
Performance-Based Bi-Objective Optimization of Structural

Systems Subject to Stochastic Wind Excitation

Arthriya Subgranonb, Seymour M.J. Spencea,1,∗

aDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
bDepartment of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

This paper outlines the development of a stochastic simulation-based design optimization

approach for dynamic wind excited structures in which correlations between component dam-

ages and losses are explicitly treated. The proposed approach integrates a bi-objective design

optimization scheme with a probabilistic performance-based wind engineering methodology

which systematically accounts for the various sources of uncertainties involved in system loss

estimation. Through the ϵ-constraint technique, the bi-objective optimization problem is

transformed into a series of single-objective stochastic optimization problems. To solve each

ϵ-constraint optimization problem, a pseudo-simulation scheme is proposed that allows for

the formulation of an approximate sub-problem that can be solved sequentially to identify

solutions that define a set of Pareto optimal designs. In the proposed scheme, samples of

engineering demands are approximated in terms of auxiliary variable vectors, which are by-

products of an augmented simulation carried out in a fixed design point. Analytical expres-

sions are derived that relate the engineering demand samples to the second-order statistics

of wind-induced losses based on the concept of fragility. Potential correlations between the

component capacities and component losses are explicitly treated. The effectiveness of the

proposed approach and its scalability to high-dimensional problems are illustrated through

optimal designs of moment-resisting frames subject to stochastic wind loads.
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1. Introduction1

In developing risk management strategies, the integration of bi-objective design opti-2

mization (BODO) schemes with performance assessment frameworks, provides an attractive3

decision support space in which useful insights into the trade-offs between upfront cost and4

anticipated losses can be obtained [1–7]. For wind excited buidlings, stochastic performance-5

based wind engineering (PBWE) frameworks can be used to directly assess performance6

metrics that systematically treat various sources of uncertainties [8–15]. However, the compu-7

tational effort in repeatedly performing the stochastic simulation for different designs during8

the optimization process is complex and time-consuming, especially for large-scale systems9

that involve high-fidelity models and a large number of design variables. To overcome these10

challenges, the authors have recently proposed an efficient method that is based on trans-11

forming the performance-based BODO problem into a series of single-objective stochastic12

optimization problems through the ϵ-constraint technique [6]. By solving a series of prob-13

lems for various values of ϵ, a set of the searched-after Pareto optimal solutions can be14

identified. To solve each ϵ-constraint problem, Suksuwan and Spence [6] proposed a method15

based on formulating and solving a sequence of sub-problems: this method allows a proba-16

bilistic loss measure to be updated during the optimization through kriging metamodels that17

are constructed from results of a stochastic simulation. While the kriging-based approach18

is computationally efficient for large-scale problems, the method does not consider correla-19

tions between damage states or correlations between component losses. These correlations,20

however, can significantly affect the total loss [e.g. 16, 17], and should therefore be treated21

during not only the loss assessment, but also the optimization process.22

In general, there are three types of correlations that may have a significant impact on the23

total loss of a system: (i) correlation between engineering demand parameters (EDP), given24

that a windstorm of prescribed intensity has occurred; (ii) correlation between component25

damage states (DS), given engineering demands; and (iii) correlation between component de-26

cision variables/losses (DVC), given damage states. While the correlation in the conditional27

demand level can be estimated directly from the results of structural response analysis, the28

same cannot be said for conditional correlations at the damage state and the component29

loss levels. To date, few models have been proposed for treating such inter-component cor-30
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relations. In the field of earthquake engineering, Baker and Cornell [16] proposed a seismic31

loss estimation approach that considers inter-component correlations through a first-order32

second-moment (FOSM) analysis method in which the mean and variance of the total loss is33

estimated conditional on earthquake intensity. Through this approach, the conditional dam-34

age state given an engineering demand (DS|EDP ) and conditional component loss given a35

damage state (DV C|DS) were collapsed into a DV C|EDP relationship, while a generalized36

equi-correlated model is proposed to estimate the correlation in the collapsed relationship.37

Aslani [18] proposed an approach that utilizes the FOSM method in computing the covari-38

ance terms when estimating the standard deviation of the total loss, while the correlation39

of DS|EDP is estimated through an iterative procedure with the correlation of DV C|DS40

obtained from data pertaining to construction cost. In seismic design practice, the Fed-41

eral Emergency Management Agency (FEMA) P-58 guidelines [19] assume damage states42

in the same performance group to either be perfectly correlated or uncorrelated, while the43

case of partially correlated components is omitted. To incorporate partial correlations, while44

avoiding potential errors incurred in using the FOSM approximation, Bradley and Lee [17]45

proposed a tractable analytical approach to seismic loss assessment that can explicitly con-46

sider the correlations in the conditional demands, conditional damage states, and conditional47

component losses.48

This work aims to develop a new approach for solving the ϵ-constraint problem oulined49

in [20] that is capable of treating general inter-component correlations. In particular, as loss50

measures, both the expected value and variance are considered, while correlations in the dam-51

age capacity and component losses are explicitly modeled based on the approaches outlined52

in [17]. The basic idea of the proposed method is to derive closed-form relationships be-53

tween samples of engineering demands and the second-order statistics of wind-induced losses54

based on the knowledge of the fragility and consequence functions. By substituting in the55

derived expressions with demand samples approximated in terms of auxiliary variable vectors56

[20, 21], a pseudo-simulation scheme is defined that can be used to formulate an approxi-57

mate sub-problem that enables the use of gradient-based optimization algorithms. Within58

this setting, the probabilistic loss measure, as well as inter-component correlations, can be59

efficiently updated during the optimization process without the need to invoke any dynamic60
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structural analysis or calibrate any metamodels. The validity of the proposed approach is61

illustrated first through the optimal design of a lateral load-resisting system of a two-story62

building. The practicality of the approach is then demonstrated through the identification63

of set of Pareto optimal designs of a multistory building system subject to stochastic wind64

loads.65

2. Problem Statement66

To provide decision-makers with trade-off information regarding various design options,67

it is of interest to identify a set of optimal designs that simultaneously minimize the initial68

cost of the system as well as the anticipated losses caused by extreme windstorms. This69

engineering problem can be formulated in terms of the following bi-objective optimization70

problem:71

Find x = {x1, ..., xN}T

to minimize [V (x), L(x; im)]

subject to xn ∈ Xn n = 1, . . . , N

(1)

where x is a high-dimensional design variable vector collecting the N deterministic parameters72

that are used to define the structural system (e.g. structural member sizes); V is a function73

associated with the initial cost of the structural system (e.g. volume of structural material)74

and is assumed to be deterministic and explicit in x; L is a probabilistic function describing75

a system-level loss measure for a wind event of prescribed intensity measure IM = im (e.g.76

a site specific wind speed with a mean recurrence interval (MRI) of 700 years); while Xn is77

the set of discrete values to which the nth component of x must belong. In particular, L is78

defined here as:79

L(x; im) = µDV |IM(x; im) + α · σDV |IM(x; im) (2)

where µDV |IM and σDV |IM are the expected value and standard deviation, respectively, of80

the system-level decision variable DV (e.g. total repair cost) conditioned on IM ; while α81

is a parameter, α ≥ 0, whose value can be assigned according to the desired level of design82

robustness. In other words, a larger α assigns more weight to the standard deviation in order83

to restrict the variability in the system-level loss, hence increasing the design robustness [6].84
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3. Loss Assessment Framework Considering Component Correlations85

3.1. Overview of the Methodology86

This section introduces an efficient framework for estimating the loss measure, L, for a87

given design x and wind event of intensity im, while explicitly accounting for component88

correlations. In general, the components of a system that are susceptible to damage due to a89

common demand parameter can be grouped to define what is known as a performance group90

(PG) [19]. The total loss, DV , can then be seen as the sum of losses over all PGs defining91

the system, and therefore as:92

DV (x; im) =

NG∑
j=1

DVj(x; im) (3)

where NG is the total number of PGs defining the system, while DVj is a group-level decision93

variable associated with the jth PG (e.g. repair cost associated with cladding components94

on the first floor). Based on Eq. (3), the second-order statistics of DV can be estimated in95

terms of the group-level losses as follows:96

µDV |IM(x; im) =

NG∑
j=1

µDVj |IM(x; im) (4)

