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ABSTRACT

The ever-growing reliance on probabilistic performance-based frameworks in assessing and
designing structural systems is creating a need for efficient tools for propagating uncertainty through
general nonlinear and dynamic structural systems. This research is focused on the development
of metamodeling strategies for rapid response evaluation of a class of non-linear multi-degree-of-
freedom (MDOF) structural systems driven by stochastic excitations. In particular, the nonlinear
auto-regressive with exogenous input (NARX) model has been demonstrated to be versatile and
effective in this respect. However, significant difficulties in NARX model calibration and execution
have been encountered when directly applying this approach to practical MDOF systems with
large numbers of degree-of-freedoms. To overcome this limitation, a new metamodeling approach
is proposed in this work through combining projection-based model order reduction with multi-
input multi-output NARX models. The effectiveness and accuracy of the proposed approach are
illustrated on a 40-story nonlinear steel-frame subject to stochastic earthquake excitation.
Keywords: Metamodeling; Nonlinear dynamic systems; Stochastic excitation; Multi-degree-of-

freedom systems; Model order reduction; Stochastic dynamics
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INTRODUCTION

The rapid rise of available computational power has made the Monte Carlo method, or more
in general the stochastic simulation method, a widely used strategy for uncertainty quantification.
Indeed, these approaches enable the direct estimation of the uncertain response characteristics of
a wide variety of engineering problems and are often at the core of the frameworks developed to
estimate the performance metrics used in state-of-the-art probabilistic performance-based design
frameworks (Yang et al. 2009; FEMA P-58-1 2012; Chuang and Spence 2017; Ouyang and Spence
2020; Ouyang and Spence 2021). Notwithstanding this increase in available computational power,
these approaches require a large number of model realizations in order to provide reliable response
statistics and can easily become computationally cumbersome in the case of nonlinear dynamic
systems. To overcome this computational difficulty, approaches based on metamodeling techniques
have recently been explored for estimating the stochastic responses of dynamic systems (Lucor and
Karniadakis 2004; Lucor et al. 2004; Kundu and Adhikari 2014; Gidaris et al. 2015; Mai et al. 2016;
Mai and Sudret 2017; Bhattacharyya et al. 2020). In particular, researchers have recently developed
a promising metamodeling approach base on the use of nonlinear autoregressive with exogenous
input (NARX) models (Spiridonakos and Chatzi 2015; Mai et al. 2016). This approach has been
successfully applied to various nonlinear single-degree-of-freedom (SDOF) systems. While this
approach has been further applied to multi-degree-of-freedom (MDOF) systems (Spiridonakos and
Chatzi 2015; Mai 2016), difficulties in calibration and accuracy have been observed (Mai 2016). It
should also be noted that, even in the case of MDOF systems, the approach is based on a single-input
single-output (SISO) formulation. Therefore, a separate metamodel is required for each output of
a MDOF system. These limitations create the need for alternative metamodeling approaches for
MDOF nonlinear dynamic systems.

To effectively evaluate the response of MDOF nonlinear structures subject to stochastic exci-
tations, methods based on model order reduction (MOR) have been investigated (Grigoriu 2009;
Grigoriu 2012; Gidaris and Taflanidis 2013; Jensen et al. 2016; Bamer et al. 2017; Tehrani et al.

2018; Patsialis and Taflanidis 2020). The basic idea of these approaches is to represent the full
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system in a nonlinear reduced order subspace that preserves, with sufficient accuracy, the main
dynamic behavior of the system. The possibility of combining MOR with metamodeling for repli-
cating the behavior of nonlinear MDOF systems was recently investigated in (Chuang and Spence
2019). Despite the capability of efficiently replicating the time evolution of the system, the approach
outlined in (Chuang and Spence 2019) can only be applied to a special class of nonlinear system
with limited and concentrated sources of nonlinearity. The limitations of the approach lie in the
use of a normal mode MOR, difficulties associated with identifying appropriate NARX models that
do not have spurious model terms, and in the inability to capture response coupling between the
coordinates of the reduced space.

To address these limitations, this paper proposes an advanced metamodeling approach for a
more general class of MDOF systems. The approach is based on combining a proper orthogo-
nal decomposition (POD) based model order reduction and a multi-input multi-output (MIMO)
NARX model. In particular, the POD model order reduction converts the original system into a
low-dimensional space, while the MIMO NARX model captures the dynamics of the reduced order
system, including any coupling between the reduced coordinates. To calibrate the metamodel, a
non-intrusive least angle regression with pruning (LARP) scheme is developed for model structure
identification and an ordinary least square (OLS) method is implemented for coefficient determi-
nation. A case study consisting in a nonlinear steel frame subject to non-stationary stochastic
earthquake excitation is presented to illustrate the efficiency and practicability of the proposed

approach.

PROBLEM DEFINITION

A general n-dimensional MDOF dynamic structural system driven by stochastic excitation can
be modeled through a mapping, M(:) : R* X 7" — R” X 7", between the spaces of the stochastic
input and output as:

M(E(0),%(1),x(1)) = f(1), t €T ey

where ¥ (1), x(t), x(t) € R" X 7 are the stochastic acceleration, velocity, and displacement output
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vectors while f(z) € R" X 7 is the input stochastic excitation vector.

To model the stochastic input, it is generally convenient to consider a probability space (Q, B, P)
defined by a sample space €2, the o--algebra B on 2, and the probability measure P. The stochasticity
of the excitation f(¢) can then be described by a vector random process {w : w(t) € Q, t € T },
under the influence of which the excitation becomes f(w, ). The focus of this work is to define a
computationally tractable approach based on advanced metamodeling techniques for propagating

the uncertainty in f(w,t) through the system M when M is nonlinear.

