fields. A very common approach is the principle of
maximizing expected utility. In this context, an agent makes
decisions based on a utility function that is defined carefully
to best represent the real ‘‘value’’ of potential outcomes. For
example, in the context of reinforcement learning, typically
the agent’s goal is to find policies to maximize the expected
reward [2]–[9].

The principle of maximizing expected utility, while very
useful in many contexts, has known limitations [10]–[12].
Somewhat implied in the axioms of the theory lies the
assumption that decisions are made in environments where
the law of large numbers (LLN) holds in some way. In fact,
the very notions of probability and expected value are
essentially asymptotic. Probabilities and expected values
are empirically what is observed in the long run. Thus,
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a very important limitation arises when an agent is making a
high-impact decision that cannot be aggregated into a large
set of similar decisions. In such cases, we cannot invoke the
LLN to justify application of the maximum expected utility
principle.

This article takes a fresh look at probabilistic decision-
making with a focus on high-impact decisions for which
the LLN cannot be used. We provide a general frame-
work based on change-of-probability measures for making
probabilistic decisions which can be applied in both LLN
and non-LLN regimes. We will provide evidence that the
proposed approach can provide consistent and satisfactory
results in some practical settings. The proposed theory can be
considered a generalization of expected utility theory (EUT)
along two different dimensions. First, we show that as an
agent repeats an action, the proposed theory converges to the
expected utility theory. Nevertheless, the theory can produce
results for any number of repetitions of an action. Therefore,
the proposed theory can be considered a nonasymptotic the-
ory for probabilistic decision-making.

There is a second aspect in terms of which the pro-
posed framework can be considered a generalization of EUT.
A central parameter in the proposed framework is the
distortion parameter ε. Setting ε to zero reduces the
proposed approach to EUT. We then propose a system-
atic approach for decision-making under non-LLN regimes
by considering how preferences change as the value of
ε changes.
A key insight in the proposed approach is that when an

agent faces nonrepeatable decisions, it might be beneficial to
placemore weight on themost likely outcomes. Nevertheless,
it is not clear how to do this in a principled way. This will be
a main focus of this work. It is emphasized that the problem
of decision-making under non-LLN regimes is a multifaceted
problem, with each decision having unique aspects. Hence,
it is most likely that no single approach can provide satis-
factory results to all problems. Therefore, the presented work
here could potentially lead to considerable further investiga-
tion. For example, combining the proposed framework with
risk management techniques that mostly focus on the tails
of the distributions (e.g., [13], [14]) might be a promising
approach.

While the proposed theory can potentially be used
in any probabilistic decision-making context, its impor-
tance could potentially be magnified by the prevalence
of AI in the future for three reasons. First, as a greater
number of high-stakes decisions are made by AI, it is cru-
cial to have a formal and rigorous basis for such deci-
sions. Second, as the output of many ML algorithms can
be used to estimate probabilities, decisions under known
probabilities are becoming more prevalent. Finally, the pro-
posed theory is normative (as opposed to descriptive).
Again, this is more suitable for AI applications as machines
can be programmed to make optimal probabilistic deci-
sions without being impacted by psychological biases and
flaws.

A. RELATED WORKS
Probabilistic decision-making has been studied in many dif-
ferent disciplines. The rapid growth of AI and its applications
has led to high-impact AI-based decision-making becoming
more prevalent in the systems and technologies of different
fields, such as medicine, autonomous vehicles, network and
national security, safety and privacy, and business, [15]–[25].

As mentioned before, expected utility has been extensively
used as the decision criterion. Furthermore, there are many
works expanding and improving upon expected utility theory.
A large collection of works are descriptive and focus on how
humans make decisions [26]–[28].

There are also many normative works, such as [29]–[33].
Some works, such as those elaborating the risk-weighted
expected utility approach, look at the risk aversion or
risk-seeking attitudes of agents [33]. Other works focus
on theories of how utilities are compared, such as
rank-dependent expected utility theory [34], relative expec-
tation utility theory [35], and cumulative utility theory [36].
As will be clear later on, it is possible to combine such
methods with the proposed technique in this article as they
address different aspects of decision-making.

All the abovementioned references represent significant
progress in this broad field and indicate the importance of
probabilistic decision-making. This article takes a fresh look
at this problem from a different angle: It aims to develop a
theoretical framework based on change-of-probability mea-
sures that addresses the fundamental observation that not
all decisions can be aggregated into a large set of similar
decisions (non-LLN regime). This is a crucial point, as many
high-impact real-world decisions and incidents can be put in
this category [37]–[44].

Change-of-probabilitymeasures have been applied in other
contexts, such as finance [45] where the concept of a
risk-neutral probability measure is used for the purpose of
option pricing; communication [46]; signal processing [47];
and fuzzy measure theory [48]. Nevertheless, these applica-
tions are within a different framework, and the goals and
mathematical constructions in them are different from the
ones we consider here.

Historically, the St. Petersburg gamble appears to have
been the first problem where mathematical expectations
failed to evaluate the game’s value in a rationally acceptable
way. Hence, for more than 300 years, many efforts have been
made to address the paradox [49]–[56].

B. CONTRIBUTIONS AND ORGANIZATION
Our contributions can be summarized as follows:

• This article provides a theoretical framework for
probabilistic decision-making problem that can be
applied to both LLN and non-LLN regimes. The pro-
posed change-of-measure is determined, in a prin-
cipled way, as a function of the involved random
variables. Such a construction allows us to ensure
that the decision-making policy satisfies important
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requirements. To the best of our knowledge, this is the
first paper that introduces such an approach.

• We introduce bounded expectation as a special case of
the proposed method and show that the method can
provide satisfactory solutions to some problems such
as St. Petersburg paradox.

• Based on the proposed construction, we prove its desir-
able properties for example, the fact that the proposed
method converges to the expected utility method if the
actions are repeatable. The main value of the proposed
approach, however, lies in its usefulness for situations
in which actions are not repeatable or are repeatable
only a few times.

• A key contribution is that a systematic approach
for applying the proposed method is provided. The
proposed method results in satisfactory answers and
insights in the investigated examples.

• Finally, by turning our attention to a very popular
real-world problem, i.e., angel and venture capital
investment, we show that our proposed method pro-
vides a reasonable solution that, due to the benefits
of being systematic, can be programmed to allow
AI agents to make these kinds of decisions.

The paper is organized as follows. In Section II, we provide
some discussions to better explain the motivation of the work.
Next, before providing the general theory, we first present
a special case of our general framework called bounded
expectation in Section III. The reason for this choice is
to use a simple and concrete example to focus on some
important insights without becoming bogged down in math-
ematical details. We then formally present the theoretical
framework in Section IV. There, we formally prove the
ideas and concepts discussed in Section III in a much more
general setting. Examples of more sophisticated and pow-
erful change-of-measures as well as a systematic approach
to decision-making under non-LLN regimes are provided
in Section V.

II. MOTIVATION
To better motivate the discussion, we consider two examples:
Example 1 (St. Petersburg Paradox): Consider the well-

known St. Petersburg paradox. An agent is offered the fol-
lowing gamble: a fair coin is tossed repeatedly until a head is
observed for the first time. If k is the total number of resulting
coin tosses, the agent is received X = 2k units of utility. The
question is how much (in utility units) is this gamble worth to
the agent?
Since the agent receives 2k units of utility with

probability 1
2k , the expected value is infinity:

E[X ] = 2×
1
2
+ 22 ×

1
22
+ · · ·

= ∞.

This result is clearly controversial as has been observed by
manymathematicians [49], [57]. For example, the probability
that the agent wins more than 32 dollars (for simplicity, let

us replace utility units by dollars from now on) is only 3%,
yet the calculation suggests that the gamble is worth infinity.
If the agent is considering whether to pay a large sum for this
game, then this game will be a high-impact decision.

To better understand the crux of the problem, consider a
slightly different scenario, where the agent can choose to
repeat the game as many times as she wants and for each play
she pays c dollars. Let X̄n be the average amount received by
the agent after n repetitions; then, we have for any c ∈ R1

P(X̄n ≥ c)→ 1, as n→∞.

In other words, no matter how much the agent pays for each
game, the agent eventually wins more than what she pays
(assuming c is kept constant). Therefore, in this version of
the game, it is not irrational for the agent to pay a large fee
to play each game. Thus, the amount that the agent should
be willing to pay for each game should depend on the total
number of times the agent is allowed to repeat the game.

The above issue is not limited to infinite-mean random
variables. In a typical decision-making scenario, an agent
might be faced with a one-time high-impact decision where
with a very small probability (say 1

1000 ), the agent will receive
a very high reward but otherwise will receive a negligible or
a negative reward. In such cases, the expected value of the
reward might be very high, while it seems very unreasonable
to place a very high value on such gambles since the agent is
almost sure she will not receive the large reward.
Example 2 (Court Dilemma): As a second example, let us

consider a plaintiff in a legal case who is offered a settlement
in which she will receive one million dollars. Her lawyer
estimates that she has a 35% chance of winning the case,
whereupon she would receive ten million dollars, but she
will receive nothing if she loses. Let us compute the expected
utility for each option. Let us assume one million dollars
has 10 units of utility, while ten million dollars has 40 units
of utility (consistent with the diminishing effect of marginal
utility [60]). Additionally, if the plaintiff goes to court and
loses, the resulting outcome is not zero, as there is a psy-
chological effect in terms of disappointment and regret. Let
us thus assume that this outcome yields a utility of −5.2 Let
X be associated with accepting the settlement and Y with
going to the court. The expected utilities are

E[X ] = 10,

E[Y ] = 0.35× 40− 0.65× 5 = 10.75.