97

σDV |IM(x; im) =

√√√√ NG∑
j=1

NG∑
k=1

σDVj ,DVk|IM(x; im) (5)

where µDV |IM and σDV |IM are the conditional expected value and standard deviation of98

DV ; µDVj |IM is the conditional expected value of DVj; while σDVj ,DVk|IM is the conditional99

covariance between DVj and DVk given that IM = im.100

The loss associated with each PG depends on the current damage states of each component101

of the PG, and therefore the response level of the associated engineering demand parameter102

(e.g. inter-story drift). In this respect, the following functional relationships can be derived103

between the demand and the group-level loss statistics (where the dependence on x and IM104

is dropped for clarity):105

µDVj = E[µDV j |EDPj
] (6)

106

σDVj ,DVk = E[σDVj ,DVk|EDPj ,EDPk
] + Cov[µDV j |EDPj

, µDV k|EDPk
] (7)
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where µDV j |EDPj
is the mean of DVj conditioned on the engineering demand parameter,107

EDPj; µDV k|EDPk
is the mean of DVk conditioned on EDPk; σDVj ,DVk|EDPj ,EDPk

is the co-108

variance between DVj andDVk conditioned on EDPj and EDPk; while E[·] and Cov[·] denote109

the expectation and covariance operators, respectively.110

For a given design x, the second-order statistics are affected by many uncertainties, in-111

cluding the aleatory nature of the wind, uncertainties in the system parameters, uncertainties112

in the damage and consequence assessment, and epistemic uncertainties in the mathematical113

modeling. Hence, the loss assessment generally involves a large number of random variables114

with different corresponding distributions. To systematically carry out probabilistic analysis115

within this high-dimensional uncertain space, a Monte Carlo simulation technique is adopted116

in this work. Through the Monte Carlo method, the expected value of a random variable Yj117

(e.g. µDV j |EDPj
and σDVj ,DVk|EDPj ,EDPk

introduced in this section) may be estimated as:118

E[Yj] ≈
1

Ns

Ns∑
i=1

yj(edp
(i)
j ) (8)

where Ns is the total number of samples used in the simulation, while edp
(i)
j is the ith119

realization of EDPj. Similarly, the covariance between any two variables Yj and Yk can also120

be estimated from the samples as:121

Cov[Yj, Yk] ≈
1

Ns − 1

Ns∑
i=1

[
yj(edp

(i)
j )− E[Yj]

]
·
[
yk(edp

(i)
k )− E[Yk]

]
(9)

To this end, an efficient method to generate realizations of a vector of correlated engi-122

neering demand parameters, EDP = {EDP1, ..., EDPNg}T , and a method that can quickly123

evaluate the conditional statistics given EDP are needed. Throughout this paper, uppercase124

letters (e.g. Yj) are used to represent random variables, while lowercase letters (e.g. yj) are125

used to represent realizations.126

3.2. Engineering Demand Parameters127

This section provides a brief overview of the approach used in this work to generate128

samples of the EDPs. Detailed derivations of the equations and descriptions of the models129

can be found in [6, 20, 22] and are provided for convenience in Appendix A, regarding130
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the estimation of resonant modal response, and in Appendix B regarding the estimation of131

stochastic wind loads.132

For the following damage analysis, the EDPs are defined as the absolute peak responses133

of a structural system subject to a wind event of duration T . Hence, a realization of an134

element of EDP can be written as:135

edp
(i)
j (u(i)) = max

β∈[0,2π]

{
max
t∈[0,T ]

|r(i)j (t; β,u(i))|
}

(10)

where i denotes the realization, u(i) is the ith sample of a high-dimensional uncertain vector136

U that contains all uncertain variables considered in the estimation of the EDPs (examples137

of these variables and possible distributions are provided in Table B.4), β denotes the wind138

direction, and r
(i)
j (t) represents the ith realization of the response process time-history as-139

sociated with the jth PG. In particular, the stochastic response process can be efficiently140

estimated through the following load-effect model [21]:141

r
(i)
j (t; β,u(i)) = s

(i)
1

[
ΓTj f(t; β, v̄H ,u

(i)) + ΓTj KΦMqRM
(t; β, v̄H ,u

(i))
]

(11)

where S1 represents a random variable modeling the epistemic uncertainty in the load-effect142

model and is an element of U; Γj is a vector containing influence functions, each giving the143

response in rj due to a unit load acting at a given degree of freedom of the system; f(t) is144

a vector-valued stochastic wind process calibrated to a site-specific wind speed v̄H that is145

averaged over a time duration T ; K is the stiffness matrix of the system; ΦM is the mass146

normalized mode shape matrix considering the first M modes; and qRM
(t) is a vector whose147

elements are resonant modal displacement response processes associated with the first M148

modes. A procedure to estimate qRM
(t) is provided in Appendix A.149

To rapidly generate realizations of the stochastic wind loads, f(t), to be used in the150

response model of Eq. (11), this work adopts a proper orthogonal decomposition (POD)-151

based method [23]. The POD-based stochastic wind model is described in more details152

in Appendix B. It should be noted that the proposed framework is not restricted to any153

particular stochastic wind model. The choice of the POD-based model is due to its efficiency154

while enabling the use of wind tunnel data, which can account for complex aerodynamic155

phenomena such as vortex shedding.156

7



3.3. Estimation of the Conditional Statistics157

3.3.1. Conditional Expectation158

Once a sample of the engineering demand is obtained through Eq. (10), a realization of159

the conditional expected value of a group-level loss, µDVj |EDPj
, may be estimated through a160

summation over the components in the group as:161

µDVj |EDPj
(edp

(i)
j ) =

NCj∑
m=1

µDV Cjm|EDPj
(edp

(i)
j ) (12)

where i represents the sample number, NCj
is the total number of components in the jth162

PG, and µDV Cjm|EDPj
is the conditional expected loss associated with component m. For163

a component m that is susceptible to NDSm possible damage states, µDV Cjm|EDPj
may be164

directly estimates from the fragility functions as:165

µDV Cjm|EDPj
(edp

(i)
j ) =

NDSm∑
q=0

µDV Cjm|DSm(q) ·
[
Frq(edp

(i)
j )− Frq+1(edp

(i)
j )
]

(13)

where µDV Cjm|DSm(q) denotes the expected component loss given that the damage state q166

has occurred, while Frq and Frq+1 are fragility functions associated with the damage states q167

and q + 1, respectively, where q = 0, ..., NDSm and FrNDSm+1 = 0 [20, 24].168

3.3.2. Conditional Covariance169

The conditional covariance between group-level losses can be formulated in terms of the170

conditional component correlations as:171

σDV j ,DV k|EDPj ,EDPk
(edp

(i)
j , edp

(i)
k ) =

NCj∑
m=1

NCk∑
n=1

[
ρDV Cjm,DV Ckn|EDPj ,EDPk

(edp
(i)
j , edp

(i)
k )

· σDV Cjm|EDPj
(edp

(i)
j ) · σDV Ckn|EDPk

(edp
(i)
k )
]
(14)

where NCk
is the total number of components in the kth PG; ρDV Cjm,DV Ckn|EDPj ,EDPk

is172

the conditional correlation coefficient between the loss associated with component m in the173

jth PG, DV Cjm, and the loss associated with component n in the kth PG, DV Ckn; while174

σDV Cjm|EDPj
and σDV Ckn|EDPk

are the standard deviation of DV Cjm and DV Ckn, conditioned175

on EDPj and EDPk, respectively. Analogous to the conditional mean, for a component m176
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that is susceptible to Nm
DS damage states, σDV Cjm|EDPj

may be calculated as [24]:177

σDV Cjm|EDPj
(edp

(i)
j ) =

[Nm
DS∑
q=0

σ2
DV Cjm|DSm

(q) ·
(
Frq(edp

(i)
j )− Frq+1(edp

(i)
j )
)

+

Nm
DS∑
q=0

(µDV Cjm|DSm(q)− µDV Cjm|EDPj
(edp

(i)
j ))2 ·

(
Frq(edp

(i)
j )− Frq+1(edp

(i)
j )
)] 1

2

(15)

where σ2
DV Cjm|DSm

(q) is the variance of DV Cjm given that damage state q has occurred.178

The conditional correlations posed in Eq. (14) may be expressed as:179

ρDV Cjm,DV Ckn|EDPj ,EDPk
(edp

(i)
j , edp

(i)
k )

