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Abstract

This paper outlines the development of a stochastic simulation-based design optimization
approach for dynamic wind excited structures in which correlations between component dam-
ages and losses are explicitly treated. The proposed approach integrates a bi-objective design
optimization scheme with a probabilistic performance-based wind engineering methodology
which systematically accounts for the various sources of uncertainties involved in system loss
estimation. Through the e-constraint technique, the bi-objective optimization problem is
transformed into a series of single-objective stochastic optimization problems. To solve each
e-constraint optimization problem, a pseudo-simulation scheme is proposed that allows for
the formulation of an approximate sub-problem that can be solved sequentially to identify
solutions that define a set of Pareto optimal designs. In the proposed scheme, samples of
engineering demands are approximated in terms of auxiliary variable vectors, which are by-
products of an augmented simulation carried out in a fixed design point. Analytical expres-
sions are derived that relate the engineering demand samples to the second-order statistics
of wind-induced losses based on the concept of fragility. Potential correlations between the
component capacities and component losses are explicitly treated. The effectiveness of the
proposed approach and its scalability to high-dimensional problems are illustrated through
optimal designs of moment-resisting frames subject to stochastic wind loads.
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1. Introduction

In developing risk management strategies, the integration of bi-objective design opti-
mization (BODO) schemes with performance assessment frameworks, provides an attractive
decision support space in which useful insights into the trade-offs between upfront cost and
anticipated losses can be obtained [1-7]. For wind excited buidlings, stochastic performance-
based wind engineering (PBWE) frameworks can be used to directly assess performance
metrics that systematically treat various sources of uncertainties [8-15]. However, the compu-
tational effort in repeatedly performing the stochastic simulation for different designs during
the optimization process is complex and time-consuming, especially for large-scale systems
that involve high-fidelity models and a large number of design variables. To overcome these
challenges, the authors have recently proposed an efficient method that is based on trans-
forming the performance-based BODO problem into a series of single-objective stochastic
optimization problems through the e-constraint technique [6]. By solving a series of prob-
lems for various values of €, a set of the searched-after Pareto optimal solutions can be
identified. To solve each e-constraint problem, Suksuwan and Spence [6] proposed a method
based on formulating and solving a sequence of sub-problems: this method allows a proba-
bilistic loss measure to be updated during the optimization through kriging metamodels that
are constructed from results of a stochastic simulation. While the kriging-based approach
is computationally efficient for large-scale problems, the method does not consider correla-
tions between damage states or correlations between component losses. These correlations,
however, can significantly affect the total loss [e.g. 16, 17], and should therefore be treated
during not only the loss assessment, but also the optimization process.

In general, there are three types of correlations that may have a significant impact on the
total loss of a system: (i) correlation between engineering demand parameters (EDP), given
that a windstorm of prescribed intensity has occurred; (ii) correlation between component
damage states (DS), given engineering demands; and (iii) correlation between component de-
cision variables/losses (DVC), given damage states. While the correlation in the conditional
demand level can be estimated directly from the results of structural response analysis, the
same cannot be said for conditional correlations at the damage state and the component

loss levels. To date, few models have been proposed for treating such inter-component cor-
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relations. In the field of earthquake engineering, Baker and Cornell [16] proposed a seismic
loss estimation approach that considers inter-component correlations through a first-order
second-moment (FOSM) analysis method in which the mean and variance of the total loss is
estimated conditional on earthquake intensity. Through this approach, the conditional dam-
age state given an engineering demand (DS|EDP) and conditional component loss given a
damage state (DV C|DS) were collapsed into a DV C|ED P relationship, while a generalized
equi-correlated model is proposed to estimate the correlation in the collapsed relationship.
Aslani [18] proposed an approach that utilizes the FOSM method in computing the covari-
ance terms when estimating the standard deviation of the total loss, while the correlation
of DS|EDP is estimated through an iterative procedure with the correlation of DV C|DS
obtained from data pertaining to construction cost. In seismic design practice, the Fed-
eral Emergency Management Agency (FEMA) P-58 guidelines [19] assume damage states
in the same performance group to either be perfectly correlated or uncorrelated, while the
case of partially correlated components is omitted. To incorporate partial correlations, while
avoiding potential errors incurred in using the FOSM approximation, Bradley and Lee [17]
proposed a tractable analytical approach to seismic loss assessment that can explicitly con-
sider the correlations in the conditional demands, conditional damage states, and conditional
component losses.

This work aims to develop a new approach for solving the e-constraint problem oulined
in [20] that is capable of treating general inter-component correlations. In particular, as loss
measures, both the expected value and variance are considered, while correlations in the dam-
age capacity and component losses are explicitly modeled based on the approaches outlined
in [17]. The basic idea of the proposed method is to derive closed-form relationships be-
tween samples of engineering demands and the second-order statistics of wind-induced losses
based on the knowledge of the fragility and consequence functions. By substituting in the
derived expressions with demand samples approximated in terms of auxiliary variable vectors
[20, 21], a pseudo-simulation scheme is defined that can be used to formulate an approxi-
mate sub-problem that enables the use of gradient-based optimization algorithms. Within
this setting, the probabilistic loss measure, as well as inter-component correlations, can be

efficiently updated during the optimization process without the need to invoke any dynamic
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structural analysis or calibrate any metamodels. The validity of the proposed approach is
illustrated first through the optimal design of a lateral load-resisting system of a two-story
building. The practicality of the approach is then demonstrated through the identification
of set of Pareto optimal designs of a multistory building system subject to stochastic wind

loads.

2. Problem Statement

To provide decision-makers with trade-off information regarding various design options,
it is of interest to identify a set of optimal designs that simultaneously minimize the initial
cost of the system as well as the anticipated losses caused by extreme windstorms. This
engineering problem can be formulated in terms of the following bi-objective optimization
problem:

Find  x={xy,...,2x}"

to minimize [V (x), L(x;im)] (1)

subject to z,€X, n=1,...,N
where x is a high-dimensional design variable vector collecting the N deterministic parameters
that are used to define the structural system (e.g. structural member sizes); V' is a function
associated with the initial cost of the structural system (e.g. volume of structural material)
and is assumed to be deterministic and explicit in x; L is a probabilistic function describing
a system-level loss measure for a wind event of prescribed intensity measure IM = im (e.g.
a site specific wind speed with a mean recurrence interval (MRI) of 700 years); while X,, is
the set of discrete values to which the nth component of x must belong. In particular, L is

defined here as:

L(x;im) = ppyiv(X;9m) + a - opy i (x; im) (2)
where ppyirv and opy iy are the expected value and standard deviation, respectively, of
the system-level decision variable DV (e.g. total repair cost) conditioned on IM; while «
is a parameter, o > 0, whose value can be assigned according to the desired level of design
robustness. In other words, a larger o assigns more weight to the standard deviation in order

to restrict the variability in the system-level loss, hence increasing the design robustness [6].
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3. Loss Assessment Framework Considering Component Correlations

3.1. QOverview of the Methodology

This section introduces an efficient framework for estimating the loss measure, L, for a
given design x and wind event of intensity im, while explicitly accounting for component
correlations. In general, the components of a system that are susceptible to damage due to a
common demand parameter can be grouped to define what is known as a performance group
(PG) [19]. The total loss, DV, can then be seen as the sum of losses over all PGs defining

the system, and therefore as:
Ng
DV(x;im) = Y _ DVj(x;im) (3)
j=1

where Ng is the total number of PGs defining the system, while DV is a group-level decision
variable associated with the jth PG (e.g. repair cost associated with cladding components
on the first floor). Based on Eq. (3), the second-order statistics of DV can be estimated in

terms of the group-level losses as follows:

Ng
o (X;im) = Z 1ov; e (X; im) (4)
7=1
Ne No
UDV|IM<X; Zm) = ZZUD‘/}vDVk|IM(X; zm) (5)
j=1 k=1

where ppyiry and opyjry are the conditional expected value and standard deviation of
DV ppy, 1 is the conditional expected value of DVj; while opv;,pvi|1m 1 the conditional
covariance between DV} and DV), given that IM = im.