We observe that going to the court actually yields higher
utility! Nevertheless, this does not seem to be a wise choice:

1This can be concluded from the version of the LLN extended to
infinite-mean random variables; see for example, [58], [59].

2Two points: First, there is also some element of regret in accepting the
settlement as the plaintiff may wonder whether she could have won the larger
prize, so the 10 units of utility in that case is assumed to be computed with
this effect taken into consideration. Second, the exact values of utilities here
are not very crucial: it is clear that different people assign different utilities
to outcomes. Nevertheless, the phenomenon being discussed can often be
observed. In other words, you can change the monetary rewards so that the
resulting utilities are given by the values assumed in this example.

VOLUME 8, 2020 159333



S. Enayati, H. Pishro-Nik: Framework for Probabilistic Decision-Making Using Change-of-Probability Measures

with 65% probability, it will result in the worst possible
outcome.

Again, here we observe that this case could be another
example of a high-impact event that cannot be simply aggre-
gated with other decisions the plaintiff makes in her life,
so the LLN cannot be used to justify the expected utility
approach. Of course, if the plaintiff were extremely wealthy,
the story would be a different. In that case, this decision could
be simply aggregated into her other financial decisions, and
in that case, the LLN could be used to justify the expected
utility approach.
The crucial point is the following: In real-life decision-

making, there are scenarios where decisions cannot simply be
aggregated into a large set of similar decisions. This is, for
example, the case when a very high-impact decision is being
made where the outcome might have large consequences. The
issue is that such decisions are not governed by LLN, as they
are not repeatable (or are only repeatable a few times). For
such cases, the very notions of probability and expectation
have limited use, as they are inherently asymptotic.

The fundamental question then becomes the following:
Can we provide a theory that addresses the above issue? Such
a theory might evaluate a decision differently based on how
many times an agent is going to face similar decisions in
total, e.g., how many times the action can be repeated. More
specifically, as the number of repetitions grows, the values
converge to the expected value, but the crucial value is in the
finite repetitions.

This article aims to answer the above question. As we
will see, the proposed theory based on change-of-probability
measure provides a promising framework to achieve the
above goal. In the cases we considered, the method pro-
duces results that are consistent with the decisions typically
expected by decision theorists. The method can also explain
several phenomena that have been empirically observed.
For example, applying the theory to right-tailed distribu-
tions, we can explain the underlying dynamics behind the
venture capital industry. Applying the theory to left-tailed
distributions, we can gain insight into the robustness and
fragility of decision policies. Finally, the theory pro-
vides satisfactory results for the two examples provided
above.

Obviously, the general question of making high-impact
decisions has many different aspects, and most likely, a sin-
gle framework cannot provide all the answers. More likely,
a combination of different approaches could provide the most
satisfactory result. In that regard, the proposed framework
can be considered a step toward achieving such an important
goal. One positive aspect of the proposed method is that it
can easily be combined with other methods such as those
developed for risk management.

Finally, it is worth noting that in evaluating an action,
there are two important parts: probabilities and utilities (val-
ues of rewards). In this article, we focus on probabilities.
It is assumed that the agent can appropriately assign utilities
(rewards).

III. BOUNDED EXPECTATION
In this section, we introduce a specific change-of-probability
measure called bounded expectation (BE) and discuss how
it can be used in decision-making. BE is a very simple
version of the proposed theory and is not perfect. It does
not fully enjoy the potential advantages of metrics that can
be built using the proposed change-of-probability measure
approach. Nevertheless, as we will see, it has many desirable
properties. It also has the considerable advantage of having a
very intuitive and interpretable definition. Thus, we consider
it a first step toward our general theory. This section is less
formal and focuses on insights. The rigorous formulation and
proofs are provided in Section IV.

Bounded expectation can be motivated by the de
minimis risk principle, which is a generally accepted
principle [61], [62]. De minimis is also referred to as the prin-
ciple of ignoring rationally negligible probabilities (RNP).
The RNP principle states that we should ignore very small
probabilities, say below ε. Indeed, this is what we always do,
as in anything we do in real life, there is always a chance of
a catastrophe, and we ignore this if the probability is small
enough.

Although the RNP principle is to some extent accepted,
there is no principled way to apply it in decision-making [63].
For example, suppose an agent is offered a gamble in which
a coin is being tossed 100 times, and depending on the
sequences of heads and tails some rewards are offered to the
agent.3 In such a gamble, the probability of any outcome
is below the ε threshold (the probability of each outcome
is 1

2100
); therefore, it is not clear which outcomes the agent

should throw away when applying the RNP principle?
This leads us to BE, which is a very simple version of

our nonasymptoticmetrics for evaluating the decision choices
proposed in Section IV. Consider a scenario where an agent
is considering one of m possible actions or choices. The
random variables that represent the rewards (utilities) of
potential actions are represented as Xi, for i = 1, 2, · · · ,m.
The standard approach of maximizing expected utility
advises choosing the action with the highest expected value
(utility), E[Xi]. We now provide the BE metric, denoted
by Eε , as a way to measure the value of each action.

The basic idea is very simple: We first identify ‘‘extreme
values’’ (outliers) of Xi from the right and left in such a way
that the probabilities of such extreme values are in total less
than or equal to ε

m . Here, ε is what we consider the rationally
negligible probability, and m is the number of alternative
options we are considering, i.e., the number of random vari-
ables. The BE of Xi, shown as Eε[Xi], is then the conditional
expected value of Xi given that Xi is not in the outlier region.

If the Xis are continuous random variables, then the defini-
tion can be simplified as follows. First, for each Xi, we iden-
tify the values of xi,min(ε) and xi,max(ε) in a way that the tail
probabilities P(Xi < xi,min(ε)) and P(Xi > xi,max(ε)) are each

3Consider a long table with 2100 rows, where the reward for each outcome
has been decided possibly by random drawing from a distribution.
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equal to ε
2m . Figure 1 shows these values for a continuous

random variable X with a probability distribution function
(PDF) fX (x). The formal definition of xmin(ε) and xmax(ε) for
a random variable X is as follows:

xmin(ε) = inf
{
x ∈ R : P(X ≤ x) ≥

ε

2m

}
,

xmax(ε) = sup
{
x ∈ R : P(X ≥ x) ≥

ε

2m

}
.

FIGURE 1. The values of xmin(ε) and xmax (ε) for a random variable with
PDF fX (x).

Hence, we can state the definition of BE for continuous
random variables in the following way. Note that in the def-
inition of bounded expectation below, xi,min(ε) and xi,max(ε)
are those values associated with the random variable Xi.
Definition 1 (BE for Continuous Random Variables): To

decide between jointly continuous random variables Xi, for
i = 1, 2, · · · ,m, let the Ais be the events {xi,min(ε) ≤ Xi ≤
xi,max(ε)} and A =

⋂m
i=1 Ai. The value of action i associated

with Xi based on the BE metric is given by

v[Xi] = Eε[Xi] = E[Xi|A]

= E
[
Xi|xi,min(ε) ≤ Xi ≤ xi,max(ε), i = 1, 2, · · · ,m

]
.

The above definition will be extended in a specific way that
can be applied to all random variables to ensure that some
regularity conditions are satisfied (which will be discussed
in Section IV). Nevertheless, the basic idea shown in Figure 1
and the above definition for continuous random variables are
sufficient for our discussions in this section.

Note that the BE metric cannot simply be expressed as
E[Xi|a ≤ Xi ≤ b], where a and b are constants. Indeed,
the difference is that in BE, the values of a and b depend on
the distribution of Xi and are different for each of the Xis.
Additionally, if the Xis are not independent, the event Ai
impacts the Eε for other Xjs.
The intuition behind BE is that we precisely throw out the

‘‘outliers’’ in the distributions of Xis to focus on the part
of the probability space that will happen with a very high
probability. Note that, as will be discussed, this does not

mean we are ignoring tail risks. Indeed, we will see that BE
can be used to describe and analyze such risks. Moreover,
the extensions and generalizations that we propose later do
not throw out any part of the probability space.

In the RNP literature, there are discussions on how to
choose the value below which we ignore probabilities [64],
[65]. This is equivalent to the value of ε in BE. The suggested
values usually range between 10−3 and 10−6.

Next, we will discuss using BE for decision-making.
We focus on the insights and discussions and leave the proof
for Section IV. Note that if Xi’s are independent continuous
random variables or there is only one Xi = X (the agent is
deciding how much to pay for X ), we can simply write

Eε[X ] = E[X |A] = E
[
X |xmin(ε) ≤ X ≤ xmax(ε)

]
.

A. BE FOR ST. PETERSBURG GAME
Figure 2 shows the BE value of the St. Petersburg game (per
play) as a function of n, the number of times the agent is
allowed to play the game, for ε = 0.001. Specifically, if the
agent plays the game n times independently, and X (j)4 shows
the reward on the jth play, we can define the sample mean as

X̄n =
1
n

n∑
j=1

X (j).

FIGURE 2. BE vs. the logarithm of the number of St. Petersburg game
iterations, assuming ε = 10−3.

The per game value according to BE is given by Eε
[
X̄n
]
.

