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Abstract— Achieving dexterous in-hand manipulation with
robot hands is an extremely challenging problem, in part
due to current limitations in hardware design. One notable
bottleneck hampering the development of improved hardware
for dexterous manipulation is the lack of a standardized
benchmark for evaluating in-hand dexterity. In order to address
this issue, we establish a new benchmark for evaluating in-
hand dexterity, specifically for humanoid type robot hands: the
Elliott and Connolly Benchmark. This benchmark is based on
a classification of human manipulations established by Elliott
and Connolly, and consists of 13 distinct in-hand manipulation
patterns. We define qualitative and quantitative metrics for
evaluation of the benchmark, and provide a detailed testing
protocol. Additionally, we introduce a dexterous robot hand
- the CMU Foam Hand III - which is evaluated using the
benchmark, successfully completing 10 of the 13 manipulation
patterns and outperforming human hand baseline results for
several of the patterns.

I. INTRODUCTION

For several decades, roboticists have endeavoured to de-
velop autonomous systems capable of dexterous manipula-
tion [1], [2]. Although substantial progress has been made
towards the ultimate goal of achieving human-level dexterity,
this still remains an extremely challenging and unsolved
problem. One critical aspect of this challenge is the design of
suitable hardware platforms - i.e. robot hands - for dexterous
manipulation.

In order to properly evaluate the design of a dexterous
robot hand, it is essential to have tools for objectively
assessing its dexterity. However, while there are a number
of manipulation benchmarks present in the literature (see
Table I), no single method has been adopted as a “gold
standard” for benchmarking robot dexterity. Rather, authors
generally follow the approach of providing videos or photo
sequences of their robot hands performing various, ad-hoc
dexterous manipulation tasks in order to demonstrate the
robot’s dexterity. Because each hand is evaluated using
a unique set of manipulation tasks, there is no way of
comparing the dexterity of one robot hand to another.

Clearly, there is a need for a standardized benchmark
that can be used to evaluate the dexterity of robot hands.
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Fig. 1. Coordinate axes for a human hand (left) and the CMU Foam Hand
III (right).

Accordingly, we propose a new benchmark - the Elliott and
Connolly Benchmark - which consists of 13 in-hand manipu-
lation patterns from a manipulation classification established
by Elliott and Connolly [14]. This benchmark is specifically
intended for evaluating the in-hand dexterity of humanoid
type robot hands. It is tied to motions observed in daily life,
and covers the full range of potential in-hand manipulation
primitives.

A. Establishing a Dexterity Benchmark

Throughout the rest of this paper, we will define dexterity
as “the capability of changing the position and orientation
of the manipulated object from a given reference configu-
ration to a different one, arbitrarily chosen within the hand
workspace” [1]. Specifically, we focus on in-hand dexterity,
which involves controlling the pose of a grasped object using
only the hand, without relying on the arm or body. It is also
important to make a distinction between in-hand dexterity
(as discussed in this paper) and extrinsic dexterity [15],
which entails relying upon external forces - such as gravity
and contact forces between the manipulated object and the
environment - in order to change the pose of the manipulated
object.

We can also define the range of dexterity of a hand using
a classification established by Bullock et. al [16], which
categorizes in-hand manipulation tasks based on rotations
and translations along hand coordinate axes. They further
categorize in-hand manipulations according to whether or not
there is motion at contact - in other words, whether the initial
contacts made between the hand and object remain fixed
throughout a given manipulation. In total, this classification
establishes 12 distinct categories of in-hand manipulation,



TABLE I
BENCHMARKS, TESTS, AND METRICS USED TO EVALUATE DEXTERITY.

Benchmark/Test/Metric Protocol Purpose
Purdue Pegboard Test (1948)
[3]

Insert pins into pegboard; stack collars and washers on pins. Assess fine manual dexterity for vocational
evaluation and rehabilitation.

Box and Blocks Test (1957)
[4]

Transfer blocks from one box to another. Assess gross manual dexterity for vocational
evaluation and rehabilitation.

