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ABSTRACT10

The ever-growing reliance on probabilistic performance-based frameworks in assessing and11

designing structural systems is creating a need for efficient tools for propagating uncertainty through12

general nonlinear and dynamic structural systems. This research is focused on the development13

of metamodeling strategies for rapid response evaluation of a class of non-linear multi-degree-of-14

freedom (MDOF) structural systems driven by stochastic excitations. In particular, the nonlinear15

auto-regressive with exogenous input (NARX) model has been demonstrated to be versatile and16

effective in this respect. However, significant difficulties in NARX model calibration and execution17

have been encountered when directly applying this approach to practical MDOF systems with18

large numbers of degree-of-freedoms. To overcome this limitation, a new metamodeling approach19

is proposed in this work through combining projection-based model order reduction with multi-20

input multi-output NARX models. The effectiveness and accuracy of the proposed approach are21

illustrated on a 40-story nonlinear steel-frame subject to stochastic earthquake excitation.22
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INTRODUCTION25

The rapid rise of available computational power has made the Monte Carlo method, or more26

in general the stochastic simulation method, a widely used strategy for uncertainty quantification.27

Indeed, these approaches enable the direct estimation of the uncertain response characteristics of28

a wide variety of engineering problems and are often at the core of the frameworks developed to29

estimate the performance metrics used in state-of-the-art probabilistic performance-based design30

frameworks (Yang et al. 2009; FEMA P-58-1 2012; Chuang and Spence 2017; Ouyang and Spence31

2020; Ouyang and Spence 2021). Notwithstanding this increase in available computational power,32

these approaches require a large number of model realizations in order to provide reliable response33

statistics and can easily become computationally cumbersome in the case of nonlinear dynamic34

systems. To overcome this computational difficulty, approaches based on metamodeling techniques35

have recently been explored for estimating the stochastic responses of dynamic systems (Lucor and36

Karniadakis 2004; Lucor et al. 2004; Kundu and Adhikari 2014; Gidaris et al. 2015; Mai et al. 2016;37

Mai and Sudret 2017; Bhattacharyya et al. 2020). In particular, researchers have recently developed38

a promising metamodeling approach base on the use of nonlinear autoregressive with exogenous39

input (NARX) models (Spiridonakos and Chatzi 2015; Mai et al. 2016). This approach has been40

successfully applied to various nonlinear single-degree-of-freedom (SDOF) systems. While this41

approach has been further applied to multi-degree-of-freedom (MDOF) systems (Spiridonakos and42

Chatzi 2015; Mai 2016), difficulties in calibration and accuracy have been observed (Mai 2016). It43

should also be noted that, even in the case of MDOF systems, the approach is based on a single-input44

single-output (SISO) formulation. Therefore, a separate metamodel is required for each output of45

a MDOF system. These limitations create the need for alternative metamodeling approaches for46

MDOF nonlinear dynamic systems.47

To effectively evaluate the response of MDOF nonlinear structures subject to stochastic exci-48

tations, methods based on model order reduction (MOR) have been investigated (Grigoriu 2009;49

Grigoriu 2012; Gidaris and Taflanidis 2013; Jensen et al. 2016; Bamer et al. 2017; Tehrani et al.50

2018; Patsialis and Taflanidis 2020). The basic idea of these approaches is to represent the full51
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system in a nonlinear reduced order subspace that preserves, with sufficient accuracy, the main52

dynamic behavior of the system. The possibility of combining MOR with metamodeling for repli-53

cating the behavior of nonlinear MDOF systems was recently investigated in (Chuang and Spence54

2019). Despite the capability of efficiently replicating the time evolution of the system, the approach55

outlined in (Chuang and Spence 2019) can only be applied to a special class of nonlinear system56

with limited and concentrated sources of nonlinearity. The limitations of the approach lie in the57

use of a normal mode MOR, difficulties associated with identifying appropriate NARX models that58

do not have spurious model terms, and in the inability to capture response coupling between the59

coordinates of the reduced space.60

To address these limitations, this paper proposes an advanced metamodeling approach for a61

more general class of MDOF systems. The approach is based on combining a proper orthogo-62

nal decomposition (POD) based model order reduction and a multi-input multi-output (MIMO)63

NARX model. In particular, the POD model order reduction converts the original system into a64

low-dimensional space, while the MIMO NARX model captures the dynamics of the reduced order65

system, including any coupling between the reduced coordinates. To calibrate the metamodel, a66

non-intrusive least angle regression with pruning (LARP) scheme is developed for model structure67

identification and an ordinary least square (OLS) method is implemented for coefficient determi-68

nation. A case study consisting in a nonlinear steel frame subject to non-stationary stochastic69

earthquake excitation is presented to illustrate the efficiency and practicability of the proposed70

approach.71

PROBLEM DEFINITION72

A general 𝑛-dimensional MDOF dynamic structural system driven by stochastic excitation can73

be modeled through a mapping,M(·) : R𝑛 × T ↦→ R𝑛 × T , between the spaces of the stochastic74

input and output as:75

M(¥𝒙(𝑡), ¤𝒙(𝑡), 𝒙(𝑡)) = 𝒇 (𝑡), 𝑡 ∈ T (1)76

where ¥𝒙(𝑡), ¤𝒙(𝑡), 𝒙(𝑡) ∈ R𝑛 × T are the stochastic acceleration, velocity, and displacement output77
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vectors while 𝒇 (𝑡) ∈ R𝑛 × T is the input stochastic excitation vector.78

To model the stochastic input, it is generally convenient to consider a probability space (Ω,B, P)79

defined by a sample spaceΩ, the𝜎-algebraB onΩ, and the probability measure P. The stochasticity80

of the excitation 𝒇 (𝑡) can then be described by a vector random process {𝒘 : 𝒘(𝑡) ∈ Ω, 𝑡 ∈ T },81

under the influence of which the excitation becomes 𝒇 (𝒘, 𝑡). The focus of this work is to define a82

computationally tractable approach based on advanced metamodeling techniques for propagating83

the uncertainty in 𝒇 (𝒘, 𝑡) through the systemM whenM is nonlinear.84

THE PROPOSED APPROACH85

This section outlines the proposed metamodeling approach together with a non-intrusive training86

scheme. The metamodeling approach combines a proper orthogonal decomposition-based model87

order reduction (POD-MOR) and MIMO NARX, which respectively extracts the underlying low-88

dimensional reduced-order model from the general system (Eq. 1) and captures the dynamics of the89

reduced-order model. In particular, the key step in the metamodeling approach is MIMO NARX90

training, which entails MIMO NARX structure determination and coefficient estimation. A least91

angle regression with pruning (LARP) scheme is proposed in this work for structure determination,92

while an ordinary least square (OLS) method is implemented for estimating the coefficients.93

Model order reduction94

Most structural systems of practical interest have a large number of DOFs, which not only95

increases the computational effort required for estimating structural responses but causes difficulties96

in applying metamodeling techniques to represent the system (Spiridonakos and Chatzi 2015;97

Chuang and Spence 2019). To overcome this issue, a MOR is used in this work for reducing the98

order of the system. This approach is based on approximating the response of the system through99

the following transformation:100

𝒙(𝑡) ≈ 𝚽𝑛r𝒒(𝑡) (2)101

where 𝚽𝑛r is an appropriate 𝑛 × 𝑛r coordinate transformation matrix with 𝑛r � 𝑛, while 𝒒(𝑡) ∈102