=
µDV CjmDV Ckn|EDPj ,EDPk

(edp
(i)
j , edp

(i)
k )− µDV Cjm|EDPj

(edp
(i)
j ) · µDV Ckn|EDPk

(edp
(i)
k )

σDV Cjm|EDPj
(edp

(i)
j ) · σDV Ckn|EDPk

(edp
(i)
k )

(16)

where µDV CjmDV Ckn|EDPj ,EDPk
is the conditional expected value of the product of DV Cjm180

and DV Ckn that can be formulated in terms of component damage states based on the total181

probability theorem as (for detailed derivations see Appendix C):182

µDV CjmDV Ckn|EDPj ,EDPk
(edp

(i)
j , edp

(i)
k )

=

Nm
DS∑
q=1

Nn
DS∑
r=1

[(
ρDV Cjm,DV Ckn|DSm,DSn(q, r) · σDV Cjm|DSm(q) · σDV Ckn|DSn(r)

+ µDV Cjm|DSm(q) · µDV Ckn|DSn(r)
)
· PDSm,DSn|EDPj ,EDPk

(q, r|edp(i)j , edp
(i)
k )
]

(17)

where ρDV Cjm,DV Ckn|DSm,DSn(q, r) is the correlation between the mth and the nth compo-183

nent losses due to damage states q and r; σDV Cjm|DSm(q) and σDV Ckn|DSn(r) are the stan-184

dard deviations of DV Cjm and DV Ckn conditioned on the damage state q and r; while185

PDSm,DSn|EDPj ,EDPk
is the conditional joint probability of the mth and the nth component186

damage state given EDPj and EDPk. In particular, PDSm,DSn|EDPj ,EDPk
can be determined187

from appropriate fragility functions as [17]:188

PDSm,DSn|EDPj ,EDPk
(q, r|edp(i)j , edp

(i)
k ) =FrDSm,DSn|EDPj ,EDPk

(q, r|edp(i)j , edp
(i)
k )

−
Nm

DS∑
v=q

Nn
DS∑

w=r
q ̸=r if v=q

PDSm,DSn|EDPj ,EDPk
(v, w|edp(i)j , edp

(i)
k )

(18)
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where FrDSm,DSn|EDPj ,EDPk
(q, r|edp(i)j , edp

(i)
k ) = P(DSm ≥ q,DSn ≥ r|edp(i)j , edp

(i)
k ) denotes189

a joint fragility function defined as the conditional joint probability that component m will190

have the damage state q or worse, while component n will have the damage state r or worse191

given EDPj = edp
(i)
j and EDPk = edp

(i)
k . Analogous to a typical fragility function that192

is assumed to follow a lognormal distribution, the joint fragility is assumed here to have a193

bi-variate lognormal distribution. It is of interest to write the joint fragility function in terms194

of a component damage capacity (i.e. the demand level at which the component enters a195

specified damage state), and therefore in the following form:196

FrDSm,DSn|EDPj ,EDPk
(q, r|edp(i)j , edp

(i)
k )

= P(lnCm,q < ln edp
(i)
j , lnCn,r < ln edp

(i)
k )

=

∫∫
ln cm,q<ln edp

(i)
j

ln cn,r<ln edp
(i)
k

1√
|ClnC |(2π)2

exp

(
−1

2
(zln edp − µlnC)C

−1
lnCm,lnCn

(zln edp − µlnC)
T

)
d ln cm,qd ln cn,r

(19)

where Cm,q and Cn,r are the capacities associated with the damage states q and r of the197

componentsm and n, respectively; ClnC is the covariance matrix of the component capacities198

that can be defined as:199

ClnC =

 σ2
ln cm,q

ρln cm,q ,ln cn,rσln cm,qσln cn,r

ρln cn,r,ln cm,qσln cn,rσln cm,q σ2
ln cn,r

 (20)

where ρln cn,r,ln cm,q denotes the correlation coefficient between the component capacities;200

zln edp = {ln edp(i)j , ln edp
(i)
k }T is a vector collecting the natural log of the demands; while201

µlnC = {µlnCm,q , µlnCn,r}T is a vector collecting the means of the component capacities. The202

advantages of Eq. (19) are threefold: 1) it allows for the direct implementation of any ef-203

ficient numerical algorithm for solving for the cumulative bi-variate normal distribution; 2)204

the correlation coefficient between the damage state capacities ,ρlnCm,q ,lnCn,r , can be mod-205

eled independent of the engineering demand parameters and therefore independent of the206

design variables; and 3) it allows for derivation of a closed-form gradient function that helps207

accelerate the optimization process (see details in Sec. 4.2.1).208
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4. Proposed Optimization Strategy209

To efficiently solve the bi-objective stochastic optimization problem of the type posed in210

Eq. (1), the authors have demonstrated in [6] that the ϵ-constraint approach can be used to211

transform the original problem into a series of single-objective optimization problems. By212

turning the loss measure into a constraint, the ϵ-constraint problem is formulated as:213

Find x = {x1, ..., xN}T

to minimize V (x)

subject to L(x; im) = µDV |IM(x; im) + α · σDV |IM(x; im) ≤ ϵ

xn ∈ Xn n = 1, . . . , N

(21)

where ϵ represents the threshold value that Lmust meet. By solving a series of these problems214

for various values of ϵ, a set of Pareto optimal solutions is identified. In other words, these215

optimal designs are such that one objective function cannot be further improved without216

depreciating the other objective function.217

Although the original problem has been decomposed, solving a single-objective optimiza-218

tion problem of the type posed in Eq. (21) is still computationally cumbersome as it involves219

not only a time-consuming stochastic simulation, but also a large number of design variables220

if practical problems are considered. To handle this high-dimensional stochastic optimization221

problem, this work proposes a method that is based on constructing an approximation for222

the loss measure that is efficient to evaluate and can take into account changes in component223

correlations during the optimization.224

4.1. Loss Measure Approximation225

To estimate the loss measure, L, as defined in Eq. (2), it can be observed that the226

majority of the computational expense in estimating µDV |IM and σDV |IM through the Monte227

Carlo simulation is allocated to the estimation of the EDPj samples. This is because such an228

estimation involves performing a structural dynamic analysis of a large-scale finite element229

model subject to long duration stochastic wind loads. To circumvent this hurdle during the230

optimization process, this paper proposes a method that approximately decouples the struc-231

tural dynamic analysis from the optimization process. The proposed method approximates232
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samples of engineering demands in terms of auxiliary variable vectors, while utilizing the233

conditional statistics estimation scheme described in Sec. 3.3 to quickly update changes in234

the loss statistics.235

4.1.1. Augmented Simulation Process236

To construct an efficient approximation scheme that is insensitive to the number of design237

variables, the method centers on the definition of a reduce variate and an auxiliary variable238

vector [21, 22, 25] that can be fully defined from results of a single Monte Carlo simulation239

carried out in a fixed design point. Within this context, considering a simulation performed240

in the current design xmc, it is proposed that each sample of EDPj can be written as:241

edp
(i)
j (xmc) = µEDPj

(xmc) + g
(i)
j (xmc) · σEDPj

(xmc) (22)

where µEDPj
and σEDPj

are the mean and standard deviation of EDPj, respectively; and g
(i)
j242

is a reduced variate associated with edp
(i)
j and defined as:243

g
(i)
j (xmc) =

edp
(i)
j (xmc)− µEDPj

(xmc)

σEDPj
(xmc)

(23)

Thus, for every demand sample, edp
(i)
j , there will be an associated g

(i)
j that can be estimated244

once µEDPj
and σEDPj

are calculated at the end of the simulation process.245

To define the auxiliary variable vector (AVV), used later in the demand approximation246

scheme to predict µEDPj
and σEDPj

, it is first necessary to define the following vector-valued247

stochastic variable for each realization:248

F(i)(xmc; t,u
(i)) = s

(i)
1

[
f(t;u(i)) +K(xmc)ΦM(xmc)qRM

(xmc; t,u
(i))
]

(24)

Based on F(i)(t), r
(i)
j (t) and edp(i), the following stochastic variable associated with the249

ith realization may be defined:250

ψ
(i)
j (xmc;u

(i)) = µF(xmc;u
(i)) +

edp
(i)
j (xmc;u

(i))− µrj(xmc;u
(i))