Jebsen Taylor Hand Function
Test (1969) [5]

Writing, simulated page-turning, pick-and-place of small objects, sim-
ulated feeding, stacking checkers, and lifting large objects (lightweight
and heavy).

Assess ability to complete activities of daily
living (ADLs).

Kapandji Test (1986) [6] The tip of the thumb is used to contact different locations around the
hand.

Test opposition and counter-opposition of the
thumb.

Sollerman Hand Function
Test (1995) [7]

Consists of 20 tasks based on activities of daily living (ADLs). Assess ability to complete ADLs.

SHAP Test (2002) [8] Six abstract objects are grasped using various grasp types; 14 activities
of daily living (ADLs) are also performed.

Assess the effectiveness of upper limb pros-
theses; rehabilitation.

Block Pick and Place Bench-
mark (2015) [9]

Blocks are picked and placed into specific locations and poses. Assess the dexterity of a robotic manipulator.

Reachable Configuration
Manifold Metric (2015) [10]

Map all possible object positions that can be reached from some initial
grasp configuration.

Evaluate the dexterous workspace of objects
held within the fingertips in a precision grasp.

NIST In-Hand Manipulation
Test (2018) [11]

An object is manipulated along as many independent Cartesian axes
as possible (up to six), along a desired Cartesian trajectory. Error is
calculated between desired trajectory and measured trajectory.

Assess how well a robotic hand can control
the pose of an object.

In-Hand Manipulation
Benchmark (2020) [12]

Objects are manipulated from an initial grasp to a desired grasp. Error
between reached grasp and desired grasp is calculated.

Evaluate the planning and control aspects of
robotic in-hand manipulation systems.

Rubik’s Cube Manipulation
Benchmark (2020) [13]

Rotate a Rubik’s cube in prescribed patterns. Evaluate a robotic system’s overall manipula-
tion accuracy, speed, and robustness.

corresponding to individual rotations and translations along
each axis in 3D space (i.e. θx, ∆x, θy, ∆y, θz, ∆z - refer
to Figure 1 for coordinate axis configuration), for cases of
either motion at contact (A) or no motion at contact (NA).
It should be noted that the authors could not find a human
manipulation pattern corresponding to θy (A), reducing the
size of the set of possible in-hand manipulation categories
to 11. Thus, the range of dexterity of a given humanoid type
robot hand can be evaluated based on how many of the 11
possible in-hand manipulation categories established in [16]
are feasible.

Table I summarizes a variety of benchmarks, tests, and
metrics that have been used to evaluate dexterity. It is
important to note that many of these tests - the Purdue
Pegboard Test, Box and Blocks Test, Jebsen Taylor Hand
Function Test, Sollerman Hand Function Test, SHAP Test,
and Block Pick and Place Benchmark - were not developed
with the explicit goal of measuring in-hand dexterity. Rather,
these tests are meant to evaluate an ability to perform
pick-and-place tasks or simple tool usage, often focusing
on activities of daily living (ADLs). These tasks primarily
depend upon grasping ability and whole-arm dexterity, as
opposed to in-hand manipulation. It should also be noted
that robot manipulation benchmarks often take the form
of competitions, such as the IROS Robotic Grasping and
Manipulation Competition [17] and the DARPA Autonomous
Robotic Manipulation (ARM) Program [18]. However, these
competitions are generally intended to test the competency of
robotic systems as a whole (including perception capabilities,
planning algorithms, learning/training strategies, etc.), rather
than comparing different hardware designs.

Of the benchmarks, tests, and metrics from Table I which
are explicitly intended for evaluation of in-hand dexterity

- the Reachable Configuration Manifold, NIST In-hand Ma-
nipulation Test, and In-hand Manipulation Benchmark - only
the NIST In-hand Manipulation Test explicitly evaluates the
full range of dexterity of the hand based on rotations and
translations about hand coordinate axes, as categorized by
Bullock et al. [16]. However, this test does not evaluate the
hand’s ability to complete manipulations which require the
initial contacts between the hand and object to be altered,
nor is it tied to motions observed in daily life.

