

Performance-Based Bi-Objective Optimization of Structural Systems Subject to Stochastic Wind Excitation

Arthriya Subgranon^b, Seymour M.J. Spence^{a,1,*}

^a*Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA*

^b*Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA*

Abstract

This paper outlines the development of a stochastic simulation-based design optimization approach for dynamic wind excited structures in which correlations between component damages and losses are explicitly treated. The proposed approach integrates a bi-objective design optimization scheme with a probabilistic performance-based wind engineering methodology which systematically accounts for the various sources of uncertainties involved in system loss estimation. Through the ϵ -constraint technique, the bi-objective optimization problem is transformed into a series of single-objective stochastic optimization problems. To solve each ϵ -constraint optimization problem, a pseudo-simulation scheme is proposed that allows for the formulation of an approximate sub-problem that can be solved sequentially to identify solutions that define a set of Pareto optimal designs. In the proposed scheme, samples of engineering demands are approximated in terms of auxiliary variable vectors, which are by-products of an augmented simulation carried out in a fixed design point. Analytical expressions are derived that relate the engineering demand samples to the second-order statistics of wind-induced losses based on the concept of fragility. Potential correlations between the component capacities and component losses are explicitly treated. The effectiveness of the proposed approach and its scalability to high-dimensional problems are illustrated through optimal designs of moment-resisting frames subject to stochastic wind loads.

Keywords: Bi-objective optimization, Performance-based design, Wind engineering, System-level loss assessment, Stochastic wind loads, High-dimensional problems

*Corresponding author

Email addresses: arthriya@ufl.edu (Arthriya Subgranon), smjs@umich.edu (Seymour M.J. Spence)

¹Tel. +1-734-764-8419, Fax +1-734-764-4292

¹ 1. Introduction

² In developing risk management strategies, the integration of bi-objective design opti-
³ mization (BODO) schemes with performance assessment frameworks, provides an attractive
⁴ decision support space in which useful insights into the trade-offs between upfront cost and
⁵ anticipated losses can be obtained [1–7]. For wind excited buildings, stochastic performance-
⁶ based wind engineering (PBWE) frameworks can be used to directly assess performance
⁷ metrics that systematically treat various sources of uncertainties [8–15]. However, the compu-
⁸ tational effort in repeatedly performing the stochastic simulation for different designs during
⁹ the optimization process is complex and time-consuming, especially for large-scale systems
¹⁰ that involve high-fidelity models and a large number of design variables. To overcome these
¹¹ challenges, the authors have recently proposed an efficient method that is based on trans-
¹² forming the performance-based BODO problem into a series of single-objective stochastic
¹³ optimization problems through the ϵ -constraint technique [6]. By solving a series of prob-
¹⁴ lems for various values of ϵ , a set of the searched-after Pareto optimal solutions can be
¹⁵ identified. To solve each ϵ -constraint problem, Suksuwan and Spence [6] proposed a method
¹⁶ based on formulating and solving a sequence of sub-problems: this method allows a proba-
¹⁷ bilistic loss measure to be updated during the optimization through kriging metamodels that
¹⁸ are constructed from results of a stochastic simulation. While the kriging-based approach
¹⁹ is computationally efficient for large-scale problems, the method does not consider correla-
²⁰ tions between damage states or correlations between component losses. These correlations,
²¹ however, can significantly affect the total loss [e.g. 16, 17], and should therefore be treated
²² during not only the loss assessment, but also the optimization process.

²³ In general, there are three types of correlations that may have a significant impact on the
²⁴ total loss of a system: (i) correlation between engineering demand parameters (EDP), given
²⁵ that a windstorm of prescribed intensity has occurred; (ii) correlation between component
²⁶ damage states (DS), given engineering demands; and (iii) correlation between component de-
²⁷ cision variables/losses (DVC), given damage states. While the correlation in the conditional
²⁸ demand level can be estimated directly from the results of structural response analysis, the
²⁹ same cannot be said for conditional correlations at the damage state and the component
³⁰ loss levels. To date, few models have been proposed for treating such inter-component cor-

31 relations. In the field of earthquake engineering, Baker and Cornell [16] proposed a seismic
32 loss estimation approach that considers inter-component correlations through a first-order
33 second-moment (FOSM) analysis method in which the mean and variance of the total loss is
34 estimated conditional on earthquake intensity. Through this approach, the conditional dam-
35 age state given an engineering demand ($DS|EDP$) and conditional component loss given a
36 damage state ($DVC|DS$) were collapsed into a $DVC|EDP$ relationship, while a generalized
37 equi-correlated model is proposed to estimate the correlation in the collapsed relationship.
38 Aslani [18] proposed an approach that utilizes the FOSM method in computing the covari-
39 ance terms when estimating the standard deviation of the total loss, while the correlation
40 of $DS|EDP$ is estimated through an iterative procedure with the correlation of $DVC|DS$
41 obtained from data pertaining to construction cost. In seismic design practice, the Fed-
42 eral Emergency Management Agency (FEMA) P-58 guidelines [19] assume damage states
43 in the same performance group to either be perfectly correlated or uncorrelated, while the
44 case of partially correlated components is omitted. To incorporate partial correlations, while
45 avoiding potential errors incurred in using the FOSM approximation, Bradley and Lee [17]
46 proposed a tractable analytical approach to seismic loss assessment that can explicitly con-
47 sider the correlations in the conditional demands, conditional damage states, and conditional
48 component losses.

49 This work aims to develop a new approach for solving the ϵ -constraint problem outlined
50 in [20] that is capable of treating general inter-component correlations. In particular, as loss
51 measures, both the expected value and variance are considered, while correlations in the dam-
52 age capacity and component losses are explicitly modeled based on the approaches outlined
53 in [17]. The basic idea of the proposed method is to derive closed-form relationships be-
54 tween samples of engineering demands and the second-order statistics of wind-induced losses
55 based on the knowledge of the fragility and consequence functions. By substituting in the
56 derived expressions with demand samples approximated in terms of auxiliary variable vectors
57 [20, 21], a pseudo-simulation scheme is defined that can be used to formulate an approxi-
58 mate sub-problem that enables the use of gradient-based optimization algorithms. Within
59 this setting, the probabilistic loss measure, as well as inter-component correlations, can be
60 efficiently updated during the optimization process without the need to invoke any dynamic

61 structural analysis or calibrate any metamodels. The validity of the proposed approach is
 62 illustrated first through the optimal design of a lateral load-resisting system of a two-story
 63 building. The practicality of the approach is then demonstrated through the identification
 64 of set of Pareto optimal designs of a multistory building system subject to stochastic wind
 65 loads.

66 **2. Problem Statement**

67 To provide decision-makers with trade-off information regarding various design options,
 68 it is of interest to identify a set of optimal designs that simultaneously minimize the initial
 69 cost of the system as well as the anticipated losses caused by extreme windstorms. This
 70 engineering problem can be formulated in terms of the following bi-objective optimization
 71 problem:

$$\begin{aligned} \text{Find} \quad \mathbf{x} &= \{x_1, \dots, x_N\}^T \\ \text{to minimize} \quad &[V(\mathbf{x}), L(\mathbf{x}; im)] \\ \text{subject to} \quad &x_n \in \mathbb{X}_n \quad n = 1, \dots, N \end{aligned} \quad (1)$$

72 where \mathbf{x} is a high-dimensional design variable vector collecting the N deterministic parameters
 73 that are used to define the structural system (e.g. structural member sizes); V is a function
 74 associated with the initial cost of the structural system (e.g. volume of structural material)
 75 and is assumed to be deterministic and explicit in \mathbf{x} ; L is a probabilistic function describing
 76 a system-level loss measure for a wind event of prescribed intensity measure $IM = im$ (e.g.
 77 a site specific wind speed with a mean recurrence interval (MRI) of 700 years); while \mathbb{X}_n is
 78 the set of discrete values to which the n th component of \mathbf{x} must belong. In particular, L is
 79 defined here as:

$$L(\mathbf{x}; im) = \mu_{DV|IM}(\mathbf{x}; im) + \alpha \cdot \sigma_{DV|IM}(\mathbf{x}; im) \quad (2)$$

80 where $\mu_{DV|IM}$ and $\sigma_{DV|IM}$ are the expected value and standard deviation, respectively, of
 81 the system-level decision variable DV (e.g. total repair cost) conditioned on IM ; while α
 82 is a parameter, $\alpha \geq 0$, whose value can be assigned according to the desired level of design
 83 robustness. In other words, a larger α assigns more weight to the standard deviation in order
 84 to restrict the variability in the system-level loss, hence increasing the design robustness [6].

85 **3. Loss Assessment Framework Considering Component Correlations**

86 *3.1. Overview of the Methodology*

87 This section introduces an efficient framework for estimating the loss measure, L , for a
 88 given design \mathbf{x} and wind event of intensity im , while explicitly accounting for component
 89 correlations. In general, the components of a system that are susceptible to damage due to a
 90 common demand parameter can be grouped to define what is known as a performance group
 91 (PG) [19]. The total loss, DV , can then be seen as the sum of losses over all PGs defining
 92 the system, and therefore as:

$$93 DV(\mathbf{x}; im) = \sum_{j=1}^{N_G} DV_j(\mathbf{x}; im) \quad (3)$$

93 where N_G is the total number of PGs defining the system, while DV_j is a group-level decision
 94 variable associated with the j th PG (e.g. repair cost associated with cladding components
 95 on the first floor). Based on Eq. (3), the second-order statistics of DV can be estimated in
 96 terms of the group-level losses as follows:

$$\mu_{DV|IM}(\mathbf{x}; im) = \sum_{j=1}^{N_G} \mu_{DV_j|IM}(\mathbf{x}; im) \quad (4)$$

97

$$\sigma_{DV|IM}(\mathbf{x}; im) = \sqrt{\sum_{j=1}^{N_G} \sum_{k=1}^{N_G} \sigma_{DV_j, DV_k|IM}(\mathbf{x}; im)} \quad (5)$$

98 where $\mu_{DV|IM}$ and $\sigma_{DV|IM}$ are the conditional expected value and standard deviation of
 99 DV ; $\mu_{DV_j|IM}$ is the conditional expected value of DV_j ; while $\sigma_{DV_j, DV_k|IM}$ is the conditional
 100 covariance between DV_j and DV_k given that $IM = im$.

101 The loss associated with each PG depends on the current damage states of each component
 102 of the PG, and therefore the response level of the associated engineering demand parameter
 103 (e.g. inter-story drift). In this respect, the following functional relationships can be derived
 104 between the demand and the group-level loss statistics (where the dependence on \mathbf{x} and IM
 105 is dropped for clarity):

106

$$\mu_{DV_j} = E[\mu_{DV_j|EDP_j}] \quad (6)$$

$$\sigma_{DV_j, DV_k} = E[\sigma_{DV_j, DV_k|EDP_j, EDP_k}] + \text{Cov}[\mu_{DV_j|EDP_j}, \mu_{DV_k|EDP_k}] \quad (7)$$

107 where $\mu_{DV_j|EDP_j}$ is the mean of DV_j conditioned on the engineering demand parameter,
 108 EDP_j ; $\mu_{DV_k|EDP_k}$ is the mean of DV_k conditioned on EDP_k ; $\sigma_{DV_j,DV_k|EDP_j,EDP_k}$ is the co-
 109 variance between DV_j and DV_k conditioned on EDP_j and EDP_k ; while $E[\cdot]$ and $\text{Cov}[\cdot]$ denote
 110 the expectation and covariance operators, respectively.

111 For a given design \mathbf{x} , the second-order statistics are affected by many uncertainties, in-
 112 cluding the aleatory nature of the wind, uncertainties in the system parameters, uncertainties
 113 in the damage and consequence assessment, and epistemic uncertainties in the mathematical
 114 modeling. Hence, the loss assessment generally involves a large number of random variables
 115 with different corresponding distributions. To systematically carry out probabilistic analysis
 116 within this high-dimensional uncertain space, a Monte Carlo simulation technique is adopted
 117 in this work. Through the Monte Carlo method, the expected value of a random variable Y_j
 118 (e.g. $\mu_{DV_j|EDP_j}$ and $\sigma_{DV_j,DV_k|EDP_j,EDP_k}$ introduced in this section) may be estimated as:

$$E[Y_j] \approx \frac{1}{N_s} \sum_{i=1}^{N_s} y_j(edp_j^{(i)}) \quad (8)$$

119 where N_s is the total number of samples used in the simulation, while $edp_j^{(i)}$ is the i th
 120 realization of EDP_j . Similarly, the covariance between any two variables Y_j and Y_k can also
 121 be estimated from the samples as:

$$\text{Cov}[Y_j, Y_k] \approx \frac{1}{N_s - 1} \sum_{i=1}^{N_s} \left[y_j(edp_j^{(i)}) - E[Y_j] \right] \cdot \left[y_k(edp_k^{(i)}) - E[Y_k] \right] \quad (9)$$

122 To this end, an efficient method to generate realizations of a vector of correlated engi-
 123 neering demand parameters, $\mathbf{EDP} = \{EDP_1, \dots, EDP_{N_g}\}^T$, and a method that can quickly
 124 evaluate the conditional statistics given \mathbf{EDP} are needed. Throughout this paper, uppercase
 125 letters (e.g. Y_j) are used to represent random variables, while lowercase letters (e.g. y_j) are
 126 used to represent realizations.

127 3.2. Engineering Demand Parameters

128 This section provides a brief overview of the approach used in this work to generate
 129 samples of the EDPs. Detailed derivations of the equations and descriptions of the models
 130 can be found in [6, 20, 22] and are provided for convenience in Appendix A, regarding

131 the estimation of resonant modal response, and in Appendix B regarding the estimation of
 132 stochastic wind loads.