σ2
rj
(xmc;u(i))

CF(xmc;u
(i))Γj(xmc) (25)

where µF and CF are the mean and covariance matrix of F(i)(t); while µrj and σrj are the251

mean and standard deviation of the response process, rj(t), respectively. From all realizations252

of ψ
(i)
j , the following AVVs can be defined:253

Ψ̄j(xmc) = µψj
(xmc) (26)
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254

Ψ̂j(xmc) =
CΨ(xmc)Γj(xmc)

σEDPj
(xmc)

(27)

where µψj
is the mean of ψj while CΨ is the covariance matrix of Ψ = [ψ1...ψj...ψNj

]. The255

AVVs, Ψ̄j and Ψ̂j, are particularly useful as, when they are statically applied to the system,256

the resulting responses coincide with the second-order statistics of the engineering demands,257

i.e. the follow holds:258

µEDPj
(xmc) = ΓTj (xmc)Ψ̄j(xmc) (28)

259

σEDPj
(xmc) = ΓTj (xmc)Ψ̂j(xmc) (29)

These relationships are exact in xmc, i.e. where the Monte Carlo simulation was carried260

out.261

4.1.2. Pseudo-Simulation Scheme262

The reduced variates, g
(i)
j , and the AVVs, Ψ̄j and Ψ̂j, can be seen as by-products of a263

single augmented simulation carried out in xmc. If it is assumed that g
(i)
j , Ψ̄j and Ψ̂j are264

insensitive to relatively small changes in x around xmc during the optimization process, the265

demand samples may be approximated without invoking any dynamic structural analysis as:266

ẽdp
(i)

j (x) = ΓTj (x)Ψ̄j(xmc) + g
(i)
j (xmc) · ΓTj (x)Ψ̂j(xmc) (30)

The approximate demand sample of Eq. (30) allows for the following pseudo-simulation267

scheme to estimate the system-level loss statistics (i.e. Eqs. (4)-(5)) as x is updated during268

the optimization:269

µDV (x) =

NG∑
j=1

µDVj(x) ≈
NG∑
j=1

[
1

Ns

Ns∑
i=1

µDVj |EDPj
(x; ẽdp

(i)

j )

]
(31)

270

σDV (x) =

√√√√ NG∑
j=1

NG∑
k=1

σDVj ,DVk(x)

≈

{
NG∑
j=1

NG∑
k=1

[∑Ns

i=1[σDVj ,DVk|EDPj ,EDPk
(x; ẽdp

(i)

j , ẽdp
(i)

k )]

Ns

+

∑Ns

i=1[µDVj |EDPj
(x; ẽdp

(i)

j )− µDVj(x)] · [µDVk|EDPk
(x; ẽdp

(i)

k )− µDVk(x)]

Ns − 1

]} 1
2

(32)
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In practice, through Eqs. (31) and (32), each approximate demand sample is first used271

to estimate the conditional expectations and covariances of the group-level losses through272

the approaches of Sec. 3.3. Subsequently, the unconditional group-level loss statistics are273

estimated through Eqs. (6) and (7) in which the operations of expectation and covariance are274

carried out through the Monte Carlo estimators of Eqs. (8) and (9) and the Ns approximate275

demand samples. Equations (4) and (5) are then directly applied to estimate the searched276

after system-level loss statistics. Because the proposed approach is based on propagating277

approximate demand samples through the models of Sec. 3.3, it is termed a pseudo-simulation278

scheme. It should be highlighted that, through the proposed scheme, not only are the means279

and standard deviations of the individual group-level losses updated as x is varied, but also280

the correlations between the group-level losses.281

4.2. Sub-Problem Formulation282

Based on the approximation scheme introduced in the previous section, the following283

optimization sub-problem may be formulated and solved sequentially:284

Find x = {x1, ..., xN}T

to minimize V (x)

subject to L(x; im) ≈ µ̃DV |IM(x; im) + α · σ̃DV |IM(x; im) ≤ ϵ

xn ∈ Xo
n ∈ Xn n = 1, . . . , N

(33)

where µ̃DV |IM and σ̃DV |IM are the approximations of µDV |IM and σDV |IM through Eqs. (31)-285

(32), respectively; while Xo
n represents the search neighborhood of xn defined by the minimum286

value, xminn , and maximum value, xmaxn , that xn is allowed to take. These bounds are imposed287

in order to ensure the validity of the proposed approximation scheme. Because the optimal288

solution to Eq. (33) only satisfies the approximate performance constraint, the optimization289

sub-problem needs to be reformulated and solved again at the updated design point. This290

resolution process is termed a design cycle (DC) and needs to be repeated until solutions of291

two consecutive DCs meet a predefined convergence tolerances on the objective function. This292

ensures that the final solution is free of any approximations. In addition, as will be outlined293

in Sec. 4.2.1, the approximate statistics of Eqs. (31)-(32) allow for a direct calculation of294
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the sensitivities with respect to x through the chain rule. Therefore, any gradient-based295

optimization algorithm can be used to efficiently solve the sub-problem of Eq. (33).296

4.2.1. Sensitivities297

The partial derivative of the approximate loss measure with respect to the nth element298

of the design variable vector, xn, may be estimated as follows:299

∂L(x)

∂xn
≈ ∂µ̃DV (x)

∂xn
+ α · ∂σ̃DV (x)

∂xn
(34)

where the partial derivative of the approximate expected value of DV can be estimated300

through the chain rule as:301

∂µ̃DV (x)

∂xn
=

NG∑
j=1

 1

Ns

Ns∑
i=1

∂µDVj |EDPj
(x; ẽdp

(i)

j )

∂ẽdp
(i)

j

·
∂ẽdp

(i)

j

∂xn

 (35)

where
∂µDVj |EDPj

∂ẽdp
(i)

j

denotes the partial derivative of the conditional expected group-level loss302

with respect to the approximate engineering demand sample, ẽdp
(i)

j , while
∂ẽdp

(i)

j

∂xn
is the partial303

derivative of ẽdp
(i)

j with respect to xn.304

The partial derivative of the approximate standard deviation can also be calculated305

through the chain rule as:306

∂σ̃DV (x)

∂xn
=

{
NG∑
j=1

NG∑
k=1

[
Ns∑
i=1

1

Ns

(
∂σDVj ,DVk|EDPj ,EDPk

(x; ẽdp
(i)

j , ẽdp
(i)

k )

∂ẽdp
(i)

j

·
∂ẽdp

(i)

j

∂xn

+
∂σDVj ,DVk|EDPj ,EDPk

(x; ẽdp
(i)

j , ẽdp
(i)

k )

∂ẽdp
(i)

k

· ∂ẽdp
(i)

k

∂xn

)

+
Ns∑
i=1

1

Ns − 1

((
∂µDVj |EDPj

(x; ẽdp
(i)

j )

∂ẽdp
(i)

j

·
∂ẽdp

(i)

j

∂xn
−
∂µ̃DVj(x)

∂xn

)

· [µDVk|EDPk
(x; ẽdp

(i)

k )− µDVk(x)] + [µDVj |EDPj
(x; ẽdp

(i)

j )− µDVj(x)]

·

(
∂µDVk|EDPk

(x; ẽdp
(i)

k )

∂ẽdp
(i)

k

· ∂ẽdp
(i)

k

∂xn
− ∂µ̃DVk(x)

∂xn

))]}
· 1

2 · σ̃DV (x)

(36)

where
∂σDVj,DVk|EDPj,EDPk

∂ẽdp
(i)

j

and
∂σDVj,DVk|EDPj,EDPk

∂ẽdp
(i)

k

are the partial derivatives of the conditional307

covariance of group-level losses with respect to ẽdp
(i)

j and ẽdp
(i)

k , respectively;
∂µ̃DVj

(x)

∂xn
and308
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∂µ̃DVk
(x)

∂xn
are the partial derivatives of the approximate expected group-level losses with re-309

spect to xn; while
∂ẽdp

(i)

k

∂xn
is the partial derivative of ẽdp

(i)

k with respect to xn. Derivation of310

∂µDVj |EDPj

∂ẽdp
(i)

j

,
∂ẽdp

(i)

j

∂xn
,
∂σDVj,DVk|EDPj,EDPk

∂ẽdp
(i)

j

, and
∂µ̃DVj

(x)