THE PROPOSED APPROACH

This section outlines the proposed metamodeling approach together with a non-intrusive training
scheme. The metamodeling approach combines a proper orthogonal decomposition-based model
order reduction (POD-MOR) and MIMO NARX, which respectively extracts the underlying low-
dimensional reduced-order model from the general system (Eq. 1) and captures the dynamics of the
reduced-order model. In particular, the key step in the metamodeling approach is MIMO NARX
training, which entails MIMO NARX structure determination and coefficient estimation. A least
angle regression with pruning (LARP) scheme is proposed in this work for structure determination,

while an ordinary least square (OLS) method is implemented for estimating the coefficients.

Model order reduction

Most structural systems of practical interest have a large number of DOFs, which not only
increases the computational effort required for estimating structural responses but causes difficulties
in applying metamodeling techniques to represent the system (Spiridonakos and Chatzi 2015;
Chuang and Spence 2019). To overcome this issue, a MOR is used in this work for reducing the
order of the system. This approach is based on approximating the response of the system through

the following transformation:

x(1) = @, q(1) @)

where @, is an appropriate n X n, coordinate transformation matrix with n, < n, while ¢g(¢) €

R™ x 7 1s the response vector in the reduced space. From the above transformation, Eq. (1) can be
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written in the following n.-dimensional reduced-order form:

O M(®,,4(1), @ g (1), @ q(t) = p(t;w). 3)

where p(t;w) = d)zr f(t;w) € R™ X T is the excitation in the reduced space. For simplicity,
p(t;w) will be denoted in the following as p(¢).

In this work, the coordinates transformation matrix, ®, € R™"r, is obtained through proper
orthogonal decomposition (POD), an unsupervised learning approach that extracts principal com-
ponents, or basis functions, from a set of known data (Holmes et al. 1996). To this end, various
approaches have been proposed including, the method of Lagrangian multipliers (Volkwein 2013),
eigen-decomposition (Kerschen and Golinval 2002; Volkwein 2013), and singular value decom-
position (SVD) (Kerschen and Golinval 2002; Volkwein 2013). In general, the most widely used
approach is SVD and is also adopted in this work. To apply this approach to the problems of interest
to this work, it is first necessary to directly evaluate the full system of Eq. (1) for ng samples of
the stochastic excitation f(w;,t). From the output of Eq. (1), the following discrete time snapshot

matrix can be defined:
X = [x](l‘l), ...,xl(tnl), ...,xns(tl), ...,xns(tnt)], X e R™Muns @

where n; is the total number of discrete time steps, i.e. snapshots, considered for each of the ng
samples. In general, n; can be taken as a subset of the total number of time steps evaluated in solving
Eq. (1). In generating X, it is important to ensure that the snapshots, i.e. x;(¢;) fori = 1, ..., n; and
Jj =1,...,n,, are capable of capturing not only the nonlinear behavior of the system, but also the
stochasticity of the excitation. The snapshot matrix, X, can then be decomposed through SVD as
(Holmes et al. 1996):

X =UAVT )

where U is a nxn orthonormal matrix containing the left singular vectors of X, V is the (nsn,) X (nsn;)
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orthonormal matrix of the corresponding right singular vectors, while A is a n X (nyn;) pseudo-
diagonal matrix containing the singular values with A(j,j) = 4; € R* the jth largest singular
value for j = 1,2, ...,n. In general, the size of V is extremely large as nyn; > n. Hence, a more
computationally effective economy-size SVD is adopted in this work, in which only the first n
columns of V and the first n singular values are estimated. As outlined in (Kerschen and Golinval
2002; Volkwein 2013), the left singular vectors, U, are the POD modes.

In defining the coordinates transformation matrix, @, , for the reduced-order system, the first
ny POD modes, and so columns of U, are considered, i.e., ®, = [U;,Ua,...,U, |. In terms of the

snapshot matrix X, this corresponds to the following approximation:
T
X~ q)nrATruchTrunC +€x (6)

where Atpunc 1S the diagonal matrix of the first n, singular values, Vryync is the first n, columns of V;
while €y is the error process given tr(e XE}) = ?:nr 1 A? (Volkwein 2013). As a trade-off between

accuracy and computational efficiency, n, can be chosen by ensuring the energy captured in the

ny

truncated representation of X, Zj:

| /li, is not less than 7 of the total energy, tr(X X T) = ’;‘:1 /15,
ie., Z;frzl /li >n Z’}:l /li, where 7 is typically assumed to be close to 1, e.g., 0.99 (Bamer and
Markert 2017). A properly chosen 1 can bring significant dimensional reduction to the system,

leading to a considerable reduction in dimensions from Eq. (1) to Eq. (3), i.e. n, < n.

The MIMO NARX metamodel
Overview

Despite the computational savings gained through model order reduction, Eq. (3) is still a cou-
pled nonlinear dynamic equation that must be solved through computationally intensive numerical
integration schemes, e.g. Newmark or Runge-Kutta methods. It should also be observed that, in
general, the nonlinear model, M, still requires evaluation in the full space at each time step. In
other words, the computational gains associated with directly integrating the reduced system of

Eq. (3), are related mainly to the possibility of choosing a much larger time step as compared to
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that used in integrating the full system. To overcome this computational barrier, the idea that will
be explored in this work is to develop a non-intrusive metamodel, based on MIMO NARX, of the
reduced space that, once calibrated, does not require the evaluation of the full model at each time
step.