As we see, this value increases as n becomes larger. Indeed,
as n → ∞, Eε[X̄n] → ∞. This is exactly what we expect
for a fair valuation. As one plays more, the probability of

4In this article, we normally use subscripts to identify random variables
that are associated with different actions and we are interested in comparing
them, i.e., X1, X2, · · · , Xm. Superscripts with parentheses (X (j)) are usually
used when we are referring to independent and identically distributed (i.i.d.)
random variables. The subscripts in parentheses (X(i)) are used when we
refer to the order statistics of i.i.d. samples from a distribution. Finally,
superscripts with brackets (X [n]) are used when we refer to sequences of
random variables that converge to another random variable.
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extreme observations increases, which increases the value of
the game.

B. NONLINEARITY OF BE
Note that for BE, we do not necessarily have

Eε[X + Y ] = Eε[X ]+ Eε[Y ].

This is why for the St. Petersburg game, independent repe-
titions of the game increase the per-game value. Indeed, for
independent right-tailed random variables X and Y , we often
observe

Eε[X + Y ] > Eε[X ]+ Eε[Y ]

This nonlinearity is pronounced for heavy-tailed
distributions.

Figure 3 shows the BE for Pareto random variables with
infinite expected value. As represented, the BE of the sample
mean Eε

[
X̄n
]
is more than the average of the BEs, i.e.,

Eε
[
X̄n
]
= Eε

1
n

n∑
j=1

X (j)


>

1
n

n∑
j=1

Eε
[
X (j)

]
= Eε

[
X (j)

]
.

FIGURE 3. BE of the sample mean of the right-tailed Pareto random
variables, Eε

[
X̄n

]
, and the BE of X (j )s vs. the number of repetitions n for

the case of infinite expected value, assuming ε = 0.001.

Furthermore, the BE converges to the actual expectation as
the number of experiments increases. Figure 4 shows this
fact for the Pareto random variable with finite expected value.
In both Figures 3 and 4, ε is assumed to be 0.001.

FIGURE 4. BE of the sample mean and the BE of X (j )s of the right-tailed
Pareto random variable with vs. the number of repetitions n for the case
of finite expected value, assuming ε = 0.001.

C. ON THE PROFITABILITY OF THE VENTURE CAPITAL
INDUSTRY
Let us apply BE to a concrete example, venture capital
investing. A venture capitalist invests in a large number
(L) of right-tailed (usually heavy-tailed) options, X (j), j =
1, 2, · · · ,L. As discussed above, for such right-tailed distri-
butions, assuming X (j)’s are independent, we often have

Eε

 L∑
j=1

X (j)

� L∑
j=1

Eε[X (j)].

Thus, the aggregate value of the investment portfolio is much
larger than the sum of individual items. Each startup company
has a very small chance of success. It has a still smaller chance
of great success, so its individual valuation is small. However,
the aggregate is much more valuable, as predicted by the
BE measure. We will explore this topic more deeply
in Section V-C after the full theory is developed.

D. ON TAIL RISKS, ROBUSTNESS, AND FRAGILITY
The situation is reversed for left-tailed distributions. For
independent random variables X and Y that are right-tailed,
we often have

Eε[X + Y ] < Eε[X ]+ Eε[Y ].

Figure 5 shows this relation for left-tailed Pareto random
variables with infinite expected value. As shown, the BE for
the sum of the left-tailed random variables is less than the
sum of the BEs of each random variable. Again, ε = 0.001.
Similarly, Figure 6 shows this phenomenon for the Pareto
random variable with finite expected value.

What does all this mean? The above can describe the
situation of accumulation of risks. An agent might be tak-
ing risks that are individually acceptable but not acceptable
on average. This is related to the issue of robustness and
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FIGURE 5. BE of the sample mean of left-tailed Pareto random variables
Eε

[
X̄n

]
and the BE of X (j )s vs. the number of repetitions n for the case of

infinite expected value, E [X (j )] = −∞, assuming ε = 0.001.

FIGURE 6. BE of the sample mean and the BE of X (j )s of the left-tailed
Pareto random variable vs. the number of repetitions n for the case of
finite expected value, assuming ε = 0.001.

fragility [13], [14], [66]–[69]. This is the reverse of the sit-
uation in the venture capital example. Each individual risk is
very limited. The probability of a loss for each action might
be small. The probability of a large loss is even much smaller.
However, the aggregate risk is by far larger than the sum of
the risks.

E. LIMITATIONS OF BE: TOWARD A MORE GENERAL
FRAMEWORK
The above discussions were intended to show that the
BE measure can be considered a simple measure that has
several desirable properties: In addition to providing a sat-
isfactory answer to problems such as the St. Petersburg prob-
lem, it could provide insights on some practical situations.
Nevertheless, it is not perfect (like any other measure). The
problem is that it only solves one issue regarding one-time

decisions: the RNP issue. It does not address the rest of the
probability space. BE seems to provide a satisfactory answer
to the St. Petersburg problem, but let us consider our second
example regarding the legal case. For that case, we obtain

Eε[X ] = 10,

Eε[Y ] =
10.75− 17.5ε

1− ε
.

It is easy to verify that if ε is small, the result of BE is not
very different from what is predicted by the expected utility.
Thus, we need a more comprehensive approach that looks at
the entire probability space, not just a negligible part.

To better motivate our general framework, let us now look
at different views of BE. The BE operation can be thought
of as normal expectation in a ‘‘distorted’’ or ‘‘modified’’
probability space, one for which the probabilities of events in
Ac are reduced to zero, but the probabilities of events in A are
multiplied by 1

P(A) . The intuition is that we are magnifying
the most likely outcomes and shrinking highly improbable
outcomes since we are focusing on one-time decisions that
cannot be repeated; thus, we do not have the luxury provided
by the LLN.

Now, this idea of modifying the probability space to better
accommodate the lack of repetition and the non-LLN regime
can be developed into a much more general methodology.
For example, there is no reason to partition the space into
only two subsets. We can partition into more sets and adjust
the probability of each part in a specific way. Additionally,
BE applies an abrupt change, i.e., reduces some probabilities
to zero.We can instead change the probabilities in a smoother
way and still enjoy the aforementioned attractive properties of
BE as well as many more. All of these are covered under the
proposed framework of the change-of-probability measure
in the next sections. For example, we see that the general
approach provides amore satisfactory answer to the legal case
question.
It is clear that this change-of-probability measure opera-

tion (probability modification) cannot be arbitrary and must
be done in a principled way to ensure that it is consistent
with rational decision-making. Therefore, in the next section,
we develop a rigorous theory for such change-of-probability
measure operations for decision-making and prove their prop-
erties. This will lead to the systematic decision-making in
non-LLN regimes discussed in Section V.

IV. A GENERAL FRAMEWORK: CHANGE-
OF-PROBABILITY MEASURE
In this section, we develop a general framework based on the
change-of-the probability measure for probabilistic decision-
making. The idea is to list some important properties that
such change-of-measure operations must satisfy. Change-
of-measure policies that satisfy these properties are called
ε-consistent. The parameter ε is a measure of “distortion”
imposed on the probability measures and plays a key role
in our analysis (Property 6 below). We then prove some
properties (such as convergence to expected utility as the
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number of repetitions grows) that all ε-consistent policies
satisfy. We first focus on the case of uniform change-of-
measures and then discuss nonuniform change-of-measures.
BE is proven to be uniform ε-consistent.
Later, in Section V, we will focus on two important tasks.

First, we will provide a specific method for constructing
ε-consistent change-of-measure policies using what we call
consistent functions. Second, and more importantly, we will
propose a systematic approach to applying ε-consistent poli-
cies in probabilistic decision-making.

As our goal is to build a rigorous theory, many of
the forthcoming sections are somewhat technical. Read-
ers less interested in the mathematical details can refer to
Sections V-A, V-B, and V-C to see a summary of the approach
and examples of how it can be used in practice.

A. UNIFORM ε-CONSISTENT CHANGE-OF-MEASURE
POLICIES
Consider a complete probability space (�,F ,P). The ran-
dom variables that represent the rewards (utilities) of poten-
tial actions are defined on this probability space. Concretely,
let Xi : � 7→ R, for i = 1, 2, · · · ,m, show the reward asso-
ciated with the m potential actions that we are considering.
It is in general convenient (and not restrictive) if we assume
F is the sigma field generated by all the involved random
variables. So we are making this assumption unless stated
otherwise. For example, if we are considering a fixed set of
random variables Xi, for i = 1, 2, · · · ,m, we may assume
F = σ (X1,X2, · · · ,Xm), where, σ (X1,X2, · · · ,Xm) is the
sigma field generated by X1,X2, · · · ,Xm.
The goal here is to define a new probability measure Q on

(�,F ) to be used in evaluating the true value of these actions.
More specifically, for a generic random variable X , the
value v[X ] is obtained by

v[X ] =
∫
�

X (ω)dQ(ω). (1)

Intuitively, the new probability measure can be defined
in a way to potentially amplify the most likely outcomes
while weakening the highly unlikely outcomes. This could
be consistent with the nonasymptotic nature of the problem,
for example, a one-time high-impact decision. Therefore, our
goal is to describe mappings P 7→ Q that have desirable
properties consistent with probabilistic decision-making.

First, we notice that the measure Q must be absolutely
continuous with respect to the P, i.e.,Q� P. This is because
any event that has zero probability under P must have zero
probability under Q. Thus, we can use the Radon-Nikodym
theorem [70] to conclude that there exists a unique integrable
nonnegative random variable Z , with E[Z ] = 1, such that

Q(B) = E[1BZ ], for any B ∈ F ,

where

1B =

{
1 ω ∈ B
0 ω /∈ B.