133 For the following damage analysis, the EDPs are defined as the absolute peak responses
 134 of a structural system subject to a wind event of duration T . Hence, a realization of an
 135 element of **EDP** can be written as:

$$edp_j^{(i)}(\mathbf{u}^{(i)}) = \max_{\beta \in [0, 2\pi]} \left\{ \max_{t \in [0, T]} |r_j^{(i)}(t; \beta, \mathbf{u}^{(i)})| \right\} \quad (10)$$

136 where i denotes the realization, $\mathbf{u}^{(i)}$ is the i th sample of a high-dimensional uncertain vector
 137 \mathbf{U} that contains all uncertain variables considered in the estimation of the EDPs (examples
 138 of these variables and possible distributions are provided in Table B.4), β denotes the wind
 139 direction, and $r_j^{(i)}(t)$ represents the i th realization of the response process time-history as-
 140 sociated with the j th PG. In particular, the stochastic response process can be efficiently
 141 estimated through the following load-effect model [21]:

$$r_j^{(i)}(t; \beta, \mathbf{u}^{(i)}) = s_1^{(i)} [\mathbf{\Gamma}_j^T \mathbf{f}(t; \beta, \bar{v}_H, \mathbf{u}^{(i)}) + \mathbf{\Gamma}_j^T \mathbf{K} \mathbf{\Phi}_M \mathbf{q}_{R_M}(t; \beta, \bar{v}_H, \mathbf{u}^{(i)})] \quad (11)$$

142 where S_1 represents a random variable modeling the epistemic uncertainty in the load-effect
 143 model and is an element of \mathbf{U} ; $\mathbf{\Gamma}_j$ is a vector containing influence functions, each giving the
 144 response in r_j due to a unit load acting at a given degree of freedom of the system; $\mathbf{f}(t)$ is
 145 a vector-valued stochastic wind process calibrated to a site-specific wind speed \bar{v}_H that is
 146 averaged over a time duration T ; \mathbf{K} is the stiffness matrix of the system; $\mathbf{\Phi}_M$ is the mass
 147 normalized mode shape matrix considering the first M modes; and $\mathbf{q}_{R_M}(t)$ is a vector whose
 148 elements are resonant modal displacement response processes associated with the first M
 149 modes. A procedure to estimate $\mathbf{q}_{R_M}(t)$ is provided in Appendix A.

150 To rapidly generate realizations of the stochastic wind loads, $\mathbf{f}(t)$, to be used in the
 151 response model of Eq. (11), this work adopts a proper orthogonal decomposition (POD)-
 152 based method [23]. The POD-based stochastic wind model is described in more details
 153 in Appendix B. It should be noted that the proposed framework is not restricted to any
 154 particular stochastic wind model. The choice of the POD-based model is due to its efficiency
 155 while enabling the use of wind tunnel data, which can account for complex aerodynamic
 156 phenomena such as vortex shedding.

157 3.3. Estimation of the Conditional Statistics

158 3.3.1. Conditional Expectation

159 Once a sample of the engineering demand is obtained through Eq. (10), a realization of
 160 the conditional expected value of a group-level loss, $\mu_{DV_j|EDP_j}$, may be estimated through a
 161 summation over the components in the group as:

$$\mu_{DV_j|EDP_j}(edp_j^{(i)}) = \sum_{m=1}^{N_{C_j}} \mu_{DVC_{jm}|EDP_j}(edp_j^{(i)}) \quad (12)$$

162 where i represents the sample number, N_{C_j} is the total number of components in the j th
 163 PG, and $\mu_{DVC_{jm}|EDP_j}$ is the conditional expected loss associated with component m . For
 164 a component m that is susceptible to N_{DS_m} possible damage states, $\mu_{DVC_{jm}|EDP_j}$ may be
 165 directly estimates from the fragility functions as:

$$\mu_{DVC_{jm}|EDP_j}(edp_j^{(i)}) = \sum_{q=0}^{N_{DS_m}} \mu_{DVC_{jm}|DS_m}(q) \cdot \left[\text{Fr}_q(edp_j^{(i)}) - \text{Fr}_{q+1}(edp_j^{(i)}) \right] \quad (13)$$

166 where $\mu_{DVC_{jm}|DS_m}(q)$ denotes the expected component loss given that the damage state q
 167 has occurred, while Fr_q and Fr_{q+1} are fragility functions associated with the damage states q
 168 and $q + 1$, respectively, where $q = 0, \dots, N_{DS_m}$ and $\text{Fr}_{N_{DS_m}+1} = 0$ [20, 24].

169 3.3.2. Conditional Covariance

170 The conditional covariance between group-level losses can be formulated in terms of the
 171 conditional component correlations as:

$$\begin{aligned} \sigma_{DV_j, DV_k|EDP_j, EDP_k}(edp_j^{(i)}, edp_k^{(i)}) &= \sum_{m=1}^{N_{C_j}} \sum_{n=1}^{N_{C_k}} \left[\rho_{DVC_{jm}, DVC_{kn}|EDP_j, EDP_k}(edp_j^{(i)}, edp_k^{(i)}) \right. \\ &\quad \left. \cdot \sigma_{DVC_{jm}|EDP_j}(edp_j^{(i)}) \cdot \sigma_{DVC_{kn}|EDP_k}(edp_k^{(i)}) \right] \end{aligned} \quad (14)$$

172 where N_{C_k} is the total number of components in the k th PG; $\rho_{DVC_{jm}, DVC_{kn}|EDP_j, EDP_k}$ is
 173 the conditional correlation coefficient between the loss associated with component m in the
 174 j th PG, DVC_{jm} , and the loss associated with component n in the k th PG, DVC_{kn} ; while
 175 $\sigma_{DVC_{jm}|EDP_j}$ and $\sigma_{DVC_{kn}|EDP_k}$ are the standard deviation of DVC_{jm} and DVC_{kn} , conditioned
 176 on EDP_j and EDP_k , respectively. Analogous to the conditional mean, for a component m

177 that is susceptible to N_{DS}^m damage states, $\sigma_{DVC_{jm}|EDP_j}$ may be calculated as [24]:

$$\begin{aligned} \sigma_{DVC_{jm}|EDP_j}(edp_j^{(i)}) &= \left[\sum_{q=0}^{N_{DS}^m} \sigma_{DVC_{jm}|DS_m}^2(q) \cdot \left(\text{Fr}_q(edp_j^{(i)}) - \text{Fr}_{q+1}(edp_j^{(i)}) \right) \right. \\ &\quad \left. + \sum_{q=0}^{N_{DS}^m} (\mu_{DVC_{jm}|DS_m}(q) - \mu_{DVC_{jm}|EDP_j}(edp_j^{(i)}))^2 \cdot \left(\text{Fr}_q(edp_j^{(i)}) - \text{Fr}_{q+1}(edp_j^{(i)}) \right) \right]^{\frac{1}{2}} \end{aligned} \quad (15)$$

178 where $\sigma_{DVC_{jm}|DS_m}^2(q)$ is the variance of DVC_{jm} given that damage state q has occurred.

179 The conditional correlations posed in Eq. (14) may be expressed as:

$$\begin{aligned} &\rho_{DVC_{jm},DVC_{kn}|EDP_j,EDP_k}(edp_j^{(i)}, edp_k^{(i)}) \\ &= \frac{\mu_{DVC_{jm}DVC_{kn}|EDP_j,EDP_k}(edp_j^{(i)}, edp_k^{(i)}) - \mu_{DVC_{jm}|EDP_j}(edp_j^{(i)}) \cdot \mu_{DVC_{kn}|EDP_k}(edp_k^{(i)})}{\sigma_{DVC_{jm}|EDP_j}(edp_j^{(i)}) \cdot \sigma_{DVC_{kn}|EDP_k}(edp_k^{(i)})} \end{aligned} \quad (16)$$

180 where $\mu_{DVC_{jm}DVC_{kn}|EDP_j,EDP_k}$ is the conditional expected value of the product of DVC_{jm}
181 and DVC_{kn} that can be formulated in terms of component damage states based on the total
182 probability theorem as (for detailed derivations see Appendix C):

$$\begin{aligned} &\mu_{DVC_{jm}DVC_{kn}|EDP_j,EDP_k}(edp_j^{(i)}, edp_k^{(i)}) \\ &= \sum_{q=1}^{N_{DS}^m} \sum_{r=1}^{N_{DS}^n} \left[\left(\rho_{DVC_{jm},DVC_{kn}|DS_m,DS_n}(q, r) \cdot \sigma_{DVC_{jm}|DS_m}(q) \cdot \sigma_{DVC_{kn}|DS_n}(r) \right. \right. \\ &\quad \left. \left. + \mu_{DVC_{jm}|DS_m}(q) \cdot \mu_{DVC_{kn}|DS_n}(r) \right) \cdot P_{DS_m,DS_n|EDP_j,EDP_k}(q, r|edp_j^{(i)}, edp_k^{(i)}) \right] \end{aligned} \quad (17)$$

183 where $\rho_{DVC_{jm},DVC_{kn}|DS_m,DS_n}(q, r)$ is the correlation between the m th and the n th compo-
184 nent losses due to damage states q and r ; $\sigma_{DVC_{jm}|DS_m}(q)$ and $\sigma_{DVC_{kn}|DS_n}(r)$ are the stan-
185 dard deviations of DVC_{jm} and DVC_{kn} conditioned on the damage state q and r ; while
186 $P_{DS_m,DS_n|EDP_j,EDP_k}$ is the conditional joint probability of the m th and the n th component
187 damage state given EDP_j and EDP_k . In particular, $P_{DS_m,DS_n|EDP_j,EDP_k}$ can be determined
188 from appropriate fragility functions as [17]:

$$\begin{aligned} P_{DS_m,DS_n|EDP_j,EDP_k}(q, r|edp_j^{(i)}, edp_k^{(i)}) &= \text{Fr}_{DS_m,DS_n|EDP_j,EDP_k}(q, r|edp_j^{(i)}, edp_k^{(i)}) \\ &\quad - \sum_{v=q}^{N_{DS}^m} \sum_{\substack{w=r \\ q \neq r \text{ if } v=q}}^{N_{DS}^n} P_{DS_m,DS_n|EDP_j,EDP_k}(v, w|edp_j^{(i)}, edp_k^{(i)}) \end{aligned} \quad (18)$$

189 where $\text{Fr}_{DS_m, DS_n | EDP_j, EDP_k}(q, r | edp_j^{(i)}, edp_k^{(i)}) = \text{P}(DS_m \geq q, DS_n \geq r | edp_j^{(i)}, edp_k^{(i)})$ denotes
 190 a joint fragility function defined as the conditional joint probability that component m will
 191 have the damage state q or worse, while component n will have the damage state r or worse
 192 given $EDP_j = edp_j^{(i)}$ and $EDP_k = edp_k^{(i)}$. Analogous to a typical fragility function that
 193 is assumed to follow a lognormal distribution, the joint fragility is assumed here to have a
 194 bi-variate lognormal distribution. It is of interest to write the joint fragility function in terms
 195 of a component damage capacity (i.e. the demand level at which the component enters a
 196 specified damage state), and therefore in the following form:

$$\begin{aligned} \text{Fr}_{DS_m, DS_n | EDP_j, EDP_k}(q, r | edp_j^{(i)}, edp_k^{(i)}) \\ = \text{P}(\ln C_{m,q} < \ln edp_j^{(i)}, \ln C_{n,r} < \ln edp_k^{(i)}) \\ = \iint_{\substack{\ln c_{m,q} < \ln edp_j^{(i)} \\ \ln c_{n,r} < \ln edp_k^{(i)}}} \frac{1}{\sqrt{|\mathbf{C}_{\ln C}|(2\pi)^2}} \exp\left(-\frac{1}{2}(\mathbf{z}_{\ln edp} - \boldsymbol{\mu}_{\ln C}) \mathbf{C}_{\ln C_m, \ln C_n}^{-1} (\mathbf{z}_{\ln edp} - \boldsymbol{\mu}_{\ln C})^T\right) d \ln c_{m,q} d \ln c_{n,r} \end{aligned} \quad (19)$$

197 where $C_{m,q}$ and $C_{n,r}$ are the capacities associated with the damage states q and r of the
 198 components m and n , respectively; $\mathbf{C}_{\ln C}$ is the covariance matrix of the component capacities
 199 that can be defined as:

$$\mathbf{C}_{\ln C} = \begin{bmatrix} \sigma_{\ln c_{m,q}}^2 & \rho_{\ln c_{m,q}, \ln c_{n,r}} \sigma_{\ln c_{m,q}} \sigma_{\ln c_{n,r}} \\ \rho_{\ln c_{n,r}, \ln c_{m,q}} \sigma_{\ln c_{n,r}} \sigma_{\ln c_{m,q}} & \sigma_{\ln c_{n,r}}^2 \end{bmatrix} \quad (20)$$

200 where $\rho_{\ln c_{n,r}, \ln c_{m,q}}$ denotes the correlation coefficient between the component capacities;
 201 $\mathbf{z}_{\ln edp} = \{\ln edp_j^{(i)}, \ln edp_k^{(i)}\}^T$ is a vector collecting the natural log of the demands; while
 202 $\boldsymbol{\mu}_{\ln C} = \{\mu_{\ln C_{m,q}}, \mu_{\ln C_{n,r}}\}^T$ is a vector collecting the means of the component capacities. The
 203 advantages of Eq. (19) are threefold: 1) it allows for the direct implementation of any ef-
 204 ficient numerical algorithm for solving for the cumulative bi-variate normal distribution; 2)
 205 the correlation coefficient between the damage state capacities, $\rho_{\ln C_{m,q}, \ln C_{n,r}}$, can be mod-
 206 eled independent of the engineering demand parameters and therefore independent of the
 207 design variables; and 3) it allows for derivation of a closed-form gradient function that helps
 208 accelerate the optimization process (see details in Sec. 4.2.1).

209 **4. Proposed Optimization Strategy**

210 To efficiently solve the bi-objective stochastic optimization problem of the type posed in
211 Eq. (1), the authors have demonstrated in [6] that the ϵ -constraint approach can be used to
212 transform the original problem into a series of single-objective optimization problems. By
213 turning the loss measure into a constraint, the ϵ -constraint problem is formulated as:

$$\begin{aligned} \text{Find} \quad \mathbf{x} &= \{x_1, \dots, x_N\}^T \\ \text{to minimize} \quad &V(\mathbf{x}) \\ \text{subject to} \quad &L(\mathbf{x}; im) = \mu_{DV|IM}(\mathbf{x}; im) + \alpha \cdot \sigma_{DV|IM}(\mathbf{x}; im) \leq \epsilon \\ &x_n \in \mathbb{X}_n \quad n = 1, \dots, N \end{aligned} \tag{21}$$

214 where ϵ represents the threshold value that L must meet. By solving a series of these problems
215 for various values of ϵ , a set of Pareto optimal solutions is identified. In other words, these
216 optimal designs are such that one objective function cannot be further improved without
217 depreciating the other objective function.