Under the assumption that the current output, ¢(¢;), of a nonlinear single-degree-of-freedom
dynamic system depends on its past output values, [g(t;—At), ..., g(t;—n,At)] with n, the maximum
output lag and At the time step size, and current and past load inputs, [p(¢;), p(t; — At), ..., p(t; —
ngAt)] with ny the maximum load lag, the nonlinear dynamic behavior of the system can be

captured through the following NARX model:

q(t)) =G(p(t;), p(ti = A1), ..., p(t; = nyAt), q(t; = At), ..., q(t; — ngAt)) + €(t;) (7N

where G(-) : R **! 5 R is the mapping from the recent inputs and outputs to the current
output, and {€ : €(t;) ~ N(O, 0'3( ti))} is the error process which is generally assumed as a Gaussian
process (Leontaritis and Billings 1987). Under the assumption that the dependence between the
coordinates, g(t), of the reduced space is negligible, SISO NARX models can be applied to MDOF
systems (Chuang and Spence 2019). This model, however, is incapable of capturing the inevitable
response coupling between the reduced coordinates for general nonlinearity. To overcome this
limitation, the possibility of applying a MIMO NARX (Billings et al. 1989) strategy is explored in

this work as a means to capture nonlinear and coupled dynamic behavior of Eq. (3). The general

form of the MIMO NARX model is:

q(t;) = G(z(1)) + €(t;) (8)

where G (-) : R+ D s R7r js the MIMO NARX model to be identified, z(1;) = [pT (%), pT (1i—
At), .., pT(t - nrAt), gt (t; — A1), ...,q " (t; - ngyAt)] is the regression vector of current and past
input and output values, and € : €(t;) ~ N (0, X)) is a vector-valued Gaussian error process.

A common structure for G (-), and that will be considered in this work, is the following linear-
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in-the-parameter form:

q(t;) = O'g(z(1;)) + €(t;) 9)

where g(+) = [ng(~),gg('), gzr(-)]T is the vector collecting all n, NARX model terms g (-),
in which g;(-) : R +rg+ne s R s a | j-dimensional function of the regression vector z(t) for
the jth reduced coordinate; while ® = diag[@y, - - - , ®,, ] is a block-diagonal matrix collecting the

NARX coefficients of the n, DOFs of the reduced system.

The LARP scheme
Model identification

In general, the identification of the MIMO NARX metamodel entails structure determination, i.e.
selecting NARX terms, and coefficient calibration. An efficient approach based on implementing
the least angle regression (LARs) algorithm for structure determination and the ordinary least square
(OLS) method for coefficient calibration has been proposed for identifying the NARX model of
SISO systems (Mai et al. 2016). In this work, the basic idea underpinning this approach is extended
for the identification of the MIMO NARX model of Eq. (9). To this end, consider the following

form for the jth reduced coordinate:
q;(t;) = @ g (z(1)) + (1) (10)

The first step towards calibrating the MIMO NARX model is to obtain a set of potential NARX
terms/features g? (z(1)) for each reduced coordinate based on a pre-designated form of basis function
(e.g. polynomial (Leontaritis and Billings 1987), rational (Billings and Chen 1996), wavelet (Wei
and Billings 2004), neural network (Billings and Chen 1996)), and maximum time delays n and

ng. The potential NARX feature matrix Z? of the jth reduced coordinate can then be written in the
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following discrete form:
g z(t)"

p T
£°(z(12)) o

£°(z(tn)"|

where t1, 1, ...,1;, ..., 1, is the discrete time sequence while g?(z(tl-)) contains /; > [; potential

t

NARX features. It is important to note that the regression vector z(;) of the MIMO NARX model
contains input and output values from all reduced coordinates, in contrast to the SISO NARX
model, where only terms of the jth reduced coordinate are considered. This enables the coupling
between the reduced coordinates to be captured.

The LARs algorithm (Efron et al. 2004) can then be employed to select the most relevant
NARX features in ZI;. by computing the correlation of each potential model term to the system
output (Billings et al. 1989), leading to a candidate NARX model term that contains a subset of the
potential NARX features. By simulating over ng samples, a total of n. ;, where n. ; < ng, unique
candidate model terms will be identified for the jth reduced coordinate of the system. For the
kth identified candidate model, the corresponding NARX coefficients can then be estimated by the

following OLS method that minimizes the one-step-ahead prediction error:

O, =argminepg s = [2],Z;4]7'Z} 0] (12)
0.k

where Z; ; for k = 1,2, ..., n.; is the candidate feature matrix of the kth candidate model, while
Q, is the response of the jth reduced coordinate. The prediction error epg j x can be defined as

(Chuang and Spence 2019; Mai et al. 2016):

2
T
HQJ- - Zj,k®j,kH

ot - 101

(13)

€PE,j.k =

where ¢ is a all-ones vector, while E,[Q] is the expected value (in a time average sense) of the
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response time series (;. The prediction error epg,; x measures one-step-ahead error, i.e. the
error of the current output given that z(¢), or the recent outputs and inputs, are perfectly accurate
(one-step-ahead prediction).