Here Z is the Radon-Nikodym derivative Z = dQ
dP . Therefore,

our goal can be equivalently stated as obtaining a mapping
{X1,X2, · · · ,Xm} 7→ Z ,

that maps any set of random variables on (�,F ,P) to an
integrable nonnegative random variable Z . Identifying this Z
uniquely identifies the measure Q as well as v[Xi] for i =
1, 2, · · · ,m. Hence, to summarize this change-of-measure

operation, we write {X1,X2, · · · ,Xm,P}
ch
7→ {Z ,Q, v[·]},

where ‘‘ch’’ stands for the change-of-probability measure.
For example, if we consider continuous random

variables Xi, and for i = 1, 2, · · · ,m, define
RXi,ε = [xi,min(ε), xi,max(ε)],

Ai = {ω ∈ � : X (ω) ∈ RXi,ε},

and

A =
m⋂
i=1

Ai,

then, the Z associated with the BE measure that was intro-
duced in the previous section is given by

Z (ω) =


1

P(A)
ω ∈ A

0 otherwise.

In general, we can rewrite Equation (1) as

v[X ] =
∫
�

X (ω)dQ(ω)

=

∫
�

X (ω)Z (ω)dP(ω) = E[X (ω)Z (ω)]. (2)

Equation (2) provides the two interpretations for our
problem: (1) the change-of-measure interpretation (P 7→ Q)
and (2) the transformation interpretation, given by

Y (ω) = X (ω)Z (ω),

and letting

v[X ] = E[Y (ω)],

where the expectation is computed with respect to the original
probability measure. Both interpretations are helpful and help
us gain insight.

Obviously, the change-of-measure operation P 7→ Q
(or equivalently, defining Z ) cannot be arbitrary and must be
done in a principled way to satisfy some required properties.
Hence, we now proceed to identify the properties that should
be satisfied by Z and the associated Q and v[X ]. The proper-
ties are listed below.
Property 1 (Finiteness5):
1) If P ({ω ∈ � : X (ω) <∞}) = 1, then v[X ] <∞.
2) If P ({ω ∈ � : X (ω) > −∞}) = 1, then v[X ] > −∞.
This property simply states that if under all possible scenar-

ios, we receive a finite reward, then the value v[X ] must be

5The finiteness property is required only for ε > 0, where epsilon is
discussed in Property 6. More specifically, we require Property 1, only when
sup{|P(B)− Q(B)| : B ∈ σ (X1,X2, · · · ,Xm)} > 0.
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finite. Although this might seem a very rational assumption,
it is worth noting that this property is not satisfied by standard
utility theory (e.g., in the case of St. Petersburg problem).
Thus, we depart from the standard expected utility approach
from the start.

The next property states that if one option always results in
a better outcome, then its value must be higher. This is known
as the dominance principle in decision theory.
Property 2 (Dominance): If P({ω ∈ � : X1(ω) ≤

X2(ω)}) = 1, then v[X1] ≤ v[X2].
Next, we point our attention to a ‘‘fairness’’ property.

Specifically, we require that if we re-order Xis, none of the
v[Xi]s should change. Also, the cumulative distribution func-
tion (CDF) of Xis should be sufficient for determining v[Xi]s.
Let us write [X1,X2, · · · ,Xm] 7→ [v1, v2, · · · , vm] to mean
v[Xi] = vi, for i = 1, 2, · · · ,m.
Property 3 (CDF Sufficiency/Symmetry): consider m ran-

dom variables Xi : � 7→ R for i = 1, 2, · · · ,m
with the joint cumulative distribution function (CDF)
FX1,X2,...,Xm (x1, x2, . . . , xm), and let [X1,X2, · · · ,Xm] 7→
[v1, v2, · · · , vm].
1) The values vi = v[Xi], for i = 1, 2, · · · ,m, are

uniquely determined by FX1,X2,...,Xm .
2) For any permutation π : {1, 2, · · · ,m} 7→

{1, 2, · · · ,m}, we must have

[Xπ (1),Xπ (2), · · · ,Xπ (m)] 7→ [vπ (1), vπ (2), · · · , vπ (1)].

As a special case of Property 3, let’s consider the case
where the joint CDF is symmetric. Specifically, we say that
the joint CDF is symmetric if for any (x1, x2, · · · , xm) ∈ Rm

and a permutation π : {1, 2, · · · ,m} 7→ {1, 2, · · · ,m},
we have

FX1,X2,...,Xm (x1, x2, . . . , xm)

= FX1,X2,...,Xm (xπ (1), xπ (2), . . . , xπ (m)).

Now, property 3 ensures that if the joint CDF of the Xis,
i = 1, 2, · · · ,m, is symmetric, we must have

v[X1] = v[X2] = · · · = v[Xm],

which again indicates fairness.
The next property states that if two options can be made

arbitrarily close to each other, their values must also be close
to each other. In other words, we are ensuring the continuity
of the v[·] metric. We say that a sequence of random variables
X [n], n = 1, 2, 3, · · · are dominated in absolute value by the
random variable Y , if |X [n](ω)| ≤ Y (ω), for all ω ∈ � and
for all n = 1, 2, 3, · · · .
Property 4 (Convergence): Let X [n]

1 , n = 1, 2, 3, · · · , be a
sequence of random variables on (�,F ,P) and Q[n] be the
corresponding measure when the X [n]

1 s are being compared
to some other fixed set of options X2, · · · ,Xm on the same
probability space. Specifically, {X [n]

1 ,X2, · · · ,Xm,P}
ch
7→

{Z [n],Q[n], v[n][·]}. Suppose

X [n]
1

a.s.
−−→ X1,

where ‘‘
a.s.
−−→’’ indicates almost sure convergence (with respect

to P), and {X1,X2, · · · ,Xm,P}
ch
7→ {Z ,Q, v[·]}. Assume that

all the X [n]
1 s are dominated in absolute value by an integrable

(with respect to P and Q[n]) random variable Y . We then have

lim
n→∞

v[n][X [n]
1 ] = v[X1].

Note that since Q[n]
� P, almost sure convergence

with respect to P also ensures almost sure convergence with
respect to all Q[n]s.
Next, note that v[X ] is not necessarily a linear operator as

we saw regarding the bounded expectation operator. This is in
contrast to standard expected utility. Nevertheless, we require
a weaker form of linearity for v[X ]. Specifically, we require:
Property 5 (Weak Linearity): v[aX + b] = av[X ]+ b, for

any a, b ∈ R.
The ‘‘+b’’ part simply says that first obtaining X and then

obtaining a constant reward b is equivalent to obtaining the
reward X + b. The ‘‘aX ’’ part says that if we multiply all the
possible outcomes by a factor of a, it makes sense that the
whole value is multiplied by a. Note that this has nothing to
do with the concept of marginal utility: it does not say that
if we are given twice the money, our utility is multiplied by
two. It simply says that if under Action 1, we always get twice
the utility compared to Action 2, then Action 1 is worth twice
Action 2. Indeed, this property is satisfied in standard utility
theory.

This property also implies that v[−X ] = −v[X ]. Note that
v[X ] is how much the option X is worth to an agent. It simply
states that if under Action 1, an agent always obtains the
negative utility that she obtains under Action 2, then Action 1
must have the negative aggregate value as Action 2. Note
that this is not inconsistent with incorporating issues such
as loss aversion, as those can be incorporated in the way we
define utilities, so if, for example, under Action 1, the agent
loses $100 for sure and under Action 2, she wins $100 for
sure, the utility of Action 1 could be −150, while the utility
of Action 2 could be 100. For this choice, v[ Action 1] 6=
−v[ Action 2]. Moreover, to incorporate issues such as risk
aversion or risk-seeking, one may use techniques such
as risk-weighted expected utility [33] in conjunction with
the change-of-measure operation proposed here. Note that
Property 5 implies v[b] = b for b ∈ R.
The next property makes sure we do not distort the prob-

abilities too much. This is crucial, as the agent is basing her
decision on the modified probability measureQ, so we would
like to make sure that for any event B, the actual probability
of that event, i.e., P(B), is within ε of its distorted probability.
Specifically:
Property 6 (Bounded Distortion): For any event B ∈

σ (X1,X2, · · · ,Xm), we must have

|P(B)− Q(B)| ≤ ε.

This property essentially says that the total variation dis-
tance between the two probability measures P and Q on
σ (X1,X2, · · · ,Xm) must be less than or equal to ε. The
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parameter ε plays a key role in the change-of-measure opera-
tion. As we will see by increasing the ε from zero to positive
values and examining the outcomes, we develop a systematic
approach to decision-making under non-LLN regimes. It is
worth noting that in this context, the interpretation of ε is
broader than our previous narrow interpretation of BE: here,
it refers to the maximum distortion in probabilities. Neverthe-
less, as we will see, the values of both interpretations coincide
in the special case of BE.

The following lemma is useful in constructing bounded
distortion change-of-measure operations.
Lemma 1 (Partition Lemma): Let D1,D2, · · · ,Dm with

P(Di) > 0 be sets in F that form a partition of �. Let αi ≥ 0
for i = 1, 2, · · · ,m be such that

m∑
i=1

αiP(Di) = 1, and
m∑
i=1

|(1− αi)|P(Di) ≤ 2ε.

If we define for any B ∈ F ,

Q(B) =
m∑
i=1

αiP(B ∩ Di),

then Q defines a probability measure on (�,F ), and for any
B ∈ F , we have

|P(B)− Q(B)| ≤ ε.

Proof: First, we note that we have:

Q(�) =
m∑
i=1

αiP(Di) = 1.