Our proposed benchmark - the Elliott and Connolly
Benchmark - is based on a classification which consists
of 13 distinct in-hand manipulation patterns, derived from
observations of multiple human subjects [14]. Here, manip-
ulation patterns are defined as “independently coordinated
digit movements intended to move objects within the hand”
[14]. We find that this classification is suitable for adaptation
as a dexterity benchmark test for several reasons. First,
and most importantly, across the 13 manipulation patterns
established by Elliot and Connolly, each of the in-hand ma-
nipulation categories from Bullock et al. [16] is represented
at least once. Thus, we can claim that any hand capable of
performing all of these patterns is accordingly capable of
performing the full range of possible in-hand manipulation
primitives. Second, across the 13 patterns, all of the primary
sub-classes of in-hand manipulation - namely finger gaiting,
rolling, and sliding [1] - are represented. Finally, because
these manipulation patterns are derived from observations of
human subjects, they are relevant to the completion of real-
world tasks.

B. Developing a Dexterous Robot Hand

In addition to establishing a new dexterity benchmark,
this paper introduces a dexterous robot hand - the CMU



Foam Hand III - which is evaluated using the benchmark.
The design of this hand builds upon the work of King et al.
[19], [20], [21], who established techniques for fabricating
and controlling tendon driven hands made almost entirely
of foam. This class of robot hand is promising for dexterous
manipulation, since the foam-based architecture largely elim-
inates constraints on morphology, and permits the hand to be
actuated with a theoretically unlimited number of tendons
in any desired configuration. Of course, there are practical
limitations on the number of motors that can be used to
drive these tendons, and the dexterous hands developed in
[19], [20], [21] used 10 motors to drive an equal number
of tendons. The contribution of this work is to modify the
design of these hands in order to enable a high level of
dexterity while requiring a relatively low number of motors
for operation.

Within the literature, there are several examples of dexter-
ous robot hands which use a limited number of motors. These
include the Pisa/IIT SoftHand 2 [22], which uses two motors;
various hands developed as a part of the Yale OpenHand
Project [23], [24], [10], which use between two and four
motors; the highly biomimetic hand developed by Xu and
Todorov [25], which uses 10 motors; and the RBO Hand 2
[26], which uses 7 pneumatic actuators. However, due to the
aforementioned lack of a standardized dexterity benchmark,
it is difficult to objectively assess the level of dexterity of
any of these hands. This challenge motivates the introduction
of the Elliott and Connolly Benchmark, which would allow
the relative dexterity of various robot hands to be compared.

II. BENCHMARK TEST

A. Metrics
In order to establish a benchmark test based on the 13

manipulation patterns from Elliott and Connolly [14], it is
necessary to define metrics for evaluation. First, we define
a qualitative, binary metric - Success or Failure - for each
pattern. In order to evaluate this metric, we have developed
a list of criteria for each manipulation pattern, provided in
the “Criteria” column of Appendix I. These criteria were
developed based on our understanding of the descriptions
and illustrations provided by Elliott and Connolly for each
manipulation pattern. We have also recorded videos of a
human hand performing each manipulation pattern (see link
in Multimedia Document), which can be referenced when
determining whether a pattern has been performed success-
fully.

In addition to this binary designation, failed manipulation
patterns can also be labeled as Incomplete, and successful
patterns can be labeled as Non-anthropomorphic. The only
manipulation patterns which are eligible to be labeled as
incomplete are Rotary Step and Interdigital Step. This is
due to the fact that each of these patterns requires a certain
amount of rotation (360◦, per the criteria in Appendix I) in
order to be evaluated as successful, meaning it is possible
to achieve partial completion by rotating the object less than
360◦. A successful manipulation pattern is labeled as Non-
anthropomorphic if the object is rotated or translated along

the correct axis, but in a manner that is dissimilar to human
baseline examples.