Once the candidate NARX model terms and the associated coefficients are determined, the next
step is to select the most appropriate MIMO NARX model from the candidates for representing
the system of interest. An appropriate error measure must be defined to this end. Since the goal of
metamodeling is to reproduce the whole time history with only inputs and a few initial conditions,
the MIMO NARX model must run recursively to generate the entire time history. The prediction
error criterion, however, is incapable of taking into account error accumulation during the recursive
process, making it unsuitable for model selection to be used defining metamodels. To avoid such
issues, the simulation error criterion can be employed to estimate the error produced by recursively
running the model. This approach, nevertheless, requires NARX models of all reduced coordinates
to run simultaneously. Given that each reduced coordinate has n. ; candidate NARX models, the
total number of candidate MIMO NARX models, H;f;l ne,j, can become extremely large. In this
work, it is proposed to overcome this issue by decoupling the identification of the NARX models

for each reduced coordinate. This is achieved by considering the following form for the NARX

model of the jth reduced coordinate during identification:
djx(t) = O] g, (2(t) (14)
where Z(#;) is the following modified regression vector:

Z(ti) = [pT(ti)a PT(ti - At)’ cees pT(ti - ant)’
q1(ti = A1), .., qj1(ti — A1), G k(1 = A1), a1 (1 = AL), ... g, (1 — AL),

q1(ti —ngAt), ..., q;-1(t; = ngAt), Gk (t; — ngAt), q w1 (ti — ngAt), ..., qn (t; — ngAt)]

10
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in which only the responses of the jth reduced coordinate, §; i (t;i — At), ..., 4, (t; — ngAt), are
estimated from the MIMO NARX model. The responses of all other reduced coordinates are directly
obtained from the high-fidelity data therefore decoupling the identification of the jth NARX model
from the identification of the other NARX models without losing the effects of reduced coordinate

interdependence. The corresponding error measure €sg,; « is defined as:

o, - 0.4
ot - 101

€SE,j.k =

15)

where Qj’k = [§x(t1),Gjx(t2),.... G k(ts,)]. By simulating over n, samples, the accuracy of
the kth candidate model can be measured by the expected error measure, e:sg’ j.k» from which the
optimal NARX model can be determined.

In selecting the optimal NARX model, a simpler model with less terms are generally preferred
as spurious NARX terms and features have been found to not only cause deleterious effects on the
accuracy of the model, e.g. over-fitting, but also induce spurious dynamics (Billings 2013; Piroddi
and Spinelli 2003; Mai et al. 2016). The optimal model, i.e. model terms g () and associated
coefficients @, is therefore chosen as the NARX model with the least number of NARX terms that
achieves a sufficiently small overall error, i.e. e:sg, ik < E,where E is a predefined threshold value.
The aforementioned process is then carried out for each reduced coordinate over all samples. The

final MIMO NARX metamodel is given by:

(1) =0'g(2(1)) (16)

where (1) = [pT(¢), pT(t = At), ..., pT(t —nsA?), §(t — AT, ..., §(t — nyAt)T] in which output
feedback from all reduced coordinates is considered, and @ is the expected value of @ over all n;

samples.

11
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Model refinement

The MIMO NARX model of Eq. (16), however, can still include spurious NARX terms even
though the simplest model is selected. This problem originates from the LARs approach, which
selects candidate terms based on correlation analysis that is not necessarily a reflection of the
contribution of a term to the model (Piroddi and Spinelli 2003). To address this issue, an iterative
simulation error based pruning procedure (Piroddi and Spinelli 2003) is introduced in this work
to identify and remove the spurious NARX terms. In particular, starting from the model of Eq.
(16), the procedure progressively identifies and deletes the most deleterious NARX term at each
iteration until an predefined error tolerance is met. Within each iteration, a set of trial models is
first generated, with each of them obtained by removing one unique term from the current MIMO
NARX model, and then compared with the current model. The coefficients associated with each
trial model are estimated by the OLS approach. To assess the performance of trial models, a MIMO

NARX simulation error measure is defined for a user-defined DOF of interest, as follows:

_ xm - o7 9|
1 X — B[ X ]1I*

A

€SE.m

(7)

where m is the DOF of interest, X, is the mth row of the snapshot matrix X of Eq. (4) (i.e. the
response of the mth DOF), ®;! is the mth row of ®,, 0 = [4(11),4(r2), ..., q(t,,)]. The error
describes the goodness of the MIMO NARX model in reproducing the response of the mth DOF in
the physical/full space. The performance of the current MIMO NARX model in each iteration can
be evaluated by taking the expectation over all training samples, ésg . Similarly, the error measure

for each trial model can be calculated from the expectation over all samples, denoted as é’,,. . The

SE,m
deleterious effect of removing each term is then evaluated by calculating the error increase of each
trial model against the current MIMO NARX model i.e. éls Em éSE,m- Within each iteration, the
current MIMO NARX model is then replaced by the optimal trial model with min{e;’s Em éSEm)-
The pruning process then proceeds to the next iteration with the new MIMO NARX model serving

as the current model and reevaluates until a user-defined error change threshold E is satisfied, i.e.,

12
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€sEm ~ €SEm > E.

The algorithm and overall procedure
The LARP algorithm of this section is outlined in Algorithm 1. The data flow associated with
the algorithm is schematically illustrated in Fig. 1(a), while in Fig. 1(b) a flowchart illustrates the

three main phases of the algorithm, which can be summarized as follows:

¢ Phase 1: Data collection and model order reduction

* Generate ng samples of the stochastic excitation f(w;,t), solve Eq. (1) for the
high-fidelity response samples, and define the snapshot matrix X.