R𝑛r × T is the response vector in the reduced space. From the above transformation, Eq. (1) can be103

4



written in the following 𝑛r-dimensional reduced-order form:104

𝚽T
𝑛rM(𝚽𝑛r ¥𝒒(𝑡),𝚽𝑛r ¤𝒒(𝑡),𝚽𝑛r𝒒(𝑡)) = 𝒑(𝑡;𝒘). (3)105

where 𝒑(𝑡;𝒘) = 𝚽T
𝑛r 𝒇 (𝑡;𝒘) ∈ R

𝑛r × T is the excitation in the reduced space. For simplicity,106

𝒑(𝑡;𝒘) will be denoted in the following as 𝒑(𝑡).107

In this work, the coordinates transformation matrix, 𝚽𝑛r ∈ R𝑛×𝑛r , is obtained through proper108

orthogonal decomposition (POD), an unsupervised learning approach that extracts principal com-109

ponents, or basis functions, from a set of known data (Holmes et al. 1996). To this end, various110

approaches have been proposed including, the method of Lagrangian multipliers (Volkwein 2013),111

eigen-decomposition (Kerschen and Golinval 2002; Volkwein 2013), and singular value decom-112

position (SVD) (Kerschen and Golinval 2002; Volkwein 2013). In general, the most widely used113

approach is SVD and is also adopted in this work. To apply this approach to the problems of interest114

to this work, it is first necessary to directly evaluate the full system of Eq. (1) for 𝑛s samples of115

the stochastic excitation 𝒇 (𝒘𝑖, 𝑡). From the output of Eq. (1), the following discrete time snapshot116

matrix can be defined:117

𝑿 = [𝒙1(𝑡1), ..., 𝒙1(𝑡𝑛𝑡 ), ..., 𝒙𝑛𝑠 (𝑡1), ..., 𝒙𝑛𝑠 (𝑡𝑛𝑡 )], 𝑿 ∈ R𝑛×𝑛𝑡𝑛𝑠 (4)118

where 𝑛𝑡 is the total number of discrete time steps, i.e. snapshots, considered for each of the 𝑛s119

samples. In general, 𝑛𝑡 can be taken as a subset of the total number of time steps evaluated in solving120

Eq. (1). In generating 𝑿, it is important to ensure that the snapshots, i.e. 𝒙𝑖 (𝑡 𝑗 ) for 𝑖 = 1, ..., 𝑛𝑠 and121

𝑗 = 1, ..., 𝑛𝑡 , are capable of capturing not only the nonlinear behavior of the system, but also the122

stochasticity of the excitation. The snapshot matrix, 𝑿, can then be decomposed through SVD as123

(Holmes et al. 1996):124

𝑿 = 𝑼𝚲𝑽T (5)125

where𝑼 is a 𝑛×𝑛 orthonormal matrix containing the left singular vectors of 𝑿,𝑽 is the (𝑛𝑠𝑛𝑡)×(𝑛𝑠𝑛𝑡)126
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orthonormal matrix of the corresponding right singular vectors, while 𝚲 is a 𝑛 × (𝑛𝑠𝑛𝑡) pseudo-127

diagonal matrix containing the singular values with Λ( 𝑗 , 𝑗) = 𝜆 𝑗 ∈ R+ the 𝑗 th largest singular128

value for 𝑗 = 1, 2, ..., 𝑛. In general, the size of 𝑽 is extremely large as 𝑛𝑠𝑛𝑡 � 𝑛. Hence, a more129

computationally effective economy-size SVD is adopted in this work, in which only the first 𝑛130

columns of 𝑽 and the first 𝑛 singular values are estimated. As outlined in (Kerschen and Golinval131

2002; Volkwein 2013), the left singular vectors, 𝑼, are the POD modes.132

In defining the coordinates transformation matrix, 𝚽𝑛r , for the reduced-order system, the first133

𝑛r POD modes, and so columns of 𝑼, are considered, i.e., 𝚽𝑛r = [𝑼1,𝑼2, ...,𝑼𝑛r]. In terms of the134

snapshot matrix 𝑿, this corresponds to the following approximation:135

𝑿 ≈ 𝚽𝑛r𝚲Trunc𝑽
T
Trunc + 𝝐𝑿 (6)136

where 𝚲Trunc is the diagonal matrix of the first 𝑛𝑟 singular values,𝑽Trunc is the first 𝑛𝑟 columns of𝑽;137

while 𝝐𝑿 is the error process given tr(𝝐𝑿𝝐T
𝑿) =

∑𝑛
𝑗=𝑛r+1 𝜆

2
𝑗
(Volkwein 2013). As a trade-off between138

accuracy and computational efficiency, 𝑛r can be chosen by ensuring the energy captured in the139

truncated representation of 𝑿,
∑𝑛r

𝑗=1 𝜆
2
𝑗
, is not less than 𝜂 of the total energy, tr(𝑿𝑿T) = ∑𝑛

𝑗=1 𝜆
2
𝑗
,140

i.e.,
∑𝑛r

𝑗=1 𝜆
2
𝑗
≥ 𝜂

∑𝑛
𝑗=1 𝜆

2
𝑗
, where 𝜂 is typically assumed to be close to 1, e.g., 0.99 (Bamer and141

Markert 2017). A properly chosen 𝜂 can bring significant dimensional reduction to the system,142

leading to a considerable reduction in dimensions from Eq. (1) to Eq. (3), i.e. 𝑛𝑟 � 𝑛.143

The MIMO NARX metamodel144

Overview145

Despite the computational savings gained through model order reduction, Eq. (3) is still a cou-146

pled nonlinear dynamic equation that must be solved through computationally intensive numerical147

integration schemes, e.g. Newmark or Runge-Kutta methods. It should also be observed that, in148

general, the nonlinear model, M, still requires evaluation in the full space at each time step. In149

other words, the computational gains associated with directly integrating the reduced system of150

Eq. (3), are related mainly to the possibility of choosing a much larger time step as compared to151
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that used in integrating the full system. To overcome this computational barrier, the idea that will152

be explored in this work is to develop a non-intrusive metamodel, based on MIMO NARX, of the153

reduced space that, once calibrated, does not require the evaluation of the full model at each time154

step.155

Under the assumption that the current output, 𝑞(𝑡𝑖), of a nonlinear single-degree-of-freedom156

dynamic system depends on its past output values, [𝑞(𝑡𝑖−Δ𝑡), ..., 𝑞(𝑡𝑖−𝑛𝑞Δ𝑡)] with 𝑛𝑞 the maximum157

output lag and Δ𝑡 the time step size, and current and past load inputs, [𝑝(𝑡𝑖), 𝑝(𝑡𝑖 − Δ𝑡), ..., 𝑝(𝑡𝑖 −158