Let δ(P,Q) show the total variation distance between P and
Q which is given by

δ(P,Q) = sup
A∈F
|P(A)− Q(A)| .

Since Di’s form a partition of �, we have

δ(P,Q) =
1
2

m∑
i=1

|P(Di)− Q(Di)|

=
1
2

m∑
i=1

|(1− αi)|P(Di)

≤ ε.

Thus, for any B ∈ F , we have

|P(B)− Q(B)| ≤ ε.

Definition 2 (Uniform ε-Consistent Policies): Consider a
probability space (�,F ,P) and a mapping rule that maps
any set of random variables on (�,F ,P) to an integrable
nonnegative random variable Z , with E[Z ] = 1. Assume Q
and v[·] are the associated measure and the value function.
We say that this change-of-measure operation is a uniform
ε-consistent policy if it satisfies properties 1 through 6.
When we simply say ε-consistent, we mean uniform

ε-consistent. We now proceed to prove some properties of
ε-consistent change-of-measure policies. We say that the ran-
dom variable X is symmetric around µ if 2µ − X has the

same distribution as X . Our first theorem considers the case
where we are evaluating v[X ] for a single (m = 1) symmetric
random variable.
Theorem 1: Let v[.] be associated with an ε-consistent

change-of-measure policy applied to a single random vari-
able X. If X is symmetric around µ, then v[X ] = µ.

Proof: We have

v[X ] = v[2µ− X ]

= 2µ− v[X ].

The first equality is true by Property 3 and the assumption
that X is symmetric around µ. The second equality is true by
Property 5. We conclude that v[X ] = µ.
Note: It is crucial to note that the proposed framework

here addresses a single issue: the non-LLN nature of some
decision problems. Issues such as attitudes toward risk can be
further combined with the proposed method to obtain a more
comprehensive view. For example, in financial investment,
it is common to prefer options with a lower variance when
the expected values are the same even when the distributions
are symmetric around the mean.

We now turn our attention to the case where an agent is
able to independently repeat an action several times; here,
X̄ indicates the average reward.

Xn =
X (1)
+ X (2)

+ . . .+ X (n)

n
.

In this case, we show that v[Xn] converges to E[X ]. This
means that as the number of repetitions of an action grows,
we approach the expected utility theory.
Theorem 2 (Limit Theorem): Let X (1),X (2), . . . ,X (n) be

i.i.d. with expected value E[X (i)] = µ < ∞. Let v[.] be
associated with an ε-consistent change-of-measure policy.
Assume Xn’s are dominated in absolute value by an inte-
grable random variable Y . We have

lim
n→∞

v[Xn] = µ.

Proof: Since the X (i)s are i.i.d. with finite mean, we can
use the strong law of large numbers and conclude that

Xn
a.s.
−−→ µ.

Since Xns are dominated in absolute value by an integrable
random variable Y , by Property 4, we conclude that

lim
n→∞

v[Xn] = v[µ]

= µ.

The last equality is ensured by Property 5.
We can often provide a stronger characterization under

some regularity conditions. Specifically, suppose that X (i)s
have a finite variance: 0 < Var(X (i)) = σ 2 < ∞. We can
apply the central limit theorem (CLT) and conclude that the
random variables

Wn =
Xn − µ
σ/
√
n
,
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converge in distribution to the standard normal random vari-
able W ∼ N (0, 1) as n goes to infinity. In such cases it
is often the case that v[Wn] also converges to v[W ] under
some regularity conditions. Since by Theorem 1, v[W ] = 0,
we may conclude

v

[
Xn − µ
σ/
√
n

]
→ 0.

By Property 5, we may conclude
√
n
σ

(
v[Xn]− µ

)
→ 0.

B. BOUNDED EXPECTATION REVISITED
We now formally define BE and show that it provides an ε-
consistent change-of-measure. Therefore, it enjoys the prop-
erties discussed above. There are two equivalent ways to
define BE: One is more suitable for simulations; we call
it the operational definition. The other is more suitable for
direct calculations; we call it the computational definition.
For simplicity, let us first assume that them random variables
associated with different options are independent. The defi-
nition then will simply be extended to the case when they are
not independent. Let us start with the operational definition,
which is more intuitive.

Let X be the random variable indicating the reward (utility)
of the action. Assume X (ω) < ∞ for all ω ∈ �. Gen-
erate N i.i.d. random variables from the distribution FX (x),
order them from smallest to largest, and denote the resulting
sequence of random variables as

X(1),X(2), · · · ,X(N ).

In other words, X(1),X(2), · · · ,X(N ) is the order statistic of the
random sample. Define the ‘‘normal’’ set IN as

IN =
{
b
Nε
2m
c, b

Nε
2m
c + 1, b

Nε
2m
c + 2, · · · ,N − b

Nε
2m
c

}
.

Accordingly, the outlier set is defined as {1, 2, · · · ,N } − IN .
Figure 7 shows this sample division for a Pareto random
variable. In this figure, ε = 0.1 for the sake of representation.
Define the random variables vN [X ] as

vN [X ] =
1
|IN |

∑
i∈IN

X(i). (3)

The vN [X ]s converge almost surely to a finite limit, which we
call the bounded expectation of X :

Eε[X ] = lim
N→∞

vN [X ]. (4)

To see that the limit exists and is finite, we actually derive
the limit that gives us the computational definition of BE.
Specifically, by applying the law of large numbers, we obtain

Eε[X ] =
(
P(X ≤ xmin(ε))−

ε

2m

)
xmin(ε)
1− ε

+

(
P(X ≥ xmax(ε))−

ε

2m

)
xmax(ε)
1− ε

FIGURE 7. Representation of the operational definition: Order statistics
of the Pareto random variable. bNε

2 c of the first and last samples are put
in the outlier set. ε = 0.1 (Relatively large ε has been chosen to facilitate
the representation).

+

(
P
(
xmin(ε) < X < xmax(ε)

))
×
E
[
X |xmin(ε) < X < xmax(ε)

]
1− ε

. (5)

Here,

xmin(ε) = inf
{
x ∈ R : P(X ≤ x) ≥

ε

2m

}
,

xmax(ε) = sup
{
x ∈ R : P(X ≥ x) ≥

ε

2m

}
. (6)

To consider the case where the Xis are not necessarily inde-
pendent, we can proceed similarly. Specifically, we consider
the vector X :

X =


X1
X2
...

Xm

 .
with joint CDF

FX (x) = FX1,X2,...,Xm (x1, x2, . . . , xm).

Generate N i.i.d. random variables from the distribution FX .
For each i ∈ {1, 2, · · · ,m}, order the obtained vectors in
terms of the value of Xi (for equal values, the ordering is
random). Then, label the vectors as outliers as before. Finally,
all the vectors that have been labeled as outliers at least once,
are removed. Note that by the union bound, the outlier set has
at most Nε elements. The remaining collection of samples
will give us the normal set, and Eε[X ] can be computed as
before using Equations (3) and (4).

We now state and prove the main theorem regarding BE.
Theorem 3: BE is an ε-consistent change-of-measure

operation.
Proof:

Property 1: If P(ω ∈ � : X (ω) <∞) = 1, then for
any ε > 0, we must have xmax(ε) < ∞. Similarly,
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if P ({ω ∈ � : X (ω) > −∞}) = 1, then we must have
xmin(ε) > −∞, for any ε > 0. Now note that for any random
variable Xi, i = 1, 2, · · · ,m, we have

xi,min(ε) ≤ v[Xi] ≤ xi,max(ε),

which finishes the proof.

Property 2: Let {X1,X2,P}
ch
7→ {Z ,Q, v[.]}. Additionally,

let 0 = {ω ∈ � : X1(ω) > X2(ω)}. Since P(0) = 0 and
Q� P, we conclude that Q(0) = 0. Then,

v[X1] =
∫
�

X1(ω)dQ(ω)

(a)
=

∫
�−0

X1(ω)dQ(ω)

(b)
≤

∫
�−0

X2(ω)dQ(ω)

=

∫
�

X2(ω)dQ(ω)

= v[X2],

where (a) comes from the fact that Q(0) = 0 and (b) holds
according to the assumption that X1(ω) ≤ X2(ω) for all ω ∈
�− 0.
Property 3: Since BE is computed and uniquely deter-

mined by the CDF, and is symmetric with respect to the
ordering of random variables, this property is satisfied.
Property 4: For simplicity, let m = 1. We first show

that it suffices to prove the statement for continuous random
variables. Let U be a random variable uniformly distributed
in [−1, 1], and δ > 0. Define

Y [n]
= X [n]

+ δU ,

and

Y = X + δU .

Note that random variables Y and Y [n], n ∈ N, are continuous
and Y [n] a.s.

→ Y . Also, we have:

|Eε[Y ]− Eε[X ]| ≤ δ,

|Eε[Y [n]]− Eε[X [n]]| ≤ δ.

Note that δ > 0 can be chosen arbitrarily small. Therefore,
if we have Eε[Y [n]] → Eε[Y ], then we can conclude that
Eε[X [n]]→ Eε[X ]. Hence, it suffices to prove the statement
for continuous random variables X [n] and X . Let a = xmin(ε),
b = xmax(ε), an = x[n]min, and bn = x[n]max . We then have

Eε[X ] = E
[
X |xmin(ε) < X < xmax(ε)

]
=

1
1− ε

E[X1[a,b](X )],

Eε[X [n]] = E
[
X [n]
|x[n]min(ε) < X [n] < x[n]max(ε)

]
=

1
1− ε

E[X [n]1[an,bn](X
[n])].