218 Although the original problem has been decomposed, solving a single-objective optimiza-
219 tion problem of the type posed in Eq. (21) is still computationally cumbersome as it involves
220 not only a time-consuming stochastic simulation, but also a large number of design variables
221 if practical problems are considered. To handle this high-dimensional stochastic optimization
222 problem, this work proposes a method that is based on constructing an approximation for
223 the loss measure that is efficient to evaluate and can take into account changes in component
224 correlations during the optimization.

225 *4.1. Loss Measure Approximation*

226 To estimate the loss measure, L , as defined in Eq. (2), it can be observed that the
227 majority of the computational expense in estimating $\mu_{DV|IM}$ and $\sigma_{DV|IM}$ through the Monte
228 Carlo simulation is allocated to the estimation of the EDP_j samples. This is because such an
229 estimation involves performing a structural dynamic analysis of a large-scale finite element
230 model subject to long duration stochastic wind loads. To circumvent this hurdle during the
231 optimization process, this paper proposes a method that approximately decouples the struc-
232 tural dynamic analysis from the optimization process. The proposed method approximates

233 samples of engineering demands in terms of auxiliary variable vectors, while utilizing the
 234 conditional statistics estimation scheme described in Sec. 3.3 to quickly update changes in
 235 the loss statistics.

236 *4.1.1. Augmented Simulation Process*

237 To construct an efficient approximation scheme that is insensitive to the number of design
 238 variables, the method centers on the definition of a reduce variate and an auxiliary variable
 239 vector [21, 22, 25] that can be fully defined from results of a single Monte Carlo simulation
 240 carried out in a fixed design point. Within this context, considering a simulation performed
 241 in the current design \mathbf{x}_{mc} , it is proposed that each sample of EDP_j can be written as:

$$edp_j^{(i)}(\mathbf{x}_{mc}) = \mu_{EDP_j}(\mathbf{x}_{mc}) + g_j^{(i)}(\mathbf{x}_{mc}) \cdot \sigma_{EDP_j}(\mathbf{x}_{mc}) \quad (22)$$

242 where μ_{EDP_j} and σ_{EDP_j} are the mean and standard deviation of EDP_j , respectively; and $g_j^{(i)}$
 243 is a reduced variate associated with $edp_j^{(i)}$ and defined as:

$$g_j^{(i)}(\mathbf{x}_{mc}) = \frac{edp_j^{(i)}(\mathbf{x}_{mc}) - \mu_{EDP_j}(\mathbf{x}_{mc})}{\sigma_{EDP_j}(\mathbf{x}_{mc})} \quad (23)$$

244 Thus, for every demand sample, $edp_j^{(i)}$, there will be an associated $g_j^{(i)}$ that can be estimated
 245 once μ_{EDP_j} and σ_{EDP_j} are calculated at the end of the simulation process.

246 To define the auxiliary variable vector (AVV), used later in the demand approximation
 247 scheme to predict μ_{EDP_j} and σ_{EDP_j} , it is first necessary to define the following vector-valued
 248 stochastic variable for each realization:

$$\mathbf{F}^{(i)}(\mathbf{x}_{mc}; t, \mathbf{u}^{(i)}) = s_1^{(i)} [\mathbf{f}(t; \mathbf{u}^{(i)}) + \mathbf{K}(\mathbf{x}_{mc}) \boldsymbol{\Phi}_M(\mathbf{x}_{mc}) \mathbf{q}_{R_M}(\mathbf{x}_{mc}; t, \mathbf{u}^{(i)})] \quad (24)$$

249 Based on $\mathbf{F}^{(i)}(t)$, $r_j^{(i)}(t)$ and $edp^{(i)}$, the following stochastic variable associated with the
 250 i th realization may be defined:

$$\psi_j^{(i)}(\mathbf{x}_{mc}; \mathbf{u}^{(i)}) = \mu_{\mathbf{F}}(\mathbf{x}_{mc}; \mathbf{u}^{(i)}) + \frac{edp_j^{(i)}(\mathbf{x}_{mc}; \mathbf{u}^{(i)}) - \mu_{r_j}(\mathbf{x}_{mc}; \mathbf{u}^{(i)})}{\sigma_{r_j}^2(\mathbf{x}_{mc}; \mathbf{u}^{(i)})} \mathbf{C}_{\mathbf{F}}(\mathbf{x}_{mc}; \mathbf{u}^{(i)}) \Gamma_j(\mathbf{x}_{mc}) \quad (25)$$

251 where $\mu_{\mathbf{F}}$ and $\mathbf{C}_{\mathbf{F}}$ are the mean and covariance matrix of $\mathbf{F}^{(i)}(t)$; while μ_{r_j} and σ_{r_j} are the
 252 mean and standard deviation of the response process, $r_j(t)$, respectively. From all realizations
 253 of $\psi_j^{(i)}$, the following AVVs can be defined:

$$\bar{\Psi}_j(\mathbf{x}_{mc}) = \mu_{\psi_j}(\mathbf{x}_{mc}) \quad (26)$$

254

$$\hat{\Psi}_j(\mathbf{x}_{mc}) = \frac{\mathbf{C}_{\Psi}(\mathbf{x}_{mc})\Gamma_j(\mathbf{x}_{mc})}{\sigma_{EDP_j}(\mathbf{x}_{mc})} \quad (27)$$

255 where μ_{ψ_j} is the mean of ψ_j while \mathbf{C}_{Ψ} is the covariance matrix of $\Psi = [\psi_1 \dots \psi_j \dots \psi_{N_j}]$. The
 256 AVVs, $\bar{\Psi}_j$ and $\hat{\Psi}_j$, are particularly useful as, when they are statically applied to the system,
 257 the resulting responses coincide with the second-order statistics of the engineering demands,
 258 i.e. the follow holds:

$$\mu_{EDP_j}(\mathbf{x}_{mc}) = \mathbf{\Gamma}_j^T(\mathbf{x}_{mc})\bar{\Psi}_j(\mathbf{x}_{mc}) \quad (28)$$

259

$$\sigma_{EDP_j}(\mathbf{x}_{mc}) = \mathbf{\Gamma}_j^T(\mathbf{x}_{mc})\hat{\Psi}_j(\mathbf{x}_{mc}) \quad (29)$$

260 These relationships are exact in \mathbf{x}_{mc} , i.e. where the Monte Carlo simulation was carried
 261 out.

262 *4.1.2. Pseudo-Simulation Scheme*

263 The reduced variates, $g_j^{(i)}$, and the AVVs, $\bar{\Psi}_j$ and $\hat{\Psi}_j$, can be seen as by-products of a
 264 single augmented simulation carried out in \mathbf{x}_{mc} . If it is assumed that $g_j^{(i)}$, $\bar{\Psi}_j$ and $\hat{\Psi}_j$ are
 265 insensitive to relatively small changes in \mathbf{x} around \mathbf{x}_{mc} during the optimization process, the
 266 demand samples may be approximated without invoking any dynamic structural analysis as:

$$\widetilde{edp}_j^{(i)}(\mathbf{x}) = \mathbf{\Gamma}_j^T(\mathbf{x})\bar{\Psi}_j(\mathbf{x}_{mc}) + g_j^{(i)}(\mathbf{x}_{mc}) \cdot \mathbf{\Gamma}_j^T(\mathbf{x})\hat{\Psi}_j(\mathbf{x}_{mc}) \quad (30)$$

267 The approximate demand sample of Eq. (30) allows for the following pseudo-simulation
 268 scheme to estimate the system-level loss statistics (i.e. Eqs. (4)-(5)) as \mathbf{x} is updated during
 269 the optimization:

$$\mu_{DV}(\mathbf{x}) = \sum_{j=1}^{N_G} \mu_{DV_j}(\mathbf{x}) \approx \sum_{j=1}^{N_G} \left[\frac{1}{N_s} \sum_{i=1}^{N_s} \mu_{DV_j|EDP_j}(\mathbf{x}; \widetilde{edp}_j^{(i)}) \right] \quad (31)$$

270

$$\begin{aligned} \sigma_{DV}(\mathbf{x}) &= \sqrt{\sum_{j=1}^{N_G} \sum_{k=1}^{N_G} \sigma_{DV_j, DV_k}(\mathbf{x})} \\ &\approx \left\{ \sum_{j=1}^{N_G} \sum_{k=1}^{N_G} \left[\frac{\sum_{i=1}^{N_s} [\sigma_{DV_j, DV_k|EDP_j, EDP_k}(\mathbf{x}; \widetilde{edp}_j^{(i)}, \widetilde{edp}_k^{(i)})]}{N_s} \right. \right. \\ &\quad \left. \left. + \frac{\sum_{i=1}^{N_s} [\mu_{DV_j|EDP_j}(\mathbf{x}; \widetilde{edp}_j^{(i)}) - \mu_{DV_j}(\mathbf{x})] \cdot [\mu_{DV_k|EDP_k}(\mathbf{x}; \widetilde{edp}_k^{(i)}) - \mu_{DV_k}(\mathbf{x})]}{N_s - 1} \right] \right\}^{\frac{1}{2}} \end{aligned} \quad (32)$$

271 In practice, through Eqs. (31) and (32), each approximate demand sample is first used
 272 to estimate the conditional expectations and covariances of the group-level losses through
 273 the approaches of Sec. 3.3. Subsequently, the unconditional group-level loss statistics are
 274 estimated through Eqs. (6) and (7) in which the operations of expectation and covariance are
 275 carried out through the Monte Carlo estimators of Eqs. (8) and (9) and the N_s approximate
 276 demand samples. Equations (4) and (5) are then directly applied to estimate the searched
 277 after system-level loss statistics. Because the proposed approach is based on propagating
 278 approximate demand samples through the models of Sec. 3.3, it is termed a pseudo-simulation
 279 scheme. It should be highlighted that, through the proposed scheme, not only are the means
 280 and standard deviations of the individual group-level losses updated as \mathbf{x} is varied, but also
 281 the correlations between the group-level losses.

282 *4.2. Sub-Problem Formulation*

283 Based on the approximation scheme introduced in the previous section, the following
 284 optimization sub-problem may be formulated and solved sequentially:

$$\begin{aligned}
 & \text{Find} \quad \mathbf{x} = \{x_1, \dots, x_N\}^T \\
 & \text{to minimize} \quad V(\mathbf{x}) \\
 & \text{subject to} \quad L(\mathbf{x}; im) \approx \tilde{\mu}_{DV|IM}(\mathbf{x}; im) + \alpha \cdot \tilde{\sigma}_{DV|IM}(\mathbf{x}; im) \leq \epsilon \\
 & \quad x_n \in \mathbb{X}_n^o \in \mathbb{X}_n \quad n = 1, \dots, N
 \end{aligned} \tag{33}$$

285 where $\tilde{\mu}_{DV|IM}$ and $\tilde{\sigma}_{DV|IM}$ are the approximations of $\mu_{DV|IM}$ and $\sigma_{DV|IM}$ through Eqs. (31)-
 286 (32), respectively; while \mathbb{X}_n^o represents the search neighborhood of x_n defined by the minimum
 287 value, x_n^{min} , and maximum value, x_n^{max} , that x_n is allowed to take. These bounds are imposed
 288 in order to ensure the validity of the proposed approximation scheme. Because the optimal
 289 solution to Eq. (33) only satisfies the approximate performance constraint, the optimization
 290 sub-problem needs to be reformulated and solved again at the updated design point. This
 291 resolution process is termed a design cycle (DC) and needs to be repeated until solutions of
 292 two consecutive DCs meet a predefined convergence tolerances on the objective function. This
 293 ensures that the final solution is free of any approximations. In addition, as will be outlined
 294 in Sec. 4.2.1, the approximate statistics of Eqs. (31)-(32) allow for a direct calculation of

295 the sensitivities with respect to \mathbf{x} through the chain rule. Therefore, any gradient-based
 296 optimization algorithm can be used to efficiently solve the sub-problem of Eq. (33).

297 *4.2.1. Sensitivities*

298 The partial derivative of the approximate loss measure with respect to the n th element
 299 of the design variable vector, x_n , may be estimated as follows:

$$\frac{\partial L(\mathbf{x})}{\partial x_n} \approx \frac{\partial \tilde{\mu}_{DV}(\mathbf{x})}{\partial x_n} + \alpha \cdot \frac{\partial \tilde{\sigma}_{DV}(\mathbf{x})}{\partial x_n} \quad (34)$$

300 where the partial derivative of the approximate expected value of DV can be estimated
 301 through the chain rule as:

$$\frac{\partial \tilde{\mu}_{DV}(\mathbf{x})}{\partial x_n} = \sum_{j=1}^{N_G} \left[\frac{1}{N_s} \sum_{i=1}^{N_s} \frac{\partial \mu_{DV_j|EDP_j}(\mathbf{x}; \tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \cdot \frac{\partial \tilde{edp}_j^{(i)}}{\partial x_n} \right] \quad (35)$$

302 where $\frac{\partial \mu_{DV_j|EDP_j}}{\partial \tilde{edp}_j^{(i)}}$ denotes the partial derivative of the conditional expected group-level loss
 303 with respect to the approximate engineering demand sample, $\tilde{edp}_j^{(i)}$, while $\frac{\partial \tilde{edp}_j^{(i)}}{\partial x_n}$ is the partial
 304 derivative of $\tilde{edp}_j^{(i)}$ with respect to x_n .