𝑛 𝑓Δ𝑡)] with 𝑛 𝑓 the maximum load lag, the nonlinear dynamic behavior of the system can be159

captured through the following NARX model:160

𝑞(𝑡𝑖) = 𝐺 (𝑝(𝑡𝑖), 𝑝(𝑡𝑖 − Δ𝑡), ..., 𝑝(𝑡𝑖 − 𝑛 𝑓Δ𝑡), 𝑞(𝑡𝑖 − Δ𝑡), ..., 𝑞(𝑡𝑖 − 𝑛𝑞Δ𝑡)) + 𝜖 (𝑡𝑖) (7)161

where 𝐺 (·) : R𝑛 𝑓 +𝑛𝑞+1 ↦→ R is the mapping from the recent inputs and outputs to the current162

output, and {𝜖 : 𝜖 (𝑡𝑖) ∼ N (0, 𝜎2
𝜖 (𝑡𝑖))} is the error process which is generally assumed as a Gaussian163

process (Leontaritis and Billings 1987). Under the assumption that the dependence between the164

coordinates, 𝒒(𝑡), of the reduced space is negligible, SISO NARX models can be applied to MDOF165

systems (Chuang and Spence 2019). This model, however, is incapable of capturing the inevitable166

response coupling between the reduced coordinates for general nonlinearity. To overcome this167

limitation, the possibility of applying a MIMO NARX (Billings et al. 1989) strategy is explored in168

this work as a means to capture nonlinear and coupled dynamic behavior of Eq. (3). The general169

form of the MIMO NARX model is:170

𝒒(𝑡𝑖) = 𝑮 (𝒛(𝑡𝑖)) + 𝝐 (𝑡𝑖) (8)171

where𝑮 (·) : R(𝑛 𝑓 +𝑛𝑞+1)𝑛r ↦→ R𝑛r is the MIMO NARX model to be identified, 𝒛(𝑡𝑖) = [ 𝒑T(𝑡𝑖), 𝒑T(𝑡𝑖−172

Δ𝑡), ..., 𝒑T(𝑡𝑖 − 𝑛 𝑓Δ𝑡), 𝒒T(𝑡𝑖 − Δ𝑡), ..., 𝒒T(𝑡𝑖 − 𝑛𝑞Δ𝑡)] is the regression vector of current and past173

input and output values, and 𝝐 : 𝝐 (𝑡𝑖) ∼ N (0,𝚺𝝐 (𝑡𝑖)) is a vector-valued Gaussian error process.174

A common structure for 𝑮 (·), and that will be considered in this work, is the following linear-175
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in-the-parameter form:176

𝒒(𝑡𝑖) = 𝚯T𝒈(𝒛(𝑡𝑖)) + 𝝐 (𝑡𝑖) (9)177

where 𝒈(·) = [𝒈T
1 (·), 𝒈

T
2 (·), ..., 𝒈

T
𝑛r (·)]

T is the vector collecting all 𝑛𝑟 NARX model terms 𝒈 𝑗 (·),178

in which 𝒈 𝑗 (·) : R(𝑛 𝑓 +𝑛𝑞+1)𝑛r ↦→ R𝑙 𝑗 is a 𝑙 𝑗 -dimensional function of the regression vector 𝒛(𝑡) for179

the 𝑗 th reduced coordinate; while 𝚯 = diag[𝚯1, · · · ,𝚯𝑛𝑟 ] is a block-diagonal matrix collecting the180

NARX coefficients of the 𝑛𝑟 DOFs of the reduced system.181

The LARP scheme182

Model identification183

In general, the identification of the MIMO NARX metamodel entails structure determination, i.e.184

selecting NARX terms, and coefficient calibration. An efficient approach based on implementing185

the least angle regression (LARs) algorithm for structure determination and the ordinary least square186

(OLS) method for coefficient calibration has been proposed for identifying the NARX model of187

SISO systems (Mai et al. 2016). In this work, the basic idea underpinning this approach is extended188

for the identification of the MIMO NARX model of Eq. (9). To this end, consider the following189

form for the 𝑗 th reduced coordinate:190

𝑞 𝑗 (𝑡𝑖) = 𝚯T
𝑗 𝒈 𝑗 (𝒛(𝑡𝑖)) + 𝜖 𝑗 (𝑡𝑖) (10)191

The first step towards calibrating the MIMO NARX model is to obtain a set of potential NARX192

terms/features 𝒈p
𝑗
(𝒛(𝑡)) for each reduced coordinate based on a pre-designated form of basis function193

(e.g. polynomial (Leontaritis and Billings 1987), rational (Billings and Chen 1996), wavelet (Wei194

and Billings 2004), neural network (Billings and Chen 1996)), and maximum time delays 𝑛 𝑓 and195

𝑛𝑞. The potential NARX feature matrix 𝒁
p
𝑗
of the 𝑗 th reduced coordinate can then be written in the196
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following discrete form:197

𝒁
p
𝑗
=



𝒈
p
𝑗
(𝒛(𝑡1))T

𝒈
p
𝑗
(𝒛(𝑡2))T

...

𝒈
p
𝑗
(𝒛(𝑡𝑛𝑡 ))T


(11)198

where 𝑡1, 𝑡2, ..., 𝑡𝑖, ..., 𝑡𝑛𝑡 is the discrete time sequence while 𝒈
p
𝑗
(𝒛(𝑡𝑖)) contains 𝑙𝑠 ≥ 𝑙 𝑗 potential199

NARX features. It is important to note that the regression vector 𝒛(𝑡𝑖) of the MIMO NARX model200

contains input and output values from all reduced coordinates, in contrast to the SISO NARX201

model, where only terms of the 𝑗 th reduced coordinate are considered. This enables the coupling202

between the reduced coordinates to be captured.203

The LARs algorithm (Efron et al. 2004) can then be employed to select the most relevant204

NARX features in 𝒁
p
𝑗

by computing the correlation of each potential model term to the system205

output (Billings et al. 1989), leading to a candidate NARX model term that contains a subset of the206

potential NARX features. By simulating over 𝑛s samples, a total of 𝑛c, 𝑗 , where 𝑛c, 𝑗 ≤ 𝑛s, unique207

candidate model terms will be identified for the 𝑗 th reduced coordinate of the system. For the208

𝑘th identified candidate model, the corresponding NARX coefficients can then be estimated by the209

following OLS method that minimizes the one-step-ahead prediction error:210

𝚯 𝑗 ,𝑘 = arg min
Θ 𝑗 ,𝑘

𝑒PE, 𝑗 ,𝑘 = [𝒁T
𝑗 ,𝑘𝒁 𝑗 ,𝑘 ]−1𝒁T

𝑗 ,𝑘𝑸
T
𝑗 (12)211

where 𝒁 𝑗 ,𝑘 for 𝑘 = 1, 2, ..., 𝑛c, 𝑗 is the candidate feature matrix of the 𝑘th candidate model, while212

𝑸 𝑗 is the response of the 𝑗 th reduced coordinate. The prediction error 𝑒PE, 𝑗 ,𝑘 can be defined as213

(Chuang and Spence 2019; Mai et al. 2016):214

𝑒PE, 𝑗 ,𝑘 =




𝑸T
𝑗 − 𝒁 𝑗 ,𝑘𝚯 𝑗 ,𝑘




2


𝑸T
𝑗 − 𝜾E𝑡 [𝑸 𝑗 ]




2 (13)215

where 𝜾 is a all-ones vector, while E𝑡 [𝑸 𝑗 ] is the expected value (in a time average sense) of the216
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response time series 𝑸 𝑗 . The prediction error 𝑒PE, 𝑗 ,𝑘 measures one-step-ahead error, i.e. the217

error of the current output given that 𝒛(𝑡), or the recent outputs and inputs, are perfectly accurate218