∂xn
can be found in Appendix D.311

5. Numerical Applications312

To illustrate the validity and applicability of the proposed approach, two case studies are313

presented in this section. The first is a small-scale case study that is considered with the314

aim of examining the validity of the proposed optimization strategy for solving ϵ-constraint315

problems. The second is a large-scale case study that is considered in order to illustrate316

the scalability of the proposed approach to practical problems involving hundreds of design317

variables and computationally burdensome numerical response models.318

5.1. Small-scale Case Study319

The goal of this case study is to identify the lateral load-resisting system of the two-story320

building outlined in Fig. 1 that minimizes the material volume, V , of the structural system321

while ensuring the satisfaction of a constraint on the loss measure, L, associated with an322

extreme wind scenario.323

5.1.1. Description324

The two-story building consists of two bays in the X-direction and four bays in the Y -325

direction, as shown in Fig. 1. The height of each story is 3.66 m, and the width of each326

bay is 7.62 m. Hence, the total height, total width, and total depth are 7.32 m, 15.24 m,327

and 30.48 m, respectively. It is of interest to design the structural system to help reduce328

the wind-induced responses in the X-direction. The load-resisting system is defined by two329

design variables that identify the size of the beams and columns within the system, as shown330

in Fig. 1(c). Both beams and columns are assumed to be square box sections defined by a331

mid-line diameter, dm ∈ [0.1 m, 0.6 m], and a wall thickness, tm = dm/20. For the initial332

design, all beams and columns are assigned with a mid-line diameter of 0.15 m. The resonant333

response is estimated based on the first two vibration modes which, for the initial design,334

have mean circular frequencies of ω1 = 2.758 rad/s and ω2 = 8.020 rad/s.335
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Figure 1: Two-story building system: (a) Isometric view, (b) Building plan, (c) Frame layout showing beam

and column assignments.

The building is assumed to be located in Miami, Florida, USA, and is assigned to Risk336

Category II [26]. Hence, im is defined here in terms of the wind speed with a 700-year MRI,337

estimated from the wind speed dataset of the National Institute of Standards and Technology338

(NIST) associated with the Miami area of Florida [27]. In generating aerodynamic loads, the339

quasi-steady wind model outlined in [20, 28, 29] is adopted for simplicity.340

The system-level performance is evaluated in terms of loss caused by damage to the341

midrise stick-built curtain wall of the building envelope. In particular, cladding components342

are susceptible to two sequential damage states, as reported in Table 1, where EDPj are de-343

scribed in terms of the absolute maximum inter-story drift ratio in the plane of the cladding344

panels. Two PGs are identified with each group consisting of 40 components. Fragility curves345

with associated consequence functions were obtained from the fragility specification manager346

of the Federal Emergency Management Agency (FEMA) [19]. In modeling component corre-347

lations, the four trials summarized in Table 2 were considered, where Trial #1 and Trial #4348

represent extreme cases: capacity and repair costs of components are assumed to be com-349

pletely uncorrelated in Trial #1 and perfectly correlated in Trial #4. Regarding the partially350

correlated capacities in Trial #2 and #3, it is assumed that 70% of the total variance in the351
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Table 1: Parameters of the fragility and consequence functions in terms of repair cost. All functions are

lognormal.

Fragility Functions Repair Cost

DS Description µf βf µc [$] βc

1 Glass cracking 0.021 0.45 2955 0.1185

2 Glass falling out 0.024 0.45 2955 0.1185

damage capacity is due to component capacity uncertainty, while the other 30% is due to352

engineering demand uncertainty. With respect to the component capacity uncertainty, 50%353

is assumed to be common to specific materials, 35% is common to specific component types354

and 15% is specific to each component. With respect to the demand uncertainty, 67% is as-355

sumed to be common to the entire structure, while 33% is common to a specific engineering356

demand parameter. These assumptions are consistent with those suggested in [17], and can357

be mathematically expressed for components m and n as [17]:358

ρlnCm,q ,lnCn,r = 0.7 (0.5δmatmmatn + 0.35δtypemtypen + 0.15δmn) + 0.3 (0.67 + 0.33δedpmedpn)

(37)

where δmatmmatn , δtypemtypen , δmn and δPGmPGn are the Kronecker delta functions. In partic-359

ular, δmatmmatn = 1 if components m and n are made of the same material, δtypemtypen = 1360

if components m and n are of the same type, δmn = 1 if m = n (i.e. same component),361

δPGmPGn = 1 if componentsm and n are in the same performance group; otherwise, δmatmmatn ,362

δtypemtypen , δmn and δPGmPGn are equal to zero. The validation of the correlations considered363

in this study falls out side the scope of this work. However, this question would in general364

merit careful investigation and should be the focus of future studies.365

To identify an optimal solution to the ϵ-constraint optimization problem, the threshold366

value ϵ was set to $100000, while α = 1 was considered. A total of 20000 samples were used367

in the Monte Carlo simulation. The optimally criteria algorithm outlined in [30] was used368

to solve the sub-problems of Eq. (33), while the design variables were taken as continuous.369

The move limit on the design variables was set to [xminn , xmaxn ]=[xn− 0.02, xn+0.02] m. The370

optimization is terminated when the relative change in the objective function between two371

consecutive DCs is less than 10−4.372
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Table 2: Summary of the Trials #1 to #4.

Correlations

Trial # Description ρlnCm,q,lnCn,r
ρDV Cm,DV Cn|DSm,DSn

1 Uncorrelated capacity, uncorrelated cost 0 0

2 Partially correlated capacity, uncorrelated cost 0.9∗ 0

3 Partially correlated capacity, perfectly correlated cost 0.9∗ 1

4 Perfectly correlated capacity, perfectly correlated cost 1 1

∗Based on the assumptions of Eq. (37).

5.1.2. Results and Discussion373

From Fig. 2, which reports the convergence histories of the objective function for the four374

Trials, it is immediately evident that systems with higher component correlations require375

heavier, and therefore more costly, load-resisting systems to satisfy the predefined perfor-376

mance target. In particular, Trial #4 requires the most amount of material. Figure 3 shows377

the convergence histories of the two design variables in terms of the design cycle: all designs378

result in columns having a larger diameter than beams. Figures 2 and 3 shows that the379

optimal solutions of Trial #2 and Trial #3 are almost identical, which implies that, for this380

case study, the correlations between component repair costs, given the damage state, only381

minimally affect the final results.382

0 2 4 6 8 10 12 14 16 18
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Figure 2: Convergence history of the objective function.
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Figure 3: Convergence history of the design variables.

The effectiveness of the proposed method in solving the ϵ-constraint problem is demon-383

strated through Fig. 4, which shows the convergence histories of the constraint function, i.e.384

the loss measure L, of all trials. As can be seen, designs that satisfy the constraint were found385

in the first few design cycles, while the final solutions were efficiently obtained in less than386

25 design cycles. In particular, the proposed approximation scheme demonstrates accuracy,387

as the approximations of L are very close to the estimations obtained from the Monte Carlo388

simulation at the end of each design cycle. In addition, Fig. 5 shows the convergence histories389

of the correlation coefficient between group losses in terms of the design cycle. It can be seen390

that the updating scheme for the correlations is also very effective. Figure 6 compares the391

reduced variates, g1 and g2, estimated in the initial and the final cycles. Values of g1 and392

g2 are seen to not change from the initial design to the final design: hence the assumption393

of constant reduced variates is acceptable, which is consistent with previous observations by394

the authors [20, 22].395

To examine the validity of the proposed approach, the optimization problem of this case396

study was also solved without any approximation using the Genetic Algorithm (GA) of397
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Figure 6: Convergence history of the reduced variates.

Matlab [31]. The final solutions obtained from both approaches are presented in Table398

3. Both approaches identify solutions that satisfy the constraint while using near identical399

volumes of material. It can be observed that the solutions obtained from the GA are, at400

times, inferior to those obtained from the proposed approach (e.g. in Trial #3 it can be seen401

Table 3: Summary of Results for Varied Component Correlations.