 Estimate the coordinate transformation matrix @, through SVD on X. Solve the
reduced-order model of Eq. (3) therefore defining ng reduced-order input P; and

output Q; samples.
* Phase 2: LARs based MIMO NARX training

» For each reduced coordinate, propose a set of potential NARX terms (e.g. polyno-
mial, rational, wavelet, neural network). Loop over all training samples to identify
the most relevant NARX terms via the LARs algorithm, and estimate the NARX
coefficients by OLS. Keep the n¢ ; unique candidate NARX models over all samples.

« Estimate the error measure é sk, j.k for all candidate NARX models of Eq. (14). Keep
the most appropriate NARX models, in the sense of both accuracy and simplicity,

and define the MIMO NARX model.
* Phase 3: MIMO NARX pruning

* Apply the simulation error based pruning procedure to identify and remove the
unnecessary terms from the MIMO NARX iteratively, therefore defining the final

MIMO NARX metamodel.

13
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Algorithm 1: Least angle regression with pruning algorithm

Data: Q;, P;fori=1,2, ..., ns, ®,,
Result: 7, ©
// I.1 LARs to identify relevant features
Set errors threshold £ and user defined DOF m;
for j — 1ton,do
fori < 1ton;do
Construct Z; ; by Eq. (11);
LARs (Efron et al. 2004) select relevant features (column indices r; ;);
if r;; is unique then
Fjk < Tijs
Zijx < Z?’j(:vri,k);
end

end

// I.2 Select the NARX model

for j «— 1ton,do

for k — 1to7i.(j) do

fori < 1 to n, do

Ok — [Z}:j,kzi,j,k] IZ,T] le], // Eq. 12
for t < 1o to 14, do

e Q1 (T =g A, s Q; 1 (E = ngAD), .., G (1 = ngAD)]);
Q; k(1) —OTg(rj);// Eq. 14
end

éSE(i’ jv k) ”Ql J Ql s k” /HQl J Ql ]]

// Eq. 15
end
ése(j. k) «— Ei[ése(i, ], k)];

end
Kopt,j < argming ¢ ., (j.x)>£cardinality(r; x); // Accurate & simplest

end

Oopt — diag{E;:[O 1k, ] - Ei[Ony kopen, 1}:

Collect r; k,, ; + ij_zll l;; for all j into 7;

// I.3 Run the NARX model over the training data set

fori «— 1ton,; do

for t < 1o to 1,4 do
2=g([p (), p"(t = A1), .. pPT(1 = np A1), Q;(t = AD)T, ..., Q; (1 = ngAD)T]);
0.(1) « 0.,2(#): // Eq.16

end

esem(D) — | Xem — @O /| Xin — EIXiwl|: // Ea. 17

end
ésg.m = Bi[ése.m]; // The error of the NARX model

g] — gj([pT(t)e cees PT(t - ant)’ QI(t - At)’ ceesy Qi,j,k(t - At)e (133} an(t -

At),
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306

307

308

309

310

311

312

313

314

// II. Pruning phase
Set error threshold £ € R;
Ej éSE,j <Edo
for i, «— 1 to cardinality(#) do
P — P\ Pierm); // Remove ierpth term
for j < 1ton,do

fori < 1 to n, do

AR VAYCN V10 0} iV AL CR T 1

. ~r
while é S

end
end
©)
fori < 1 to n, do
for 1 < 1¢ to t5,, do
g —g([p (@), .. pY(t —nsAD), §(t = ADT, ..., §(t — ngADT);
0;(1) — @, &(#);

— diag(E,[0] |] ... E;:[0], 1};

Lterm i,ny

end

~ . A/ 2
& (D) — [ Xim - @720

2
I\ Xim — B[ Xim]

b

end
éA’gE,m(itcrm) =E; [éfs‘E’m];

end
. . Ry = A
if mm(eSE’m) — ésg.m < E then

4

igelete < the index of min(ég,. ) iné
’i(— i_\‘ \ 'A‘(idelete);
@ = G)idelele_;

é_\SE,m — é:gE,m(idelete)

’ .
SE,m’

end

CASE STUDY

In this section, the proposed metamodeling approach is illustrated on the 2D steel frame of
Fig. 2 that was extracted from the archetype structure outlined in Hutt et al. (2016). The inter-story
heights are 6.1 m for the Ist floor and 3.9 m for the others, leading to a total height of 154.7 m.
The influence width of the frame is taken as 12.2 m. The steel frame consists of AISC (American
Institute of Steel Construction) wide flange beams with 6.1 m spans and square box columns.
Table 1 reports a summary of the section sizes used in defining the frame, as suggested in Hutt
et al. (2016). In addition to the self-weight of the structure, a carried weight of 13.534; [KN/m?],

where h; is the story height, was considered for each floor.
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Structure and earthquake modeling

The structure was considered as a shear building model, where the mass at each floor was
assumed to be lumped at its center and was directly calculated from the corresponding self and
carried weight. The inherent damping was modeled as Rayleigh damping, with damping ratios of
the Ist and 2nd modes equal to 1.5%. The nonlinearity was lumped at each floor and modeled by

the following Bouc-Wen model:

M3 (1) + Cx(t) + BTKy(t) = Muvi(w, 1)
(18)

y(1) = Bx(1) — a|Bx(1)| o y(2)

where M and C are the n X n mass and damping matrices of the system; K is a diagonal n X n matrix
collecting the lateral stiffness at each floor; ¢is anx 1 vector of ones; W (w, t) is the base acceleration
with stochasticity defined by the white noise process {w : w(z) ~ i.i.d. N(0,1), t € [t0, tfinall };
y and y(r) are the non-observable hysteretic parameter and its first derivative; B is the global
displacements to inter-story drifts transformation matrix; |-|, o are element-wise absolute value and
multiplication; and « is a Bouc-Wen nonlinearity parameter taken as 10. In particular, the choice
of @ = 10 was made so as to produce a nonlinear response similar to that reported in Hutt et al.
(2016) from which the frame was extracted.

