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Abstract— In this paper, we introduce two general categories
of stochastic trajectory processes that provide uniform Binomial
distribution for unmanned aerial vehicles (UAVs) in finite convex
areas with arbitrary geometry. First, we introduce radial trajec-
tory process as a special case of the first category along with its
properties. Then, we delve into the general trajectory processes,
namely spiral and oval, and show that independent of the areas
geometry, these trajectories not only provide uniform scattering
of UAVs but also provide ergodic coverage across the area.

Index Terms—Unmanned aerial vehicles, binomial point pro-
cess, uniform network coverage, finite area.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs)-assisted communication
networks are now a well-known network extension particularly
in temporary and urgent use cases. Also, utilizing UAVs for
data collection from the Internet of Things (IoT) devices and
surveillance of urban, rural, and even inaccessible areas are of
the most conceivable use cases of the UAVs in 5G and beyond
5G [1].

So far, the major part of research directions in UAV
networks have been contributing to optimal placement and
network modeling in the static networks. In this regard, a lot of
studies have been done considering random modeling of UAV
networks using tools from stochastic geometry, e.g., [2]–[4].
However, while numerous research endeavors have alluded to
the static UAV communication networks, recently the mobility
capability of the UAVs encouraged researchers to analyze
and design mobile UAV networks too. In this regard, two
research directions have been considered: path planning and
performance nalysis using stochastic modeling of the mobile
UAV networks. Although there exists an exhaustive literature
on path planning and trajectory design, reviewing its state of
the art is out of scope of this paper and interested readers are
referred to [5].

Speaking of modeling and performance analysis of networks
with mobile UAVs, stochastic trajectory models has been ex-
ploited in [6]–[9]. In [6], random waypoint mobility (RWPM)
and uniform mobility (UM) were used to respectively model
the vertical and spatial movements of the interfering UAVs
in a finite network. Also, a more comprehensive model was
developed in [7] where coverage probability was analyzed
under the similar mixed mobility model and two UAV-user
associations. Handover mobility was investigated in [9] for the
third generation partnership project (3GPP) proposed mobility
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model in both constant and variable speed policies. The same
authors also considered other models such as random stop
(RS), random walk (RW), and random waypoint (RWP) in [8]
to characterize the point processes of each mobility model and
analyze the network performance in terms of average received
rate and session rate. In our previous work [10] we introduced
two families of stochastic trajectory processes that provide
uniform coverage at each time instant in a finite circular area.

Although the work in [10] provided general forms of
stochastic trajectories, there is a limiting assumption: the
region needs to be a circular area. However, this assumption
is not true in many real-world scenarios. Hence, in this paper,
we aim to extend the idea to the more practical case: general
shaped convex areas. We show that there can be defined
stochastic trajectory processes in any finite and convex area
such that the uniformity of the points at each time instant can
be preserved. We further show that the proposed trajectory
processes exhibit an ergodic behavior in the following sense:
the portion of the time that any area is covered over a long
period is proportional to the area of that region.

The rest of this paper is as follows: Section II provides
the system model and assumptions. Section III, introduces
a simple but insightful stochastic trajectory process for the
general finite convex area while Section IV provides the
general form of this type of stochastic trajectories, called spiral
trajectories. Section V, introduces the second form of general
stochastic trajectory process families, namely oval trajectory
processes and, Section VI concludes the paper.

Note: Throughout this paper, random variables are shown
by bold small and capital letters while non random variables
are shown by non-bold small and capital letters.

II. SYSTEM MODEL AND ASSUMPTIONS

Figure 1 shows a general finite convex area in which
the stochastic trajectories are of interests. The convex area
is represented by A(θ, ρ(θ)) in which θ ∈ (0, 2π) and
0 ≤ ρ(θ) ≤ ρmax are in polar coordinates. Without loss of
generality, we assume that the origin is somewhere inside the
region A. Furthermore, there are a finite number of N UAVs
aimed to fly over the area at the fixed altitude of H . The idea of
the fixed altitude is fairly a reasonable assumption specially in
a vast area with quiet large number of UAVs [2]. It is assumed
that each UAV i, i = 1, 2, ..., N , starts its flight at random time
instant Ti chosen independently and uniformly from (0, τ)
where τ is an arbitrary time duration value for launching the
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Fig. 1. A typical convex region. UAVs fly toward the regions boundaries and
back on straight line trajectories which are selected by random angles, θi.

network. The more details on the UAVs mobility is provided
specifically in each setup in the rest of the paper.