Trial Approach Final Design Weight Performance CPU Time

x1 x2 V L

1 Proposed 0.1569 m 0.1783 m 0.2896 m3 $ 99983 232 s

Genetic Algorithm 0.1551 m 0.1803 m 0.2895 m3 $ 99991 84465 s

2 Proposed 0.1619 m 0.1881 m 0.3153 m3 $ 99985 229 s

Genetic Algorithm 0.1632 m 0.1867 m 0.3154 m3 $ 99945 82266 s

3 Proposed 0.1620 m 0.1882 m 0.3156 m3 $ 99982 252 s

Genetic Algorithm 0.1392 m 0.2175 m 0.3258 m3 $ 99984 92049 s

4 Proposed 0.1615 m 0.1918 m 0.3206 m3 $ 99996 268 s

Genetic Algorithm 0.1668 m 0.1862 m 0.3218 m3 $ 99932 73027 s

22



that the GA approach led to a final design with higher material volume and loss). This can be402

traced back to how, as would be expected, GAs have a significantly slower convergence rate403

as compared to the proposed gradient-based approach. Therefore, if the same convergence404

criteria is set for both approaches (as in this case), GAs can lead to marginally inferior final405

solutions. Based on the same convergence criteria, the GA requires 80000-90000 seconds of406

CPU time, as compared to less than 300 seconds through the proposed approach. Therefore,407

the proposed approach not only finds, for all intents and purposes, an identical solution to408

that of the validated and approximation free GA scheme, but does so in over two orders of409

magnitude less computational time, highlighting the possibility of application to large-scale410

systems.411

5.2. Large-scale Case Study412

A large-scale case study is presented in this section to demonstrate the scalability of the413

proposed approach to design problems that involve a large number of design variables (e.g. in414

the order of hundreds or more structural members to be designed) as well as computationally415

burdensome numerical response models. While for the small-scale case study validation was416

carried out through direct comparison of the optimal solutions obtained from the proposed417

approach with those obtained through GAs, for the large-scale case study of this section this418

will not be carried out as the computational requirements of the GAs become prohibitive.419

With regard to the BODO applications, the goal of this case study is to identify a set of420

Pareto optimal designs that simultaneously minimize the structural material volume, V , and421

the loss measure, L, of the lateral load-resisting system outlined in Fig. 7.422

5.2.1. Description423

The building consists of 37 stories of which the first has a height of 6 m while all others424

have a height of 4 m. As shown in Fig. 7(a), the total width of five bays along the X-direction425

is 30 m, while the total width of six bays along the Y -direction is 60 m. The load-resisting426

system for wind loads acting in the X-direction is defined by a total of 259 design variables427

that identify the sizes of the beams and columns within the system. The numbering scheme428

used to locate each design variable is reported in Fig. 7(c). All beams are assumed to belong429

to the AISC (American Institute of Steel Construction) W24 family, while all columns are430
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assumed to be square box sections with the mid-line diameter, dm, belonging to the discrete431

set [0.20 m,0.25 m,...,3.95 m,4.00 m]. The wall thickness is again taken as tm = dm/20. For432

the initial design, all beams are set to a AISC W24×176 profile, while the mid-line diameter433

for all columns is set to dm= 1.0 m. The resonant response is estimated based on the first434

three modes which have initial mean circular frequencies of ω1 = 1.192 rad/s, ω2 = 3.750435

rad/s, ω3 = 6.829 rad/s.436
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Figure 7: 37-story building system: (a) Building plan, (b) Isometric view, (c) Frame layout showing beam

and column assignments.

The building is to be designed for Risk Category III [26], hence im is taken as the wind437

speed with a 1700-year MRI estimated from the NIST Miami hurricane wind speed dataset.438

In modeling the aerodynamic loads, the POD-based stochastic wind model is calibrated to439

wind tunnel datasets obtained from the Wind Pressure Database of the Tokyo Polytechnic440

University [32]. It should be noted that, in both case studies, the performance evaluation441

of the building system was carried out at wind intensities consistent with those suggested in442
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the ASCE prestandard for performance-based wind design [33].443

Similar to the previous case study, the system-level performance is evaluated in terms of444

loss to the building envelope that is assumed to be a midrise stick-built curtain wall. The445

two inter-story drift induced sequential damage states of Table 1 are again considered along446

with the associated fragility and consequence functions. In this case, a total of 37 PGs are447

identified with each group consisting of 80 components. In modeling component correlations,448

the four Trials outlined in Table 2 are once again considered.449

To identify a set of Pareto optimal solutions, a series of five ϵ-constraint optimization450

problems were solved where the threshold values of ϵ were set to $100000, $250000, $400000,451

$700000, and $1000000, while for robustness, a value of α = 2 was considered. A total452

of 20000 samples were used in the Monte Carlo simulations. The discrete optimization453

algorithm outlined in [30] was used to solve the sub-problems of Eq. (33). The move limit,454

xminn and xmaxn , on the design variables was set to two sizes smaller and two sizes larger than455

the current sizes identified in xmc. The optimization stops when the relative change in the456

objective function between two consecutive DCs is less than or equal to 10−4.457

5.2.2. Results and Discussion458

The set of Pareto optimal solutions, in the space of the two optimization objectives V and459

L, are presented in Fig. 8. The solid lines represent solutions obtained using the proposed460

pseudo-simulation approach, while the dashed line shows solutions obtained through the461

kriging-based approach outlined in [6]. It can be seen that in Trial #1 both approaches462

lead to consistent results in terms of the Pareto front, hence it is evident that the proposed463

approach is a valid alternative to the kriging-based approach. From all trials, it can be464

observed that, as expected, heavier designs perform better in resisting the wind loads and465

therefore result in lower losses, i.e. higher V leads to lower L. It is also important to note466

the significant impact that the assumption on correlation has on the optimal solutions. For467

any given value of L, systems with higher correlations between component capacities and468

correlations between component repair costs require 25-50% more investment in structural469

materials than systems whose components are uncorrelated. This can be traced back to470

how, as the component correlations increase, the variance of the total loss also increases.471
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Hence, to restrict the loss measure to a given value, building systems whose components are472

highly correlated require more structural material to help resist the wind action in order to473

reduce the structural demands, therefore reducing the expected loss and the variance that474

together make up the loss measure. Comparing the Pareto fronts of Trial #2 and Trial #3,475

solutions are very similar; hence correlations in the repair costs of cladding components,476

conditional on a set of damage states, do not seem to influence the susceptibility to loss477

of the system. Comparing Trial #2, Trial #3 and Trial #4, it can also be observed that478

the results are relatively similar (within 10% of each other) in terms of optimal material479

volume. A practical consequence of this observation is that, in cases where correlations in480

the component capacity are expected to be high (e.g. greater than 0.9), the assumption of481

full correlation may be made therefore avoiding the significant effort necessary for evaluating482

inter-component correlations. This practical result would seem to hold independently of the483

correlations between the repair costs.484

Figure 9 reports the exceedance probability, P (DV > L), of the system-level loss, DV ,485

with respect to the loss threshold L. In particular, each point of Fig. 9 was estimated by car-486

rying out an additional loss assessment in the final design point of each ϵ-constraint problem.487

In terms of structural design, the exceedance probabilities provide additional information488

that enrich the Pareto fronts of Fig. 8. Results in the form of Fig. 9 are particularly useful489

in providing trade-off information for decision-makers when choosing the optimal design that490

fits best their preferences. For example, as can be seen from Fig. 9, systems designed while491

accounting for component correlations, have in general lower exceedance probabilities than492

systems designed under the assumption of uncorrelated components. This is clearly evident493

from the comparison between the two extreme cases of Trial #1 and Trial #4, for which494

the neglect of correlations between the damage capacities and between the repair costs can495

lead to an order of magnitude increase in the exceedance probability. The impact of inter-496

component correlations seen in these results clearly highlights the need for optimal design497

frameworks that can treat correlations during the optimization process.498

To examine the performance of the ϵ-constraint optimization strategy of Sec. 4, Fig. 10499

shows the convergence histories of the material volume in terms of the design cycles for the500

optimal designs associated with L ≤ $400000 (i.e. #3, #8, #13 and #18). As can be seen,501
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Figure 8: Pareto front of material volume vs loss measure for the 37-story system.