The structure was assumed to be located in downtown San Francisco with subsurface ground
conditions consistent with Site Class D (ASCE/SEI 7-16 2017) and subjected to a 10% exceedance
probability in 50 years ground motion hazard (Hutt et al. 2016). Synthetic ground motions were
generated from the model proposed by Rezaeian and Der Kiureghian (2010) with target spectrum
constructed from the USGS unified hazard tool. This model assumes that the ground motion w(¢)

is a time-modulated and filtered white noise process, as follows:

w(1) = A(t, @) : D 1h( =7, k(0)w(7)] (19)
Vi B2 - 7, k(7))
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where A(t, @) is a time modulating function defining the temporal characteristics; i(z, k(7)) is the
impulse-response function of the time-varying filter. In particular, the time modulating function,

A(t, ), is assumed to be of the following gamma type:
A(t, @) = a1t exp(—ast) (20)

where @ = [ag, @z, @3]; @1 € R* controls the intensity; a; € (1,+0) controls shape; a3 € R*
controls duration. These parameters are related to Arias intensity I,, effective duration Ds_os,
defined as the time interval between the instants in which 5%7, and 95%1, are reached, and the
time instant #,;q when 45% of I, is reached. The impulse-response function h(t, k(7)) of the

time-varying filter is given by:

wmz—) exp[—4(D)wi(T) (1 = )] sin[w(7) |1 = Z(T)(t - D)), T < 1
h(t -1, k(7)) = { V7@ Q1)

0, 7>t

where «k(7) = [we(7), {£(7)] contains the undamped circular frequency w¢(7) and damping ratio

L¢(7) of the filter. In this case, w¢(7) and {f(7) were assumed to be:

wf(T) = Wmid + W' (T = tmid) (22)

4i(t) = & (23)

where the wp;q is the undamped circular frequency at the time instant f,,iq; w’ is a constant slope
of the varying w(T7).

The initial ground motion process w(t) is then high-pass filtered to remove unrealistic velocity
and displacement residuals (Rezaeian and Der Kiureghian 2010). The final ground motion input
W (1) can be obtained by

W(t) + 2w W (1) + 202w (1) = w(r) (24)
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where w, is the high-pass filter frequency, which is suggested to be w. /27 = 0.1 Hz (Rezaeian and
Der Kiureghian 2010).

In summary, the parameter vector & = [1,, D5_95, tmid> Wmid> @', {f] uniquely defines the ground
motion model. Among the parameters, wpiq and {f were calibrated by the Nelder-Mead simplex
algorithm to fit the target spectrum, while all other parameters were obtained from the Loma Prieta
records (Moment magnitude = 6.93, Rupture distance = 18.3 km). The process leads to a model
setting of & = [0.045,12.62,4.73,2n x 3.27, =21 x 0.08, 0.48]. The total time duration t,, — o
was taken as 30 s with a time step of Ar = 0.005 s. Fig. 3 shows the comparison between the target
spectrum and the spectra of 300 synthetic ground motions.

Under these excitations, the system experiences a significant nonlinear hysteretic behavior,
as illustrated in Fig. 4 for one of the ground motion samples of Fig. 3. Fig. 5 shows the peak
and residual inter-story drift ratios (IDR) for all 300 synthetic ground motions. It is seen that
the magnitude and distribution of the peak and residual IDR is similar to that reported in Hutt
et al. (2016) for the full 3D archetype building, therefore ensuring the case study of this section is

representative of practical engineering problems.

Model Training

A three-dimensional reduced space was considered in defining the reduced space, i.e., n; = 3,
as the corresponding sum of squares of the first 3 singular values is greater than 99.9% of the total,
1.e. 7 =0.999. Based on the identified reduced basis @, , Eq. (18) can be rewritten in the reduced
space as:

O, M®,§+®,CD, j+®, B'KB®, g = s
@, Muvi(w,t) +a®, B'K|B®, q(1)| o [BTK]™' [Mv¥(w,t) - M®, § — C®, q] =

The high-fidelity references solutions were determined by directly solving Eq. (18) and (25) through
the 4th order Runge-Kutta (RK) algorithm, which were then used for calibrating the metamodel.

The MIMO NARX model was trained for representing the velocity of the reduced coordinates,

q(t), with a maximum time delay of 3 for both inputs and outputs, i.e. ny = n, = 3. The
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displacement responses, ¢ (), are then obtained by integrating ¢ (7). For each reduced coordinate,
the potential NARX terms include: 1, ¢ ;(t—I[At), Ww(t—=IAr), | @, q(1=A1)|, | @) q(1—At)|q;(t-1At),
|(I)Z1rq(t - At)lv.f/(t —IAt) forl, j =1,2,3,and m = 1,2, ..., 40, which leads to a total of 575 terms.