The loss associated with each PG depends on the current damage states of each component
of the PG, and therefore the response level of the associated engineering demand parameter
(e.g. inter-story drift). In this respect, the following functional relationships can be derived
between the demand and the group-level loss statistics (where the dependence on x and I M
is dropped for clarity):

ov; = Elppv;iepp,] (6)

opv;.pv, = Elopv, pvi\epp,EDP,] + COV|tipy,|EDP;, DV, |EDP,] (7)
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where ppy, ppp; is the mean of DV} conditioned on the engineering demand parameter,
EDPj; upv, epp, is the mean of DV}, conditioned on EDPy; opy, pv,|Epp, EDP, 18 the co-
variance between DV and DVj, conditioned on EDP; and ED Py; while E[-] and Cov[-] denote
the expectation and covariance operators, respectively.

For a given design x, the second-order statistics are affected by many uncertainties, in-
cluding the aleatory nature of the wind, uncertainties in the system parameters, uncertainties
in the damage and consequence assessment, and epistemic uncertainties in the mathematical
modeling. Hence, the loss assessment generally involves a large number of random variables
with different corresponding distributions. To systematically carry out probabilistic analysis
within this high-dimensional uncertain space, a Monte Carlo simulation technique is adopted
in this work. Through the Monte Carlo method, the expected value of a random variable Y;

(e.g. upv, Epp; and opy; pv,|Epp; EDP, Introduced in this section) may be estimated as:
1 & »
EY)) ~ = D _wi(edp)”) (8)
S =1

where N, is the total number of samples used in the simulation, while edpg-i) is the ith
realization of FDP;. Similarly, the covariance between any two variables Y; and Y}, can also
be estimated from the samples as:

N

S [witeds?) = B;]] - [utedpf?) - B (9)

i=1

Cov[Y;, Yi] = N1

To this end, an efficient method to generate realizations of a vector of correlated engi-
neering demand parameters, EDP = {EDP,, ..., EDPy, }' and a method that can quickly
evaluate the conditional statistics given EDP are needed. Throughout this paper, uppercase
letters (e.g. Y;) are used to represent random variables, while lowercase letters (e.g. y;) are

used to represent realizations.

3.2. Engineering Demand Parameters

This section provides a brief overview of the approach used in this work to generate
samples of the EDPs. Detailed derivations of the equations and descriptions of the models

can be found in [6, 20, 22| and are provided for convenience in Appendix A, regarding
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the estimation of resonant modal response, and in Appendix B regarding the estimation of
stochastic wind loads.

For the following damage analysis, the EDPs are defined as the absolute peak responses
of a structural system subject to a wind event of duration 7. Hence, a realization of an
element of EDP can be written as:

edpgl)(u(l)) — max { max |7”j(l) (t; 57 u(Z)M} <1O)

Bef0,2x] | t€[0,T]

where i denotes the realization, u®” is the ith sample of a high-dimensional uncertain vector
U that contains all uncertain variables considered in the estimation of the EDPs (examples
of these variables and possible distributions are provided in Table B.4), 8 denotes the wind
direction, and 'r’j(»i) () represents the ith realization of the response process time-history as-
sociated with the jth PG. In particular, the stochastic response process can be efficiently

estimated through the following load-effect model [21]:
rt; 8,u?) = s [LTH(t; 8, v, u?) + TTK @ g, (t; B, 0, u®)] (11)

where S| represents a random variable modeling the epistemic uncertainty in the load-effect
model and is an element of U; I'; is a vector containing influence functions, each giving the
response in r; due to a unit load acting at a given degree of freedom of the system; f(t) is
a vector-valued stochastic wind process calibrated to a site-specific wind speed vy that is
averaged over a time duration 7T; K is the stiffness matrix of the system; ®;, is the mass
normalized mode shape matrix considering the first M modes; and qp_ (t) is a vector whose
elements are resonant modal displacement response processes associated with the first M
modes. A procedure to estimate qp, (f) is provided in Appendix A.

To rapidly generate realizations of the stochastic wind loads, f(t), to be used in the
response model of Eq. (11), this work adopts a proper orthogonal decomposition (POD)-
based method [23]. The POD-based stochastic wind model is described in more details
in Appendix B. It should be noted that the proposed framework is not restricted to any
particular stochastic wind model. The choice of the POD-based model is due to its efficiency
while enabling the use of wind tunnel data, which can account for complex aerodynamic

phenomena such as vortex shedding.
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3.3. Estimation of the Conditional Statistics

3.83.1. Conditional Expectation
Once a sample of the engineering demand is obtained through Eq. (10), a realization of
the conditional expected value of a group-level loss, 1ipv, zpp;, may be estimated through a
summation over the components in the group as:
Ng,

J

/LD\/j|EDpj(€dp§-i)) = Z NDVij\EDPj(edpg‘i)) (12)

m=1
where 7 represents the sample number, Ng; is the total number of components in the jth
PG, and ppve,,|epp, is the conditional expected loss associated with component m. For
a component m that is susceptible to Npg,, possible damage states, upyc;, | rpp; may be

directly estimates from the fragility functions as:

Npsy,

MDvcjm|EDPj(€dp§i)) = Z MDVij|DSm(Q) : [Frq(edpﬁ-i)) - Frq+1(€dp§'i)) (13)
q=0

where pipye;,,.|ps,,(q) denotes the expected component loss given that the damage state ¢
has occurred, while Fr, and Fr,; are fragility functions associated with the damage states ¢

and ¢ + 1, respectively, where ¢ = 0, ..., Npg,, and Fry, . 41 = 0 [20, 24].

3.3.2. Conditional Covariance
The conditional covariance between group-level losses can be formulated in terms of the

conditional component correlations as:

NCj ch
UDVj,DVk|EDPj,EDPk(edpy)y edpl(cl)) - Z Z [pDVij,DVC;m\EDPj,EDPk (edpﬁ-”, edp,(f))
m=1n=1

*ODVC;jm|EDP; (dey)) " ODVCy,|EDPy, (dez(j))
(14)

where Ng, is the total number of components in the kth PG; ppvc,,, pve,, Epp,EDP, 18
the conditional correlation coefficient between the loss associated with component m in the
jth PG, DV Cj,,, and the loss associated with component n in the kth PG, DV Cy,; while
ODpVC; | EDP; a0d 0py ey, | EDP, are the standard deviation of DV (', and DV Cy,,, conditioned

on KDP; and EDPF;, respectively. Analogous to the conditional mean, for a component m
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that is susceptible to Ny damage states, Opve;,|[EDP; May be calculated as [24]):

Nps
UDVCJ‘HEDPj(edpy)) - [Z TV Cy D5 (1) ° (qu<edp§-”) - Frq+1(edpg'z))>
q=0

m
NDS

+ Z(MDvojm|DSm(Q) - MDvcjm\EDPj(edpgi)))Q : (qu(edpy)) - qu+1(€dp§-i))> ]
q=0

N

(15)
where UQDVij| Dps,, (@) is the variance of DV U}, given that damage state ¢ has occurred.