Define

hβ (x) =


0 x < a− β

1+
1
β
(x − a) a− β ≤ x ≤ a

1 x > a,

where β > 0. We have P(X [n]
≥ a) ≤ E[hβ (X [n])].

Furthermore, since hβ (x) is a continuous function, we have

lim
n→∞

E[hβ (X [n])] = E[hβ (X )],

and

lim
β→0

E[hβ (X )] = P(x ≥ a) = 1−
ε

2
,

from which we conclude that

lim sup
n→∞

P(X [n]
≥ a) ≤ 1−

ε

2
.

Next, we have

P(X [n]
≥ a− β) ≥ E[hβ (X [n])]

n→∞
→ E[hβ (X )]
(b)
> P(X ≥ a)
= 1−

ε

2
= P(X [n]

≥ an),

where (b) results from the definition of xmin(ε) and the
assumption that X is continuous. For large enough n, we con-
clude that

P(X [n]
≥ a− β) > 1−

ε

2
,

which results in an ≥ a − β. Similarly, bn ≤ b − β. Now,
since X [n] a.s.

→ X , we have

X [n]1[a−β,b+β](X [n])→ X1[a−β,b+β](X ).

Applying DCT, we conclude that

E[X [n]1[a−β,b+β](X [n])]
n→∞
→ E[X1[a−β,b+β](X )]
β→0
→ E[X1[a,b](X )].

Thus,

lim
β→0

lim
n→∞

E[X [n]1[a−β,b+β](X [n])] = E[X1[a,b](X )]. (7)

Therefore, to finish the proof, it suffices to show that

lim
n→∞

E[X [n]1[an,bn](X
[n])]

= lim
β→0

lim
n→∞

E[X [n]1[a−β,b+β](X [n])].

We have

P(X [n]
≥ a− β) = P(X [n]

+ β ≥ a)
≤ E[hγ (X [n]

+ β)]
n→∞
→ E[hγ (X + β)]
γ→0
→ P(X + β ≥ a)
= P(X ≥ a− β).
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Now, we conclude that

lim sup
n→∞

P(X [n]
≥ a− β) ≤ P(X ≥ a− β).

Therefore,

lim inf
n→∞

P(X [n] < a− β) ≥ P(X < a− β)

= P(X < a)− P(a− β < X < a)

=
ε

2
− c(β),

where c(β)→ 0 as β → 0. Thus, we have

lim inf
n→∞

P(X [n] < a− β) ≥
ε

2
− c(β),

and

P(X [n] < an) =
ε

2
.

Now, we conclude that

lim sup
n→∞

P(a− β < X [n] < an) ≤ c(β),

Hence,

lim sup
n→∞

|E[X [n]1[a−β,an](X
[n])]|

≤ c(β) max(|a− β|, |an|)→ 0, as β → 0.

Similarly,

lim sup
n→∞

|E[X [n]1[bn,b+β](X
[n])]| ≤ d(β)→ 0, as β → 0.

We conclude that

lim
β→0

lim
n→∞

E[X [n]1[a−β,b+β](X [n])]

= lim
n→∞

E[X [n]1[an,bn](X
[n])].

Finally, using (7), we have

lim
n→∞

Eε[X [n]] = Eε[X ].

Property 5: Consider the operational definition of BE,
i.e., Equation 3. Note that the ordering of Y(i)s are exactly the
same as that of the X(i)s for a > 0 and completely reversed
for a < 0. The additional +b is added to all X(i)s, so it will
appear as a +b in the computation of v[Y ].
Property 6: It can be concluded from the application of

Lemma 1.

C. NONUNIFORM ε-CONSISTENT CHANGE-OF-MEASURE
POLICIES
It is worth noting that to prove Theorems 1 and 2, we did
not specifically use the fact that all random variables go
through the same change-of-measure operation. In other
words, as long as Properties 1 through 6 are satisfied, we can
use Theorems 1 and 2. Therefore, we can actually construct
change-of-measure policies as

{X1,X2, · · · ,Xm,P}
ch
7→ {ZXi ,QXi},

such that for any X ∈ {X1,X2, · · · ,Xm}, its value v[X ] is
given by

v[X ] = vX [X ] =
∫
�

X (ω)dQX (ω).

We refer to such policies as nonuniform change-of-measure
policies. Why might we want to consider nonuniform poli-
cies? The answer is that they give us more flexibility in
defining the appropriate change-of-measures. Specifically,
one way to define nonuniform change-of-measure policies,
is to act as if m = 1 and apply the change-of-measure
operation for each Xi separately to obtain v[Xi]. The big
advantage here is that we do not need to deal with the way
the random variables might be dependent on each other. One
might argue that, at the end of the day, we are choosing one of
the options and all we care is the distribution of the resulting
utility. In other words, we might be less concerned with the
way the potential options are correlated as we will only be
choosing one of them.

Of course, we need to be specifically careful and ensure
that the fairness properties, such as dominance property and
CDF symmetry property, are satisfied; otherwise, we might
be making an unfair comparison. Properties 1 through 5 do
not change; however, we provide a slightly modified version
of Property 6 to make it suitable for nonuniform change-of-
measure policies:
Property 6-b (Bounded Distortion for Nonuniform

Policies): For any i ∈ {1, 2, · · · ,m} and any event B ∈ σ (Xi),
we must have

|P(B)− QXi (B)| ≤ ε.

Definition 3 (Nonuniform ε-Consistent Policies): Con-
sider a probability space (�,F ,P) and a mapping rule
that maps any set of random variables on (�,F ,P) to a
set of integrable nonnegative random variables ZXi with
E[ZXi ] = 1. Specifically, we write

{X1,X2, · · · ,Xm,P}
ch
7→ {ZXi ,QXi},

such that for any X ∈ {X1,X2, · · · ,Xm}, its value v[X ] is
given by

v[X ] = vX [X ] =
∫
�

X (ω)dQX (ω)

=

∫
�

X (ω)ZX (ω)dP(ω).

We say that this change-of-measure operation is a nonuni-
form ε-consistent policy if it satisfies Properties 1 through 5
as well as Property 6-b.

Note that as we discussed above, nonuniform policies
could be specially easy to work with when the change of
measure operation is performed separately for each random
variable. In such cases, it suffices to provide the mapping

(�, σ (Xi),P) 7→ (�, σ (Xi),QXi ),

for each Xi. That is, for the ith random variable, we restrict
our attention to the space (�, σ (Xi)).
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V. SYSTEMATIC APPROACH TO CONSTRUCTING
ε-CONSISTENT POLICIES
In this section, we focus on two important tasks. First, we will
provide a specific method for constructing ε-consistent
change-of-measure policies using consistent functions. Sec-
ond, and more importantly, we will propose a systematic
approach to applying ε-consistent policies in probabilistic
decision-making. The approach is based on sweeping the
parameter ε from zero to large values and looking at how
preferences change in this process. The idea is to obtain a
holistic view of the problem taking into account the complex-
ities involved in decision-making under non-LLN regimes.

As discussed before, BE has some limitations. The
BE operation divides the probability space into two parts: the
‘‘normal’’ part and the ‘‘outlier’’ part, which has a probability
smaller than ε. The BE then completely eliminates the out-
lier part of the probability space. This is not necessary; the
only thing necessary is to weaken that part enough, so that
Property 1 is satisfied. Additionally, there is no need to stop
at two divisions. We can simply divide the space into more
parts. Using the partition lemma (Lemma 1), we can simply
construct an ε-consistent change-of-measure operation.
In fact, instead of dividing the space, we can apply a

smooth change-of-measure operation. This seems to have
some advantages over the partitioning approach.

Remember that for any random variable X , the tail function
F̄X (·) is given by

F̄X (x) = P(X > x), x ∈ R.

As before, suppose that we are interested in comparing Xi :
� 7→ R, for i = 1, 2, · · · ,m. For simplicity, let us adopt the
following notation for the CDF and tail function of Xi:

Fi(·) = FXi (·), F̄i(·) = F̄Xi (·).

The key to our method lies in what we call consistent
functions.
Definition 4 (Consistent Functions): We say that a func-

tion g : [0, 1] 7→ [0, 1] is a consistent function with respect
to random variables X1,X2, · · · ,Xm if all of the following
conditions are satisfied:

1) g is continuous and increasing, and g(0) = 0, g(1) = 1.
2) (Lipschitz continuity) There exists cg ∈ R such that
|g(x)−g(y)| ≤ cg|x−y| for all x ∈ [0, 1] and y ∈ [0, 1].

3) On the interval
[
0, 12

]
, g(·) is convex and we have

g(x) ≤ x.
4) On the interval

[
1
2 , 1

]
, g(·) is concave and we have

g(x) ≥ x.
5) For all x ∈ [0, 1],

g(x)+ g(1− x) = 1.

6) For each i = 1, 2, · · · ,m, there are constants ci and c′i
in R such that∫

∞

ci
g(F̄i(x))dx <∞,

∫ c′i

−∞

g(Fi(x))dx <∞.

It is easy to construct consistent functions, and indeed,
there are infinitely many of them for any set of random vari-
ables, as we will see. Our main theorem here is the following.
Theorem 4: Let g : [0, 1] 7→ [0, 1] be a consistent

function with respect to random variables X1,X2, · · · ,Xm.
For any i ∈ {1, 2, · · · ,m} and x ∈ R, define

QXi (Xi > x) = g(P(Xi > x)).