To investigate the convergence properties of the proposed approach, training set sizes of ng equal
to 10, 50, 100, 200, 300, and 400 were considered. In calibrating the metamodel to each training set,
an error tolerance of £ = —107* was considered. The expected simulation errors over the training
sets for roof displacement, ésg 49, are summarized in Table 2. The corresponding convergence
curves associated with 535,40 are shown in Fig. 6 for both the three-dimensional reduced space and
the full space. As can be seen, for ng > 200, the expected simulation error becomes, for all intents
and purposes, constant. It is interesting to observe how, even for small training sets (ns < 200),
the proposed approach still succeeds in achieving relatively low simulation errors, e.g. less than
0.1 in the full space. In the following, results will refer to the case of a training sample size of
ng = 300, for which the most appropriate MIMO NARX models identified by the LARP scheme
contain 209, 232, and 226 terms respectively for the three coordinates of the reduced space. The
velocity responses of the reduced coordinates estimated from the metamodel were compared with
the high-fidelity reference solutions, as shown in Fig. 7 for a representative sample with median
level of error. As can be seen, the metamodel reproduced the responses for all three reduced
coordinates with remarkable accuracy. Fig. 8(a) presents the comparison for the representative
sample between the reference and reproduced top floor velocity responses, xX40(?), of the system,
obtained by transforming the responses of the reduced space back to the full space. Similar to the
results seen for the reduced space, the responses reconstructed by the MIMO NARX model were
in excellent agreement with the reference solutions. In addition, a strong correspondence can be
observed between the reference and reconstructed peak velocities over all samples, as shown in
Fig. 8(b), indicating that a high level of accuracy was maintained over the entire training set. The
corresponding displacement responses were then obtained by integrating the velocity responses.
Fig. 9 reports the comparison between the reference and reconstructed displacements at the top

floor. It is noteworthy that the top floor displacement was reproduced with the same level of
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accuracy as the velocity. Both the exceedance probability and peak displacements were reproduced

with excellent accuracy over the entire training set.

Simulation Results

To investigate the performance of the trained MIMO NARX model, a new set of 300 samples,
denoted “test set” in the following, were generated to evaluate the performance of the calibrated
metamodel in simulation/prediction mode. It is important to observe that the aforementioned test
set is generated independently from the set that was considered in training the metamodel (i.e.
none of the test set samples were used in training the metamodel). This will allow the prediction
capability of the metamodeling approach to be investigated in this section, therefore providing an
initial verification of the proposed approach. The reference solutions were once again estimated
using the 4th order Runge-Kutta (RK) algorithm. In particular, reference solutions in the reduced
and full spaces were obtained. Fig. 10 shows the comparison between the reference and simulated
velocity responses in the reduced space for a representative test sample. It can be seen that the
accuracy of the metamodel for predicting responses maintained a similar level of accuracy as seen
in the training set (Fig. 7). By transforming the responses in the reduced space back to the full
space, the velocity responses shown in Fig. 11 were obtained. As can be seen, the trained MIMO
NARX model accurately predicted both the time history response and the peak responses over all
test samples.

To illustrate the validity of the reduced model for representing the displacements responses of
the full system, Fig. 12 reports the comparison of the displacements at the top floor, x40, with the
references solutions determined from the transformation of the reduced space response to the full
space. As can be seen, remarkable accuracy is seen in both the individual responses, as illustrated
in Fig. 12(c) for a typical sample, as well as over all samples, as illustrated in Fig. 12(a) that shows
the exceedance probability associated with the top floor response as well as Fig. 12(b) that shows
the peak displacement responses over all test samples. To illustrate the effectiveness of the reduce
model of the “Model order reduction” section, Fig. 13 reports the comparison of the displacement

response at the top floor obtained from the proposed metamodel with those obtained by directly
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integrating the full system. As can be seen, while there is an increase in error as compared to
Fig. 12, the metamodel retains remarkable accuracy over all test samples.

Overall, and without a particular optimization of the codes, the metamodel was well over an order
of magnitude more efficient than the full model while preserving a remarkable level of accuracy.
It should also be observed that the proposed metamodeling approach provides the output for all
the DOFs of the MDOF system, i.e. the response vectors x(z), X(¢) and ¥(t), with ¥(¢) derived
from the knowledge of x () and x (¢). This property makes the proposed approach particularly well
suited for integration into probabilistic performance-based frameworks that generally require the
entire response of the system for evaluating the performance metrics. While this work illustrated
the applicability of the proposed approach to a shear type building, it is believed that the framework
can have a wide range of practical applications involving various types of nonlinearity. This belief
stems from how the POD-based model order reduction has been shown to be effective in reducing
complex nonlinear structural systems, e.g. (Bamer et al. 2017), while NARX-based metamodeling
of low-dimensional nonlinear dynamic systems has shown promise for various types of nonlinearity,
e.g. (Mai et al. 2016). These properties, together with the efficiency and accuracy shown in this

section, illustrates the strong potential of the proposed metamodeling approach.

CONCLUSION

This paper proposes a metamodeling approach which combines reduced-order modeling with
multi-input multi-output nonlinear auto-regressive models with exogenous input for representing a
class of nonlinear hysteretic MDOF systems subject to general stochastic excitation. An important
property of the approach is that it enables the representation of the response of the entire system
through a single metamodel. For calibration, a framework base on the combination of a least angle
regression algorithm with pruning scheme and an ordinary least squares approach was developed.
To demonstrate the applicability of the approach, a case study consisting in a high-dimensional
structural system with distributed hysteretic nonlinearity and subject to general stochastic earth-
quake excitations was presented. The proposed approach was seen not only to be capable of

reproducing the dynamic response of the system with remarkable accuracy, but also to be over an
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order of magnitude faster than classic integration approaches. The general versatility of POD-based
reduction of nonlinear systems, coupled with the general capability of NARX-based metamodels in
capturing nonlinearity in low-dimensional spaces, points towards the applicability of the proposed
approach to various problems of practical interest with a variety of nonlinear behaviors. Future

research will focus on better understanding the true versatility of the proposed approach.
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TABLE 1. Element sections used in the steel frame.