305 The partial derivative of the approximate standard deviation can also be calculated
 306 through the chain rule as:

$$\begin{aligned} \frac{\partial \tilde{\sigma}_{DV}(\mathbf{x})}{\partial x_n} = & \left\{ \sum_{j=1}^{N_G} \sum_{k=1}^{N_G} \left[\sum_{i=1}^{N_s} \frac{1}{N_s} \left(\frac{\partial \sigma_{DV_j, DV_k|EDP_j, EDP_k}(\mathbf{x}; \tilde{edp}_j^{(i)}, \tilde{edp}_k^{(i)})}{\partial \tilde{edp}_j^{(i)}} \cdot \frac{\partial \tilde{edp}_j^{(i)}}{\partial x_n} \right. \right. \right. \right. \\ & + \frac{\partial \sigma_{DV_j, DV_k|EDP_j, EDP_k}(\mathbf{x}; \tilde{edp}_j^{(i)}, \tilde{edp}_k^{(i)})}{\partial \tilde{edp}_k^{(i)}} \cdot \frac{\partial \tilde{edp}_k^{(i)}}{\partial x_n} \left. \left. \left. \left. \right) \right. \right. \right. \\ & + \sum_{i=1}^{N_s} \frac{1}{N_s - 1} \left(\left(\frac{\partial \mu_{DV_j|EDP_j}(\mathbf{x}; \tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \cdot \frac{\partial \tilde{edp}_j^{(i)}}{\partial x_n} - \frac{\partial \tilde{\mu}_{DV_j}(\mathbf{x})}{\partial x_n} \right) \right. \\ & \cdot [\mu_{DV_k|EDP_k}(\mathbf{x}; \tilde{edp}_k^{(i)}) - \mu_{DV_k}(\mathbf{x})] + [\mu_{DV_j|EDP_j}(\mathbf{x}; \tilde{edp}_j^{(i)}) - \mu_{DV_j}(\mathbf{x})] \\ & \cdot \left. \left(\frac{\partial \mu_{DV_k|EDP_k}(\mathbf{x}; \tilde{edp}_k^{(i)})}{\partial \tilde{edp}_k^{(i)}} \cdot \frac{\partial \tilde{edp}_k^{(i)}}{\partial x_n} - \frac{\partial \tilde{\mu}_{DV_k}(\mathbf{x})}{\partial x_n} \right) \right) \right] \left. \right\} \cdot \frac{1}{2 \cdot \tilde{\sigma}_{DV}(\mathbf{x})} \quad (36) \end{aligned}$$

307 where $\frac{\partial \sigma_{DV_j, DV_k|EDP_j, EDP_k}}{\partial \tilde{edp}_j^{(i)}}$ and $\frac{\partial \sigma_{DV_j, DV_k|EDP_j, EDP_k}}{\partial \tilde{edp}_k^{(i)}}$ are the partial derivatives of the conditional
 308 covariance of group-level losses with respect to $\tilde{edp}_j^{(i)}$ and $\tilde{edp}_k^{(i)}$, respectively; $\frac{\partial \tilde{\mu}_{DV_j}(\mathbf{x})}{\partial x_n}$ and

309 $\frac{\partial \tilde{\mu}_{DV_k}(\mathbf{x})}{\partial x_n}$ are the partial derivatives of the approximate expected group-level losses with re-
 310 spect to x_n ; while $\frac{\partial \tilde{edp}_k^{(i)}}{\partial x_n}$ is the partial derivative of $\tilde{edp}_k^{(i)}$ with respect to x_n . Derivation of
 311 $\frac{\partial \mu_{DV_j|EDP_j}}{\partial \tilde{edp}_j^{(i)}}, \frac{\partial \tilde{edp}_j^{(i)}}{\partial x_n}, \frac{\partial \sigma_{DV_j,DV_k|EDP_j,EDP_k}}{\partial \tilde{edp}_j^{(i)}},$ and $\frac{\partial \tilde{\mu}_{DV_j}(\mathbf{x})}{\partial x_n}$ can be found in Appendix D.

312 5. Numerical Applications

313 To illustrate the validity and applicability of the proposed approach, two case studies are
 314 presented in this section. The first is a small-scale case study that is considered with the
 315 aim of examining the validity of the proposed optimization strategy for solving ϵ -constraint
 316 problems. The second is a large-scale case study that is considered in order to illustrate
 317 the scalability of the proposed approach to practical problems involving hundreds of design
 318 variables and computationally burdensome numerical response models.

319 5.1. Small-scale Case Study

320 The goal of this case study is to identify the lateral load-resisting system of the two-story
 321 building outlined in Fig. 1 that minimizes the material volume, V , of the structural system
 322 while ensuring the satisfaction of a constraint on the loss measure, L , associated with an
 323 extreme wind scenario.

324 5.1.1. Description

325 The two-story building consists of two bays in the X -direction and four bays in the Y -
 326 direction, as shown in Fig. 1. The height of each story is 3.66 m, and the width of each
 327 bay is 7.62 m. Hence, the total height, total width, and total depth are 7.32 m, 15.24 m,
 328 and 30.48 m, respectively. It is of interest to design the structural system to help reduce
 329 the wind-induced responses in the X -direction. The load-resisting system is defined by two
 330 design variables that identify the size of the beams and columns within the system, as shown
 331 in Fig. 1(c). Both beams and columns are assumed to be square box sections defined by a
 332 mid-line diameter, $d_m \in [0.1 \text{ m}, 0.6 \text{ m}]$, and a wall thickness, $t_m = d_m/20$. For the initial
 333 design, all beams and columns are assigned with a mid-line diameter of 0.15 m. The resonant
 334 response is estimated based on the first two vibration modes which, for the initial design,
 335 have mean circular frequencies of $\omega_1 = 2.758 \text{ rad/s}$ and $\omega_2 = 8.020 \text{ rad/s}$.

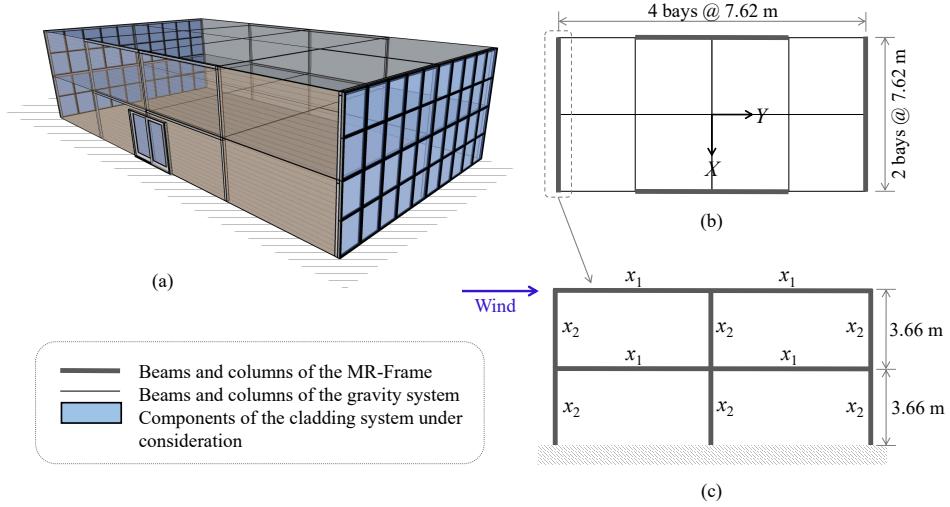


Figure 1: Two-story building system: (a) Isometric view, (b) Building plan, (c) Frame layout showing beam and column assignments.

336 The building is assumed to be located in Miami, Florida, USA, and is assigned to Risk
 337 Category II [26]. Hence, im is defined here in terms of the wind speed with a 700-year MRI,
 338 estimated from the wind speed dataset of the National Institute of Standards and Technology
 339 (NIST) associated with the Miami area of Florida [27]. In generating aerodynamic loads, the
 340 quasi-steady wind model outlined in [20, 28, 29] is adopted for simplicity.

341 The system-level performance is evaluated in terms of loss caused by damage to the
 342 midrise stick-built curtain wall of the building envelope. In particular, cladding components
 343 are susceptible to two sequential damage states, as reported in Table 1, where EDP_j are de-
 344 scribed in terms of the absolute maximum inter-story drift ratio in the plane of the cladding
 345 panels. Two PGs are identified with each group consisting of 40 components. Fragility curves
 346 with associated consequence functions were obtained from the fragility specification manager
 347 of the Federal Emergency Management Agency (FEMA) [19]. In modeling component corre-
 348 lations, the four trials summarized in Table 2 were considered, where Trial #1 and Trial #4
 349 represent extreme cases: capacity and repair costs of components are assumed to be com-
 350 pletely uncorrelated in Trial #1 and perfectly correlated in Trial #4. Regarding the partially
 351 correlated capacities in Trial #2 and #3, it is assumed that 70% of the total variance in the

Table 1: Parameters of the fragility and consequence functions in terms of repair cost. All functions are lognormal.

DS	Description	Fragility Functions		Repair Cost	
		μ_f	β_f	μ_c [\$]	β_c
1	Glass cracking	0.021	0.45	2955	0.1185
2	Glass falling out	0.024	0.45	2955	0.1185

352 damage capacity is due to component capacity uncertainty, while the other 30% is due to
 353 engineering demand uncertainty. With respect to the component capacity uncertainty, 50%
 354 is assumed to be common to specific materials, 35% is common to specific component types
 355 and 15% is specific to each component. With respect to the demand uncertainty, 67% is as-
 356 sumed to be common to the entire structure, while 33% is common to a specific engineering
 357 demand parameter. These assumptions are consistent with those suggested in [17], and can
 358 be mathematically expressed for components m and n as [17]:

$$\rho_{lnC_{m,q},lnC_{n,r}} = 0.7(0.5\delta_{mat_m mat_n} + 0.35\delta_{type_m type_n} + 0.15\delta_{mn}) + 0.3(0.67 + 0.33\delta_{edp_m edp_n}) \quad (37)$$

359 where $\delta_{mat_m mat_n}$, $\delta_{type_m type_n}$, δ_{mn} and $\delta_{PG_m PG_n}$ are the Kronecker delta functions. In partic-
 360 ular, $\delta_{mat_m mat_n} = 1$ if components m and n are made of the same material, $\delta_{type_m type_n} = 1$
 361 if components m and n are of the same type, $\delta_{mn} = 1$ if $m = n$ (i.e. same component),
 362 $\delta_{PG_m PG_n} = 1$ if components m and n are in the same performance group; otherwise, $\delta_{mat_m mat_n}$,
 363 $\delta_{type_m type_n}$, δ_{mn} and $\delta_{PG_m PG_n}$ are equal to zero. The validation of the correlations considered
 364 in this study falls out side the scope of this work. However, this question would in general
 365 merit careful investigation and should be the focus of future studies.

366 To identify an optimal solution to the ϵ -constraint optimization problem, the threshold
 367 value ϵ was set to \$100000, while $\alpha = 1$ was considered. A total of 20000 samples were used
 368 in the Monte Carlo simulation. The optimally criteria algorithm outlined in [30] was used
 369 to solve the sub-problems of Eq. (33), while the design variables were taken as continuous.
 370 The move limit on the design variables was set to $[x_n^{min}, x_n^{max}] = [x_n - 0.02, x_n + 0.02]$ m. The
 371 optimization is terminated when the relative change in the objective function between two
 372 consecutive DCs is less than 10^{-4} .

Table 2: Summary of the Trials #1 to #4.

Trial #	Description	Correlations	
		$\rho_{\ln C_{m,q}, \ln C_{n,r}}$	$\rho_{DVC_m, DVC_n DS_m, DS_n}$
1	Uncorrelated capacity, uncorrelated cost	0	0
2	Partially correlated capacity, uncorrelated cost	0.9*	0
3	Partially correlated capacity, perfectly correlated cost	0.9*	1
4	Perfectly correlated capacity, perfectly correlated cost	1	1

*Based on the assumptions of Eq. (37).

373 5.1.2. Results and Discussion

374 From Fig. 2, which reports the convergence histories of the objective function for the four
 375 Trials, it is immediately evident that systems with higher component correlations require
 376 heavier, and therefore more costly, load-resisting systems to satisfy the predefined perfor-
 377 mance target. In particular, Trial #4 requires the most amount of material. Figure 3 shows
 378 the convergence histories of the two design variables in terms of the design cycle: all designs
 379 result in columns having a larger diameter than beams. Figures 2 and 3 shows that the
 380 optimal solutions of Trial #2 and Trial #3 are almost identical, which implies that, for this
 381 case study, the correlations between component repair costs, given the damage state, only
 382 minimally affect the final results.

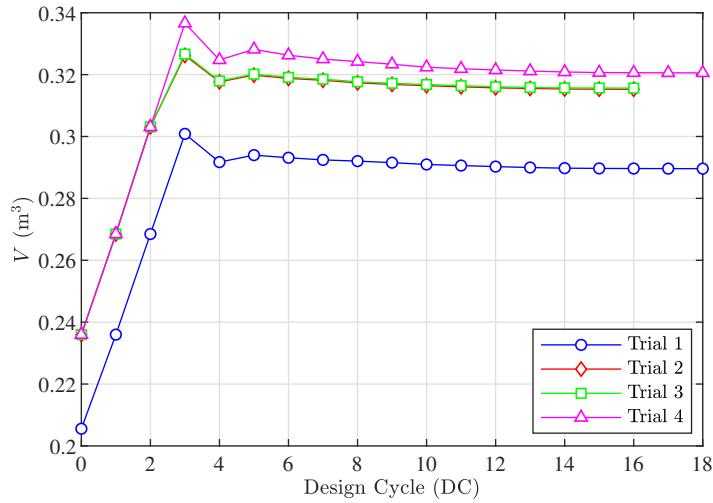


Figure 2: Convergence history of the objective function.

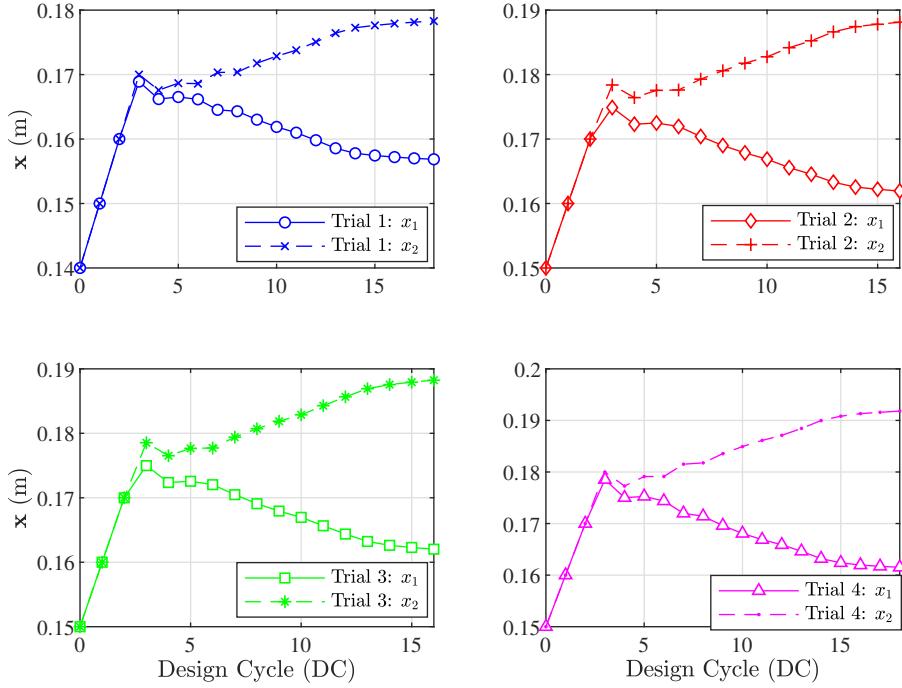


Figure 3: Convergence history of the design variables.