We have also defined quantitative metrics for the evalua-
tion of each manipulation pattern. These metrics - Normal-
ized Average Translation and Average Rotation - are used
to assess translations and rotations of an object along hand
coordinate axes. The goal for the hand is to maximize the
value of each of these metrics.

Normalized Average Translation is defined as the distance
an object is translated along a particular hand coordinate axis,
normalized by the average finger length of the hand and aver-
aged over N trials. The rationale for normalizing by average
finger length is to eliminate any bias which arises from the
fact that larger hands will be capable of achieving proportion-
ally larger translations than smaller hands when transitioning
between identical postures. Average finger length is defined
as the average distance between the fingertips and the center
of the hand. The center of the hand is defined as the point
of intersection on the palm by lines extended from the
fingertips. Normalized Average Translation can be calculated
using the following equation:

T =

∑N
i=1 di

N ∗ F , (1)

where N is the number of trials, di is the translation distance
for an individual trial, and F is the average finger length of
the hand.

Average Rotation is defined as the degree to which an
object is rotated about a particular hand coordinate axis,
averaged over N trials. Average Rotation can be calculated
using the following equation:

R =

∑N
i=1 θi
N

, (2)

where N is the number of trials and θi is the degree of
rotation for an individual trial.

Additionally, we define performance scores, which are
used to compare the performance of the robot hand to the
performance of a human hand. The Translation Performance
Score for a particular manipulation pattern m can be calcu-
lated as follows:

PT
m =

T robot
m

Thuman
m

× 100. (3)

Likewise, the Rotation Performance Score can be calculated
as:

PR
m =

Rrobot
m

Rhuman
m

× 100. (4)

Thus, the performance score for a particular manipulation
pattern indicates the percentage of translation or rotation
achieved by the robot, relative to the human baseline.



TABLE II
YCB OBJECTS REQUIRED FOR THE ELLIOTT AND CONNOLLY

BENCHMARK.

Manipulation Pattern Object YCB ID
Pinch (P) Bolt & Nut 46, 47
Dynamic Tripod (DT) Small Marker 41
Squeeze (S) Syringe N/A
Twiddle (T) Bolt & Nut 46, 47
Rock (R) Cup (yellow) 64
Rock II (RII) Small Marker 41
Radial Roll (RR) Marble (green) 62
Index Roll (IR) Marble (green) 62
Full Roll (FR) Wood Block 69
Rotary Step (RS) Cup (yellow) 64
Interdigital Step (IS) Small Marker 41
Linear Step (LS) Large Marker 40
Palmar Slide (PS) Large Marker 40

B. Protocol

In order to perform this benchmark test, the required
materials are a robot hand, a camera, a printer which can
be used to print various AprilTags [27], and a set of objects
for manipulation. The objects required for this benchmark
have been selected from the YCB Object Set [28] - a
correspondence between manipulation patterns and objects is
shown in Table II. In the case of the Squeeze manipulation
pattern, a suitable object could not be found within the YCB
Object Set, so we use a commercially available 5mL syringe.
In order to ensure consistency and repeatability across tests,
it is important that experimenters do not deviate from the set
of objects listed in Table II.

The first step in performing this benchmark is to measure
the average finger length of the robot hand being used. This
can be achieved by attaching threads to the fingertips of the
robot and extending the threads along the fingers, moving
towards the palm (see Multimedia document for examples).
The threads are then cut where they intersect (defined as the
center of the palm), and their resultant lengths are measured
and averaged. Note that in many cases, the threads will not
all intersect at a single point - in these cases, each thread
can be cut at the first intersection that occurs.