The conditional correlations posed in Eq. (14) may be expressed as:

PDV C;p,DV Cyn|EDP; EDP, (edpgl) cedp)

. NDVC]-mDVCkn|EDPj,EDPk(6dp§‘i)7 edp,(f)) - MDVij|EDPj(€dp§‘i)) : ,U/D\/Ckn|EDPk<edp](j))

0DV G| EDP; (edpf)) * 0DV Cyy|EDPy (edp,(f))
(16)

where ipyc;,, vy, EDP;EDP, 1S the conditional expected value of the product of DV Cj,
and DV (Y, that can be formulated in terms of component damage states based on the total

probability theorem as (for detailed derivations see Appendix C):

(@) (@)
DV C;, DV Cyon | EDP; EDP, (€dD; 7, edpy”)
NDS NBS
= E E (PDVij,DVCkn|DSm,DSn(Qar)'UDVij|DSm(Q)'UDVC;W\DSn(T)
q=1 r=1

+ DV C;pn|DSm (4) - MDvckn|DSn(7“)> -Pps,..ps.|EDP, EDP (4, T |€dp§i), €dp;(f))}
(17)

where PDVC;

Jjms

DV Cin| DS,.DS, (¢, 7) is the correlation between the mth and the nth compo-
nent losses due to damage states ¢ and r; opvc;,,|ps,.(¢) and opye,,|ps,(r) are the stan-
dard deviations of DV}, and DV}, conditioned on the damage state ¢ and r; while
Pps,..ns,|EDP; EDP, 18 the conditional joint probability of the mth and the nth component
damage state given EDP; and EDPy. In particular, Pps,, ps, Epp, pp, can be determined

from appropriate fragility functions as [17]:

Pps,..ns. 0P, EDP, (0,7 \edp?), €dp;(:)) =Frps,,.ps,|EDP;,EDP, (4, 7“|€dp§-i)> edp,(f))

Nps  Nps ” ©
1 (2
- E E PDSm,DSn\EDP]-,EDPk(Uaw|edpj , edpy, )
=q wW=T
q#r if v=¢q

(18)
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where Frps,, ps,|Epp, EDP, (q,r|edp§i),edp,(:)) = P(DS,, > ¢,DS,, > 7’|edp§~i),edp,(f)) denotes
a joint fragility function defined as the conditional joint probability that component m will
have the damage state g or worse, while component n will have the damage state r or worse
given EDP; = edpgi) and EDP, = edp,(:). Analogous to a typical fragility function that
is assumed to follow a lognormal distribution, the joint fragility is assumed here to have a
bi-variate lognormal distribution. It is of interest to write the joint fragility function in terms
of a component damage capacity (i.e. the demand level at which the component enters a

specified damage state), and therefore in the following form:

Frps,..ps.|EDP;,EDP, (4, T !edpf), edpg))

=P(InC,,, <In edpy), InC,, <In edp,(j))
1

1
= ——exp | —=(Zimedy — M) Ci L Zinedp — Min T) dlnec,, dlnc,,
// @ [Crnc|(2m)? p( 2( ety = Hn0) i, (incdp — Hinc) ! 7

Incm,q<ln edpjl

Incp,r<In edpg)

(19)
where C,,, and C,, are the capacities associated with the damage states ¢ and r of the
components m and n, respectively; Cy, ¢ is the covariance matrix of the component capacities

that can be defined as:

2
Uln Cm,q Pln Cm,q,In cnyro-ln cm,qo-ln Cn,r

ClnC = (20)

2
10111 anvln Cm,qo-h1 Cn,rgln Cm,q 0-111 Cn,r

where pie,, ncn, denotes the correlation coefficient between the component capacities;
Zinedp = {ID edpg-i),ln edp,(j)}T is a vector collecting the natural log of the demands; while
Uino = {,ulncm,q, fn CM}T is a vector collecting the means of the component capacities. The
advantages of Eq. (19) are threefold: 1) it allows for the direct implementation of any ef-
ficient numerical algorithm for solving for the cumulative bi-variate normal distribution; 2)
the correlation coefficient between the damage state capacities ,pmc,, ,mc,., can be mod-
eled independent of the engineering demand parameters and therefore independent of the

design variables; and 3) it allows for derivation of a closed-form gradient function that helps

accelerate the optimization process (see details in Sec. 4.2.1).

10
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4. Proposed Optimization Strategy

To efficiently solve the bi-objective stochastic optimization problem of the type posed in
Eq. (1), the authors have demonstrated in [6] that the e-constraint approach can be used to
transform the original problem into a series of single-objective optimization problems. By

turning the loss measure into a constraint, the e-constraint problem is formulated as:

Find  x= {2y, ..., 25}

to minimize V(x)

(21)
subject to  L(x;im) = ppyiim(X;im) + o - opyrm(x;9m) < e
meX, n=1,...,N

where € represents the threshold value that L must meet. By solving a series of these problems
for various values of €, a set of Pareto optimal solutions is identified. In other words, these
optimal designs are such that one objective function cannot be further improved without
depreciating the other objective function.

Although the original problem has been decomposed, solving a single-objective optimiza-
tion problem of the type posed in Eq. (21) is still computationally cumbersome as it involves
not only a time-consuming stochastic simulation, but also a large number of design variables
if practical problems are considered. To handle this high-dimensional stochastic optimization
problem, this work proposes a method that is based on constructing an approximation for
the loss measure that is efficient to evaluate and can take into account changes in component

correlations during the optimization.

4.1. Loss Measure Approzimation

To estimate the loss measure, L, as defined in Eq. (2), it can be observed that the
majority of the computational expense in estimating jipy|7ar and opyrar through the Monte
Carlo simulation is allocated to the estimation of the £ D P; samples. This is because such an
estimation involves performing a structural dynamic analysis of a large-scale finite element
model subject to long duration stochastic wind loads. To circumvent this hurdle during the
optimization process, this paper proposes a method that approximately decouples the struc-

tural dynamic analysis from the optimization process. The proposed method approximates

11
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samples of engineering demands in terms of auxiliary variable vectors, while utilizing the
conditional statistics estimation scheme described in Sec. 3.3 to quickly update changes in

the loss statistics.

4.1.1. Augmented Simulation Process

To construct an efficient approximation scheme that is insensitive to the number of design
variables, the method centers on the definition of a reduce variate and an auxiliary variable
vector [21, 22, 25] that can be fully defined from results of a single Monte Carlo simulation
carried out in a fixed design point. Within this context, considering a simulation performed

in the current design x,,, it is proposed that each sample of £ DP; can be written as:

6dp§Z) (ch> = /’LEDPj (ch) + g](z) (ch) . UEDPj (XmC) (22)

where uppp; and ogpp, are the mean and standard deviation of E'D P;, respectively; and g](.i)

is a reduced variate associated with edpg-i) and defined as:

(9
i de (ch) - PJEDP]- (ch)
gj( )<ch) - J (23)
OEDP; (ch)

Thus, for every demand sample, edpy), there will be an associated gj(i) that can be estimated
once pppp; and oppp, are calculated at the end of the simulation process.