(one-step-ahead prediction).219

Once the candidate NARX model terms and the associated coefficients are determined, the next220

step is to select the most appropriate MIMO NARX model from the candidates for representing221

the system of interest. An appropriate error measure must be defined to this end. Since the goal of222

metamodeling is to reproduce the whole time history with only inputs and a few initial conditions,223

the MIMO NARX model must run recursively to generate the entire time history. The prediction224

error criterion, however, is incapable of taking into account error accumulation during the recursive225

process, making it unsuitable for model selection to be used defining metamodels. To avoid such226

issues, the simulation error criterion can be employed to estimate the error produced by recursively227

running the model. This approach, nevertheless, requires NARX models of all reduced coordinates228

to run simultaneously. Given that each reduced coordinate has 𝑛c, 𝑗 candidate NARX models, the229

total number of candidate MIMO NARX models,
∏𝑛r

𝑗=1 𝑛c, 𝑗 , can become extremely large. In this230

work, it is proposed to overcome this issue by decoupling the identification of the NARX models231

for each reduced coordinate. This is achieved by considering the following form for the NARX232

model of the 𝑗 th reduced coordinate during identification:233

𝑞 𝑗 ,𝑘 (𝑡𝑖) = 𝚯T
𝑗 ,𝑘 𝒈 𝑗 ,𝑘 ( 𝒛̃(𝑡𝑖)) (14)234

where 𝒛̃(𝑡𝑖) is the following modified regression vector:

𝒛̃(𝑡𝑖) = [ 𝒑T(𝑡𝑖), 𝒑T(𝑡𝑖 − Δ𝑡), ..., 𝒑T(𝑡𝑖 − 𝑛 𝑓Δ𝑡),

𝑞1(𝑡𝑖 − Δ𝑡), ..., 𝑞 𝑗−1(𝑡𝑖 − Δ𝑡), 𝑞 𝑗 ,𝑘 (𝑡𝑖 − Δ𝑡), 𝑞 𝑗+1(𝑡𝑖 − Δ𝑡), ..., 𝑞𝑛r (𝑡𝑖 − Δ𝑡),

...,

𝑞1(𝑡𝑖 − 𝑛𝑞Δ𝑡), ..., 𝑞 𝑗−1(𝑡𝑖 − 𝑛𝑞Δ𝑡), 𝑞 𝑗 ,𝑘 (𝑡𝑖 − 𝑛𝑞Δ𝑡), 𝑞 𝑗+1(𝑡𝑖 − 𝑛𝑞Δ𝑡), ..., 𝑞𝑛r (𝑡𝑖 − 𝑛𝑞Δ𝑡)]
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in which only the responses of the 𝑗 th reduced coordinate, 𝑞 𝑗 ,𝑘 (𝑡𝑖 − Δ𝑡), ..., 𝑞 𝑗 ,𝑘 (𝑡𝑖 − 𝑛𝑞Δ𝑡), are235

estimated from the MIMO NARX model. The responses of all other reduced coordinates are directly236

obtained from the high-fidelity data therefore decoupling the identification of the 𝑗 th NARX model237

from the identification of the other NARX models without losing the effects of reduced coordinate238

interdependence. The corresponding error measure 𝑒SE, 𝑗 ,𝑘 is defined as:239

𝑒SE, 𝑗 ,𝑘 =



𝑸 𝑗 − 𝑸̃ 𝑗 ,𝑘



2


𝑸T
𝑗 − 𝜾E𝑡 [𝑸 𝑗 ]




2 (15)240

where 𝑸̃ 𝑗 ,𝑘 = [𝑞 𝑗 ,𝑘 (𝑡1), 𝑞 𝑗 ,𝑘 (𝑡2), ..., 𝑞 𝑗 ,𝑘 (𝑡𝑛𝑡 )]. By simulating over 𝑛𝑠 samples, the accuracy of241

the 𝑘th candidate model can be measured by the expected error measure, ¯̃𝑒SE, 𝑗 ,𝑘 , from which the242

optimal NARX model can be determined.243

In selecting the optimal NARX model, a simpler model with less terms are generally preferred244

as spurious NARX terms and features have been found to not only cause deleterious effects on the245

accuracy of the model, e.g. over-fitting, but also induce spurious dynamics (Billings 2013; Piroddi246

and Spinelli 2003; Mai et al. 2016). The optimal model, i.e. model terms 𝒈 𝑗 (·) and associated247

coefficients 𝚯 𝑗 , is therefore chosen as the NARX model with the least number of NARX terms that248

achieves a sufficiently small overall error, i.e. ¯̃𝑒SE, 𝑗 ,𝑘 ≤ 𝐸̃ , where 𝐸̃ is a predefined threshold value.249

The aforementioned process is then carried out for each reduced coordinate over all samples. The250

final MIMO NARX metamodel is given by:251

𝒒̂(𝑡) = 𝚯̄
T
𝒈( 𝒛̂(𝑡)) (16)252

where 𝒛̂(𝑡) = [ 𝒑T(𝑡), 𝒑T(𝑡 − Δ𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓Δ𝑡), 𝒒̂(𝑡 − Δ𝑡)T, ..., 𝒒̂(𝑡 − 𝑛𝑞Δ𝑡)T] in which output253

feedback from all reduced coordinates is considered, and 𝚯̄ is the expected value of 𝚯 over all 𝑛𝑠254

samples.255
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Model refinement256

The MIMO NARX model of Eq. (16), however, can still include spurious NARX terms even257

though the simplest model is selected. This problem originates from the LARs approach, which258

selects candidate terms based on correlation analysis that is not necessarily a reflection of the259

contribution of a term to the model (Piroddi and Spinelli 2003). To address this issue, an iterative260

simulation error based pruning procedure (Piroddi and Spinelli 2003) is introduced in this work261

to identify and remove the spurious NARX terms. In particular, starting from the model of Eq.262

(16), the procedure progressively identifies and deletes the most deleterious NARX term at each263

iteration until an predefined error tolerance is met. Within each iteration, a set of trial models is264

first generated, with each of them obtained by removing one unique term from the current MIMO265

NARX model, and then compared with the current model. The coefficients associated with each266

trial model are estimated by the OLS approach. To assess the performance of trial models, a MIMO267

NARX simulation error measure is defined for a user-defined DOF of interest, as follows:268

𝑒𝑆𝐸,𝑚 =



𝑿𝑚 −𝚽𝑚
𝑛r𝑸̂



2

‖𝑿𝑚 − 𝜾E[𝑿𝑚] ‖2
(17)269

where 𝑚 is the DOF of interest, 𝑿𝑚 is the 𝑚th row of the snapshot matrix 𝑿 of Eq. (4) (i.e. the270

response of the 𝑚th DOF), 𝚽𝑚
𝑛r is the 𝑚th row of 𝚽𝑛r , 𝑸̂ = [𝒒̂(𝑡1), 𝒒̂(𝑡2), ..., 𝒒̂(𝑡𝑛𝑡 )]. The error271

describes the goodness of the MIMO NARX model in reproducing the response of the 𝑚th DOF in272

the physical/full space. The performance of the current MIMO NARX model in each iteration can273

be evaluated by taking the expectation over all training samples, ¯̂𝑒𝑆𝐸,𝑚. Similarly, the error measure274

for each trial model can be calculated from the expectation over all samples, denoted as ¯̂𝑒′
𝑆𝐸,𝑚