383 The effectiveness of the proposed method in solving the ϵ -constraint problem is demon-
 384 strated through Fig. 4, which shows the convergence histories of the constraint function, i.e.
 385 the loss measure L , of all trials. As can be seen, designs that satisfy the constraint were found
 386 in the first few design cycles, while the final solutions were efficiently obtained in less than
 387 25 design cycles. In particular, the proposed approximation scheme demonstrates accuracy,
 388 as the approximations of L are very close to the estimations obtained from the Monte Carlo
 389 simulation at the end of each design cycle. In addition, Fig. 5 shows the convergence histories
 390 of the correlation coefficient between group losses in terms of the design cycle. It can be seen
 391 that the updating scheme for the correlations is also very effective. Figure 6 compares the
 392 reduced variates, g_1 and g_2 , estimated in the initial and the final cycles. Values of g_1 and
 393 g_2 are seen to not change from the initial design to the final design: hence the assumption
 394 of constant reduced variates is acceptable, which is consistent with previous observations by
 395 the authors [20, 22].

396 To examine the validity of the proposed approach, the optimization problem of this case
 397 study was also solved without any approximation using the Genetic Algorithm (GA) of

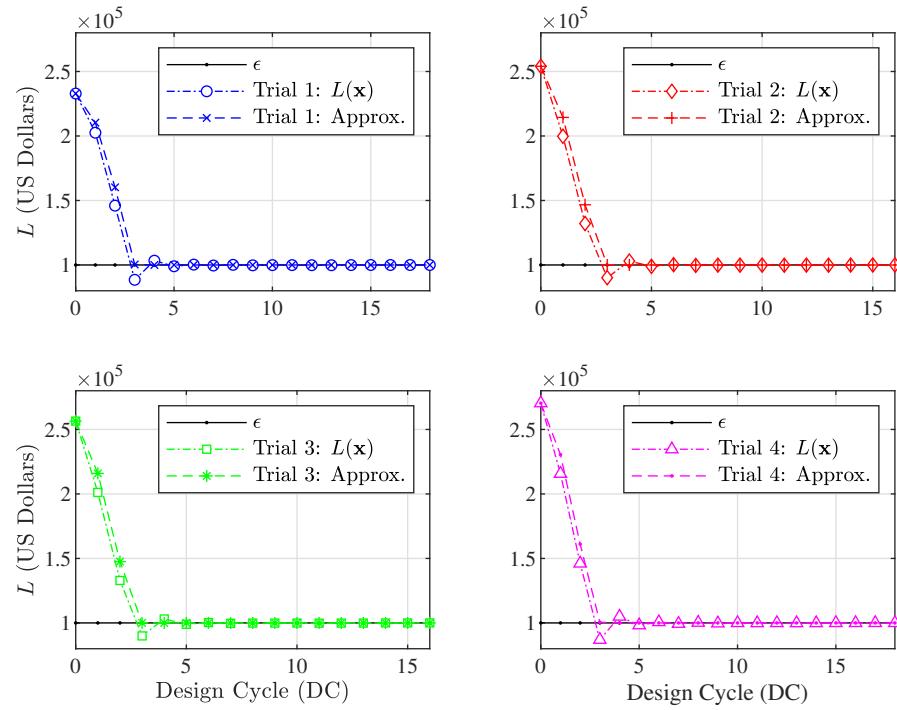


Figure 4: Convergence history of the constraint function L .

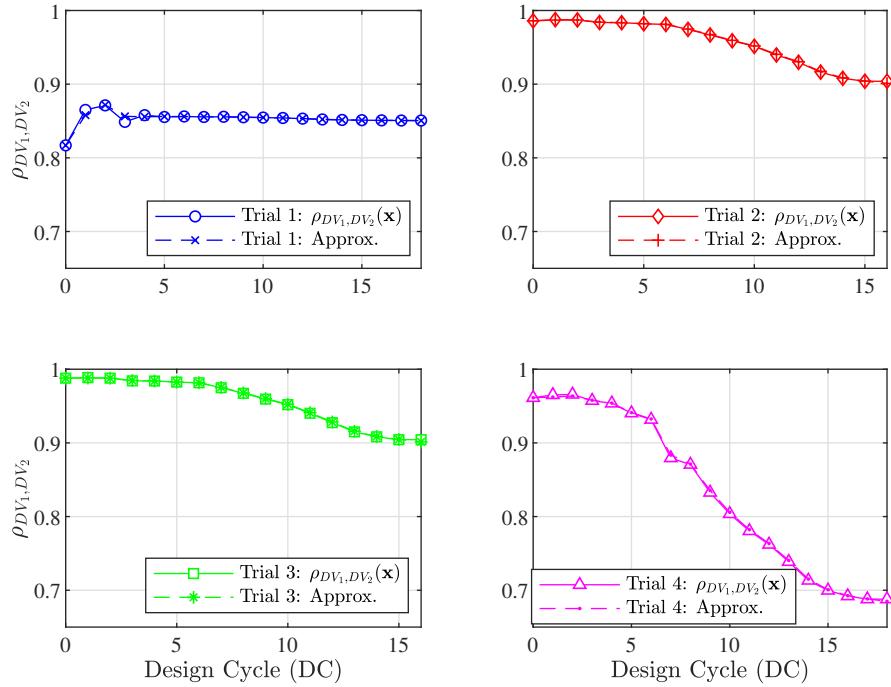


Figure 5: Convergence history of the correlation coefficient.

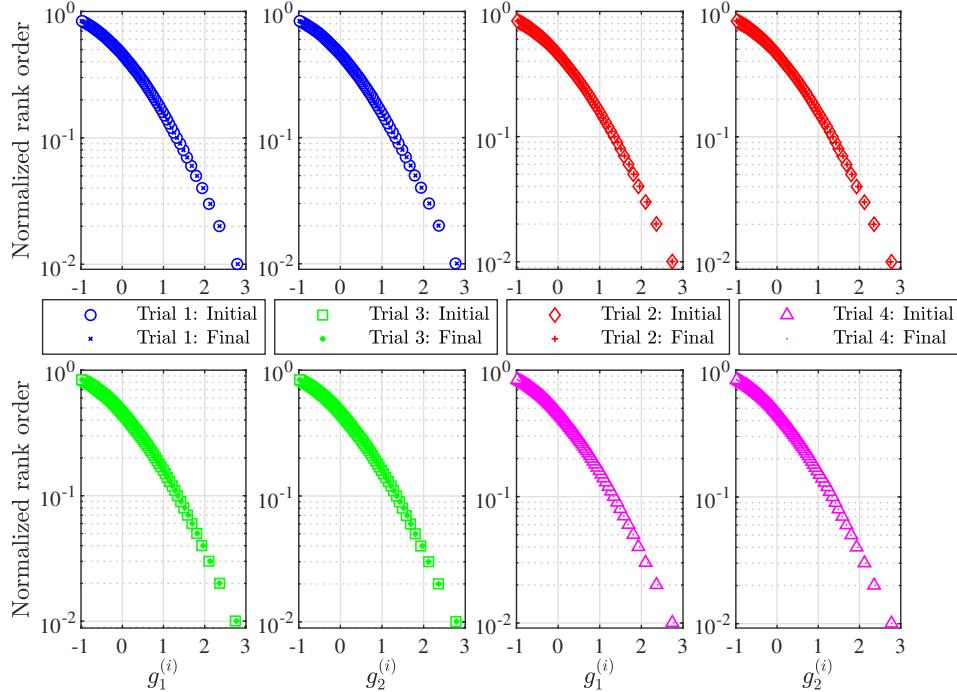


Figure 6: Convergence history of the reduced variates.

398 Matlab [31]. The final solutions obtained from both approaches are presented in Table
 399 3. Both approaches identify solutions that satisfy the constraint while using near identical
 400 volumes of material. It can be observed that the solutions obtained from the GA are, at
 401 times, inferior to those obtained from the proposed approach (e.g. in Trial #3 it can be seen

Table 3: Summary of Results for Varied Component Correlations.

Trial	Approach	Final Design		Weight	Performance	CPU Time
		x_1	x_2			
1	Proposed	0.1569 m	0.1783 m	0.2896 m ³	\$ 99983	232 s
	Genetic Algorithm	0.1551 m	0.1803 m	0.2895 m ³	\$ 99991	84465 s
2	Proposed	0.1619 m	0.1881 m	0.3153 m ³	\$ 99985	229 s
	Genetic Algorithm	0.1632 m	0.1867 m	0.3154 m ³	\$ 99945	82266 s
3	Proposed	0.1620 m	0.1882 m	0.3156 m ³	\$ 99982	252 s
	Genetic Algorithm	0.1392 m	0.2175 m	0.3258 m ³	\$ 99984	92049 s
4	Proposed	0.1615 m	0.1918 m	0.3206 m ³	\$ 99996	268 s
	Genetic Algorithm	0.1668 m	0.1862 m	0.3218 m ³	\$ 99932	73027 s

402 that the GA approach led to a final design with higher material volume and loss). This can be
403 traced back to how, as would be expected, GAs have a significantly slower convergence rate
404 as compared to the proposed gradient-based approach. Therefore, if the same convergence
405 criteria is set for both approaches (as in this case), GAs can lead to marginally inferior final
406 solutions. Based on the same convergence criteria, the GA requires 80000-90000 seconds of
407 CPU time, as compared to less than 300 seconds through the proposed approach. Therefore,
408 the proposed approach not only finds, for all intents and purposes, an identical solution to
409 that of the validated and approximation free GA scheme, but does so in over two orders of
410 magnitude less computational time, highlighting the possibility of application to large-scale
411 systems.

412 *5.2. Large-scale Case Study*

413 A large-scale case study is presented in this section to demonstrate the scalability of the
414 proposed approach to design problems that involve a large number of design variables (e.g. in
415 the order of hundreds or more structural members to be designed) as well as computationally
416 burdensome numerical response models. While for the small-scale case study validation was
417 carried out through direct comparison of the optimal solutions obtained from the proposed
418 approach with those obtained through GAs, for the large-scale case study of this section this
419 will not be carried out as the computational requirements of the GAs become prohibitive.
420 With regard to the BODO applications, the goal of this case study is to identify a set of
421 Pareto optimal designs that simultaneously minimize the structural material volume, V , and
422 the loss measure, L , of the lateral load-resisting system outlined in Fig. 7.

423 *5.2.1. Description*

424 The building consists of 37 stories of which the first has a height of 6 m while all others
425 have a height of 4 m. As shown in Fig. 7(a), the total width of five bays along the X -direction
426 is 30 m, while the total width of six bays along the Y -direction is 60 m. The load-resisting
427 system for wind loads acting in the X -direction is defined by a total of 259 design variables
428 that identify the sizes of the beams and columns within the system. The numbering scheme
429 used to locate each design variable is reported in Fig. 7(c). All beams are assumed to belong
430 to the AISC (American Institute of Steel Construction) W24 family, while all columns are

431 assumed to be square box sections with the mid-line diameter, d_m , belonging to the discrete
 432 set [0.20 m, 0.25 m, ..., 3.95 m, 4.00 m]. The wall thickness is again taken as $t_m = d_m/20$. For
 433 the initial design, all beams are set to a AISC W24 \times 176 profile, while the mid-line diameter
 434 for all columns is set to $d_m = 1.0$ m. The resonant response is estimated based on the first
 435 three modes which have initial mean circular frequencies of $\omega_1 = 1.192$ rad/s, $\omega_2 = 3.750$
 436 rad/s, $\omega_3 = 6.829$ rad/s.

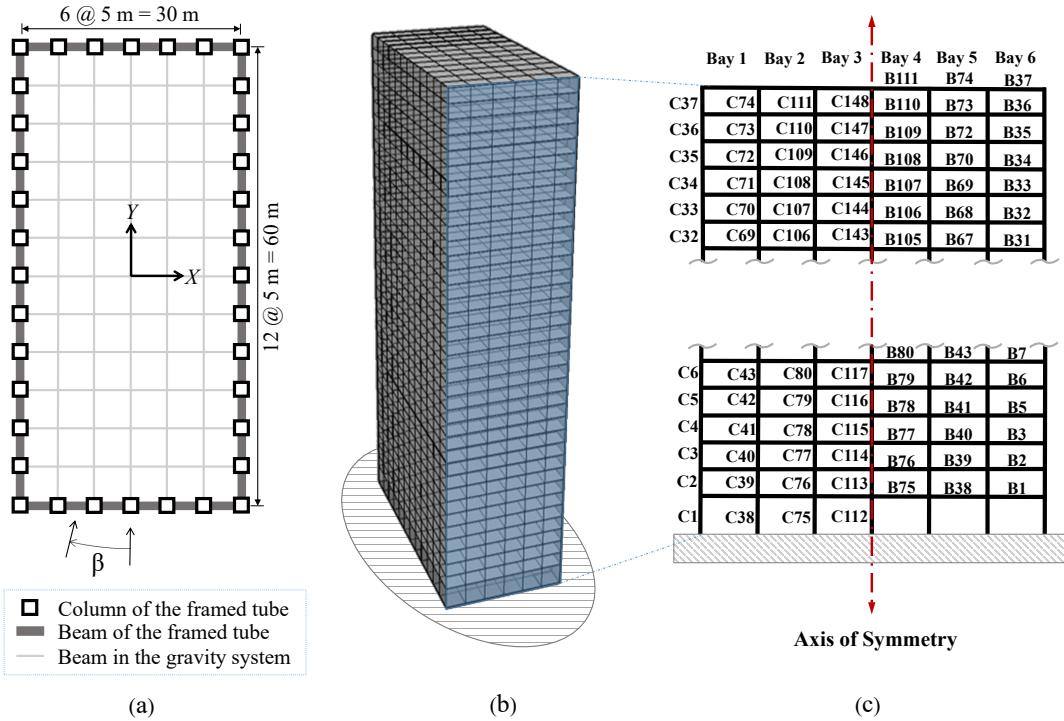


Figure 7: 37-story building system: (a) Building plan, (b) Isometric view, (c) Frame layout showing beam and column assignments.