To define the auxiliary variable vector (AVV), used later in the demand approximation
scheme to predict pgp P and ogp p;, it 18 first necessary to define the following vector-valued

stochastic variable for each realization:
FO (%01, u) = 51 [£(8;0D) + K(Xine) @ ps (Xime) Ay, (Kmei 1, u)] (24)
Based on FO(¢), rj(»i) (t) and edp®, the following stochastic variable associated with the

1th realization may be defined:

edp (Xpne; 1) — 1y, (e u®)

uNT.
Ugj (ch, u(l)) CF (ch, u )F] (ch) (25)

U5 (Xme; 1) = s (e 1) +

where pp and Cp are the mean and covariance matrix of F@(¢); while pr; and o, are the
mean and standard deviation of the response process, r;(t), respectively. From all realizations

of w]@, the following AVVs can be defined:

U (Xme) = Hoap; (Xme) (26)

12
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\ilj (ch) _ C‘I’ (ch)rj (ch)

(27)

OEDP; (ch)
J

where g, is the mean of ¢; while Cyg is the covariance matrix of W = [¢;...¢);...¢n;]. The
AVVs, \ilj and \ilj, are particularly useful as, when they are statically applied to the system,
the resulting responses coincide with the second-order statistics of the engineering demands,
i.e. the follow holds:

pEDP, (Xme) = T (Xime) ¥ (Xine) (28)

A

OEDP; (Xme) = I‘?(ch)\:[’j (Xime) (29)
These relationships are exact in x,,., i.e. where the Monte Carlo simulation was carried

out.

4.1.2. Pseudo-Simulation Scheme

The reduced variates, gj(-i), and the AVVs, \I/j and \i/j, can be seen as by-products of a

single augmented simulation carried out in x,,.. If it is assumed that gj(i), \ifj and \iij are

insensitive to relatively small changes in x around x,,. during the optimization process, the

demand samples may be approximated without invoking any dynamic structural analysis as:

edpy (%) = DT ()L, () + 61 () - T (0 (3 (30)

J

The approximate demand sample of Eq. (30) allows for the following pseudo-simulation
scheme to estimate the system-level loss statistics (i.e. Egs. (4)-(5)) as x is updated during

the optimization:

Ng @)

,UDV Z,UDV Z ZS,UDV|EDP (X edpj ) (31)

Ng Ng

oov(x) = | D_ Y oov, o (%)

j=1 k=1
—— (1) ——(1)

Ng N i
{ZGZG [ i1 O'D\/J,DVk|EDP EDPk( ;edpj , edpy, )]
N,

=1 k=1

Q

(@)

=

n val[MDV\EDP (X €dpj

) — KDV (x)] - [MDVk\EDPk (x; %l(:)) — UDv;, (X)]] }
N, —1
(32)
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In practice, through Egs. (31) and (32), each approximate demand sample is first used
to estimate the conditional expectations and covariances of the group-level losses through
the approaches of Sec. 3.3. Subsequently, the unconditional group-level loss statistics are
estimated through Egs. (6) and (7) in which the operations of expectation and covariance are
carried out through the Monte Carlo estimators of Egs. (8) and (9) and the N, approximate
demand samples. Equations (4) and (5) are then directly applied to estimate the searched
after system-level loss statistics. Because the proposed approach is based on propagating
approximate demand samples through the models of Sec. 3.3, it is termed a pseudo-simulation
scheme. It should be highlighted that, through the proposed scheme, not only are the means
and standard deviations of the individual group-level losses updated as x is varied, but also

the correlations between the group-level losses.

4.2. Sub-Problem Formulation

Based on the approximation scheme introduced in the previous section, the following

optimization sub-problem may be formulated and solved sequentially:

Find x={z, ..., o5}
to minimize V(x)
subject to  L(x;9m) & fipyv|im(X;im) + « - opy i (x;im) < e

r,€eXeX, n=1,...,N

where fipy iy and opy i are the approximations of pipyrar and opy iy through Eqgs. (31)-
(32), respectively; while X° represents the search neighborhood of z,, defined by the minimum

min

value, x7/

, and maximum value, 2]'**, that z,, is allowed to take. These bounds are imposed
in order to ensure the validity of the proposed approximation scheme. Because the optimal
solution to Eq. (33) only satisfies the approximate performance constraint, the optimization
sub-problem needs to be reformulated and solved again at the updated design point. This
resolution process is termed a design cycle (DC) and needs to be repeated until solutions of
two consecutive DCs meet a predefined convergence tolerances on the objective function. This

ensures that the final solution is free of any approximations. In addition, as will be outlined

in Sec. 4.2.1, the approximate statistics of Egs. (31)-(32) allow for a direct calculation of
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25 the sensitivities with respect to x through the chain rule. Therefore, any gradient-based

206 Optimization algorithm can be used to efficiently solve the sub-problem of Eq. (33).

21 4.2.1. Sensitivities
208 The partial derivative of the approximate loss measure with respect to the nth element

200 of the design variable vector, z,,, may be estimated as follows:

aL(X) - aﬁDv(X) ta- agDv(X)
Or, Oz, O,

s where the partial derivative of the approximate expected value of DV can be estimated

(34)

s through the chain rule as:

_ : ——(9) —— (i)
Olipy (x) f i i Oipv,|EDP, (X; edp; ) ' Oedp, (35)
amn j:1 Ns i=1 aé%;l) al'n
auDv |EDP;
3020 where ?@) denotes the partial derivative of the conditional expected group-level loss

Oed, p;
— (i)
;3 with respect to the approximate engineering demand sample, edp] , while ——— ge d is the partial
(@)
s0  derivative of edpj with respect to x,,.
305 The partial derivative of the approximate standard deviation can also be calculated

s through the chain rule as:

—— () ——() ——(i)
aO'DV {%% [ZS (80DV DVk\EDPj,EDPk(X;edpj ,6dpk ) ) aedpj
j=1 k=1 | i=1 N 0%;1) Oz

—— (@) ——() —(4)
n aO'DVj,DVk|EDPj,EDPk(X; 6dpj ,edpy’) Dedp, )

dedp, O
——(4) ——(2) ~
ok 1 aMDVj\EDPj(X; €dpj ) aedpj Opy; (x) (36)
+ Z N, —1 ——() 01,  Ox
i—1 '8 dedp; n "

(@)

“[pvi|EDP, (X5 €dpy,") — 1oy (X)] + [pv; | EDP; (X5 €dp; ) — ppy; (X))

—— (%) ——(4) ~
_(auDVMEDpk(x;edpk ) Dedp, _aumx)))”_ 1

(9edp§;) 037” 8l‘n 2- Opv (X)
aUDVv DV |EDP; ,EDP 3UDV. ,DVy,|EDP;,EDP, . . . .
307 where i‘,@ £ and i s ® are the partial derivatives of the conditional
aedp] Oedpy,

Ippv; (x) and

;s covariance of group-level losses with respect to EJ[);’) and E&Eﬁf), respectively;

n
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Otipv, (%)

are the partial derivatives of the approximate expected group-level losses with re-

Oxn,
—(i) —(i)

1 Oed . . . . . . .
spect to x,; while %xi is the partial derivative of edp,” with respect to x,. Derivation of
Oupv, |EDP; Bal/(-i) 00pv. . DV, |EDP; ,EDP Oppv; (x) . .

L'(i) i apj , L im —= and —52— can be found in Appendix D.
Oedp; Tn Oedp Zn

5. Numerical Applications

To illustrate the validity and applicability of the proposed approach, two case studies are
presented in this section. The first is a small-scale case study that is considered with the
aim of examining the validity of the proposed optimization strategy for solving e-constraint
problems. The second is a large-scale case study that is considered in order to illustrate
the scalability of the proposed approach to practical problems involving hundreds of design

variables and computationally burdensome numerical response models.