Prior to performing a manipulation pattern, an AprilTag
must be attached to the object being used. In most cases, the
AprilTags can be attached to objects in a way that allows
them to be manipulated without causing interference (see
Multimedia Document for examples). The Marble is an ex-
ception. In order to attach an AprilTag to this object without
causing interference, we attach a Bolt to the marble and then
attach the AprilTag to the end of the bolt. Another bolt is
attached to the opposite side of the marble in order to balance
the weight. In the case of the Rock II and Interdigital Step
manipulation patterns, no AprilTag is needed since the tilt
angle of the marker can be measured directly. Additionally,
no AprilTag is required for Squeeze since linear displacement
of the syringe plunger can be directly measured. Note that
while the usage of AprilTags is recommended for this
protocol, it is not explicitly required – any similarly precise
method of motion tracking is acceptable.

When performing a manipulation pattern, the first step is to
configure the hand into a suitable initial pose, with the object
in the grasp of the hand. There is no precisely “correct”
initial pose for any of the manipulation patterns - rather
the experimenter should refer to the criteria in Appendix
I, as well as the human hand baseline video linked in the
Multimedia Document. The manipulation begins as soon
as the hand moves out of its initial pose, and lasts until
the hand reaches its target pose. As with the initial pose,
there is no precise target pose to be achieved for any of the
manipulation patterns. However, given that the dexterity of
the hand is being evaluated in part based on the Average
Normalized Translation or Average Rotation achieved for
each manipulation pattern, experimenters are encouraged to
select target poses which maximize these metrics, while still
adhering to the criteria provided in Appendix I. It is also
important that the experimenter notes the overall orientation
of their robot hand relative to gravity (e.g. palm facing
upwards) for each manipulation pattern, since the ability of
the hand to complete a given pattern may depend on its
orientation.

During each manipulation, the camera records the rota-
tion and translation of the AprilTag (when applicable). The
resultant data must then be analyzed in order to determine
a value for rotation or translation about a particular hand
coordinate axis. These values are then used to calculate
the Average Normalized Translation or Average Rotation for
each manipulation pattern. In some cases, a single pattern
may involve both translation and rotation (see “Category”
column in Appendix I). Each manipulation must be repeated
at least three times in order to calculate a mean and standard
deviation from the data.

No autonomous perception or planning is required in
order to complete this benchmark. This is because we are
only concerned with the capabilities of the robot hardware,
regardless of whether these capabilities can be implemented
in an autonomous system using current algorithms. In other
words, this benchmark is only assessing the potential dexter-
ity of robot hands. For the same reason, each manipulation
pattern can be repeated as many times as necessary in
order to achieve at least three successful trials - there is
no need to record individual failed trials. Additionally, the
time required to complete each manipulation pattern does not
need to be recorded, since this benchmark is not focused on
manipulation efficiency.

III. ROBOT HAND

As explained in Section I-B, a tendon driven foam hand -
the CMU Foam Hand III - was also developed for this study
and evaluated using the Elliott and Connolly Benchmark.
The design goal for this hand was to achieve a high level
of dexterity while requiring a limited number of motors
for operation. The design process primarily consisted of
testing and iteration of physical prototypes - ultimately, a
bio-inspired, 3-fingered hand with 10 tendons actuated by an
equal number of motors was found to strike the best balance
between high dexterity and few motors.



Fig. 2. Two-dimensional workspace of continuum fingers. Workspace is
represented by the area between dotted lines. (left) Finger actuated using
only proximal tendons. (right) Finger actuated using proximal and distal
tendons. Note that the finger on the left (proximal tendons only) has zero
workspace, since there is only one dotted line, hence zero area between
dotted lines.

Fig. 3. Tendon routing diagram for the CMU Foam Hand III.

The morphology of the CMU Foam Hand III is based on
the thumb, index, and middle fingers of the human hand.
The robot hand’s fingers are curved away from its palm
in its rest pose in order to eliminate the need for extensor
tendons - the hand relies upon the elasticity of the foam for
finger extension. The hand’s tendon routing, coupled with
its continuum structure, enables its fingers to bend in almost
any direction. Importantly, the inclusion of both proximal and
distal tendons enables a multi-jointed behavior that greatly
increases the workspace of the hand’s fingertips, relative to
a case with only proximal tendons (see Figure 2). A tendon
routing diagram for the hand is shown in Figure 3. For more
details on the design of the CMU Foam Hand III, refer to
Coulson [29].