437 The building is to be designed for Risk Category III [26], hence im is taken as the wind
 438 speed with a 1700-year MRI estimated from the NIST Miami hurricane wind speed dataset.
 439 In modeling the aerodynamic loads, the POD-based stochastic wind model is calibrated to
 440 wind tunnel datasets obtained from the Wind Pressure Database of the Tokyo Polytechnic
 441 University [32]. It should be noted that, in both case studies, the performance evaluation
 442 of the building system was carried out at wind intensities consistent with those suggested in

443 the ASCE prestandard for performance-based wind design [33].

444 Similar to the previous case study, the system-level performance is evaluated in terms of
445 loss to the building envelope that is assumed to be a midrise stick-built curtain wall. The
446 two inter-story drift induced sequential damage states of Table 1 are again considered along
447 with the associated fragility and consequence functions. In this case, a total of 37 PGs are
448 identified with each group consisting of 80 components. In modeling component correlations,
449 the four Trials outlined in Table 2 are once again considered.

450 To identify a set of Pareto optimal solutions, a series of five ϵ -constraint optimization
451 problems were solved where the threshold values of ϵ were set to \$100000, \$250000, \$400000,
452 \$700000, and \$1000000, while for robustness, a value of $\alpha = 2$ was considered. A total
453 of 20000 samples were used in the Monte Carlo simulations. The discrete optimization
454 algorithm outlined in [30] was used to solve the sub-problems of Eq. (33). The move limit,
455 x_n^{min} and x_n^{max} , on the design variables was set to two sizes smaller and two sizes larger than
456 the current sizes identified in \mathbf{x}_{mc} . The optimization stops when the relative change in the
457 objective function between two consecutive DCs is less than or equal to 10^{-4} .

458 *5.2.2. Results and Discussion*

459 The set of Pareto optimal solutions, in the space of the two optimization objectives V and
460 L , are presented in Fig. 8. The solid lines represent solutions obtained using the proposed
461 pseudo-simulation approach, while the dashed line shows solutions obtained through the
462 kriging-based approach outlined in [6]. It can be seen that in Trial #1 both approaches
463 lead to consistent results in terms of the Pareto front, hence it is evident that the proposed
464 approach is a valid alternative to the kriging-based approach. From all trials, it can be
465 observed that, as expected, heavier designs perform better in resisting the wind loads and
466 therefore result in lower losses, i.e. higher V leads to lower L . It is also important to note
467 the significant impact that the assumption on correlation has on the optimal solutions. For
468 any given value of L , systems with higher correlations between component capacities and
469 correlations between component repair costs require 25-50% more investment in structural
470 materials than systems whose components are uncorrelated. This can be traced back to
471 how, as the component correlations increase, the variance of the total loss also increases.

472 Hence, to restrict the loss measure to a given value, building systems whose components are
473 highly correlated require more structural material to help resist the wind action in order to
474 reduce the structural demands, therefore reducing the expected loss and the variance that
475 together make up the loss measure. Comparing the Pareto fronts of Trial #2 and Trial #3,
476 solutions are very similar; hence correlations in the repair costs of cladding components,
477 conditional on a set of damage states, do not seem to influence the susceptibility to loss
478 of the system. Comparing Trial #2, Trial #3 and Trial #4, it can also be observed that
479 the results are relatively similar (within 10% of each other) in terms of optimal material
480 volume. A practical consequence of this observation is that, in cases where correlations in
481 the component capacity are expected to be high (e.g. greater than 0.9), the assumption of
482 full correlation may be made therefore avoiding the significant effort necessary for evaluating
483 inter-component correlations. This practical result would seem to hold independently of the
484 correlations between the repair costs.

485 Figure 9 reports the exceedance probability, $P(DV > L)$, of the system-level loss, DV ,
486 with respect to the loss threshold L . In particular, each point of Fig. 9 was estimated by car-
487 rying out an additional loss assessment in the final design point of each ϵ -constraint problem.
488 In terms of structural design, the exceedance probabilities provide additional information
489 that enrich the Pareto fronts of Fig. 8. Results in the form of Fig. 9 are particularly useful
490 in providing trade-off information for decision-makers when choosing the optimal design that
491 fits best their preferences. For example, as can be seen from Fig. 9, systems designed while
492 accounting for component correlations, have in general lower exceedance probabilities than
493 systems designed under the assumption of uncorrelated components. This is clearly evident
494 from the comparison between the two extreme cases of Trial #1 and Trial #4, for which
495 the neglect of correlations between the damage capacities and between the repair costs can
496 lead to an order of magnitude increase in the exceedance probability. The impact of inter-
497 component correlations seen in these results clearly highlights the need for optimal design
498 frameworks that can treat correlations during the optimization process.

499 To examine the performance of the ϵ -constraint optimization strategy of Sec. 4, Fig. 10
500 shows the convergence histories of the material volume in terms of the design cycles for the
501 optimal designs associated with $L \leq \$400000$ (i.e. #3, #8, #13 and #18). As can be seen,

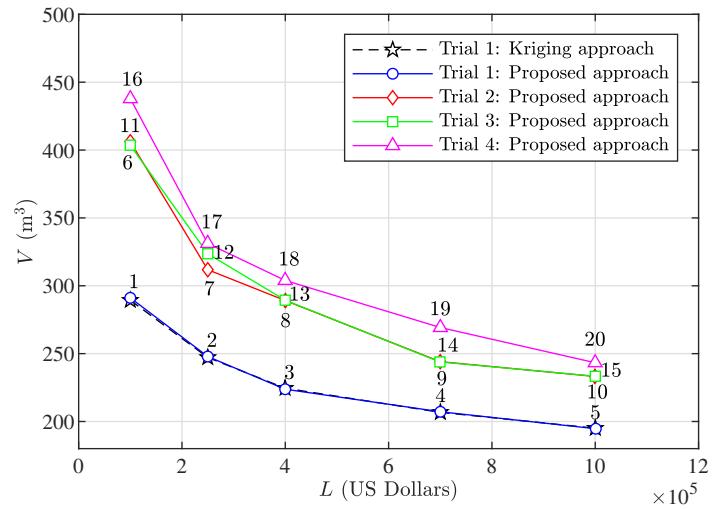


Figure 8: Pareto front of material volume vs loss measure for the 37-story system.

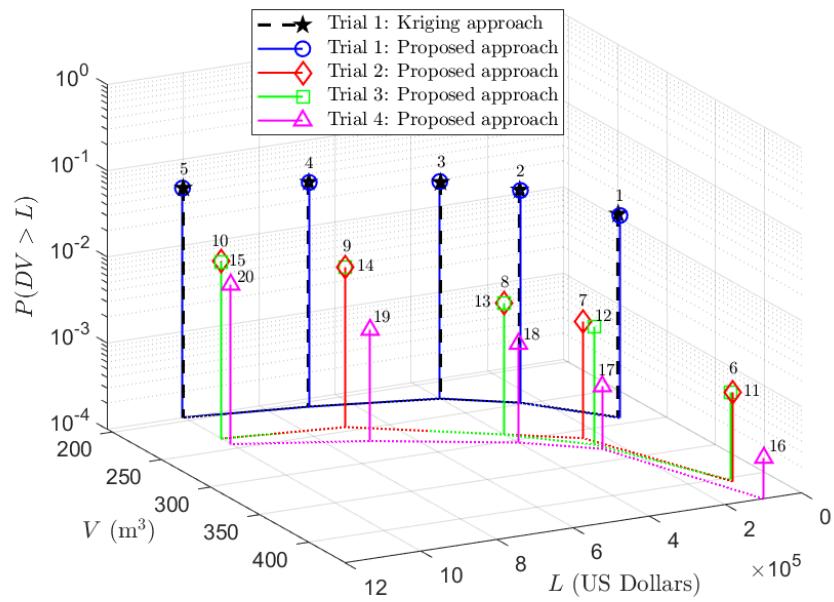


Figure 9: Pareto front of the objective functions with associated exceedance probability.

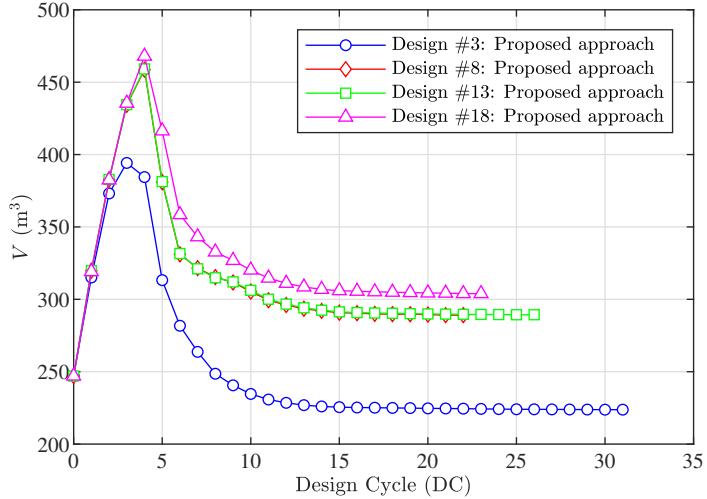


Figure 10: Convergence history of the objective function, V , for designs #3, #8, #13, #18.

smooth and steady convergence is seen for all cases. With respect to wind-induced losses, Fig. 11 illustrates the corresponding convergence histories of the loss measure obtained through the proposed approach. Similar to the small-scale case study, the approximation scheme of Sec. 4 is seen to effectively provide accurate loss estimation during the optimization. In particular, designs that satisfy the system-level loss constraint were obtained within five design cycles with the later cycles serving to further minimize V . These results clearly highlight the effectiveness of the proposed method. Similar results were observed when solving all of the ϵ -constraint problems. A major advantage of the proposed method over existing methods (e.g. the kriging-based approach of [6]) is that it allows the correlation between group-level losses to be modeled and updated during the optimization process. Figure 12 shows an example of the convergence histories of the correlation coefficient between group-level losses associated with cladding components on floor 15 and floor 20 of the building (i.e. DV_{15} and DV_{20}). It can be observed that the correlations will in general change during each design cycle, especially in the early stages of finding designs that satisfy the constraint. As illustrated in Fig. 12, these changes were effectively approximated through the proposed scheme of Sec. 4.1.

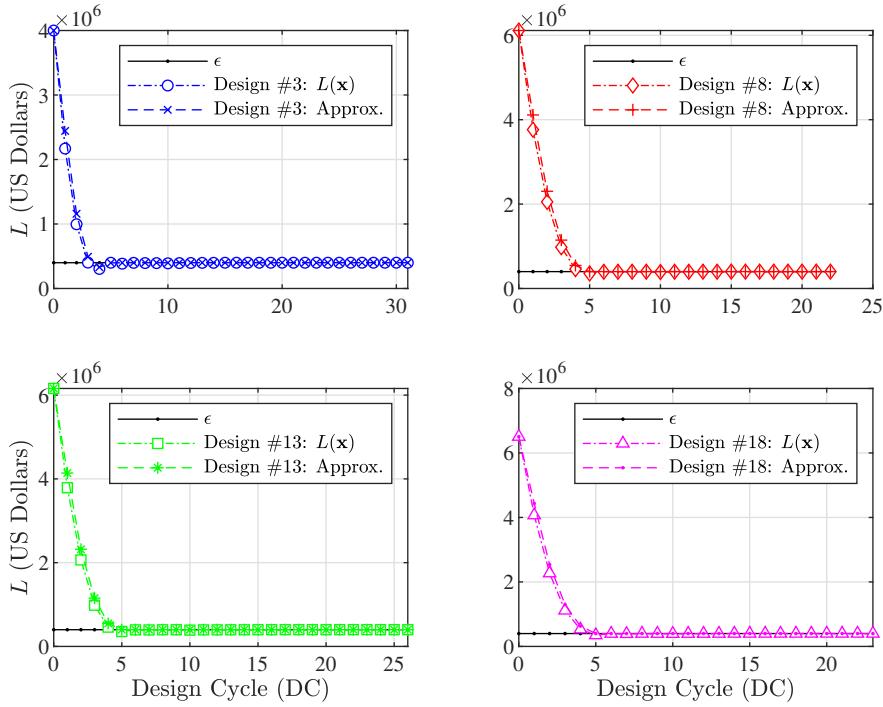


Figure 11: Convergence history of the objective function, L , for designs #3, #8, #13, #18.

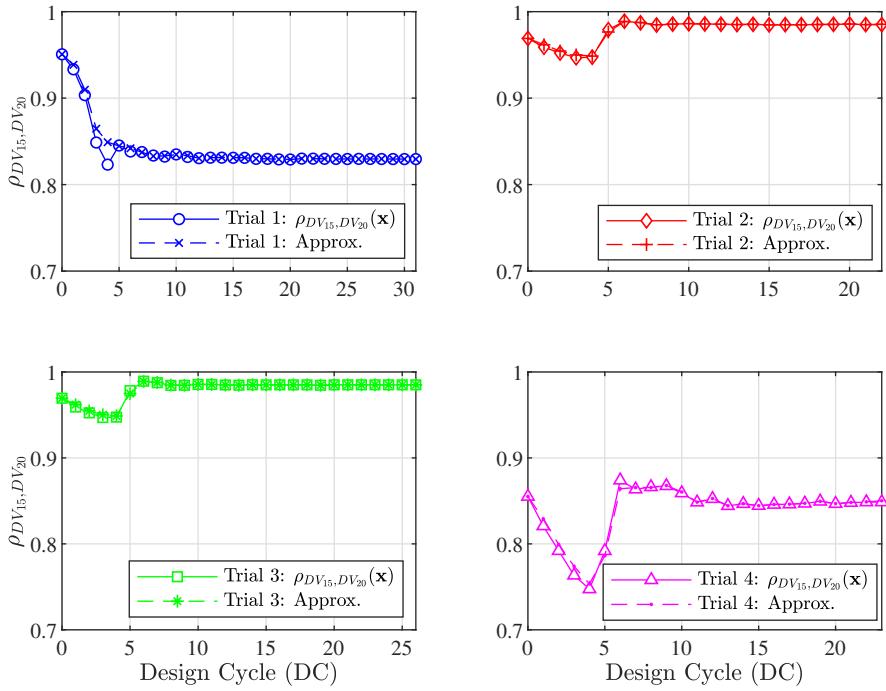


Figure 12: Convergence history of the correlation coefficient between DV_{15} and DV_{20} for designs #3, #8, #13, #18.