Floors Beams Interior columns Exterior columns

1 W36x282 66 x7.6 66 x 6.4
2-10 W36x282 56 x7.6 51x6.4
11-20  W36x194 51x5.0 51x5.0
21-30  W33x169 46 x2.5 46 x2.5
31-40 W27x84 46x1.9 46 x 1.9

Columns sections: (outer side size)Xx(wall thickness)
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TABLE 2. Simulation errors associated with roof displacement and various training set sizes.

Training set size 10 50 100 200 300 400
‘?;SEAO in the reduced space 0.0627 0.0436 0.0411 0.0289 0.0354 0.0369
ésE 40 in the full space 0.0867 0.0793 0.0679 0.0624 0.0652 0.0631

28



556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

List of Figures

1
2

10

11

Schematic illustration of the proposed approach: (a) data flow; (b) flow chart.

Case study steel frame: (a) schematic of the frame layout; (b) shear building
idealization. . . . . . . L.
Comparison between the target and simulated spectra. . . . . . . . ... ... ...
Typical nonlinear restoring force at floor 1 for a representative ground motion. . . .
Inter-story drift ratio response over all 300 synthetic ground motions. . . . . . . . .
Variation of the expected simulation error for the roof displacement. . . . . . . ..
Comparison between the reconstructed and reference velocity solutions in the
reduced space for a typical sample: (a) first reduced coordinate; (b) second reduced
coordinate; (¢) third reduced coordinate. . . . . . . ... ... ... ... .. ...
Comparison between the reference and reconstructed solutions in the full space:
(a) velocity responses at the top floor for a representative sample of the training set;
(b) peak velocities at the top floor over all training samples. . . . . . .. ... ...
Comparison between the reference and reconstructed solutions in the full space:
(a) exceedance probabilities of peak displacements at the top floor; (b) peak dis-
placements at the top floor over all samples; (c) displacement responses at the top
floor for a representative sample. . . . . . . .. ... Lo
Comparison for a representative test set sample between the simulated and reference
reduced space velocity response: (a) first reduced coordinate; (b) second reduced
coordinate; (c) third reduced coordinate. . . . . . . . . . ... .. ... .. ....
Comparison for the test set samples between the reference and simulated velocity
after transformation to the full space: (a) velocity responses at the top floor for a
representative sample of the test set; (b) peak velocity at the top floor over all test

SAMPIES. . . . . . e e e e e

29

31

37

39

40



581

582

583

584

585

586

587

12

13

Comparison for the test set samples between the displacements at the 40th floor
estimated from the metamodel and the reference reduced model after transformation
to the full space: (a) exceedance probability; (b) peak values; (c) representative
time history and overall error evolution. . . . . . . .. .. ... o000
Comparison for the test set samples between the displacements at the 40th floor
estimated from the metamodel and the reference full model: (a) exceedance prob-

ability; (b) peak values; (c) representative time history and overall error evolution. .

30

43



Solve Eq. (1) for ng stochastic excitation
samples for high-fidelity responses X;

Define the snapshot matrix X

Estimate the coordinate transformation
matrix @, by SVD on X
l
Solve Eq. (3) and define the n, reduced-
order input P, and output Q; samples

i, 7T

n DOFs

n, time steps

Snapshots
SVD and truncation

{!I_

n, reduced coordinates

Fig. 1. Schematic illustration of the proposed approach: (a) data flow; (b) flow chart.
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Fig. 2. Case study steel frame: (a) schematic of the frame layout; (b) shear building idealization.
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Fig. 3. Comparison between the target and simulated spectra.
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Fig. 4. Typical nonlinear restoring force at floor 1 for a representative ground motion.
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Fig. 5. Inter-story drift ratio response over all 300 synthetic ground motions.
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Fig. 6. Variation of the expected simulation error for the roof displacement.
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Fig. 7. Comparison between the reconstructed and reference velocity solutions in the reduced space
for a typical sample: (a) first reduced coordinate; (b) second reduced coordinate; (c) third reduced

coordinate.
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Fig. 8. Comparison between the reference and reconstructed solutions in the full space: (a) velocity
responses at the top floor for a representative sample of the training set; (b) peak velocities at the
top floor over all training samples.
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Fig. 9. Comparison between the reference and reconstructed solutions in the full space: (a)
exceedance probabilities of peak displacements at the top floor; (b) peak displacements at the top
floor over all samples; (c) displacement responses at the top floor for a representative sample.
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Fig. 10. Comparison for a representative test set sample between the simulated and reference
reduced space velocity response: (a) first reduced coordinate; (b) second reduced coordinate; (c)

third reduced coordinate.
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Fig. 11. Comparison for the test set samples between the reference and simulated velocity after
transformation to the full space: (a) velocity responses at the top floor for a representative sample
of the test set; (b) peak velocity at the top floor over all test samples.
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Fig. 12. Comparison for the test set samples between the displacements at the 40th floor estimated
from the metamodel and the reference reduced model after transformation to the full space: (a)
exceedance probability; (b) peak values; (c) representative time history and overall error evolution.
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Fig. 13. Comparison for the test set samples between the displacements at the 40th floor estimated
from the metamodel and the reference full model: (a) exceedance probability; (b) peak values; (c)
representative time history and overall error evolution.
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