5.1. Small-scale Case Study

The goal of this case study is to identify the lateral load-resisting system of the two-story
building outlined in Fig. 1 that minimizes the material volume, V', of the structural system
while ensuring the satisfaction of a constraint on the loss measure, L, associated with an

extreme wind scenario.

5.1.1. Description

The two-story building consists of two bays in the X-direction and four bays in the Y-
direction, as shown in Fig. 1. The height of each story is 3.66 m, and the width of each
bay is 7.62 m. Hence, the total height, total width, and total depth are 7.32 m, 15.24 m,
and 30.48 m, respectively. It is of interest to design the structural system to help reduce
the wind-induced responses in the X-direction. The load-resisting system is defined by two
design variables that identify the size of the beams and columns within the system, as shown
in Fig. 1(c). Both beams and columns are assumed to be square box sections defined by a
mid-line diameter, d,, € [0.1 m, 0.6 m], and a wall thickness, ¢,, = d,,/20. For the initial
design, all beams and columns are assigned with a mid-line diameter of 0.15 m. The resonant
response is estimated based on the first two vibration modes which, for the initial design,

have mean circular frequencies of wy; = 2.758 rad/s and wy = 8.020 rad/s.
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Figure 1: Two-story building system: (a) Isometric view, (b) Building plan, (¢) Frame layout showing beam

and column assignments.

The building is assumed to be located in Miami, Florida, USA, and is assigned to Risk
Category 11 [26]. Hence, im is defined here in terms of the wind speed with a 700-year MRI,
estimated from the wind speed dataset of the National Institute of Standards and Technology
(NIST) associated with the Miami area of Florida [27]. In generating aerodynamic loads, the
quasi-steady wind model outlined in [20, 28, 29] is adopted for simplicity.

The system-level performance is evaluated in terms of loss caused by damage to the
midrise stick-built curtain wall of the building envelope. In particular, cladding components
are susceptible to two sequential damage states, as reported in Table 1, where EDP; are de-
scribed in terms of the absolute maximum inter-story drift ratio in the plane of the cladding
panels. Two PGs are identified with each group consisting of 40 components. Fragility curves
with associated consequence functions were obtained from the fragility specification manager
of the Federal Emergency Management Agency (FEMA) [19]. In modeling component corre-
lations, the four trials summarized in Table 2 were considered, where Trial #1 and Trial #4
represent extreme cases: capacity and repair costs of components are assumed to be com-
pletely uncorrelated in Trial #1 and perfectly correlated in Trial #4. Regarding the partially

correlated capacities in Trial #2 and #3, it is assumed that 70% of the total variance in the
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Table 1: Parameters of the fragility and consequence functions in terms of repair cost. All functions are

lognormal.

Fragility Functions = Repair Cost

DS Description iy B e [$] Be
1 Glass cracking  0.021 0.45 2955 0.1185
2 Glass falling out  0.024 0.45 2955 0.1185

damage capacity is due to component capacity uncertainty, while the other 30% is due to
engineering demand uncertainty. With respect to the component capacity uncertainty, 50%
is assumed to be common to specific materials, 35% is common to specific component types
and 15% is specific to each component. With respect to the demand uncertainty, 67% is as-
sumed to be common to the entire structure, while 33% is common to a specific engineering
demand parameter. These assumptions are consistent with those suggested in [17], and can

be mathematically expressed for components m and n as [17]:

PinCom g inCrr = 0-7(0.56matmat, + 0.350ype,ntypen, + 0.150my) + 0.3 (0.67 + 0.330cdp,,edp,, )

(37)
where 0pmat,,mat,> Otypemtypen, Omn a0d Opg,, P, are the Kronecker delta functions. In partic-
ular, dmat,mat, = 1 if components m and n are made of the same material, dype,.type, = 1
if components m and n are of the same type, 0,,, = 1 if m = n (i.e. same component),
dpc,, pa, = 1 if components m and n are in the same performance group; otherwise, 0,4, mat., »
Otypemtypens Omn ad Opa, pa, are equal to zero. The validation of the correlations considered
in this study falls out side the scope of this work. However, this question would in general
merit careful investigation and should be the focus of future studies.

To identify an optimal solution to the e-constraint optimization problem, the threshold
value € was set to $100000, while o« = 1 was considered. A total of 20000 samples were used
in the Monte Carlo simulation. The optimally criteria algorithm outlined in [30] was used
to solve the sub-problems of Eq. (33), while the design variables were taken as continuous.
The move limit on the design variables was set to [z7™", z™%]=[z, —0.02, z,, + 0.02] m. The

optimization is terminated when the relative change in the objective function between two

consecutive DCs is less than 10~%.
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Table 2: Summary of the Trials #1 to #4.

Correlations
Trial # Description PInCprgCr.r PDVCon,DVCn|DSm, DSy
1 Uncorrelated capacity, uncorrelated cost 0 0
2 Partially correlated capacity, uncorrelated cost 0.9* 0
3 Partially correlated capacity, perfectly correlated cost 0.9* 1
4 Perfectly correlated capacity, perfectly correlated cost 1 1

*Based on the assumptions of Eq. (37).

5.1.2. Results and Discussion

From Fig. 2, which reports the convergence histories of the objective function for the four
Trials, it is immediately evident that systems with higher component correlations require
heavier, and therefore more costly, load-resisting systems to satisfy the predefined perfor-
mance target. In particular, Trial #4 requires the most amount of material. Figure 3 shows
the convergence histories of the two design variables in terms of the design cycle: all designs
result in columns having a larger diameter than beams. Figures 2 and 3 shows that the
optimal solutions of Trial #2 and Trial #3 are almost identical, which implies that, for this
case study, the correlations between component repair costs, given the damage state, only

minimally affect the final results.

—0O—— Trial 1

—O—— Trial 2
0.22 —— 11— Trial 3 ||
—/—— Trial 4

02 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Design Cycle (DC)

Figure 2: Convergence history of the objective function.
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Figure 3: Convergence history of the design variables.

The effectiveness of the proposed method in solving the e-constraint problem is demon-
strated through Fig. 4, which shows the convergence histories of the constraint function, i.e.
the loss measure L, of all trials. As can be seen, designs that satisfy the constraint were found
in the first few design cycles, while the final solutions were efficiently obtained in less than
25 design cycles. In particular, the proposed approximation scheme demonstrates accuracy,
as the approximations of L are very close to the estimations obtained from the Monte Carlo
simulation at the end of each design cycle. In addition, Fig. 5 shows the convergence histories
of the correlation coefficient between group losses in terms of the design cycle. It can be seen
that the updating scheme for the correlations is also very effective. Figure 6 compares the
reduced variates, g; and gs, estimated in the initial and the final cycles. Values of ¢g; and
go are seen to not change from the initial design to the final design: hence the assumption
of constant reduced variates is acceptable, which is consistent with previous observations by
the authors [20, 22].

To examine the validity of the proposed approach, the optimization problem of this case

study was also solved without any approximation using the Genetic Algorithm (GA) of
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Figure 5: Convergence history of the correlation coefficient.
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13 Matlab [31]. The final solutions obtained from both approaches are presented in Table
w0 3. Both approaches identify solutions that satisfy the constraint while using near identical
wo volumes of material. It can be observed that the solutions obtained from the GA are, at

w1 times, inferior to those obtained from the proposed approach (e.g. in Trial #3 it can be seen

Table 3: Summary of Results for Varied Component Correlations.