Figure 9: Pareto front of the objective functions with associated exceedance probability.
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Figure 10: Convergence history of the objective function, V , for designs #3,#8,#13,#18.

smooth and steady convergence is seen for all cases. With respect to wind-induced losses, Fig.502

11 illustrates the corresponding convergence histories of the loss measure obtained through503

the proposed approach. Simialr to the small-scale case study, the approximation scheme of504

Sec. 4 is seen to effectively provide accurate loss estimation during the optimization. In par-505

ticular, designs that satisfy the system-level loss constraint were obtained within five design506

cycles with the later cycles serving to furhter minimize V . These results clearly highlights507

the effectiveness of the proposed method. Similar results were observed when solving all of508

the ϵ-constraint problems. A major advantage of the proposed method over existing methods509

(e.g. the kriging-based approach of [6]) is that it allows the correlation between group-level510

losses to be modeled and updated during the optimization process. Figure 12 shows an ex-511

ample of the convergence histories of the correlation coefficient between group-level losses512

associated with cladding components on floor 15 and floor 20 of the building (i.e. DV15 and513

DV20). It can be observed that the correlations will in general change during each design cy-514

cle, especially in the early stages of finding designs that satisfy the constraint. As illustrated515

in Fig. 12, these changes were effectively approximated through the proposed scheme of Sec.516

4.1.517
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Figure 11: Convergence history of the objective function, L, for for designs #3,#8,#13,#18.
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Figure 12: Convergence history of the correlation coefficient between DV15 and DV20 for designs

#3,#8,#13,#18.
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6. Conclusions518

This paper presented a design optimization approach that can explicitly account for519

inter-component correlations in the performance assessment and optimization of wind-excited520

building systems. The proposed approach integrates bi-objective design optimization schemes521

with probabilistic performance-based wind engineering methodologies. In modeling the sys-522

tem performance under the action of stochastic wind loads, a loss measure is defined in terms523

of the expected value and variance of the system-level loss. Through the concept of fragility,524

closed-form functions were derived that relate samples of engineering demands to the second525

order statistics of the system-level loss while explicitly treating correlations between both526

the component capacities and the component losses. Through the ϵ-constraint approach, a527

bi-objective design optimization scheme was formulated for simultaneously minimizing the528

initial cost of the structure and the anticipated future losses caused by wind induced damage.529

For solving each ϵ-constraint problem, a strategy is proposed that centers on formulating and530

solving a sequence of decoupled approximate sub-problems that are constructed from approx-531

imate demand samples estimated from an augmented simulation carried out in the solution532

of the previous sub-problem. The approximate demand samples are used to estimate the533

second-order statistics of the wind-induced losses through the derived closed-form relation-534

ships and a pseudo-simulation scheme. The availability of the sensitivities with respect to the535

design variables enables the use of efficient gradient based optimization schemes for solving536

each sub-problems. The effectiveness of the proposed method and its scalability to high-537

dimensional problems were illustrated through the optimal design of two moment-resisting538

frames of building systems subject to stochastic wind loads. It was observed that designs539

that do not account for inter-component correlations run the risk of being significantly un-540

derdesigned. This finding highlights the need for methods, such as the one outlined in this541

work, that allows inter-component correlations to be modeled and updated throughout the542

design optimization process.543
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Appendix A. Estimation of Resonant Modal Response547

This appendix outlines the procedure used to estimate a sample of the resonant modal548

response vector associated with the first M modes, qRM
(t), which is needed for estimating a549

sample of the response process, r
(i)
j (t) of Eq. (11) of Sec. 3.2.550

To estimate the resonant modal response, the following equations of motion must first be551

solved through a modal analysis framework:552

mq̈(t,u)+cq̇(t,u) + kq(t,u) = ΦT
M f(t,u) (A.1)

where q(t), q̇(t) and q̈(t) are the vector-valued generalized displacement, velocity and accel-553

eration response processes respectively; ΦM = [ϕ1, ...,ϕM ] is the mode shape matrix of order554

M ; while m, c, and k are generalized mass, damping, and stiffness matrices respectively.555

The mth component of m, c, and k can be estimated as:556

mm = ϕTmMϕm

cm = 2mms3mζms2mωm

km = mm(s2mωm)
2

(A.2)

where ωm is the mth natural frequency and ζm is the generalized damping ratio associated557

with the mth mode; S2m is an uncertain parameter associated with the variability in the558

estimate of ωm while S3m is an uncertain parameter modeling the variability associated with559

the value of ζm. In this work, S2m and S3m are to be considered components of the random560

vector U.561

By solving Eq. (A.1), the total modal response associated with the mth mode, qm(t), can562

be determined and used to estimate the mth component of qRM
(t) as:563

qRm(t,u) = qm(t,u)− qBm(t,u) (A.3)

where the background modal response, qBm , is given by:564

qBm(t,u) =
1

(s2mωm)
2ϕ

T
mf(t,u) (A.4)
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Appendix B. POD-Based Stochastic Wind Model565

This appendix outlines the procedure used to simulate a sample of the aerodynamic loads,566

f(t), needed for estimating the stochastic response process, r
(i)
j (t) of Eq. (11) of Sec. 3.2.567

To ensure that the vector-valued stochastic process, f(t), includes complex phenomena568

such as vortex shedding, wind tunnel data is used to calibrate a proper orthogonal decomposi-569

tion (POD) [23] based spectral representation model. Following this data-driven aerodynamic570

POD approach, each component of f(t) can be simulated as:571

fj(t; v̄H , β) =

Nl∑
l=1

Nn1−1∑
n1=1

{
2|Ψjl(ωn1 ; β)|

√
Λl(ωn1 ; v̄H , β)∆ω

· cos(ωn1t+ ϑjl(ωn1 ; β) + θn1l)

} (B.1)

where Nl is the total number of loading modes considered in the model; ∆ω is the frequency572

increment (accordingly, the Nyquist frequency is Nn1∆ω/2, with Nn1 the total number of573

discrete frequencies considered), while ωn1 = n1∆ω; θn1l is an independent random variable574

characterizing the stochastic nature of the wind, uniformly distributed over [0, 2π] and col-575

lected in the uncertain vector U; ϑjl = tan−1(Im(Υjl)/Re(Υjl)); while Υjl(ω) and Λl(ω)576

are components of Υ(ω) and Λ(ω) obtained from the nontrivial solution of the following577

eigenvalue problem:578

[Sf (ω; v̄H , β)− Λ(ω; v̄H , β)I]Υ(ω; β) = 0 (B.2)

where Sf is the cross power spectral density matrix of the wind tunnel estimated aerodynamic579

load processes. Since Λ can be scaled to different wind speeds after Λ and Υ are estimated at580

wind tunnel speed, Eq. (B.2) does not need to be solved for each wind speed, v̄H , of interest.581

The site-specific wind speed at the top of the building, v̄H , is obtained from the wind582

speed data measured at nearby meteorological stations. In particular, from this data, a583

mean wind speed–v̄y–of averaging time τ and mean recurrence interval (MRI) y years, can584

be extracted. This wind speed is here assumed as the intensity measure (im). In this work,585

the corresponding site-specific wind speed v̄H , averaged over a time interval T , can then be586
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obtained through the following transformation [34]:587

v̄H(T, z0) = e7e3(τ, T )

(
e5z0
e6z01

)e4δ
ln[H/(e5z0)]

ln[Hmet/(e6z01)]
e2e1v̄y(τ,Hmet, z01)

(B.3)

where δ = 0.0706 is an empirical constant, while e1 to e7 are random parameters modeling588

the uncertainties affecting the model. In particular, e1 and e2 account for observational and589

sampling errors in v̄y; e3(τ, T ) is a random conversion factor that accounts for the uncertainty590

in converting between the wind speed averaging times τ and T ; e4, e5, and e6 are random591

variables modeling the uncertainties with respect to the actual values of δ and of the rough-592

ness lengths z0 and z01; while e7 is a model uncertainty parameter to be used in the case that593

the transformation of Eq. (B.3) is used for modeling hurricane winds. These uncertain pa-594

rameters E1-E7 are to be considered components of the random vector U. Possible marginal595

distributions for the elements of U can be found in Table B.4596

Table B.4: Marginal distributions for the elements of the uncertain vector U.

Variable Mean CV Distribution Ref.