IV. EXPERIMENTS

The Elliott and Connolly Benchmark was completed using
the CMU Foam Hand III. We used a 5MP Raspberry
Pi Zero W camera module placed 35 cm away from the
hand to record each manipulation. Prior to performing any
manipulations, the camera was calibrated using the cam-
era calibration library in OpenCV (Open Computer Vision
Library). Additionally, after determining the average finger
length of the robot hand, that length was sketched onto a
piece of graph paper, which was placed 35 cm away from the
camera. The average finger length was then measured from
the undistorted image in terms of pixels. In postprocessing
of manipulation footage, each frame was corrected for lens
distortion. The resulting undistorted video was then used to
obtain quantitative measurements.

The CMU Foam Hand III was controlled open-loop by
moving the hand between predefined keyframes. Here, a
keyframe is defined as a hand posture in tendon space.
Since the hand’s tendons are actuated using servo motors,
a keyframe consists of position values for each of the hand’s
10 motors. Keyframes were empirically derived via trial-and-
error testing. Many manipulation patterns required only two
keyframes - one for the initial pose and one for the target
pose - but some patterns required up to 5 keyframes for
completion (including the initial and target keyframes). We
chose to use keyframes because it was the simplest option
for control of our hand, but any control strategy may be used
in order to complete the benchmark.

Prior to completing the benchmark with the robot hand,
we completed the benchmark using a human hand in order to
establish a baseline for each manipulation pattern. Because
the CMU Foam Hand III has only 3 fingers, we used only
3 fingers for the human hand baseline. Videos from the
human hand performance were referenced while deriving
keyframes for the robot hand. Other groups performing this
benchmark are encouraged to use the human hand videos
and data provided in this paper for reference (see Multimedia
Document). They are also encouraged to collect their own
human hand videos and data, although this is not required.

V. RESULTS AND DISCUSSION

The CMU Foam Hand III was able to successfully com-
plete 10 of the 13 manipulation patterns from the Elliott
and Connolly Benchmark, based on the criteria provided
in Appendix I. The successfully completed manipulation
patterns included Pinch, Dynamic Tripod, Twiddle, Rock,
Rock II, Radial Roll, Index Roll, Full Roll, Linear Step, and
Palmar Slide. Photo sequences of each manipulation pattern
are included in Appendix I.

Quantitative results from the experiments are shown in
Figure 4. It should be noted that in most cases, the robot
was outperformed by the human. This is to be expected,
since humans exhibit extraordinarily high levels of dexterity.
However, there are some cases - namely the Normalized
Average Translation for Dynamic Tripod, Twiddle, and Index
Roll - where the robot outperforms the human. This result
suggests that the design of the robot hand may have some
kinematic advantages over the human hand when considering
certain aspects of dexterity. Finally, note that the performance
scores can be used to assess the robot’s relative proficiency
for each manipulation pattern. For example, Rock and Pinch
both received relatively low performance scores compared to
other manipulation patterns, implying that it may be prudent
to focus on these patterns (among others) when considering
how improvements might be made to the robot hand design.

There are several aspects of the design of the CMU
Foam Hand III that we believe contributed to its success in
performing the Elliott and Connolly Benchmark. First, the
bio-inspired morphology and pragmatic tendon routing of
the robot enabled it to closely imitate postures used in the
human hand baseline for most manipulation patterns. Second,
the robot’s mechanical compliance - resulting from its foam



Fig. 4. Quantitative results from benchmark testing. Error bars represent one standard deviation from the mean. Patterns marked with an asterisk (*)
are evaluated as incomplete. Patterns marked with a dagger (†) are evaluated as non-anthropomorphic. For performance scores, a score of 100 indicates
equivalence between the robot and human.

structure - allows for a considerable margin of error in its
control. This is because the robot’s fingers inherently deform
in order to accommodate objects which they come into
contact with, eliminating the need for minute adjustments
in posture which might otherwise be necessary in order to
establish sufficient contacts with manipulated objects. Fi-
nally, the silicone end-caps placed over the robot’s fingertips
(see Figure 3) greatly increase the friction between the robot
hand and the manipulated objects, leading to a substantial
decrease in the frequency of objects being dropped during
manipulation.