Trial Approach Final Design Weight Performance CPU Time
1 T2 |4 L

1 Proposed 0.1569 m 0.1783 m  0.2896 m?> $ 99983 232 s
Genetic Algorithm 0.1551 m  0.1803 m  0.2895 m? $ 99991 84465 s

2 Proposed 0.16199m 0.1881 m 0.3153 m? $ 99985 229 s
Genetic Algorithm 0.1632m  0.1867 m  0.3154 m? $ 99945 82266 s

3 Proposed 0.1620 m 0.1882m  0.3156 m?> $ 99982 252's
Genetic Algorithm 0.1392m  0.2175 m  0.3258 m? $ 99984 92049 s

4 Proposed 0.1615m 0.1918 m  0.3206 m? $ 99996 268 s
Genetic Algorithm 0.1668 m  0.1862 m  0.3218 m? $ 99932 73027 s
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that the GA approach led to a final design with higher material volume and loss). This can be
traced back to how, as would be expected, GAs have a significantly slower convergence rate
as compared to the proposed gradient-based approach. Therefore, if the same convergence
criteria is set for both approaches (as in this case), GAs can lead to marginally inferior final
solutions. Based on the same convergence criteria, the GA requires 80000-90000 seconds of
CPU time, as compared to less than 300 seconds through the proposed approach. Therefore,
the proposed approach not only finds, for all intents and purposes, an identical solution to
that of the validated and approximation free GA scheme, but does so in over two orders of
magnitude less computational time, highlighting the possibility of application to large-scale

systems.

5.2. Large-scale Case Study

A large-scale case study is presented in this section to demonstrate the scalability of the
proposed approach to design problems that involve a large number of design variables (e.g. in
the order of hundreds or more structural members to be designed) as well as computationally
burdensome numerical response models. While for the small-scale case study validation was
carried out through direct comparison of the optimal solutions obtained from the proposed
approach with those obtained through GAs, for the large-scale case study of this section this
will not be carried out as the computational requirements of the GAs become prohibitive.
With regard to the BODO applications, the goal of this case study is to identify a set of
Pareto optimal designs that simultaneously minimize the structural material volume, V', and

the loss measure, L, of the lateral load-resisting system outlined in Fig. 7.

5.2.1. Description

The building consists of 37 stories of which the first has a height of 6 m while all others
have a height of 4 m. As shown in Fig. 7(a), the total width of five bays along the X-direction
is 30 m, while the total width of six bays along the Y-direction is 60 m. The load-resisting
system for wind loads acting in the X-direction is defined by a total of 259 design variables
that identify the sizes of the beams and columns within the system. The numbering scheme
used to locate each design variable is reported in Fig. 7(c). All beams are assumed to belong

to the AISC (American Institute of Steel Construction) W24 family, while all columns are
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assumed to be square box sections with the mid-line diameter, d,,, belonging to the discrete
set [0.20 m,0.25 m,...,3.95 m,4.00 m]. The wall thickness is again taken as t,, = d,,/20. For
the initial design, all beams are set to a AISC W24 x 176 profile, while the mid-line diameter
for all columns is set to d,,= 1.0 m. The resonant response is estimated based on the first
three modes which have initial mean circular frequencies of w; = 1.192 rad/s, wy = 3.750

rad/s, wy = 6.829 rad/s.
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Figure 7: 37-story building system: (a) Building plan, (b) Isometric view, (¢) Frame layout showing beam

and column assignments.

The building is to be designed for Risk Category III [26], hence im is taken as the wind
speed with a 1700-year MRI estimated from the NIST Miami hurricane wind speed dataset.
In modeling the aerodynamic loads, the POD-based stochastic wind model is calibrated to
wind tunnel datasets obtained from the Wind Pressure Database of the Tokyo Polytechnic
University [32]. It should be noted that, in both case studies, the performance evaluation

of the building system was carried out at wind intensities consistent with those suggested in

24



443

444

445

446

447

448

449

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

the ASCE prestandard for performance-based wind design [33].

Similar to the previous case study, the system-level performance is evaluated in terms of
loss to the building envelope that is assumed to be a midrise stick-built curtain wall. The
two inter-story drift induced sequential damage states of Table 1 are again considered along
with the associated fragility and consequence functions. In this case, a total of 37 PGs are
identified with each group consisting of 80 components. In modeling component correlations,
the four Trials outlined in Table 2 are once again considered.

To identify a set of Pareto optimal solutions, a series of five e-constraint optimization
problems were solved where the threshold values of € were set to $100000, $250000, $400000,
$700000, and $1000000, while for robustness, a value of @ = 2 was considered. A total
of 20000 samples were used in the Monte Carlo simulations. The discrete optimization
algorithm outlined in [30] was used to solve the sub-problems of Eq. (33). The move limit,

T and g™mae*r

i mar - on the design variables was set to two sizes smaller and two sizes larger than

the current sizes identified in x,,.. The optimization stops when the relative change in the

objective function between two consecutive DCs is less than or equal to 1074,

5.2.2. Results and Discussion

The set of Pareto optimal solutions, in the space of the two optimization objectives V' and
L, are presented in Fig. 8. The solid lines represent solutions obtained using the proposed
pseudo-simulation approach, while the dashed line shows solutions obtained through the
kriging-based approach outlined in [6]. It can be seen that in Trial #1 both approaches
lead to consistent results in terms of the Pareto front, hence it is evident that the proposed
approach is a valid alternative to the kriging-based approach. From all trials, it can be
observed that, as expected, heavier designs perform better in resisting the wind loads and
therefore result in lower losses, i.e. higher V leads to lower L. It is also important to note
the significant impact that the assumption on correlation has on the optimal solutions. For
any given value of L, systems with higher correlations between component capacities and
correlations between component repair costs require 25-50% more investment in structural
materials than systems whose components are uncorrelated. This can be traced back to

how, as the component correlations increase, the variance of the total loss also increases.
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Hence, to restrict the loss measure to a given value, building systems whose components are
highly correlated require more structural material to help resist the wind action in order to
reduce the structural demands, therefore reducing the expected loss and the variance that
together make up the loss measure. Comparing the Pareto fronts of Trial #2 and Trial #3,
solutions are very similar; hence correlations in the repair costs of cladding components,
conditional on a set of damage states, do not seem to influence the susceptibility to loss
of the system. Comparing Trial #2, Trial #3 and Trial #4, it can also be observed that
the results are relatively similar (within 10% of each other) in terms of optimal material
volume. A practical consequence of this observation is that, in cases where correlations in
the component capacity are expected to be high (e.g. greater than 0.9), the assumption of
full correlation may be made therefore avoiding the significant effort necessary for evaluating
inter-component correlations. This practical result would seem to hold independently of the
correlations between the repair costs.

Figure 9 reports the exceedance probability, P(DV > L), of the system-level loss, DV,
with respect to the loss threshold L. In particular, each point of Fig. 9 was estimated by car-
rying out an additional loss assessment in the final design point of each e-constraint problem.
In terms of structural design, the exceedance probabilities provide additional information
that enrich the Pareto fronts of Fig. 8. Results in the form of Fig. 9 are particularly useful
in providing trade-off information for decision-makers when choosing the optimal design that
fits best their preferences. For example, as can be seen from Fig. 9, systems designed while
accounting for component correlations, have in general lower exceedance probabilities than
systems designed under the assumption of uncorrelated components. This is clearly evident
from the comparison between the two extreme cases of Trial #1 and Trial #4, for which
the neglect of correlations between the damage capacities and between the repair costs can
lead to an order of magnitude increase in the exceedance probability. The impact of inter-
component correlations seen in these results clearly highlights the need for optimal design
frameworks that can treat correlations during the optimization process.