Then, P 7→ QX is a nonuniform ε-consistent change-of-
measure policy, where

ε = 2 sup
x∈[0,1]

|g(x)− x|. (8)

Intuitively, the consistent-function properties and the
change-of-measure operations in Theorem 4 are chosen to
weaken the outliers and strengthen the typical outcomes.
This is again consistent with our intuition that in a one-shot
decision, it makes sense to focus more on the more likely
outcomes.
Note: The actual value of ε for a specific set of random

variables could be smaller than what is stated in Theorem 4.
The value in the theorem is chosen so that a general statement
can be made. It is easy to verify that, for m = 1 and
non-atomic probability spaces, BE is a special case of this
general policy with

g(x) =


0 x < ε/2
x − ε/2
1− ε

2
ε/2 ≤ x ≤ 1−

ε

2

1 x > 1−
ε

2
.

Note that Condition 6 in Definition 4 is very easy to satisfy.
All we need is to make sure that the function g(x) becomes
relatively flat at x = 0 and x = 1. One easy way to satisfy it
is to apply the BE truncation using a very small value of ε′ =
10−4. Note that this should be much smaller than the overall
ε for g. The truncation can be done in a way that continuity is
satisfied. Nevertheless, as ε′ is very small, continuity at that
point has a negligible practical impact.

Proof of Theorem 4: For simplicity, for i ∈ {1, 2, · · · ,m}
we write

Qi = QXi .

First, note that since g is Lipschitz continuous, we have for
any A ∈ σ (Xi),

Qi(A) ≤ cgP(A),

so we have Qi � P, for i = 1, 2, · · · ,m.
Property 1: Property 1 is guaranteed due to Condition 5.

Specifically,
1)

∫
∞

ci
g(F̄i(x))dx <∞ guarantees that∫

∞

ci
Qi(Xi > x)dx <∞.

2)
∫ ci
−∞

g(Fi(x))dx <∞ guarantees that∫ ci
−∞

Qi(Xi ≤ x)dx <∞.
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Using (1) and (2), we conclude

v[Xi] =
∫
�

Xi(ω)dQi(ω) <∞.

Property 2: If P({ω ∈ � : X1(ω) ≤ X2(ω)}) = 1, then
P(X1 > x) ≤ P(X2 > x); therefore, for all x ∈ R, we have

Q1(X1 > x) = g(P(X1 > x))
(a)
≤ g(P(X2 > x))

= Q2(X2 > x),

where (a) results since g is increasing. Therefore, we have
Q1(X1 > x) ≤ Q2(X2 > x) for all x ∈ R. Thus,
v[X1] ≤ v[X2].
Property 3: Since v[Xi]s are uniquely determined by the

joint CDF, and the operation is symmetric with respect to the
ordering of random variables, this property is satisfied.
Property 4: For simplicity, assume that the random vari-

ables are nonnegative. Let

h(x) = QX1 (X1 > x) = g(P(X1 > x)),

hn(x) = QX [n]
1
(X [n]

1 > x) = g(P(X [n]
1 > x)).

Let Y be the dominating random variable, and

u(x) = g(P(Y > x)).

For all x ≥ 0, we have

|hn(x)| ≤ u(x).

Now note that

v[X1] =
∫
∞

0
h(x)dx,

v[X [n]
1 ] =

∫
∞

0
hn(x)dx.

Since |hn(x)| ≤ u(x) and
∫
∞

0 u(x)dx < ∞ (Since Y is
integrable), we can apply DCT to conclude

lim
n→∞

∫
∞

0
hn(x)dx =

∫
∞

0
h(x)dx = v[X1],

which completes the proof.
Property 5: Let Y = X + b. Let Q1 be the measure

associated with X and Q2 be the measure associated with Y .
We have

Q2(Y > y) = g(P(Y > y)) = g(P(X + b > y))

= g(P(X > y− b)) = Q1(X > y− b)

= Q1(X + b > y).

Thus,6

v[Y ] = EQ2 [Y ]

= EQ1 [X + b]

= EQ1 [X ]+ b

= v[X ]+ b.

6Here, EQ[·] shows the expected value with respect to measure Q.

Now let Y = aX and a > 0. Hence,

Q2(Y > y) = g(P(Y > y))

= g(P(aX > y))

= g(P(X >
y
a
))

= Q1(X >
y
a
)

= Q1(aX > y).

Therefore:

v[Y ] = EQ2 [Y ] = EQ1 [aX ] = aEQ1 [X ] = av[X ].

Similarly, for a < 0, we have:

Q2(Y > y) = g(P(Y > y))

= g(P(aX > y))

= g(P(X <
y
a
))

(a)
= Q1(X <

y
a
)

= Q1(aX > y),

where (a) results since g(x)+ g(1− x) = 1. Therefore,

v[Y ] = EQ2 [Y ] = EQ1 [aX ] = aEQ1 [X ] = av[X ].

Property 6-b:Let δi(P,Qi) show the total variation distance
between P and Qi (measured on σ (Xi)), given by

δi(P,Qi) = sup
A∈σ (Xi)

|P(A)− Qi(A)| .

Due to Conditions of Definition 4 (e.g., convexity/concavity
of g), it is easy to see that the supremum is obtained by some
B = {ω : θ1 ≤ Xi(ω) ≤ θ2}. We can then say that for any
i ∈ {1, 2, · · · ,m} and any event B ∈ σ (Xi), we have

|P(B)− Qi(B)| ≤ sup
{θ :P(Xi≥θ)≤ 1

2 }

|P(Xi ≥ θ )− Qi(Xi ≥ θ )|

+ sup
{θ :P(Xi≥θ )≥ 1

2 }

|P(Xi ≥ θ)− Qi(Xi ≥ θ )|

≤ sup
x∈[0, 12 ]

|x − g(x)| + sup
x∈[ 12 ,1]

|g(x)− x|

≤ 2 sup
x∈[0,1]

|x − g(x)|.

A. A SYSTEMATIC APPROACH TO DECISION-MAKING IN
NON-LLN REGIMES
Here, we propose a systematic approach for decision-making
in non-LLN regimes. We start by picking an ε-consistent pol-
icy such as the method described in the previous section using
consistent functions. Note that if we let ε = 0, we obtain the
same results derived from expected utility theory. In general,
let i(ε) be the preferred option for a specific ε. As we then
increase ε, we take note of the possible changes in i(ε). Let
ε∗ be the value of ε where the first change occurs in i(ε),
i.e., i(ε∗) 6= i(0). The key insights are as follows:
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1) The larger the value of ε∗, the more stable is the choice
made by the expected utility (i(0)). That is, it is more
likely that the expected utility is suggesting a good
option.

2) On the other hand, if the value of ε∗ is small, this is a
high indication that i(ε∗) might be the best choice.

As the problem of decision-making under non-LLN regimes
is multifaceted and most likely a simple narrow approach will
not be enough, the proposed method above, where we look
at how the preferences change as ε changes, seems to be a
step in the right direction. An interesting question for further
research seems to be finding guidelines on the choice of the
threshold value of ε∗ at which i(ε∗) becomes the preferred
option. As a very rough rule of thumb, one might suggest
ε∗ < 0.05 might be used as the threshold.

B. EXAMPLE OF THE APPLICATION OF THE
CHANGE-OF-MEASURE OPERATION USING CONSISTENT
FUNCTIONS
To clearly present the proposedmethod, let us revisit the prob-
lems that we introduced in the motivation section. We choose
the following consistent g function:

g(x) =


0 x ≤ 10−4

2αx1+α 10−4 ≤ x ≤ 0.5
1− g(1− x) x ≥ 0.5.

Note that technically, the above function is discontinuous at
10−4 and 1 − 10−4. However, since the discontinuity jump
is so small, it does not have any practical impact on our
calculation. Nevertheless, one may easily make the function
fully continuous by replacing the jump with a smooth curve.
For α = 0, we have g(x) = x, so we obtain the standard
expected utility, and ε = 0. As we increase α, ε increases.
Therefore, for any α, we obtain a corresponding value for ε.
Thus, to apply our systematic approach, it suffices to increase
α gradually and compute the corresponding value of ε as out-
lined below. Figure 8 shows this g(x) for different α values.
If we have a random variable X and are interested in

evaluating its value, i.e., v[X ], we can proceed as follows.
Specifically, if the random variable X is discrete and bounded
from the left, we can simplify the change-of-measure opera-
tion in Theorem 4 in the following way. Suppose {x1, x2, · · · }
are potential values of X in an ordered way, i.e.,

x1 < x2 < x3 · · · .

Let pi = P(X = xi). Then, we obtain the changed probabili-
ties, qk , for k = 1, 2, . . . , as below

qk = Q(X = xk ) = g

(
∞∑
i=k

pi

)
− g

 ∞∑
i=k+1

pi

 .
If the range is finite, i.e.,

x1 < x2 < x3 · · · < xr ,

FIGURE 8. A representation of g(x) with different α values.

then, for k = 1, 2, · · · , r − 1, we obtain

qk = Q(X = xk ) = g

(
r∑
i=k

pi

)
− g

 r∑
i=k+1

pi

 ,
and

qr = Q(X = xr ) = g(pr ).

The value of ε can be obtained using the total variation
distance between P and Q which in this case simplifies to

ε =
1
2

r∑
i=1

|pi − qi|.

The value of X is then obtained as

v[X ] = vε[X ] =
∑
k

xkqk .

Algorithm 1 represents the procedure for calculating v[X ]
and ε.

We now can use the above to revisit the problems that we
introduced in the motivation section.