518 **6. Conclusions**

519 This paper presented a design optimization approach that can explicitly account for
520 inter-component correlations in the performance assessment and optimization of wind-excited
521 building systems. The proposed approach integrates bi-objective design optimization schemes
522 with probabilistic performance-based wind engineering methodologies. In modeling the sys-
523 tem performance under the action of stochastic wind loads, a loss measure is defined in terms
524 of the expected value and variance of the system-level loss. Through the concept of fragility,
525 closed-form functions were derived that relate samples of engineering demands to the second
526 order statistics of the system-level loss while explicitly treating correlations between both
527 the component capacities and the component losses. Through the ϵ -constraint approach, a
528 bi-objective design optimization scheme was formulated for simultaneously minimizing the
529 initial cost of the structure and the anticipated future losses caused by wind induced damage.
530 For solving each ϵ -constraint problem, a strategy is proposed that centers on formulating and
531 solving a sequence of decoupled approximate sub-problems that are constructed from approx-
532 imate demand samples estimated from an augmented simulation carried out in the solution
533 of the previous sub-problem. The approximate demand samples are used to estimate the
534 second-order statistics of the wind-induced losses through the derived closed-form relation-
535 ships and a pseudo-simulation scheme. The availability of the sensitivities with respect to the
536 design variables enables the use of efficient gradient based optimization schemes for solving
537 each sub-problems. The effectiveness of the proposed method and its scalability to high-
538 dimensional problems were illustrated through the optimal design of two moment-resisting
539 frames of building systems subject to stochastic wind loads. It was observed that designs
540 that do not account for inter-component correlations run the risk of being significantly un-
541 derdesigned. This finding highlights the need for methods, such as the one outlined in this
542 work, that allows inter-component correlations to be modeled and updated throughout the
543 design optimization process.

544 **7. Acknowledgments**

545 This research effort was in part supported by the National Science Foundation (NSF)
546 under Grant No. CMMI-1750339. This support is gratefully acknowledged.

547 **Appendix A. Estimation of Resonant Modal Response**

548 This appendix outlines the procedure used to estimate a sample of the resonant modal
 549 response vector associated with the first M modes, $\mathbf{q}_{R_M}(t)$, which is needed for estimating a
 550 sample of the response process, $r_j^{(i)}(t)$ of Eq. (11) of Sec. 3.2.

551 To estimate the resonant modal response, the following equations of motion must first be
 552 solved through a modal analysis framework:

$$\mathbf{m}\ddot{\mathbf{q}}(t, \mathbf{u}) + \mathbf{c}\dot{\mathbf{q}}(t, \mathbf{u}) + \mathbf{k}\mathbf{q}(t, \mathbf{u}) = \Phi_M^T \mathbf{f}(t, \mathbf{u}) \quad (\text{A.1})$$

553 where $\mathbf{q}(t)$, $\dot{\mathbf{q}}(t)$ and $\ddot{\mathbf{q}}(t)$ are the vector-valued generalized displacement, velocity and acceleration response processes respectively; $\Phi_M = [\phi_1, \dots, \phi_M]$ is the mode shape matrix of order M ; while \mathbf{m} , \mathbf{c} , and \mathbf{k} are generalized mass, damping, and stiffness matrices respectively.
 556 The m th component of \mathbf{m} , \mathbf{c} , and \mathbf{k} can be estimated as:

$$\begin{aligned} m_m &= \phi_m^T \mathbf{M} \phi_m \\ c_m &= 2m_m s_{3m} \zeta_m s_{2m} \omega_m \\ k_m &= m_m (s_{2m} \omega_m)^2 \end{aligned} \quad (\text{A.2})$$

557 where ω_m is the m th natural frequency and ζ_m is the generalized damping ratio associated
 558 with the m th mode; S_{2m} is an uncertain parameter associated with the variability in the
 559 estimate of ω_m while S_{3m} is an uncertain parameter modeling the variability associated with
 560 the value of ζ_m . In this work, S_{2m} and S_{3m} are to be considered components of the random
 561 vector \mathbf{U} .

562 By solving Eq. (A.1), the total modal response associated with the m th mode, $q_m(t)$, can
 563 be determined and used to estimate the m th component of $\mathbf{q}_{R_M}(t)$ as:

$$q_{R_m}(t, \mathbf{u}) = q_m(t, \mathbf{u}) - q_{B_m}(t, \mathbf{u}) \quad (\text{A.3})$$

564 where the background modal response, q_{B_m} , is given by:

$$q_{B_m}(t, \mathbf{u}) = \frac{1}{(s_{2m} \omega_m)^2} \phi_m^T \mathbf{f}(t, \mathbf{u}) \quad (\text{A.4})$$

565 **Appendix B. POD-Based Stochastic Wind Model**

566 This appendix outlines the procedure used to simulate a sample of the aerodynamic loads,
 567 $\mathbf{f}(t)$, needed for estimating the stochastic response process, $r_j^{(i)}(t)$ of Eq. (11) of Sec. 3.2.

568 To ensure that the vector-valued stochastic process, $\mathbf{f}(t)$, includes complex phenomena
 569 such as vortex shedding, wind tunnel data is used to calibrate a proper orthogonal decomposi-
 570 tion (POD) [23] based spectral representation model. Following this data-driven aerodynamic
 571 POD approach, each component of $\mathbf{f}(t)$ can be simulated as:

$$f_j(t; \bar{v}_H, \beta) = \sum_{l=1}^{N_l} \sum_{n_1=1}^{N_{n_1}-1} \left\{ 2|\Psi_{jl}(\omega_{n_1}; \beta)|\sqrt{\Lambda_l(\omega_{n_1}; \bar{v}_H, \beta)\Delta\omega} \right. \\ \left. \cdot \cos(\omega_{n_1}t + \vartheta_{jl}(\omega_{n_1}; \beta) + \theta_{n_1l}) \right\} \quad (B.1)$$

572 where N_l is the total number of loading modes considered in the model; $\Delta\omega$ is the frequency
 573 increment (accordingly, the Nyquist frequency is $N_{n_1}\Delta\omega/2$, with N_{n_1} the total number of
 574 discrete frequencies considered), while $\omega_{n_1} = n_1\Delta\omega$; θ_{n_1l} is an independent random variable
 575 characterizing the stochastic nature of the wind, uniformly distributed over $[0, 2\pi]$ and col-
 576 lected in the uncertain vector \mathbf{U} ; $\vartheta_{jl} = \tan^{-1}(\mathbf{Im}(\Upsilon_{jl})/\mathbf{Re}(\Upsilon_{jl}))$; while $\Upsilon_{jl}(\omega)$ and $\Lambda_l(\omega)$
 577 are components of $\Upsilon(\omega)$ and $\Lambda(\omega)$ obtained from the nontrivial solution of the following
 578 eigenvalue problem:

$$[\mathbf{S}_f(\omega; \bar{v}_H, \beta) - \Lambda(\omega; \bar{v}_H, \beta)\mathbf{I}]\Upsilon(\omega; \beta) = 0 \quad (B.2)$$

579 where \mathbf{S}_f is the cross power spectral density matrix of the wind tunnel estimated aerodynamic
 580 load processes. Since Λ can be scaled to different wind speeds after Λ and Υ are estimated at
 581 wind tunnel speed, Eq. (B.2) does not need to be solved for each wind speed, \bar{v}_H , of interest.

582 The site-specific wind speed at the top of the building, \bar{v}_H , is obtained from the wind
 583 speed data measured at nearby meteorological stations. In particular, from this data, a
 584 mean wind speed \bar{v}_y —of averaging time τ and mean recurrence interval (MRI) y years, can
 585 be extracted. This wind speed is here assumed as the intensity measure (*im*). In this work,
 586 the corresponding site-specific wind speed \bar{v}_H , averaged over a time interval T , can then be

587 obtained through the following transformation [34]:

$$\bar{v}_H(T, z_0) = e_7 e_3(\tau, T) \left(\frac{e_5 z_0}{e_6 z_{01}} \right)^{e_4 \delta} \frac{\ln[H/(e_5 z_0)]}{\ln[H_{met}/(e_6 z_{01})]} e_2 e_1 \bar{v}_y(\tau, H_{met}, z_{01}) \quad (B.3)$$

588 where $\delta = 0.0706$ is an empirical constant, while e_1 to e_7 are random parameters modeling
 589 the uncertainties affecting the model. In particular, e_1 and e_2 account for observational and
 590 sampling errors in \bar{v}_y ; $e_3(\tau, T)$ is a random conversion factor that accounts for the uncertainty
 591 in converting between the wind speed averaging times τ and T ; e_4 , e_5 , and e_6 are random
 592 variables modeling the uncertainties with respect to the actual values of δ and of the rough-
 593 ness lengths z_0 and z_{01} ; while e_7 is a model uncertainty parameter to be used in the case that
 594 the transformation of Eq. (B.3) is used for modeling hurricane winds. These uncertain pa-
 595 rameters E_1 - E_7 are to be considered components of the random vector \mathbf{U} . Possible marginal
 596 distributions for the elements of \mathbf{U} can be found in Table B.4

Table B.4: Marginal distributions for the elements of the uncertain vector \mathbf{U} .

Variable	Mean	CV	Distribution	Ref.
S_1	1	0.025	Trunc. Normal	[34]
$S_{2_i}^*$	1	0.3	Lognormal	[35]
$S_{3_i}^*$	1	0.01	Lognormal	[35]
$\theta_{n_1 l}^{**}$	π	$\frac{2}{\sqrt{12}}$	uniform	[29]
E_1	1	0.1	Trunc. Normal	[34]
E_2	1	0.025	Normal	[36]
E_3	***	0.075	Normal	[36]
E_4	1	0.1	Trunc. Normal	[36]
E_5	1	0.3	Trunc. Normal	[36]
E_6	1	0.3	Trunc. Normal	[36]
E_7	1	0.05	Normal	[36]

* for $i = 1, \dots, m$

** for $l = 1, \dots, N_l$ and $n_1 = 1, \dots, (N_{n_1} - 1)$

*** Dependent on averaging times τ and T

597 **Appendix C. Derivation of the Conditional Expectation**

598 This appendix provides detailed derivation of Eq. (17), which is necessary for the esti-
 599 mation of the conditional covariance between group-level losses of Sec. 3.3.2.

600 The conditional expected value of the product of DVC_{jm} and DVC_{kn} , as shown in Eq.
 601 (17), can be estimated through the concept of total probability as:

$$\begin{aligned}
 & \mu_{DVC_{jm}DVC_{kn}|EDP_j,EDP_k}(edp_j^{(i)}, edp_k^{(i)}) \\
 &= \sum_{q=1}^{N_{DS_m}} \sum_{r=1}^{N_{DS_n}} \left[\mu_{DVC_{jm}DVC_{kn}|DS_m,DS_n}(q, r) \cdot P_{DS_m,DS_n|EDP_j,EDP_k}(q, r|edp_j^{(i)}, edp_k^{(i)}) \right] \\
 &= \sum_{q=1}^{N_{DS_m}} \sum_{r=1}^{N_{DS_n}} \left[\left(\sigma_{DVC_{jm}DVC_{kn}|DS_m,DS_n}(q, r) + \mu_{DVC_{jm}|DS_m}(q) \cdot \mu_{DVC_{kn}|DS_n}(r) \right) \right. \\
 &\quad \left. \cdot P_{DS_m,DS_n|EDP_j,EDP_k}(q, r|edp_j^{(i)}, edp_k^{(i)}) \right] \\
 &= \sum_{q=1}^{N_{DS_m}} \sum_{r=1}^{N_{DS_n}} \left[\left(\rho_{DVC_{jm},DVC_{kn}|DS_m,DS_n}(q, r) \cdot \sigma_{DVC_{jm}|DS_m}(q) \cdot \sigma_{DVC_{kn}|DS_n}(r) \right. \right. \\
 &\quad \left. \left. + \mu_{DVC_{jm}|DS_m}(q) \cdot \mu_{DVC_{kn}|DS_n}(r) \right) \cdot P_{DS_m,DS_n|EDP_j,EDP_k}(q, r|edp_j^{(i)}, edp_k^{(i)}) \right] \tag{C.1}
 \end{aligned}$$

602 where $\mu_{DVC_{jm}DVC_{kn}|DS_m,DS_n}(q, r)$ is the expected value of the product of DVC_{jm} and DVC_{kn}
 603 conditioned on the damage states q and r ; $P_{DS_m,DS_n|EDP_j,EDP_k}$ is the conditional joint
 604 probability of the m th and the n th component damage state given EDP_j and EDP_k ;
 605 $\sigma_{DVC_{jm}DVC_{kn}|DS_m,DS_n}(q, r)$ is the variance of the product of DVC_{jm} and DVC_{kn} conditioned
 606 on the damage state q and r ; $\mu_{DVC_{jm}|DS_m}(q)$ and $\mu_{DVC_{kn}|DS_n}(r)$ are the means of DVC_{jm}
 607 and DVC_{kn} conditioned on the damage state q and r ; $\rho_{DVC_{jm},DVC_{kn}|DS_m,DS_n}(q, r)$ is the cor-
 608 relation between the m th and the n th component losses due to the damage states q and r ;
 609 while $\sigma_{DVC_{jm}|DS_m}(q)$ and $\sigma_{DVC_{kn}|DS_n}(r)$ are the standard deviations of DVC_{jm} and DVC_{kn}
 610 conditioned on the damage states q and r .

611 **Appendix D. Details on the Sensitivity Estimation**

612 This appendix provides detailed derivations of $\frac{\partial \mu_{DV_j|EDP_j}}{\partial \widetilde{edp}_j^{(i)}}$, $\frac{\partial \widetilde{edp}_j^{(i)}}{\partial x_n}$, $\frac{\partial \sigma_{DV_j,DV_k|EDP_j,EDP_k}}{\partial \widetilde{edp}_j^{(i)}}$, and
 613 $\frac{\partial \widetilde{\mu}_{DV_j}(\mathbf{x})}{\partial x_n}$, which are necessary for the estimation of the partial derivatives of the approximate
 614 expected value and standard deviation of the loss measure of Sec. 4.2.1.