To examine the performance of the e-constraint optimization strategy of Sec. 4, Fig. 10
shows the convergence histories of the material volume in terms of the design cycles for the

optimal designs associated with L < $400000 (i.e. #3, #8, #13 and #18). As can be seen,
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Figure 10: Convergence history of the objective function, V', for designs #3,#8,#13,#18.

smooth and steady convergence is seen for all cases. With respect to wind-induced losses, Fig.
11 illustrates the corresponding convergence histories of the loss measure obtained through
the proposed approach. Simialr to the small-scale case study, the approximation scheme of
Sec. 4 is seen to effectively provide accurate loss estimation during the optimization. In par-
ticular, designs that satisfy the system-level loss constraint were obtained within five design
cycles with the later cycles serving to furhter minimize V. These results clearly highlights
the effectiveness of the proposed method. Similar results were observed when solving all of
the e-constraint problems. A major advantage of the proposed method over existing methods
(e.g. the kriging-based approach of [6]) is that it allows the correlation between group-level
losses to be modeled and updated during the optimization process. Figure 12 shows an ex-
ample of the convergence histories of the correlation coefficient between group-level losses
associated with cladding components on floor 15 and floor 20 of the building (i.e. DVj5 and
DVyy). It can be observed that the correlations will in general change during each design cy-
cle, especially in the early stages of finding designs that satisfy the constraint. As illustrated
in Fig. 12, these changes were effectively approximated through the proposed scheme of Sec.

4.1.
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6. Conclusions

This paper presented a design optimization approach that can explicitly account for
inter-component correlations in the performance assessment and optimization of wind-excited
building systems. The proposed approach integrates bi-objective design optimization schemes
with probabilistic performance-based wind engineering methodologies. In modeling the sys-
tem performance under the action of stochastic wind loads, a loss measure is defined in terms
of the expected value and variance of the system-level loss. Through the concept of fragility,
closed-form functions were derived that relate samples of engineering demands to the second
order statistics of the system-level loss while explicitly treating correlations between both
the component capacities and the component losses. Through the e-constraint approach, a
bi-objective design optimization scheme was formulated for simultaneously minimizing the
initial cost of the structure and the anticipated future losses caused by wind induced damage.
For solving each e-constraint problem, a strategy is proposed that centers on formulating and
solving a sequence of decoupled approximate sub-problems that are constructed from approx-
imate demand samples estimated from an augmented simulation carried out in the solution
of the previous sub-problem. The approximate demand samples are used to estimate the
second-order statistics of the wind-induced losses through the derived closed-form relation-
ships and a pseudo-simulation scheme. The availability of the sensitivities with respect to the
design variables enables the use of efficient gradient based optimization schemes for solving
each sub-problems. The effectiveness of the proposed method and its scalability to high-
dimensional problems were illustrated through the optimal design of two moment-resisting
frames of building systems subject to stochastic wind loads. It was observed that designs
that do not account for inter-component correlations run the risk of being significantly un-
derdesigned. This finding highlights the need for methods, such as the one outlined in this
work, that allows inter-component correlations to be modeled and updated throughout the

design optimization process.
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Appendix A. Estimation of Resonant Modal Response

This appendix outlines the procedure used to estimate a sample of the resonant modal
response vector associated with the first M modes, qp,, (t), which is needed for estimating a
sample of the response process, 7"]@ (t) of Eq. (11) of Sec. 3.2.

To estimate the resonant modal response, the following equations of motion must first be

solved through a modal analysis framework:

mq(t, u)+cq(t,u) + kq(t,u) = ®1f(t,u) (A.1)

where q(t), q(t) and q(t) are the vector-valued generalized displacement, velocity and accel-
eration response processes respectively; ®,; = [¢1, ..., @] is the mode shape matrix of order
M:; while m, ¢, and k are generalized mass, damping, and stiffness matrices respectively.

The mth component of m, ¢, and k can be estimated as:

M = ¢, Mo,

Cm = 2M 83, (mS2, W (A.2)

Ky = My (82, Wi )*
where w,, is the mth natural frequency and (,, is the generalized damping ratio associated
with the mth mode; S, is an uncertain parameter associated with the variability in the
estimate of w,, while S35 _ is an uncertain parameter modeling the variability associated with
the value of (,,. In this work, Sy and Ss3, are to be considered components of the random
vector U.

By solving Eq. (A.1), the total modal response associated with the mth mode, g,,(t), can

be determined and used to estimate the mth component of q, (t) as:

4R, (t> 11) = Qm(t> 11) — 4B, (t> u) (AS)

where the background modal response, ¢p, , is given by:

4, (L) = — T E(t.u) (A4)

S, Wm)
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Appendix B. POD-Based Stochastic Wind Model

This appendix outlines the procedure used to simulate a sample of the aerodynamic loads,
f(t), needed for estimating the stochastic response process, 7“ 2(t) of Eq. (11) of Sec. 3.2,

To ensure that the vector-valued stochastic process, f(t), includes complex phenomena
such as vortex shedding, wind tunnel data is used to calibrate a proper orthogonal decomposi-
tion (POD) [23] based spectral representation model. Following this data-driven aerodynamic

POD approach, each component of f(¢) can be simulated as:

Nl N’nl -1

t UH /6 Z Z {2|\Ijjl wn176 \/Al wnlavaB)A

l1n11

(B.1)
. cos(wmt + ﬁjl(wnl; ﬁ) + enll)}

where [V, is the total number of loading modes considered in the model; Aw is the frequency
increment (accordingly, the Nyquist frequency is N,, Aw/2, with N, the total number of
discrete frequencies considered), while w,, = n;Aw; 6,,; is an independent random variable
characterizing the stochastic nature of the wind, uniformly distributed over [0, 27] and col-
lected in the uncertain vector U; 95 = tan™'(Im(Y;;)/Re(Y;;)); while Y (w) and Aj(w)
are components of T(w) and A(w) obtained from the nontrivial solution of the following
eigenvalue problem:

[Sy(w; vm, B) — Mw; v, BT (w; 8) =0 (B.2)
where Sy is the cross power spectral density matrix of the wind tunnel estimated aerodynamic
load processes. Since A can be scaled to different wind speeds after A and T are estimated at
wind tunnel speed, Eq. (B.2) does not need to be solved for each wind speed, vy, of interest.

The site-specific wind speed at the top of the building, vy, is obtained from the wind
speed data measured at nearby meteorological stations. In particular, from this data, a
mean wind speed-v,-of averaging time 7 and mean recurrence interval (MRI) y years, can
be extracted. This wind speed is here assumed as the intensity measure (im). In this work,

the corresponding site-specific wind speed vy, averaged over a time interval T', can then be
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obtained through the following transformation [34]:

€40
o (T, 29) = eres(7, T) < %0 )

In[H/(e520)]
In[Hpet / (€6201)]

(B.3)

2610y (T, Hmet, 201)

where 0 = 0.0706 is an empirical constant, while e; to e; are random parameters modeling
the uncertainties affecting the model. In particular, e; and ey account for observational and
sampling errors in v,; e3(7, 1) is a random conversion factor that accounts for the uncertainty
in converting between the wind speed averaging times 7 and T'; ey, €5, and eg are random
variables modeling the uncertainties with respect to the actual values of ¢ and of the rough-
ness lengths 2y and zg;; while e7 is a model uncertainty parameter to be used in the case that
the transformation of Eq. (B.3) is used for modeling hurricane winds. These uncertain pa-
rameters F-F; are to be considered components of the random vector U. Possible marginal

distributions for the elements of U can be found in Table B.4

Table B.4: Marginal distributions for the elements of the uncertain vector U.