Let us first consider the St. Petersburg problem. Here,
we use vε[·] to show the value function associated with ε.
As we know for ε = 0, the value of the game is infinity:

v0[X ] = ∞.

However, even when we choose a very small ε, apply the
transformation given in Theorem 4, and use the g function
above, the value of the game drops to a very small amount.
Indeed, at just ε = 0.01 (which is obtained at α = 0.056),
the value drops to

v0.01[X ] = 12.4.

Thus, we conclude that it is most likely not reasonable to
pay more than 13 units of utility for a one-time shot at this
gamble.
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Algorithm 1 Calculation of v[X ] = EQ[X ]
INPUT:
1) Distribution of X :

- X = {x1, x2, . . . xr }: x1 < x2 < · · · < xr
- P = {p1, p2, . . . , pr }

2) α

OUTPUT:
1) vε[X ]
2) ε

for k = 1 : r − 1 do
qk = g

(∑r
i=k pi

)
− g

(∑r
i=k+1 pi

)
end for
qr = g(pr )
vε[X ] =

∑r
k=1 xkqk

ε = 1
2

∑r
i=1 |pi − qi|

Next, let us look at the legal example provided in
Section II. Remember that expected utility provided the
following result:

E[X ] = 10,
E[Y ] = 0.35× 40− 0.65× 5 = 10.75,

which suggests option Y (going to the court) is preferable.
Now, by applying the transformation given in Theorem 4 and
using the g function above, we notice that at

ε∗ = 0.0165,

which is obtained at α = 0.135, we obtain

v[X ] = v[Y ] = 10.

That is, for any ε > 0.0165, option X , i.e., accepting the
settlement is preferable. Since ε∗ = 0.0165 is very small,
we conclude that accepting the settlement, is most likely a
preferable choice.

The above examples were for scenarios where we obtained
a result other than what is proposed by expected utility. Nev-
ertheless, expected utility provides reliable answers for many
problems (even in non-LLN regimes). Indeed, for many such
problems, we note that there is no ε for which the preferences
change. This means that the above method produces the same
result as the one obtained by the expected utility theory.

In other scenarios, the method produces a large ε∗, which
again indicates agreement with expected utility theory. For
example, suppose that an agent is choosing between winning
X = 95 units of utility for sure and a gamble where she
wins Y = 100 utility units with probability 80% and nothing
(Y = 0) with probability 20%. In such a case, expected
utility theory (ε = 0) prefers X . Applying the above method,
we obtain ε∗ = 0.15, which is a very large value, indicating
that the result obtained by expected utility theory is reliable.

C. AN EXAMPLE OF A REAL-WORLD APPLICATION
OF THE METHOD
Here, we would like to apply the systematic approach to
the problem of angel and venture capital (VC) investment
and compare the results with those obtained by a few other
approaches. Suppose that an angel or a venture capital invest-
ment fund is being created to invest in technology startups.
A fundamental question is how many startups the total avail-
able funds should be divided in? We will apply the proposed
systematic change-of-measure-based approach to answer the
question and compare the result with those from a few other
approaches.

To formulate the problem, let L be the total number of
companies in which the fund invests. LetX (j), j = 1, 2, · · · ,L
be the total profit from the investment in the jth company
assuming one unit of money being invested. For example,
if the jth company fails, we let X (j)

= −1. On the other hand,
if the investor triples the invested amount, we let X (j)

= 2. For
simplicity, we assume that the fund invests equal amounts in
each company.

The first question that needs to be addressed is what the
distribution of the X (j)s is. There are many works on the
topic, for example, [71]–[74], and we adopt a model based
on [71]. Specifically, we assume that the distribution of X (j)

is as shown in Figure 9.

FIGURE 9. Distribution of U.S. venture returns between 2004 and 2013,
adapted from [71].

Assume that the investor requires a minimum profit
of 140% over the length of the investment, which is usually a
few years for each startup. This seems to be consistent with
the goals set by VCs and angel investors. Let us now try to
address the question of how many companies the fund should
invest in.
Expected Utility Approach: If we compute the expected

utility, we get

E[X (j)] = 1.52,

which implies that on average, the investor earns a profit of
150% dollars for each dollar she invests in a single company.
This means that if we just want to use expected utility, even
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a single startup suffices as E[X (j)] − 1.4 > 0. Needless to
say, VCs and angel investors are completely aware that the
expected utility does not suffice for such risky investments.
It is well known that a diversified portfolio is much less risky.
Limiting (Bounding) Loss Probability: One common

approach is to require that the probability of a loss at the end
of investment be lower than a given threshold, say 10%.More
specifically,

P

 L∑
j=1

X (j) < 0

 < 0.1.

Assuming the investments are independent, we can cal-
culate the required L using the distribution of the sum.
The smallest L for which the probability of loss is smaller
than 10% is

L = 12.

Thus, the investor could choose L = 12. It is worth noting that
due to the discreteness of the distribution, the loss probability
is notmonotonic for a small L. For example, the loss probabil-
ity is larger than 10% for L = 13, but it becomes smaller than
10% for all L ≥ 14. Thus, the investor may choose L ≥ 14
to be on the safe side.
Proposed Systematic Approach Based on Consistent

Functions:We can follow the systematic approach discussed
in the previous section. Specifically, we look at

vε

 1
L

L∑
j=1

X (j)
− 1.4

 ,
and for each L obtain the range of values of ε where the
above quantity is positive. Remember that this range gives
us stability, and we want it to be larger. If we require a 0.05
tolerance (i.e., ε∗ = 0.05), we obtain

L ≥ 12.

Therefore, the proposed systematic approach provides sim-
ilar results to the approach based on limiting loss proba-
bility in this case. However, the systematic approach based
on the change-of-probability measures has some desirable
properties:

- First, it is a general approach that can be applied to any
situation, i.e., in LLN and non-LLN regimes.

- Second, it is a systematic approach that can be easily
programmed into AI decision-making.

- Third, the proposed approach is based on the entire prob-
ability distribution, while approaches such as limiting
the loss probability only look at part of the distribution
(e.g., the part resulting in a loss).

- Finally, as discussed before, combining different
approaches seems to be a reasonable approach to prob-
abilistic decision-making, and the proposed change-of-
measure approach can be a key component in that regard.

VI. DISCUSSION AND FURTHER RESEARCH
Here, we provide some discussions and comments on a
few potential avenues for further research. Decision-making
under non-LLN regimes is an important area to investigate,
and its importance is growing with the rise of AI. Almost
all high-impact decisions are in this category. Unlike LLN
regimes where expected utility theory provides a relatively
satisfying answer, the problem of decision-making under
non-LLN regimes is multidimensional and complex, and
each specific instance might require specific consideration.
Therefore, it is very unlikely that a single approach can pro-
vide all the answers. With those considerations in mind, this
article aimed to provide a framework based on the change-
of-probability measures to shed light on some aspects of
this important area. We observed that the proposed method
provides satisfactory results for some problems and was able
to provide some insights.

We believe the presented material potentially provides sev-
eral avenues for further research. First, the proposed approach
should be applied to different problems within different con-
texts. Undoubtedly, such efforts will reveal shortcomings,
and this could help bring us closer to more comprehensive
approaches. Different specific non-LLN problems in engi-
neering, computer science, philosophy, economics, and other
social sciences can be considered to test and improve the
proposed approach. This could help yield more insights into
the types of problems for which different approaches aremore
effective.

It is important to note that the proposed method addresses
a single issue: the non-LLN nature of some decision-making
problems. For more comprehensive decision-making, a very
promising lead could be to combine the proposed methodol-
ogy with other techniques, such as those developed for risk
management.

Next, there is much flexibility within the proposed frame-
work. The approach used in Sections V-A, V-B, and V-C
is only one of the possible approaches under the proposed
framework. Different approaches using different forms of
change-of-measure operations might be more effective for
some problems.

There are many problems that can be considered from a
mathematical perspective. Here, we mention a few: First,
it is possible to add to the required properties to make
the set of change-of-measures more restrictive. Second,
the stated results can be extended and improved. More prop-
erties of ε-consistent change-of-measure policies could be
proved.

Finally, in the algorithms that we have provided,
we focused on the cases in which there is only one change
of priorities for ε∗ < 0.05. However, it is possible that
even the second option is not stable enough, such that the
preferred option changes very quickly by increasing ε slightly
from the ε∗. For these cases, more sophisticated strategies
for optimal decision-making must be developed, which is an
interesting question to investigate in further research.
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VII. CONCLUSION
In this article, we considered the fundamental problem
of decision-making under non-LLN regimes. We first
introduced BE as a principled way to address the accepted
principle of ignoring negligible probabilities. BE provided
satisfactory answers and insights regarding some aspects
of decision-making under non-LLN regimes. Pointing out
some shortcomings of BE, we then extended the approach
to a much more general framework of change-of-probability
measures. The proposed theory can be considered to be a
generalization of expected utility theory in two directions.
First, it was shown that as the number of repetitions increases,
the results derived from the proposed theory converges to
those from expected utility theory. Second, when the dis-
tortion parameter, ε, is zero, the proposed theory again
becomes identical to expected utility. Finally, we suggested
a systematic approach to applying the theory and showed
that it produces satisfactory results for some examples. The
proposed paradigm can be applied to different high-impact
and non-LLN decisions made by humans or AI in busi-
ness, economics, medicine, and computer science, to name
a few. However, due to the complexity and multidimension-
ality of such problems, there may be limitations in the pro-
posed method that need to be carefully investigated. Hence,
we noted that this article could potentially lead to consider-
able further research.
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