III. RADIAL TRAJECTORY PROCESS

In this part, we introduce the simplest form of trajectories,
called radial trajectory in which UAVs move from the origin
to the cell boundaries on a straight direction. As mentioned
before, each UAV starts its flight at a random time instant
chosen uniformly from (0, τ). Here, τ , is also the time it
takes a UAV to reach the boundary of the area and vice
versa. Prior to fly toward the cell boundaries, UAVs need
to choose a random direction with respect to the horizontal
axis. The angles θis have to be selected such that the network
experiences a uniform coverage across its region. This will
be investigated in the next part. After reaching the edge of
the area, UAVs are back to the origin in the same direction
which takes τ seconds as well. Finally, when they get back
to the origin, they choose another random direction and this
procedure repeats continuously.

A. Uniformity

In this section, we show that for radial trajectory process
a uniform BPP will be maintained at all times t > τ across
any given convex area. Before going to the main part of this
section, we first recall the distribution characterization of a
uniform point process in a given area. The following lemma
explicits the required characteristics of a uniformly scattered
points in R2.

Lemma 1. The joint probability function of the polar coor-
dinates of uniformly distributed points in an arbitrary finite
area A(θ, ρ(θ)) in R2 is as below:

fR,Θ(r, θ) =
2r∫ 2π

0
ρ2(σ)dσ

. (1)

Proof. We simply use the definition of the uniformity in R2

where P(X ∈ dA) = dA
|A| , and |.| is the Lebesgue measure.

Hence, in an arbitrarily shaped area, with polar coordinates,
A(θ, ρ(θ)), this implies that

P(X ∈ dA) =
rdrdθ∫ 2π

0

∫ ρ(σ)

0
rdrdσ

= fR,Θ(r, θ)drdθ, (2)

simplifying of which results in (1).

Now based on this fact, we state Theorem 1 to introduce
radial trajectory process in a general finite area. However, be-
fore the theorem, we first provide the necessary corresponding
assumptions:

Assumption 1. Assume that N UAVs choose their initial
flight direction independently according to the probability
distribution function (PDF) as below

fΘi
(θi) =

ρ(θi)
2∫ 2π

0
ρ(σ)2dσ

, i = 1, 2, ..., N. (3)

Also, conditioned on Θi = θi, the UAVs distance to the origin
at each time instants of kτ + Ti ≤ t ≤ (k+ 1)τ + Ti can be
obtained as the following form

Ri|Θi=θi(t) =

ρ(θi)
√

t−Ti−kτ
τ , k even

ρ(θi)
√

(k+1)τ−t+Ti
τ , k odd

, (4)

where Ti ∼ U(0, τ) is chosen independently.

Now the following theorem holds:

Theorem 1. For all t > τ , the instantaneous locations of the
UAVs following Assumption 1 is a uniform BPP in any convex
and finite area, A(θ, ρ(θ)).

Proof. To prove the theorem, we need to prove both the
independence and uniformity of the points at each time instant
t > τ . The proof for the independence is straightforward for
both the direction and the initial flight times of the UAVs
are chosen independently. Therefore, we conclude that their
location remains independent at all time instants after that.
For the uniformity, we need to show that the UAVs locations
represent a uniform scattered point process at each time t > τ .
To this end, we consider the path with direction from the origin
to the boundaries where k is even. The proof for the inverse
direction, i.e., when k is odd, is quiet similar. To do so, we
first obtain the PDF of the UAVs distance to the origin by
first calculating its cumulative distribution function (CDF) as
below (For the sake of notation simplicity, we drop i from the
letters.)