With regard to the manipulation patterns which the robot
hand was unable to perform successfully - Squeeze, Rotary
Step, and Interdigital Step - there were several factors which
contributed towards these failures. The first of these limiting
factors was the control strategy used, i.e. empirically derived
keyframes. While this control strategy is straightforward
to implement, it is limited by the physical intuition of
the programmer, and has no theoretical groundings which
drive it towards success. Especially for more complicated,
multi-step manipulation patterns such as Rotary Step and
Interdigital Step, it is possible that a more sophisticed
control strategy, e.g. one derived via reinforcement learning,
could produce successful results where empirically derived
keyframes failed.

Another limiting factor was the fact that the morphological
design and tendon routing of the robot hand were constrained
by the goal of limiting the number of motors required for
actuation. Specifically, the robot hand could have benefitted
from the addition of a fourth finger, as well as additional
tendons. Determining the optimal balance between dexterity
and motor quantity is a non-trivial problem that merits
exploration in future work.

The final limiting factor was the low stiffness and corre-
spondingly poor force transmission capability of the CMU
Foam Hand III. This is one of the primary drawbacks of
a hand made entirely from soft materials, and was the main
factor in the hand’s inability to complete the Squeeze pattern.
The task associated with this pattern involves compressing
the plunger of a syringe. When attempting this task, the

hand’s fingers would consistently buckle before they could
apply enough force to displace the plunger.

In addition to the limitations of the robot hand itself,
there are several conceptual limitations of this study. First, it
should be noted that while the objective of this benchmark
is to assess robot hardware designs independent of software
implementation, the performance of robot hands ultimately
cannot be decoupled from the control strategy that is em-
ployed. This is evident from the fact that the CMU Foam
Hand III failed several manipulation patterns in part due to
limitations associated with keyframe-based control. Second,
it is important to note that this benchmark allows for the
initial contacts between the robot hand and the manipulated
object to be established manually prior to manipulation.
This may artificially over-emphasize abilities that the hand
would not be able to perform without careful oversight by
the researcher. Ultimately, dexterous manipulation becomes
a much more challenging problem when the robot must
autonomously grasp - and potentially re-grasp - an object
in order to establish suitable contacts before performing in-
hand manipulations.

VI. CONCLUSION

This study focused on establishing a new benchmark for
evaluating the in-hand dexterity of humanoid type robot
hands: the Elliott and Connolly Benchmark. This benchmark
consists of 13 distinct in-hand manipulation patterns that are
tied to motions observed in daily life. These patterns span
the full range of possible in-hand manipulation primitives,
and include examples of finger gaiting, rolling, and sliding.
Qualitative and quantitative metrics are defined for evaluation
of the Elliott and Connolly Benchmark, and a detailed testing
protocol is established.

Additionally, a dexterous robot hand - the CMU Foam
Hand III - is introduced. The CMU Foam Hand III is tendon
driven and made almost entirely of foam, building upon the
work of King et al. [19], [20], [21]. The CMU Foam Hand
III is evaluated using the Elliott and Connolly Benchmark,
successfully completing 10 of the 13 manipulation patterns,



and outperforming human hand baseline results for several
of the patterns.