. The275

deleterious effect of removing each term is then evaluated by calculating the error increase of each276

trial model against the current MIMO NARX model i.e. ¯̂𝑒′
𝑆𝐸,𝑚
− ¯̂𝑒𝑆𝐸,𝑚. Within each iteration, the277

current MIMO NARX model is then replaced by the optimal trial model with min{ ¯̂𝑒′
𝑆𝐸,𝑚
− ¯̂𝑒𝑆𝐸,𝑚}.278

The pruning process then proceeds to the next iteration with the new MIMO NARX model serving279

as the current model and reevaluates until a user-defined error change threshold 𝐸̂ is satisfied, i.e.,280
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¯̂𝑒′
𝑆𝐸,𝑚
− ¯̂𝑒𝑆𝐸,𝑚 ≥ 𝐸̂ .281

The algorithm and overall procedure282

The LARP algorithm of this section is outlined in Algorithm 1. The data flow associated with283

the algorithm is schematically illustrated in Fig. 1(a), while in Fig. 1(b) a flowchart illustrates the284

three main phases of the algorithm, which can be summarized as follows:285

• Phase 1: Data collection and model order reduction286

• Generate 𝑛s samples of the stochastic excitation 𝒇 (𝒘𝑖, 𝑡), solve Eq. (1) for the287

high-fidelity response samples, and define the snapshot matrix 𝑿.288

• Estimate the coordinate transformation matrix 𝚽𝑛r through SVD on 𝑿. Solve the289

reduced-order model of Eq. (3) therefore defining 𝑛s reduced-order input 𝑷𝑖 and290

output 𝑸𝑖 samples.291

• Phase 2: LARs based MIMO NARX training292

• For each reduced coordinate, propose a set of potential NARX terms (e.g. polyno-293

mial, rational, wavelet, neural network). Loop over all training samples to identify294

the most relevant NARX terms via the LARs algorithm, and estimate the NARX295

coefficients by OLS. Keep the 𝑛c, 𝑗 unique candidate NARX models over all samples.296

• Estimate the error measure ¯̃𝑒SE, 𝑗 ,𝑘 for all candidate NARX models of Eq. (14). Keep297

the most appropriate NARX models, in the sense of both accuracy and simplicity,298

and define the MIMO NARX model.299

• Phase 3: MIMO NARX pruning300

• Apply the simulation error based pruning procedure to identify and remove the301

unnecessary terms from the MIMO NARX iteratively, therefore defining the final302

MIMO NARX metamodel.303
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Algorithm 1: Least angle regression with pruning algorithm
Data: 𝑸𝑖 , 𝑷𝑖 for 𝑖 = 1, 2, ..., 𝑛s, 𝚽𝑛r

Result: 𝒓̂, 𝚯̄
// I.1 LARs to identify relevant features
Set errors threshold 𝐸̃ and user defined DOF 𝑚;
for 𝑗 ← 1 to 𝑛r do

for 𝑖 ← 1 to 𝑛s do
Construct 𝒁p

𝑖, 𝑗
by Eq. (11);

LARs (Efron et al. 2004) select relevant features (column indices 𝒓𝑖, 𝑗);
if 𝒓i,j is unique then

𝒓 𝑗 ,𝑘 ← 𝒓𝑖, 𝑗 ;
𝒁𝑖, 𝑗 ,𝑘 ← 𝒁

p
𝑖, 𝑗
(:, 𝒓𝑖,𝑘);

end
end
// I.2 Select the NARX model
for 𝑗 ← 1 to 𝑛r do

for 𝑘 ← 1 to 𝑛̃c( 𝑗) do
for 𝑖 ← 1 to 𝑛s do

𝚯𝑖, 𝑗 ,𝑘 ← [𝒁T
𝑖, 𝑗 ,𝑘

𝒁𝑖, 𝑗 ,𝑘]−1𝒁T
𝑖, 𝑗 ,𝑘

𝑸T
𝑖, 𝑗 ; // Eq. 12

for 𝑡 ← 𝑡0 to 𝑡final do
𝒈̃ 𝑗 ← 𝒈 𝑗 ( [ 𝒑T(𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓 Δ𝑡), 𝑞1(𝑡 − Δ𝑡), ..., 𝑸̃𝑖, 𝑗 ,𝑘 (𝑡 − Δ𝑡), ..., 𝑞𝑛r (𝑡 − Δ𝑡),
..., 𝑞1(𝑡 − 𝑛𝑞Δ𝑡), ..., 𝑸̃𝑖, 𝑗 ,𝑘 (𝑡 − 𝑛𝑞Δ𝑡), ..., 𝑞𝑛r (𝑡 − 𝑛𝑞Δ𝑡)]);

𝑸̃𝑖, 𝑗 ,𝑘 (𝑡) ← 𝚯T
𝑗 𝒈̃ 𝑗 (𝒓 𝑗 ,𝑘); // Eq. 14

end
𝒆̃𝑆𝐸 (𝑖, 𝑗 , 𝑘) ←



𝑸̃𝑖, 𝑗 − 𝑸̃𝑖, 𝑗 ,𝑘



 /

𝑸̃𝑖, 𝑗 − 𝜾E[𝑸̃𝑖, 𝑗]


; // Eq. 15

end
¯̃𝒆𝑆𝐸 ( 𝑗 , 𝑘) ← E𝑖 [𝒆̃𝑆𝐸 (𝑖, 𝑗 , 𝑘)];

end
𝑘opt, 𝑗 ← arg min𝑘∈{𝑘: ¯̃𝒆𝑆𝐸 ( 𝑗 ,𝑘) ≥𝐸̃ }cardinality(𝒓 𝑗 ,𝑘); // Accurate & simplest

end
𝚯̄opt ← diag{E𝑖 [𝚯𝑖,1,𝑘opt,1] ...E𝑖 [𝚯𝑖,𝑛r,𝑘opt,𝑛r ]};
Collect 𝒓 𝑗 ,𝑘opt, 𝑗 +

∑ 𝑗−1
𝑗 𝑗=1 𝑙 𝑗 𝑗 for all 𝑗 into 𝒓̂;

// I.3 Run the NARX model over the training data set
for 𝑖 ← 1 to 𝑛s do

for 𝑡 ← 𝑡0 to 𝑡final do
𝒈̂ = 𝒈( [ 𝒑T(𝑡), 𝒑T(𝑡 − Δ𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓 Δ𝑡), 𝑸̂𝑖 (𝑡 − Δ𝑡)T, ..., 𝑸̂𝑖 (𝑡 − 𝑛𝑞Δ𝑡)T]);
𝑸̂𝑖 (𝑡) ← 𝚯̄

T
opt 𝒈̂( 𝒓̂); // Eq.16

end
𝒆̂𝑆𝐸,𝑚(𝑖) ←



𝑿𝑖,𝑚 −𝚽𝑚
𝑛r𝑸̂𝑖



2 /


𝑿𝑖,𝑚 − 𝜾E[𝑿𝑖,𝑚]