FR|Θ(r) = P

[
ρ(θ)

√
t−T− kτ

τ
≤ r

]

= P
[
T ≥ t− kτ − τr2

ρ(θ)2

]
= 1− t

τ
+ k +

r2

ρ(θ)2
,
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derivative of which gives the conditional PDF, fR|Θ(r|θ)
obtained as below

fR|Θ(r|θ) =
2r

ρ(θ)2
. (5)

This is equal to what one can obtain by dividing of (1)
by Equation (3). On the other side, (3) can be verified by
integrating from (1) with respect to the r. This completes the
proof.

Corollary 1. Although choosing θi using (3) is obtained
mathematically, the intuition behind it is also interesting.
Indeed, it shows that in order to be uniformly distributed, θi’s
should be chosen such that those with larger distance to the
origin are more probable. In other words, the longer the ρ(θi)
is, the more it is probable that θi is chosen.

Corollary 2. The special case of Theorem 1 is when the area
is simply a circle, i.e., ρ(θ) = ρ. This case has already been
investigated in [10].

Corollary 3. The time variant velocity of the ith UAV can be
obtained by taking derivation of (4) as below:

Vi|Θi=θi(t) =


ρ(θi)√

τ(t−Ti−kτ)
, k even

− ρ(θi)√
τ((k+1)τ−t+Ti)

, k odd
, (6)

where the negative sign shows the direction toward the origin.

In the next part, we investigate the ergodicity of the pro-
posed process.

B. Coverage Ergodicity

In this section, we show that beside providing uniform
distribution, radial trajectories provide ergodic coverage as
well in the sense that the occupying time duration of any
arbitrary region by the UAVs is proportional to its area. To
show this, we assume a portion of region, S ⊂ A, and partition
it to roughly equal small components of ∆s = ρ(θ)∆θ∆r → 0
and denote the random variable of the time duration that ∆sj
is occupied in time interval of (kτ < t < (k + 1)τ) by Uk,j .
Now, we obtain the PDF of Uk,j in the following lemma.

Lemma 2. The random variable Uk, j is distributed according
to Uk, j ∼ α ∆r

ρ(θj)
Bernoulli(δj) as shown below:

Uk,j =

{
α ∆r
ρ(θj)

with prob. δj

0 with prob. 1− δj
, (7)

where α > 0 is a constant and δj is the probability that a
UAV has covered ∆sj which is obtained as in (9).

Proof. Let ∆sj = ρ(θj)∆r∆θ be the area of each small com-
ponent of S . In the radial trajectory process, the probability
that a region with area ∆sj is covered is equivalent to the
probability of selecting the angle θj among the all possible
angles which is obtained as

P(∆sj is covered) = δj =

∫ θj+∆θ

θj
ρ(σ)2dσ∫ 2π

0
ρ(σ)2dσ

. (8)

However, considering ∆θ → 0 for all the components, we
approximate (8) by

δj =
∆θρ(θj)

2∫ 2π

0
ρ(σ)2dσ

= β∆θρ(θj)
2, ∀j = 1, 2, . . . , n, (9)

where β = 1∫ 2π
0

ρ(σ)2dσ
and n → ∞. Furthermore, the time

duration in which an area of the size ∆sj is under coverage
is conversely related to the UAVs velocity which is directly
related to the distance from the center, i.e., ρ(θj). This is
directly resulted from Equation (6). Hence, we may conclude
that

Uk,j = α
∆r

ρ(θj)
. (10)

Now, using Lemma 2, we can obtain the expected coverage
time of the area S = limn→∞

⋃n
j=1 ∆sj over the kth period

as below:

E[Uk] = lim
n→∞

n∑
j=1

E[Uk,j ] = αβ lim
n→∞

n∑
j=1

ρ(θj)∆r∆θ,

(11)
where the last equation is obtained by multiplying Equations
(9) and (10). Hence, we have

E[Uk] = αβ lim
n→∞

n∑
j=1

∆sj . (12)