In future work, we aim to reduce the number of motors
required for operation of the CMU Foam Hand III by
implementing mechanical synergies [30], which allow for
one-to-many motor-driven actuation of tendons. Additionally,
we hope to increase the dexterity of the CMU Foam Hand
III by implementing reinforcement learning-based control,
taking inspiration from the outstanding in-hand manipulation
results achieved via reinforcement learning by OpenAI [31].
Finally, we plan to explore alternative morphologies and
tendon routings for the hand through continued iteration and
testing.
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APPENDIX I
MANIPULATION PATTERN INFORMATION

Patterns marked with an asterisk (*) are evaluated as
incomplete. Patterns marked with a dagger (†) are evaluated
as non-anthropomorphic. See next page for table.



Pattern Criteria Sub-
Class Category Success/

Failure Sequence 

Pinch (P) 

Object is held between two fingers. Both fingers are 
flexed simultaneously in order to translate the object 

along the ventro-dorsal axis, towards the palm. 
Fingers are then simultaneously extended to bring the 

object back to its starting position. 

N/A ο௓(NA) Success 

    

Dynamic 
Tripod (DT) 

Object is held between three fingers. All three fingers 
are simultaneously flexed and extended, in repetitive 

motions, in order to translate the object along the 
ventro-dorsal axis. Application: writing. 

N/A ο௓(NA) Success 

    

Squeeze (S) 

Deformable object is held between three or more 
fingers. All fingers are simultaneously flexed towards 
the object's centroid in order to compress the object, 
e.g. when squeezing a rubber ball or compressing the 

plunger of a syringe. 

N/A ο௒(NA) Failure 

    

Twiddle (T) 

Object is held between the distal phalanx of one finger 
(manipulating finger) and along the side of the 

proximal phalanx of another finger (stabilizing finger). 
The manipulating finger is flexed and extended in 

order to roll the object along the length of the 
stabilizing finger. 

Rolling ο௓(A) 
 ௑(A) Successߠ

    

Rock (R) 
Round object is held between three or more fingers. 
Fingers are used to rotate the object about ventro-

dorsal axis, e.g. when unscrewing the lid of a bottle. 
N/A ߠ௓(NA) Success 

    

Rock II 
(RII) 

Elongated object is held in opposed grasp between 
three fingers. Two of the fingers are alternately flexed 

and extended in order to pivot the object about the 
third finger. 

N/A ߠ௒(NA) Success 

    

Radial Roll 
(RR) 

Object is held between the distal phalanx of one finger 
(stabilizing finger) and along the side of the proximal 
phalanx of another finger (manipulating finger). The 

manipulating finger is flexed and extended in order to 
roll the object along the length of the stabilizing 

finger.  

Rolling ο௓(A) 
 ௑(A) Successߠ

    

Index Roll 
(IR) 

Object is held between the distal phalanxes of two 
fingers. One finger is then repetitively flexed and 

extended in order to roll the object along the length of 
the other finger. 

Rolling ο௓(A) 
 ௑(A) Successߠ

    

Full Roll 
(FR) 

Object is held between distal phalanxes of two fingers. 
One finger is then repetitively flexed and extended in 
order to pivot object about a stationary point on the 

other finger. 

N/A ߠ௑(NA) Success 

    

Rotary Step 
(RS) 

Finger gaiting sequence during which a round object 
is incrementally rotated about the ventro-dorsal axis 

by at least 360 degrees. 

Finger 
Gaiting ߠ௓(A) Failure* 

    

Interdigital 
Step (IS) 

Finger gaiting sequence during which an elongated 
object is incrementally rotated  about a pivot point by 

at least 360 degrees. The rotation occurs about the 
ventro-dorsal axis. 

Finger 
Gaiting ο௒(A) Failure* 

    

Linear Step 
(LS) 

Finger gaiting sequence during which fingers are 
translated along the length of an elongated object. 

Sliding between fingers and object is generally 
required. 

Finger 
Gaiting, 
Sliding 

ο௑(A) Success 

    

Palmar 
Slide (PS) 

Elongated object is held in a palmar grasp. Two 
fingers, which are initially flexed with their distal 

phalanxes in contact with the object, are extended in 
order to translate object along the radio-ulnar axis. 

Application: removing cap from a pen. 

N/A ο௑(NA) Success� 

    
 