2; // Eq. 17
end
¯̂𝒆𝑆𝐸,𝑚 = E𝑖 [𝒆̂𝑆𝐸,𝑚]; // The error of the NARX model

304
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// II. Pruning phase

Set error threshold 𝐸̂ ∈ R;
while ¯̂𝑒′

𝑆𝐸, 𝑗
− ¯̂𝑒𝑆𝐸, 𝑗 ≤ 𝐸̂ do

for 𝑖term ← 1 to cardinality( 𝒓̂) do
𝒓̂ ′← 𝒓̂ \ 𝒓̂ (𝑖term); // Remove 𝑖termth term
for 𝑗 ← 1 to 𝑛r do

for 𝑖 ← 1 to 𝑛s do
𝚯′𝑖, 𝑗 ← [𝒁T(:, 𝒓̂ ′)𝒁(:, 𝒓̂ ′)]−1𝒁T(:, 𝒓̂ ′)𝑸T

𝑖, 𝑗 ;
end

end
𝚯̄𝑖term ← diag{E𝑖 [𝚯′𝑖,1] ... E𝑖 [𝚯

′
𝑖,𝑛r
]};

for 𝑖 ← 1 to 𝑛s do
for 𝑡 ← 𝑡0 to 𝑡final do

𝒈̂ ← 𝒈( [ 𝒑T(𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓 Δ𝑡), 𝒒̂(𝑡 − Δ𝑡)T, ..., 𝒒̂(𝑡 − 𝑛𝑞Δ𝑡)T]);
𝑸̂
′
𝑖 (𝑡) ← 𝚯̄

T
𝑖term 𝒈̂( 𝒓̂

′);
end

𝒆̂′𝑆𝐸,𝑚(𝑖) ←



𝑿𝑖,𝑚 −𝚽𝑚

𝑛r𝑸̂
′
𝑖




2
/


𝑿𝑖,𝑚 − 𝜾E[𝑿𝑖,𝑚]



2;
end
¯̂𝒆′
𝑆𝐸,𝑚
(𝑖term) = E𝑖 [𝒆̂′𝑆𝐸,𝑚];

end
if min( ¯̂𝒆′

𝑆𝐸,𝑚
) − ¯̂𝑒𝑆𝐸,𝑚 ≤ 𝐸̂ then

𝑖delete ← the index of min( ¯̂𝒆′
𝑆𝐸,𝑚
) in ¯̂𝒆′

𝑆𝐸,𝑚
;

𝒓̂ ← 𝒓̂ \ 𝒓̂ (𝑖delete);
𝚯̄ = 𝚯̄𝑖delete ;
¯̂𝑒𝑆𝐸,𝑚 ← ¯̂𝒆′

𝑆𝐸,𝑚
(𝑖delete)

end

305

CASE STUDY306

In this section, the proposed metamodeling approach is illustrated on the 2D steel frame of307

Fig. 2 that was extracted from the archetype structure outlined in Hutt et al. (2016). The inter-story308

heights are 6.1 m for the 1st floor and 3.9 m for the others, leading to a total height of 154.7 m.309

The influence width of the frame is taken as 12.2 m. The steel frame consists of AISC (American310

Institute of Steel Construction) wide flange beams with 6.1 m spans and square box columns.311

Table 1 reports a summary of the section sizes used in defining the frame, as suggested in Hutt312

et al. (2016). In addition to the self-weight of the structure, a carried weight of 13.53ℎ 𝑗 [kN/m2],313

where ℎ 𝑗 is the story height, was considered for each floor.314
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Structure and earthquake modeling315

The structure was considered as a shear building model, where the mass at each floor was316

assumed to be lumped at its center and was directly calculated from the corresponding self and317

carried weight. The inherent damping was modeled as Rayleigh damping, with damping ratios of318

the 1st and 2nd modes equal to 1.5%. The nonlinearity was lumped at each floor and modeled by319

the following Bouc-Wen model:320


𝑴 ¥𝒙(𝑡) + 𝑪 ¤𝒙(𝑡) + 𝑩T𝑲𝒚(𝑡) = 𝑴𝜾 ¥̂𝑤(𝑤, 𝑡)

¤𝒚(𝑡) = 𝑩 ¤𝒙(𝑡) − 𝛼 |𝑩 ¤𝒙(𝑡) | ◦ 𝒚(𝑡)
(18)321

where 𝑴 and 𝑪 are the 𝑛×𝑛 mass and damping matrices of the system; 𝑲 is a diagonal 𝑛×𝑛 matrix322

collecting the lateral stiffness at each floor; 𝜾 is a 𝑛×1 vector of ones; ¥̂𝑤(𝑤, 𝑡) is the base acceleration323

with stochasticity defined by the white noise process {𝑤 : 𝑤(𝑡) ∼ i.i.d. N(0, 1), 𝑡 ∈ [𝑡0, 𝑡final]};324

𝒚 and ¤𝒚(𝑡) are the non-observable hysteretic parameter and its first derivative; 𝑩 is the global325

displacements to inter-story drifts transformation matrix; |·|, ◦ are element-wise absolute value and326

multiplication; and 𝛼 is a Bouc-Wen nonlinearity parameter taken as 10. In particular, the choice327

of 𝛼 = 10 was made so as to produce a nonlinear response similar to that reported in Hutt et al.328

(2016) from which the frame was extracted.329

The structure was assumed to be located in downtown San Francisco with subsurface ground330

conditions consistent with Site Class D (ASCE/SEI 7-16 2017) and subjected to a 10% exceedance331

probability in 50 years ground motion hazard (Hutt et al. 2016). Synthetic ground motions were332

generated from the model proposed by Rezaeian and Der Kiureghian (2010) with target spectrum333

constructed from the USGS unified hazard tool. This model assumes that the ground motion 𝑤̃(𝑡)334

is a time-modulated and filtered white noise process, as follows:335

𝑤̃(𝑡) = 𝐴(𝑡,𝜶) 1√︃∑𝑡final
𝜏=𝑡0

ℎ2(𝑡 − 𝜏, 𝜿(𝜏))

𝑡final∑︁
𝜏=𝑡0

[ℎ(𝑡 − 𝜏, 𝜿(𝜏))𝑤(𝜏)] (19)336
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where 𝐴(𝑡,𝜶) is a time modulating function defining the temporal characteristics; ℎ(𝑡, 𝜿(𝜏)) is the337

impulse-response function of the time-varying filter. In particular, the time modulating function,338

𝐴(𝑡,𝜶), is assumed to be of the following gamma type:339

𝐴(𝑡,𝜶) = 𝛼1𝑡
𝛼2−1 exp(−𝛼3𝑡) (20)340

where 𝜶 = [𝛼1, 𝛼2, 𝛼3]; 𝛼1 ∈ R+ controls the intensity; 𝛼2 ∈ (1, +∞) controls shape; 𝛼3 ∈ R+341

controls duration. These parameters are related to Arias intensity 𝐼𝑎, effective duration 𝐷5−95,342

defined as the time interval between the instants in which 5%𝐼𝑎 and 95%𝐼𝑎 are reached, and the343

time instant 𝑡mid when 45% of 𝐼𝑎 is reached. The impulse-response function ℎ(𝑡, 𝜿(𝜏)) of the344

time-varying filter is given by:345

ℎ(𝑡 − 𝜏, 𝜿(𝜏)) =


𝜔f (𝜏)√︃
1−𝜁2

f (𝑡)
exp[−𝜁f(𝜏)𝜔f(𝜏) (𝑡 − 𝜏)] sin[𝜔f(𝜏)