Finally, as k → ∞, the total coverage time duration of S is
obtained as below:

US = lim
m→∞

m∑
k=1

Uk
(a)
= E[Uk] = αβ lim

n→∞

n∑
j=1

∆sj = αβ|S|,

(13)
where (a) comes from the Chernoff bound applied to the sum
of i.i.d. Bernoulli random variables, Uk, since according to
which for random variable Y =

∑n
i=1 Yi, where Yis are

i.i.d. Bernoulli random variables, we have

P (|Y − E[Y]|≥ δE[Y]) ≤ 2e−µζ
2/3, ∀ 0 < ζ < 1.

Equation (13) represents the fact that as k →∞, the overall
time duration in which S ⊂ A is under coverage is directly
proportional to its area.

In the next section, we extend the above idea to general
trajectories.

IV. GENERAL STOCHASTIC TRAJECTORY MODELS:
SPIRAL TRAJECTORY PROCESSES

In this section, we introduce a general form of radial tra-
jectory, namely spiral trajectory process for convex, generally-
shaped areas. Similar to the radial trajectory process, we show
that the proposed general trajectory provides both a uniform
and ergodic distribution.
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A. Uniformity

In this section, we claim that for any convex arbitrarily-
shaped region, we can define general trajectories that preserve
uniformity of points at any time instant t > τ . Theorem 2
states this idea. The basic idea is similar to what has been
presented in [10]. In the following theorem, A(0, ρ(θ)) is the
convex finite area with the origin in it. Before stating the
theorem, first we provide a few assumptions and definitions:

Definition 1. Let X(s) = (x(s), y(s)) : s ∈ [0, 1] →
A(θ, ρ(θ)), be the twice differentiable curves with the follow-
ing properties:
(a) X(0) = 0, X(1) = ρ(θ);
(b) r(s) = |X(s)| is a strictly increasing function of s.

Assumption 2. Assume that N UAVs start flying at times
T1,T2, . . . ,TN ∼ U(0, τ) to the direction with respect to
the horizontal axis determined by Θi ∼ fΘi

(θi), and using
mappings of the form

h(s) =
τr(s)2

ρ(θi)2
, (14)

they move toward the cell edge according to trajectories X(s).
Their mobility equation then becomes as (15) shown at the top
of the next page, namely general spiral trajectories.

Theorem 2. General spiral trajectories provide uniform BPP
in finite convex areas for t > τ.

Proof. The proof is fairly similar to the proof of Theorem 1
in [10].

A typical X(s) that satisfies Properties (1) and (2) can be
determined as below

X(s) = (ρ(θ)sk1 cos(θsk2), ρ(θ)sk1 sin(θsk2)), (16)

where k1 > 0, k2 ≥ 0. Figure 2 shows these trajectories in a
region of the form ρ(θ) = a cos(θ)− b.

Corollary 4. The special case of radial trajectory can be
obtained from spiral trajectories when k2 = 0.

B. Ergodicity

In this section, we show that the proposed spiral trajectories
provide an ergodic coverage to the area. Similar to the radial
trajectory, we define Uk,j as the time duration in which a
very small area component, ∆sj ∈ S is under coverage at
time interval kτ < t < (k+ 1)τ and we aim to show that the
time duration in which S is covered is proportional to its area.
To this end, we first state the following lemma.

Lemma 3. The coverage time duration of any small area
component covered by spiral trajectories is a coefficient of
a Bernoulli random variable as (7).

Proof. Proof is similar to the proof of Lemma 2. Hence, the
probability of ∆sj being covered is equal to (8).

Now, we note that independent of the shape of trajectory, we
can conclude that the time spent over any part of the region is

proportional to its area. This is obtained from the fact that the
key element in providing uniformity and ergodicity is the time
mapping determined by (14). Hence, any form of trajectory
that satisfies Definition 1, will result in a uniform and ergodic
coverage probability as long as it follows mapping (14), or
equivalently (15). Note that the convexity of the region is a
fundamental assumption in the above developed framework.
Otherwise, one can easily provide counter examples for the
obtained results.