Variable Mean CV Distribution Ref.

S1 1 0.025 Trunc. Normal [34]
Sa, * 1 0.3 Lognormal [35]
Sg, * 1 0.01 Lognormal [35]

Oy 1 * s % uniform [29]

E; 1 0.1  Trunc. Normal [34]

E, 1 0.025 Normal [36]

Es xxx  0.075 Normal [36]

E, 1 0.1  Trunc. Normal [36]

Es 1 0.3  Trunc. Normal [36]

Es 1 0.3 Trunc. Normal [36]

E; 1 0.05 Normal [36]

*fori=1,...,m

sk forl=1,...,Nyandn; =1,...,(Np, — 1)

* % % Dependent on averaging times 7 and T’
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Appendix C. Derivation of the Conditional Expectation

This appendix provides detailed derivation of Eq. (17), which is necessary for the esti-
mation of the conditional covariance between group-level losses of Sec. 3.3.2.

The conditional expected value of the product of DV Cj,, and DV Cy,,, as shown in Eq.
(17), can be estimated through the concept of total probability as:

(@) (1)
MDVC]-mDVCkn|EDPj,EDPk(6dpj ,edpy, )
Nps,, Npsy,

= Z Z [MDVijDVCkn\DSm,DSn(%r)'PDSm,DSnlEDPj,EDPk(Q;r|edp§‘i)7€dpl(qi))]
g=1 r=1

Nps.,, Nps,

= Z Z [(Upvcjmpvcknmsm,psn(q, r) + WDV C;pn DS (1) - ,UDVC;W\DSn(T)>
q=1 r=1

: PDSm,DSn|EDPj,EDPk (Q7 r|edp§2), €dp;(;))}
Nps,, Nps,

= [(pDVC’jm,DVCkn|DSm,DSn (q, 7“) *ODVCjp|DSm (Q) * 0DV Cypn|DSn (7“)
g=1 r=1

+ 1DV C;pn DS (1) - /LDVCkn|DSn(T)> .PDSm,DSn\EDPj,EDPk(q,T‘edpg-i)’ edp,(f))}
(C.1)

where [tpve,,, DVCyn | DSm,Ds, (4, T) is the expected value of the product of DV Cj,, and DV Gy
conditioned on the damage states ¢ and r; Pps,, ps, epp;Epp, 18 the conditional joint
probability of the mth and the nth component damage state given EDP; and EDPFy;
O DV} DV Cion| DSm, DS, (@, T) 18 the variance of the product of DV C},,, and DV Cy,, conditioned
on the damage state ¢ and r; upve,,|ps,.(¢) and ppve,,ps, (r) are the means of DV},
and DV (C},, conditioned on the damage state g and r; pDVij,DVCkn|DSm,DSn(Qa 1) is the cor-
relation between the mth and the nth component losses due to the damage states ¢ and r;
while opve;,,ps,.(q) and opye,,|ps,(r) are the standard deviations of DV Cj,, and DV Cyy,

conditioned on the damage states ¢ and r.

Appendix D. Details on the Sensitivity Estimation

@
J
Oxn 8?&1/)

. . . . . . Oupv;|EDP; dedp
This appendix provides detailed derivations of p im i =2
edp

aO-D‘/ DV, |EDP;,EDP,
DV | 55 %o
o , and

J

J
Dy,
%](x), which are necessary for the estimation of the partial derivatives of the approximate

expected value and standard deviation of the loss measure of Sec. 4.2.1.
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The partial derivative of the expected group-level loss in Eq. (36) with respect to the
design variable can be estimated as follow:
- No o~ —— () —— (1)
Ifipy, (x) 1 Ofipv;|epp;(X; edp; ) . Dedp;

=—> — (D.1)
Oy, N i=1 8edp§-) Oy,

where the partial derivative of the conditional expected group-level loss and can be estimated

as:
~ ——() Ne, o~ ——(4)
Oppv; Epp;(X;edp; ) 2 pve,, Epp; (X; edp; ) (D2)
a2 o,

where the partial derivative of the conditional expected component loss can be estimated as:

m @Oy N ——(i) —(i)
Olpve;, Epp; (X; edp; ) g OFry(edp;”)  OFrgqa(edp;’)
— (9) = Z II’LDVij|DSm (q) ’ — (@) - — (i) (D3)
8edpj q=0 aedpj aedpj

where the derivative of the fragility functions results in the probability density function of
the corresponding distribution.

The partial derivative of the approximate demand sample in Egs. (35)-(36) with respect
to the nth component of the design variable vector may be estimated through the following

scheme: "
8edpjl (x) Or](x)
ox,, - Oxy,

8].‘? (x)
ox,,

\iIJ'(ch) + gj(l) (ch) : \i/j(XmC) (D4)

ort . .. . . .
where 5~ is the derivatives of the influence functions I'; with respect to z, and can be

efficiently estimated through traditional approaches [30, 37].
The partial derivative of the conditional covariance between group-level losses in Eq. (36)

with respect to the approximate engineering demand sample can be estimated as follow:

~ —— () ——()
ao—DVj,DVk\EDP]-,EDPk (x; €dpj ,edpy.”)
—— (i)
Dedp,
Ng; N ~ —— (@) ——()
B zfch apDVC'jm,DVC’kn|EDPj,EDPk(edpj sedpy ) /Zl/(i) ~ /E/(i)
= — 'UDVij|EDPj(6 P; ) 'O'DVCkn\EDPk(e P )
m=1 n=1 8edpj

——(4)

—() —@G). O0opve,,,|Epp;(edp; ) —(i)
: N © OpVCr | EDP, (€dDy,)

+ ﬁDvcjm,Dvckn\EDPj,EDPk(edpj ,edpy,”) ——)
Dedp;
(D.5)
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20 where the partial derivative of the conditional correlation coefficient, as defined in Eq. (16),

s0 may be estimated through the quotient rule, while the following derivatives are needed (in

. Olipvc,, |EDP;
e addition to ——am =P ).
Oedp;

. —(4)
dopve,, | Epp;(edp; )

Oedp; )

1 Nps
- — —G). Z O-QDVC]-m\DSm (q) -
2- UDVij|EDPj(edpj ) q=0

——(2) ——(2)
OFr,(edp; ) B OFrgy1(edp; )
s o

NP ——(4) ——(4)
_ ——(i) OFr,(edp; )  OFryi1(edp,;”)
+ 3 (1Dvey D8, (@) = Fipvey,epe, (edp; ) - | ——i— — ———2—| (D0
4=0 Oedp; Oedp;
& A dipve,, mor,(edp, )
+ Z 2 (pv e, DS, (@) — HDVe,,. | EDP, (€dp§1))) | - JmN(i]) ]
q=0 8edpj
——(4) ——(4)
: (Frq(edpj ) — Fryy1(edp, )> ]
632 . . . .
OFrps,. ps.|EDP; EDP, (4, r\edpg-z), edp,(;)) _ OP(InCpy <In edpgl), InC,, <In edp,(;))
0’ 0eds?
(D.7)

6

@

s where the derivative of the joint cumulative distribution function results in the joint proba-

3  bility density function of the corresponding distribution.

@
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