√︃
1 − 𝜁2

f (𝜏) (𝑡 − 𝜏)], 𝜏 ≤ 𝑡

0, 𝜏 > 𝑡

(21)346

where 𝜿(𝜏) = [𝜔f(𝜏), 𝜁f(𝜏)] contains the undamped circular frequency 𝜔f(𝜏) and damping ratio

𝜁f(𝜏) of the filter. In this case, 𝜔f(𝜏) and 𝜁f(𝜏) were assumed to be:

𝜔f(𝜏) = 𝜔mid + 𝜔′(𝜏 − 𝑡mid) (22)

𝜁f(𝜏) = 𝜁f (23)

where the 𝜔mid is the undamped circular frequency at the time instant 𝑡mid; 𝜔′ is a constant slope347

of the varying 𝜔f(𝜏).348

The initial ground motion process 𝑤̃(𝑡) is then high-pass filtered to remove unrealistic velocity349

and displacement residuals (Rezaeian and Der Kiureghian 2010). The final ground motion input350

¥̂𝑤(𝑡) can be obtained by351

¥̂𝑤(𝑡) + 2𝜔𝑐
¤̂𝑤(𝑡) + 2𝜔2

𝑐𝑤̂(𝑡) = 𝑤̃(𝑡) (24)352
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where 𝜔𝑐 is the high-pass filter frequency, which is suggested to be 𝜔𝑐/2𝜋 = 0.1 Hz (Rezaeian and353

Der Kiureghian 2010).354

In summary, the parameter vector 𝝃 = [𝐼𝑎, 𝐷5−95, 𝑡mid, 𝜔mid, 𝜔
′, 𝜁f] uniquely defines the ground355

motion model. Among the parameters, 𝜔mid and 𝜁f were calibrated by the Nelder-Mead simplex356

algorithm to fit the target spectrum, while all other parameters were obtained from the Loma Prieta357

records (Moment magnitude = 6.93, Rupture distance = 18.3 km). The process leads to a model358

setting of 𝝃 = [0.045, 12.62, 4.73, 2𝜋 × 3.27,−2𝜋 × 0.08, 0.48]. The total time duration 𝑡final − 𝑡0359

was taken as 30 s with a time step of Δ𝑡 = 0.005 s. Fig. 3 shows the comparison between the target360

spectrum and the spectra of 300 synthetic ground motions.361

Under these excitations, the system experiences a significant nonlinear hysteretic behavior,362

as illustrated in Fig. 4 for one of the ground motion samples of Fig. 3. Fig. 5 shows the peak363

and residual inter-story drift ratios (IDR) for all 300 synthetic ground motions. It is seen that364

the magnitude and distribution of the peak and residual IDR is similar to that reported in Hutt365

et al. (2016) for the full 3D archetype building, therefore ensuring the case study of this section is366

representative of practical engineering problems.367

Model Training368

A three-dimensional reduced space was considered in defining the reduced space, i.e., 𝑛r = 3,369

as the corresponding sum of squares of the first 3 singular values is greater than 99.9% of the total,370

i.e. 𝜂 = 0.999. Based on the identified reduced basis 𝚽𝑛r , Eq. (18) can be rewritten in the reduced371

space as:372

𝚽T
𝑛r𝑴𝚽𝑛r 𝒒̈ +𝚽T

𝑛r𝑪𝚽𝑛r ¥𝒒 +𝚽T
𝑛r𝑩

T𝑲𝑩𝚽𝑛r ¤𝒒 =

𝚽T
𝑛r𝑴𝜾 ¨̂𝑤(𝑤, 𝑡) + 𝛼𝚽T

𝑛r𝑩
T𝑲 |𝑩𝚽𝑛r ¤𝒒(𝑡) | ◦ [𝑩T𝑲]−1 [𝑴𝜾 ¥̂𝑤(𝑤, 𝑡) − 𝑴𝚽𝑛r ¥𝒒 − 𝑪𝚽𝑛r ¤𝒒]

(25)373

The high-fidelity references solutions were determined by directly solving Eq. (18) and (25) through374

the 4th order Runge-Kutta (RK) algorithm, which were then used for calibrating the metamodel.375

The MIMO NARX model was trained for representing the velocity of the reduced coordinates,376

¤𝒒(𝑡), with a maximum time delay of 3 for both inputs and outputs, i.e. 𝑛 𝑓 = 𝑛𝑞 = 3. The377
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displacement responses, 𝒒(𝑡), are then obtained by integrating ¤𝒒(𝑡). For each reduced coordinate,378

the potential NARX terms include: 1, ¤𝑞 𝑗 (𝑡−𝑙Δ𝑡), ¥̂𝑤(𝑡−𝑙Δ𝑡), |𝚽𝑚
𝑛r
¤𝒒(𝑡−Δ𝑡) |, |𝚽𝑚

𝑛r
¤𝒒(𝑡−Δ𝑡) | ¤𝑞 𝑗 (𝑡−𝑙Δ𝑡),379

|𝚽𝑚
𝑛r
¤𝒒(𝑡 − Δ𝑡) | ¥̂𝑤(𝑡 − 𝑙Δ𝑡) for 𝑙, 𝑗 = 1, 2, 3, and 𝑚 = 1, 2, ..., 40, which leads to a total of 575 terms.380

To investigate the convergence properties of the proposed approach, training set sizes of 𝑛s equal381

to 10, 50, 100, 200, 300, and 400 were considered. In calibrating the metamodel to each training set,382

an error tolerance of 𝐸̂ = −10−4 was considered. The expected simulation errors over the training383

sets for roof displacement, ¯̂𝑒𝑆𝐸,40, are summarized in Table 2. The corresponding convergence384

curves associated with ¯̂𝑒𝑆𝐸,40 are shown in Fig. 6 for both the three-dimensional reduced space and385

the full space. As can be seen, for 𝑛s ≥ 200, the expected simulation error becomes, for all intents386

and purposes, constant. It is interesting to observe how, even for small training sets (𝑛s < 200),387

the proposed approach still succeeds in achieving relatively low simulation errors, e.g. less than388

0.1 in the full space. In the following, results will refer to the case of a training sample size of389

𝑛s = 300, for which the most appropriate MIMO NARX models identified by the LARP scheme390

contain 209, 232, and 226 terms respectively for the three coordinates of the reduced space. The391

velocity responses of the reduced coordinates estimated from the metamodel were compared with392

the high-fidelity reference solutions, as shown in Fig. 7 for a representative sample with median393

level of error. As can be seen, the metamodel reproduced the responses for all three reduced394

coordinates with remarkable accuracy. Fig. 8(a) presents the comparison for the representative395

sample between the reference and reproduced top floor velocity responses, ¤𝑥40(𝑡), of the system,396

obtained by transforming the responses of the reduced space back to the full space. Similar to the397

results seen for the reduced space, the responses reconstructed by the MIMO NARX model were398

in excellent agreement with the reference solutions. In addition, a strong correspondence can be399

observed between the reference and reconstructed peak velocities over all samples, as shown in400

Fig. 8(b), indicating that a high level of accuracy was maintained over the entire training set. The401

corresponding displacement responses were then obtained by integrating the velocity responses.402