V. GENERAL STOCHASTIC TRAJECTORY MODELS: OVAL
TRAJECTORY PROCESSES

In this section, we introduce the second family of general
trajectory processes for convex regions and show its uniformity
and ergodicity across the area. In this trajectory model, UAVs
move across a series of closed paths around the origin of the
area. The details are as follows.

Assumption 3. Assume that N UAVs choose their flight times,
T1,T2, . . . ,TN uniformly from (0, τ). Also, assume that they
choose path lengths l1, l2, ..., lN independently and uniformly
with the following probability mass function:

PLi(li) =
li
L
, i = 1, 2, . . . N, (17)

where L =
∑N
i=1 li

1. In addition, note that the paths need to
be closed and continuously differentiable. The UAVs can start
their flight from any point of their path. Furthermore, assume
that it takes τ seconds for each UAV to complete a round of
its flight. We call this trajectory model oval trajectory process.

Theorem 3. The oval trajectories provide uniform BPP in any
convex area.

Proof. The proof of independence is straightforward, since
each UAV independently chooses its flight start time and path.
The idea to show that the distribution of the UAVs locations is
uniform is to consider two area components and show that the
probability of choosing these two components is the same.
As shown in Figure 3, consider two paths lk and lj . Also,
consider small area components of these two paths ∆Ak and
∆Aj where ∆Ak = ∆Aj . The probability of choosing ∆Ak
is written as

P∆A(∆Ak) =
lk
L
× ∆Ak

Clk
, (18)

where C > 0 is a constant. Similarly, the probability of
choosing ∆Aj is written as

P∆A(∆Aj) =
lj
L
× ∆Aj

Clj
. (19)

Therefore, P∆A(∆Ak) = P∆A(∆Aj) which means that any
point in the region can be occupied by a UAV with the same
probability as the others. Hence, the UAVs are distributed
uniformly.

1To avoid collision, we assume that at each setup, paths are designed by
the same shape while having different lengths. In this framework, ∪∞i=1li =
A(ρ,Θ) and ∩∞i=1li = ∅.
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(x̃i(t), ỹi(t)) =


(
xi(h

−1
i (t− kτ −Ti)), yi(h

−1
i (t− kτ −Ti))

)
, k even(

xi(h
−1
i ((k + 1)τ + Ti − t)), yi(h−1

i ((k + 1)τ + Ti − t))
)
, k odd

. (15)
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Fig. 2. General curves obtained from Equation (16) where k1 = 25 and
k2 = 2, in A(θ, ρ(θ)) = 2− 4 cos(θ).
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Fig. 3. Oval trajectories. Note that for the proof, we assume that trajectories
have a small width (e.g., the green and the blue curves) which asymptotically
goes to zero.

A. Ergodicity

Similar to the previous processes, oval trajectories provide
ergodic coverage in the sense that the coverage time duration
of any part of the region is proportional to its area over a long
period. To show this, we consider S ⊂ A and provide the
following lemma.

Lemma 4. The coverage time duration of a small area
component ∆Aj → 0 under oval trajectory process is a

coefficient of a Bernoulli random variable as below

Wk,j =

{
∆Aj
Clj

τ with prob. δj

0 with prob. 1− δj
, (20)

where δj =
lj
L .

Proof. The proof is similar to the proof of Lemma 2.

Therefore, The overall coverage time duration over S is
obtained as

W = lim
m→∞

m∑
k=1

Wk
(a)
= E[Wk] =

τ

CL
lim
n→∞

n∑
j=1

∆Aj

=
τ

CL
|S|, (21)

where (a) results from Chernoff bound.

VI. CONCLUSION

In this paper, general stochastic trajectory processes were in-
troduced for arbitrarily-shaped convex areas such that uniform
point distribution for a finite number of UAVs is obtained. We
investigated two general categories namely spiral and oval, and
showed that at each time instant, the trajectories can provide
both uniform and ergodic distribution across the area.
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