615 The partial derivative of the expected group-level loss in Eq. (36) with respect to the
616 design variable can be estimated as follow:

$$\frac{\partial \tilde{\mu}_{DV_j}(\mathbf{x})}{\partial x_n} = \frac{1}{N_s} \sum_{i=1}^{N_s} \frac{\partial \tilde{\mu}_{DV_j|EDP_j}(\mathbf{x}; \tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \cdot \frac{\partial \tilde{edp}_j^{(i)}}{\partial x_n} \quad (D.1)$$

617 where the partial derivative of the conditional expected group-level loss and can be estimated
618 as:

$$\frac{\partial \tilde{\mu}_{DV_j|EDP_j}(\mathbf{x}; \tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} = \sum_{m=1}^{N_{C_j}} \frac{\partial \tilde{\mu}_{DVC_{jm}|EDP_j}(\mathbf{x}; \tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \quad (D.2)$$

619 where the partial derivative of the conditional expected component loss can be estimated as:

$$\frac{\partial \tilde{\mu}_{DVC_{jm}|EDP_j}(\mathbf{x}; \tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} = \sum_{q=0}^{N_{DS_m}} \mu_{DVC_{jm}|DS_m}(q) \cdot \left[\frac{\partial \text{Fr}_q(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} - \frac{\partial \text{Fr}_{q+1}(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \right] \quad (D.3)$$

620 where the derivative of the fragility functions results in the probability density function of
621 the corresponding distribution.

622 The partial derivative of the approximate demand sample in Eqs. (35)-(36) with respect
623 to the n th component of the design variable vector may be estimated through the following
624 scheme:

$$\frac{\partial \tilde{edp}_j^{(i)}(\mathbf{x})}{\partial x_n} = \frac{\partial \Gamma_j^T(\mathbf{x})}{\partial x_n} \bar{\Psi}_j(\mathbf{x}_{mc}) + g_j^{(i)}(\mathbf{x}_{mc}) \cdot \frac{\partial \Gamma_j^T(\mathbf{x})}{\partial x_n} \hat{\Psi}_j(\mathbf{x}_{mc}) \quad (D.4)$$

625 where $\frac{\partial \Gamma_j^T}{\partial x_n}$ is the derivatives of the influence functions Γ_j with respect to x_n and can be
626 efficiently estimated through traditional approaches [30, 37].

627 The partial derivative of the conditional covariance between group-level losses in Eq. (36)
628 with respect to the approximate engineering demand sample can be estimated as follow:

$$\begin{aligned} & \frac{\partial \tilde{\sigma}_{DV_j, DV_k|EDP_j, EDP_k}(\mathbf{x}; \tilde{edp}_j^{(i)}, \tilde{edp}_k^{(i)})}{\partial \tilde{edp}_j^{(i)}} \\ &= \sum_{m=1}^{N_{C_j}} \sum_{n=1}^{N_{C_k}} \left[\frac{\partial \tilde{\rho}_{DVC_{jm}, DVC_{kn}|EDP_j, EDP_k}(\tilde{edp}_j^{(i)}, \tilde{edp}_k^{(i)})}{\partial \tilde{edp}_j^{(i)}} \cdot \tilde{\sigma}_{DVC_{jm}|EDP_j}(\tilde{edp}_j^{(i)}) \cdot \tilde{\sigma}_{DVC_{kn}|EDP_k}(\tilde{edp}_k^{(i)}) \right. \\ & \quad \left. + \tilde{\rho}_{DVC_{jm}, DVC_{kn}|EDP_j, EDP_k}(\tilde{edp}_j^{(i)}, \tilde{edp}_k^{(i)}) \cdot \frac{\partial \tilde{\sigma}_{DVC_{jm}|EDP_j}(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \cdot \tilde{\sigma}_{DVC_{kn}|EDP_k}(\tilde{edp}_k^{(i)}) \right] \end{aligned} \quad (D.5)$$

629 where the partial derivative of the conditional correlation coefficient, as defined in Eq. (16),
 630 may be estimated through the quotient rule, while the following derivatives are needed (in
 631 addition to $\frac{\partial \tilde{\mu}_{DVC_{jm}|EDP_j}}{\partial \tilde{edp}_j^{(i)}}$):

$$\begin{aligned}
 & \frac{\partial \tilde{\sigma}_{DVC_{jm}|EDP_j}(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \\
 &= \frac{1}{2 \cdot \tilde{\sigma}_{DVC_{jm}|EDP_j}(\tilde{edp}_j^{(i)})} \cdot \left[\sum_{q=0}^{N_{DS}^m} \sigma_{DVC_{jm}|DS_m}^2(q) \cdot \left(\frac{\partial \text{Fr}_q(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} - \frac{\partial \text{Fr}_{q+1}(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \right) \right. \\
 &+ \sum_{q=0}^{N_{DS}^m} (\mu_{DVC_{jm}|DS_m}(q) - \tilde{\mu}_{DVC_{jm}|EDP_j}(\tilde{edp}_j^{(i)}))^2 \cdot \left(\frac{\partial \text{Fr}_q(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} - \frac{\partial \text{Fr}_{q+1}(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \right) \quad (D.6) \\
 &+ \sum_{q=0}^{N_{DS}^m} 2 \cdot (\mu_{DVC_{jm}|DS_m}(q) - \tilde{\mu}_{DVC_{jm}|EDP_j}(\tilde{edp}_j^{(i)})) \cdot \left(-\frac{\partial \tilde{\mu}_{DVC_{jm}|EDP_j}(\tilde{edp}_j^{(i)})}{\partial \tilde{edp}_j^{(i)}} \right) \\
 &\quad \left. \cdot \left(\text{Fr}_q(\tilde{edp}_j^{(i)}) - \text{Fr}_{q+1}(\tilde{edp}_j^{(i)}) \right) \right]
 \end{aligned}$$

632

$$\frac{\partial \text{Fr}_{DS_m, DS_n|EDP_j, EDP_k}(q, r|edp_j^{(i)}, edp_k^{(i)})}{\partial \tilde{edp}_j^{(i)}} = \frac{\partial \text{P}(\ln C_{m,q} < \ln edp_j^{(i)}, \ln C_{n,r} < \ln edp_k^{(i)})}{\partial \tilde{edp}_j^{(i)}} \quad (D.7)$$

633 where the derivative of the joint cumulative distribution function results in the joint proba-
 634 bility density function of the corresponding distribution.

635 References

636 [1] Liu, M., Frangopol, D.M.. Optimizing bridge network maintenance management under
 637 uncertainty with conflicting criteria: Life-cycle maintenance, failure, and user costs. J
 638 Struct Eng 2006;132(11):18351845.

639 [2] Frangopol, D.M.. Life-cycle performance, management, and optimisation of structural
 640 systems under uncertainty: accomplishments and challenges. Struct Infrastruct Eng
 641 2011;7(6):389413.

642 [3] Gidaris, I., Taflanidis, A.A., Lopez-Garcia, D., Mavroeidis, G.P.. Multiobjective
 643 riskinformed design of floor isolation systems. Earthq Eng Struct Dyn 2016;45:12931313.

644 [4] Byun, J.E., Song, J.. Efficient optimization for multi-objective decision-making on
645 civil systems using discrete influence diagram. In: 13th International Conference on
646 Applications of Statistics and Probability in Civil Engineering (ICASP13). Seoul, South
647 Korea; 2019.,

648 [5] Taflanidis, A.A., Giaralis, A., Patsialis, D.. Multi-objective optimal design of inerter-
649 based vibration absorbers for earthquake protection of multi-storey building structures.
650 *J Franklin Inst* 2019;356(14):7754–7784.

651 [6] Suksuwan, A., Spence, S.M.J.. Performance-based bi-objective design optimization of
652 wind-excited building systems. *J Wind Eng Ind Aerodyn* 2019;190:40–52.

653 [7] Byun, J.E., Song, J.. Efficient probabilistic multi-objective optimization of complex
654 systems using matrix-based bayesian network. *Reliab Eng Syst Saf* 2020;200(106899).

655 [8] Ciampoli, M., Petrini, F., Augusti, G.. Performance-Based Wind Engineering: To-
656 wards a general procedure. *Struct Saf* 2011;33(6):367–378.

657 [9] Petrini, F., Ciampoli, M.. Performance-based wind design of tall buildings. *Struct*
658 *Infrastruct Eng* 2012;8(10):954–966.

659 [10] Caracoglia, L.. A stochastic model for examining along-wind loading uncertainty and in-
660 tervention costs due to wind-induced damage on tall buildings. *Eng Struct* 2014;78:121–
661 132.

662 [11] Beck, A.T., Kougioumtzoglou, I.A., dos Santos, K.R.M.. Optimal performance-
663 based design of non-linear stochastic dynamical RC structures subject to stationary
664 wind excitation. *Eng Struct* 2014;78:145–153.

665 [12] Chuang, W., Spence, S.M.J.. A performance-based design framework for the integrated
666 collapse and non-collapse assessment of wind excited buildings. *Eng Struct* 2017;150:746–
667 758.

668 [13] Cui, W., Caracoglia, L.. A unified framework for performance-based wind engineering of
669 tall buildings in hurricane-prone regions based on lifetime intervention-cost estimation.
670 *Struct Saf* 2018;73:75–86.

671 [14] Ouyang, Z., Spence, S.M.J.. A performance-based wind engineering framework for the
672 envelope system of engineered buildings subject to directional wind and rain hazards. *J*
673 *Struct Eng* 2019;.

674 [15] Cui, W., Caracoglia, L.. Performance-based wind engineering of tall buildings exam-
675 ining life-cycle downtime and multisource wind damage. *J Struct Eng* 2020;146(1).

676 [16] Baker, J.W., Cornell, C.A.. Uncertainty specification and propagation for loss estima-
677 tion using FOSM method. Pacific Earthquake Engineering Research Center; 2003.

678 [17] Bradley, B.A., Lee, D.S.. Component correlations in structure-specific seismic loss
679 estimation. *Earthq Eng Struct Dyn* 2010;39(3):237–258.

680 [18] Aslani, H.. Probabilistic earthquake loss estimation and loss disaggregation in buildings.
681 Ph.D. thesis; John A. Blume Earthquake Engineering Centre, Department of Civil and
682 Environmental Engineering; Stanford University; 2005.

683 [19] Federal Emergency Management Agency (FEMA), . Seismic performance assessment of
684 buildings, Volume 1 Methodology (FEMA Publication P-58-1). Washington, DC; 2012.

685 [20] Suksuwan, A., Spence, S.M.J.. Performance-based design optimization of uncertain
686 wind excited systems under system-level loss constraints. *Struct Saf* 2019;80:13–31.

687 [21] Spence, S.M.J., Kareem, A.. Performance-based design and optimization of uncertain
688 wind-excited dynamic building systems. *Eng Struct* 2014;78:133–144.

689 [22] Suksuwan, A., Spence, S.M.J.. Optimization of uncertain structures subject to stochas-
690 tic wind loads under system-level first excursion constraints: A data-driven approach.
691 *Comput Struct* 2018;210:58 – 68.

692 [23] Chen, X., Kareem, A.. Proper orthogonal decomposition-based modeling, analysis, and
693 simulation of dynamic wind load effects on structures. *J Eng Mech* 2005;131(4):325–339.

694 [24] Baker, J.W., Cornell, C.A.. Uncertainty propagation in probabilistic seismic loss
695 estimation. *Struct Saf* 2008;30(3):236–252.

696 [25] Suksuwan, A., Spence, S.M.J.. Efficient approach to system-level reliability-based
697 design optimization of large-scale uncertain and dynamic wind-excited systems. ASCE-
698 ASME J Risk Uncertainty Eng Syst, Part A: Civ Eng 2018;4(2).

699 [26] ASCE 7-16, . Minimum design loads for buildings and other structures. American
700 Society of Civil Engineers (ASCE), Reston, VA; 2017. doi:10.1061/9780784414248. URL
701 <https://ascelibrary.org/doi/abs/10.1061/9780784414248>.

702 [27] National Institute of Standards and Technology (NIST), . Extreme
703 wind speed data sets: Hurricane wind speeds. 2016. URL
704 <https://www.itl.nist.gov/div898/winds/hurricane.htm>.

705 [28] Li, Y., Kareem, A.. Simulation of multivariate random processes: Hybrid dft and
706 digital filtering approach. J Eng Mech 1993;119(5):1078–1098.

707 [29] Deodatis, G.. Simulation of ergodic multivariate stochastic processes. J Eng Mech
708 1996;122(8):778–787.

709 [30] Chan, C.M., Grierson, D.E., Sherbourne, A.N.. Automatic optimal design of tall steel
710 building frameworks. J Struct Eng 1995;121(5):838–847.

711 [31] MATLAB, . version 9.3.0.713579 (R2017b). Natick, Massachusetts: The MathWorks
712 Inc.; 2017.

713 [32] Tokyo Polytechnic University (TPU), . TPU Wind Pressure Database. 2008. URL
714 <http://wind.arch.t-kougei.ac.jp/system/eng/contents/code/tpu>.

715 [33] American Society of Civil Engineers (ASCE), . Prestandard for
716 Performance-Based Wind Design. 2019. doi:10.1061/9780784482186. URL
717 <https://ascelibrary.org/doi/abs/10.1061/9780784482186>.

718 [34] Minciarelli, F., Gioffrè, M., Grigoriu, M., Simiu, E.. Estimates of extreme wind
719 effects and wind load factors: Influence of knowledge uncertainties. Prob Engng Mech
720 2001;16:331–340.

721 [35] Bashor, R., Kijewski-Correa, T., Kareem, A.. On the wind-induced response of
722 tall buildings: the effect of uncertainties in dynamic properties and human comfort
723 thresholds. In: Proc., 10th Americas Conf. on Wind Engineering. 2005,CD-ROM.

724 [36] Diniz, S.M.C., Sadek, F., Simiu, E.. Wind speed estimation uncertainties: effects of
725 climatological and micrometeorological parameters. Prob Engng Mech 2004;19:361–371.

726 [37] Spence, S.M.J., Gioffrè, M.. Large scale reliability-based design optimization of wind
727 excited tall buildings. Prob Engng Mech 2012;28:206–215.