S1 1 0.025 Trunc. Normal [34]

S2i∗ 1 0.3 Lognormal [35]

S3i∗ 1 0.01 Lognormal [35]

θn1l ∗ ∗ π 2√
12

uniform [29]

E1 1 0.1 Trunc. Normal [34]

E2 1 0.025 Normal [36]

E3 ∗ ∗ ∗ 0.075 Normal [36]

E4 1 0.1 Trunc. Normal [36]

E5 1 0.3 Trunc. Normal [36]

E6 1 0.3 Trunc. Normal [36]

E7 1 0.05 Normal [36]

∗ for i = 1, . . . ,m

∗∗ for l = 1, . . . , Nl and n1 = 1, . . . , (Nn1
− 1)

∗ ∗ ∗ Dependent on averaging times τ and T
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Appendix C. Derivation of the Conditional Expectation597

This appendix provides detailed derivation of Eq. (17), which is necessary for the esti-598

mation of the conditional covariance between group-level losses of Sec. 3.3.2.599

The conditional expected value of the product of DV Cjm and DV Ckn, as shown in Eq.600

(17), can be estimated through the concept of total probability as:601

µDV CjmDV Ckn|EDPj ,EDPk
(edp

(i)
j , edp

(i)
k )

=

NDSm∑
q=1

NDSn∑
r=1

[
µDV CjmDV Ckn|DSm,DSn(q, r) · PDSm,DSn|EDPj ,EDPk

(q, r|edp(i)j , edp
(i)
k )
]

=

NDSm∑
q=1

NDSn∑
r=1

[(
σDV CjmDV Ckn|DSm,DSn(q, r) + µDV Cjm|DSm(q) · µDV Ckn|DSn(r)

)
· PDSm,DSn|EDPj ,EDPk

(q, r|edp(i)j , edp
(i)
k )
]

=

NDSm∑
q=1

NDSn∑
r=1

[(
ρDV Cjm,DV Ckn|DSm,DSn(q, r) · σDV Cjm|DSm(q) · σDV Ckn|DSn(r)

+ µDV Cjm|DSm(q) · µDV Ckn|DSn(r)
)
· PDSm,DSn|EDPj ,EDPk

(q, r|edp(i)j , edp
(i)
k )
]

(C.1)

where µDV CjmDV Ckn|DSm,DSn(q, r) is the expected value of the product of DV Cjm and DV Ckn602

conditioned on the damage states q and r; PDSm,DSn|EDPj ,EDPk
is the conditional joint603

probability of the mth and the nth component damage state given EDPj and EDPk;604

σDV CjmDV Ckn|DSm,DSn(q, r) is the variance of the product of DV Cjm and DV Ckn conditioned605

on the damage state q and r; µDV Cjm|DSm(q) and µDV Ckn|DSn(r) are the means of DV Cjm606

and DV Ckn conditioned on the damage state q and r; ρDV Cjm,DV Ckn|DSm,DSn(q, r) is the cor-607

relation between the mth and the nth component losses due to the damage states q and r;608

while σDV Cjm|DSm(q) and σDV Ckn|DSn(r) are the standard deviations of DV Cjm and DV Ckn609

conditioned on the damage states q and r.610

Appendix D. Details on the Sensitivity Estimation611

This appendix provides detailed derivations of
∂µDVj |EDPj

∂ẽdp
(i)

j

,
∂ẽdp

(i)

j

∂xn
,
∂σDVj,DVk|EDPj,EDPk

∂ẽdp
(i)

j

, and612

∂µ̃DVj
(x)

∂xn
, which are necessary for the estimation of the partial derivatives of the approximate613

expected value and standard deviation of the loss measure of Sec. 4.2.1.614
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The partial derivative of the expected group-level loss in Eq. (36) with respect to the615

design variable can be estimated as follow:616

∂µ̃DVj(x)

∂xn
=

1

Ns

Ns∑
i=1

∂µ̃DVj |EDPj
(x; ẽdp

(i)

j )

∂ẽdp
(i)

j

·
∂ẽdp

(i)

j

∂xn
(D.1)

where the partial derivative of the conditional expected group-level loss and can be estimated617

as:618

∂µ̃DVj |EDPj
(x; ẽdp

(i)

j )

∂ẽdpj
(i)

=

NCj∑
m=1

∂µ̃DV Cjm|EDPj
(x; ẽdp

(i)

j )

∂ẽdpj
(i)

(D.2)

where the partial derivative of the conditional expected component loss can be estimated as:619

∂µ̃DV Cjm|EDPj
(x; ẽdp

(i)

j )

∂ẽdpj
(i)

=

NDSm∑
q=0

µDV Cjm|DSm(q) ·

∂Frq(ẽdp(i)j )

∂ẽdpj
(i)

−
∂Frq+1(ẽdp

(i)

j )

∂ẽdpj
(i)

 (D.3)

where the derivative of the fragility functions results in the probability density function of620

the corresponding distribution.621

The partial derivative of the approximate demand sample in Eqs. (35)-(36) with respect622

to the nth component of the design variable vector may be estimated through the following623

scheme:624

∂ẽdp
(i)

j (x)

∂xn
=
∂ΓTj (x)

∂xn
Ψ̄j(xmc) + g

(i)
j (xmc) ·

∂ΓTj (x)

∂xn
Ψ̂j(xmc) (D.4)

where
∂ΓT

j

∂xn
is the derivatives of the influence functions Γj with respect to xn and can be625

efficiently estimated through traditional approaches [30, 37].626

The partial derivative of the conditional covariance between group-level losses in Eq. (36)627

with respect to the approximate engineering demand sample can be estimated as follow:628

∂σ̃DVj ,DVk|EDPj ,EDPk
(x; ẽdp

(i)

j , ẽdp
(i)

k )

∂ẽdp
(i)

j

=

NCj∑
m=1

NCk∑
n=1

[
∂ρ̃DV Cjm,DV Ckn|EDPj ,EDPk

(ẽdp
(i)

j , ẽdp
(i)

k )

∂ẽdp
(i)

j

· σ̃DV Cjm|EDPj
(ẽdp

(i)

j ) · σ̃DV Ckn|EDPk
(ẽdp

(i)

k )

+ ρ̃DV Cjm,DV Ckn|EDPj ,EDPk
(ẽdp

(i)

j , ẽdp
(i)

k ) ·
∂σ̃DV Cjm|EDPj

(ẽdp
(i)

j )

∂ẽdp
(i)

j

· σ̃DV Ckn|EDPk
(ẽdp

(i)

k )

]
(D.5)
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where the partial derivative of the conditional correlation coefficient, as defined in Eq. (16),629

may be estimated through the quotient rule, while the following derivatives are needed (in630

addition to
∂µ̃DV Cjm|EDPj

∂ẽdpj
(i) ):631

∂σ̃DV Cjm|EDPj
(ẽdp

(i)

j )

∂ẽdp
(i)

j

=
1

2 · σ̃DV Cjm|EDPj
(ẽdp

(i)

j )
·

[Nm
DS∑
q=0

σ2
DV Cjm|DSm

(q) ·

∂Frq(ẽdp(i)j )

∂ẽdp
(i)

j

−
∂Frq+1(ẽdp

(i)

j )

∂ẽdp
(i)

j


+

Nm
DS∑
q=0

(µDV Cjm|DSm(q)− µ̃DV Cjm|EDPj
(ẽdp

(i)

j ))2 ·

∂Frq(ẽdp(i)j )

∂ẽdp
(i)

j

−
∂Frq+1(ẽdp

(i)

j )

∂ẽdp
(i)

j


+

Nm
DS∑
q=0

2 · (µDV Cjm|DSm(q)− µ̃DV Cjm|EDPj
(edp

(i)
j )) ·

−
∂µ̃DV Cjm|EDPj

(ẽdp
(i)

j )

∂ẽdp
(i)

j


·
(
Frq(ẽdp

(i)

j )− Frq+1(ẽdp
(i)

j )

)]

(D.6)

632

∂FrDSm,DSn|EDPj ,EDPk
(q, r|edp(i)j , edp

(i)
k )

∂ẽdp
(i)

j

=
∂P(lnCm,q < ln edp

(i)
j , lnCn,r < ln edp

(i)
k )

∂ẽdp
(i)

j

(D.7)

where the derivative of the joint cumulative distribution function results in the joint proba-633

bility density function of the corresponding distribution.634
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