Fig. 9 reports the comparison between the reference and reconstructed displacements at the top403

floor. It is noteworthy that the top floor displacement was reproduced with the same level of404
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accuracy as the velocity. Both the exceedance probability and peak displacements were reproduced405

with excellent accuracy over the entire training set.406

Simulation Results407

To investigate the performance of the trained MIMO NARX model, a new set of 300 samples,408

denoted “test set” in the following, were generated to evaluate the performance of the calibrated409

metamodel in simulation/prediction mode. It is important to observe that the aforementioned test410

set is generated independently from the set that was considered in training the metamodel (i.e.411

none of the test set samples were used in training the metamodel). This will allow the prediction412

capability of the metamodeling approach to be investigated in this section, therefore providing an413

initial verification of the proposed approach. The reference solutions were once again estimated414

using the 4th order Runge-Kutta (RK) algorithm. In particular, reference solutions in the reduced415

and full spaces were obtained. Fig. 10 shows the comparison between the reference and simulated416

velocity responses in the reduced space for a representative test sample. It can be seen that the417

accuracy of the metamodel for predicting responses maintained a similar level of accuracy as seen418

in the training set (Fig. 7). By transforming the responses in the reduced space back to the full419

space, the velocity responses shown in Fig. 11 were obtained. As can be seen, the trained MIMO420

NARX model accurately predicted both the time history response and the peak responses over all421

test samples.422

To illustrate the validity of the reduced model for representing the displacements responses of423

the full system, Fig. 12 reports the comparison of the displacements at the top floor, 𝑥40, with the424

references solutions determined from the transformation of the reduced space response to the full425

space. As can be seen, remarkable accuracy is seen in both the individual responses, as illustrated426

in Fig. 12(c) for a typical sample, as well as over all samples, as illustrated in Fig. 12(a) that shows427

the exceedance probability associated with the top floor response as well as Fig. 12(b) that shows428

the peak displacement responses over all test samples. To illustrate the effectiveness of the reduce429

model of the “Model order reduction” section, Fig. 13 reports the comparison of the displacement430

response at the top floor obtained from the proposed metamodel with those obtained by directly431
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integrating the full system. As can be seen, while there is an increase in error as compared to432

Fig. 12, the metamodel retains remarkable accuracy over all test samples.433

Overall, and without a particular optimization of the codes, the metamodel was well over an order434

of magnitude more efficient than the full model while preserving a remarkable level of accuracy.435

It should also be observed that the proposed metamodeling approach provides the output for all436

the DOFs of the MDOF system, i.e. the response vectors 𝒙(𝑡), ¤𝒙(𝑡) and ¥𝒙(𝑡), with ¥𝒙(𝑡) derived437

from the knowledge of 𝒙(𝑡) and ¤𝒙(𝑡). This property makes the proposed approach particularly well438

suited for integration into probabilistic performance-based frameworks that generally require the439

entire response of the system for evaluating the performance metrics. While this work illustrated440

the applicability of the proposed approach to a shear type building, it is believed that the framework441

can have a wide range of practical applications involving various types of nonlinearity. This belief442

stems from how the POD-based model order reduction has been shown to be effective in reducing443

complex nonlinear structural systems, e.g. (Bamer et al. 2017), while NARX-based metamodeling444

of low-dimensional nonlinear dynamic systems has shown promise for various types of nonlinearity,445

e.g. (Mai et al. 2016). These properties, together with the efficiency and accuracy shown in this446

section, illustrates the strong potential of the proposed metamodeling approach.447

CONCLUSION448

This paper proposes a metamodeling approach which combines reduced-order modeling with449

multi-input multi-output nonlinear auto-regressive models with exogenous input for representing a450

class of nonlinear hysteretic MDOF systems subject to general stochastic excitation. An important451

property of the approach is that it enables the representation of the response of the entire system452

through a single metamodel. For calibration, a framework base on the combination of a least angle453

regression algorithm with pruning scheme and an ordinary least squares approach was developed.454

To demonstrate the applicability of the approach, a case study consisting in a high-dimensional455

structural system with distributed hysteretic nonlinearity and subject to general stochastic earth-456

quake excitations was presented. The proposed approach was seen not only to be capable of457

reproducing the dynamic response of the system with remarkable accuracy, but also to be over an458
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order of magnitude faster than classic integration approaches. The general versatility of POD-based459

reduction of nonlinear systems, coupled with the general capability of NARX-based metamodels in460

capturing nonlinearity in low-dimensional spaces, points towards the applicability of the proposed461

approach to various problems of practical interest with a variety of nonlinear behaviors. Future462

research will focus on better understanding the true versatility of the proposed approach.463
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TABLE 1. Element sections used in the steel frame.

Floors Beams Interior columns Exterior columns
1 W36×282 66 × 7.6 66 × 6.4
2-10 W36×282 56 × 7.6 51 × 6.4
11-20 W36×194 51 × 5.0 51 × 5.0
21-30 W33×169 46 × 2.5 46 × 2.5
31-40 W27×84 46 × 1.9 46 × 1.9
Columns sections: (outer side size)×(wall thickness)
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TABLE 2. Simulation errors associated with roof displacement and various training set sizes.

Training set size 10 50 100 200 300 400
¯̂𝑒𝑆𝐸,40 in the reduced space 0.0627 0.0436 0.0411 0.0289 0.0354 0.0369
¯̂𝑒𝑆𝐸,40 in the full space 0.0867 0.0793 0.0679 0.0624 0.0652 0.0631
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Fig. 2. Case study steel frame: (a) schematic of the frame layout; (b) shear building idealization.
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Fig. 3. Comparison between the target and simulated spectra.
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Fig. 4. Typical nonlinear restoring force at floor 1 for a representative ground motion.
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Fig. 5. Inter-story drift ratio response over all 300 synthetic ground motions.
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Fig. 6. Variation of the expected simulation error for the roof displacement.

36



(a)

(b)

(c)

Fig. 7. Comparison between the reconstructed and reference velocity solutions in the reduced space
for a typical sample: (a) first reduced coordinate; (b) second reduced coordinate; (c) third reduced
coordinate.
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(a) (b)

Fig. 8. Comparison between the reference and reconstructed solutions in the full space: (a) velocity
responses at the top floor for a representative sample of the training set; (b) peak velocities at the
top floor over all training samples.
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(a) (b)

(c)

Fig. 9. Comparison between the reference and reconstructed solutions in the full space: (a)
exceedance probabilities of peak displacements at the top floor; (b) peak displacements at the top
floor over all samples; (c) displacement responses at the top floor for a representative sample.
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(a)

(b)

(c)

Fig. 10. Comparison for a representative test set sample between the simulated and reference
reduced space velocity response: (a) first reduced coordinate; (b) second reduced coordinate; (c)
third reduced coordinate.
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(a) (b)

Fig. 11. Comparison for the test set samples between the reference and simulated velocity after
transformation to the full space: (a) velocity responses at the top floor for a representative sample
of the test set; (b) peak velocity at the top floor over all test samples.
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(a) (b)

(c)

Fig. 12. Comparison for the test set samples between the displacements at the 40th floor estimated
from the metamodel and the reference reduced model after transformation to the full space: (a)
exceedance probability; (b) peak values; (c) representative time history and overall error evolution.

42



(a) (b)

(c)

Fig. 13. Comparison for the test set samples between the displacements at the 40th floor estimated
from the metamodel and the reference full model: (a) exceedance probability; (b) peak values; (c)
representative time history and overall error evolution.
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