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Abstract 

Functional ecology has increasingly focused on describing ecological communities based on 

their traits (measurable features affecting individuals fitness and performance). Analyzing trait 
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distributions within and among forests could significantly improve understanding of community 

composition and ecosystem function. Historically, data on trait distributions are generated by (1) 

collecting a small number of leaves from a small number of trees, which suffers from limited 

sampling but produces information at the fundamental ecological unit (the individual); or (2) 

using remote sensing images to infer traits, producing information continuously across large 

regions, but as plots (containing multiple trees of different species) or pixels, not individuals. 

Remote sensing methods that identify individual trees and estimate their traits would provide the 

benefits of both approaches, producing continuous large-scale data linked to biological 

individuals. We used data from the National Ecological Observatory Network (NEON) to 

develop a method to scale up functional traits from 160 trees to the millions of trees within the 

spatial extent of two NEON sites. The pipeline consists of three stages: 1) image segmentation, 

to identify individual trees and estimate structural traits; 2) ensemble of models to infer leaf mass 

area (LMA), nitrogen, carbon, and phosphorus content using hyperspectral signatures, and DBH 

from allometry; and 3) predictions for segmented crowns for the full remote sensing footprint at 

the NEON sites. The R2 values on held out test data ranged from 0.41 to 0.75 on held out test 

data. The ensemble approach performed better than single partial least squares models. Carbon 

performed poorly compared to other traits (R2 of 0.41). The crown segmentation step 

contributed the most uncertainty in the pipeline, due to over-segmentation. The pipeline 

produced good estimates of DBH (R2 of 0.62 on held out data). Trait predictions for 

crowns performed significantly better than comparable predictions on pixels, resulting in 

improvement of R2 on test data of between 0.07 to 0.26. We used the pipeline to produce 

individual level trait data for ~5 million individual crowns, covering a total extent of ~360 km2. 

This large dataset allows testing ecological questions on landscape scales, revealing that foliar 

traits are correlated with structural traits and environmental conditions. 
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1. Introduction 

Functional traits are biochemical, physiological and structural characters that influence organism 

performance or fitness (Nock et al., 2016). They are central to how organisms perform under 

different environmental conditions, interact with other species, and influence the ecosystems to 

which they belong (McGill 2006, Dwyer et al., 2017, Collalti et al., 2019). For individual 

organisms, traits influence core demographic parameters including survival and reproduction. At 

the species level, traits influence species distributions and how species respond to changes in 

land use and climate (Pollock et al., 2012). At the ecosystem level, organismal traits influence 

biogeochemical cycles and habitat availability for other species (e.g., Fisichelli et al., 2015). 

Given their central importance across multiple levels of organization, understanding how traits 

vary within and among species, across environmental gradients, and through time is essential to 

understanding many areas of ecology and predicting how ecological systems will change in the 

future (McGill 2006, Lawler et al. 2010, Valladares et al., 2014, Diaz et al., 2016).  

In trees, two commonly studied groups of traits are specific to (1) properties of leaves (e.g. , leaf 

mass per area, nitrogen and phosphorus concentration) and (2) the size structure of the full 

tree  (e.g. height, dbh, canopy size).  These characters hold different information about tree 

properties and how they link to forest functions. Nitrogen and phosphorus, for example, are 

fundamental proxies of leaf productivity because of their fundamental role in photosynthesis 

(Tang et al., 2018); LMA is a widely used indicator of different leaf anatomy and foliar structure 

strategies (Poorter et al., 2008); and tree height and dbh are indicators of tree structure and 

growth.  Having access to measures of both leaf and structural (or physiognomic) traits for 

individual trees across the landscape potentially unlocks the ability to explore different 

dimensions of biodiversity together, investigate how these properties influence each 
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other and affect competition among neighboring trees, and link to tree functions like growth and 

carbon exchange. However, exploring the links between leaf and structural traits across 

landscape is challenging, in part because of the differences in the design of their sampling 

approach.  

Historically, structural traits are collected for thousands of trees in targeted areas via 

programs such as the US Forest Inventory and Analysis, whereas studies of leaf chemical traits 

have relied on collecting samples of a few leaves from a small number of individuals. These 

values are used to estimate the average trait values for each species and to explore how 

ecosystem level leaf traits vary biogeographically or through time by assuming that all 

individuals of a species in a region share the same trait value (Swenson et al., 2010, Clark et al., 

2016). This approach is necessary because it is expensive and time consuming to collect 

individual level leaf trait data, but it fails to describe trait variation within species driven by 

evolution and plastic responses to the conditions an individual or population experiences 

(Messier et al., 2017, Niinemets et al, 2017, Muller et al. 2010, Nicotra et al. 2010, Albert et al. 

2010, Callaway et al. 2003). Moreover, since the number of leaf trait records is often orders of 

magnitude smaller than tree structural trait records, discrepancy in their sample size may affect 

the generality of relationships observed between leaf and structural traits at landscape scales. 

This limitation is magnified when studying changing environments (across space or time) 

because of bias in where the data for each species is collected. Data are typically collected in 

small subsets of the full range of conditions that species experience and are often selected in a 

biased manner that fits the purpose of the original studies (e.g., selecting individuals of a 

particular health status, size or species). Measuring traits systematically across geographic 

gradients would address this limitation, but is not feasible with traditional field methods 

(Anderson-Teixeira 2015). 

An alternative approach that allows continuous estimation of traits across the landscape is to use 

remote sensing data (Kerr & Ostrovsky, 2003, Homolova et al. 2013, Houborg et al., 2015). For 
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example, (a) hyperspectral remote sensing imagery is used to estimate the chemical composition 

of sunlit leaves by measuring light absorption and reflectance in the visible and near-infrared 

spectrum (Asner et al., 2017), and (b) light detection and ranging (LiDAR) is used to 

measure vertical and horizontal vegetation structure (Andersen et al., 2005). Leveraging remote 

sensing approaches allows for measuring trait information continuously 

at landscape scales. Together, LiDAR and hyperspectral data can be used to estimate many of the 

standard leaf and structural tree traits for trees (Serbin et al., 2014, Singh et al., 2015, Asner et 

al., 2017, Barbosa et al., 2017). 

Traditionally, remote sensing applications use either the pixel (the smallest resolution component 

of the image, Audebert et al., 2019) or the plot (a region of space typically containing multiple 

individuals, Singh et al., 2015, ) as the fundamental unit. This is a natural result of the structure 

of the remote sensing data combined with the difficulty of linking individual crowns in remote 

sensing images to field data, especially for small crowns harder to detect with airborne 

technology  (Jakubowski et al., 2013). However, pixel or plot-based output results in 

a disconnect between the remote sensing analysis and one of the fundamental biological units: 

the individual (Liu et al., 2016, De Agelis, 2018, Marconi et al. 2019).  Individual 

plants reproduce, interact with their neighbors, and exhibit plastic responses to environmental 

conditions at the individual scale. Populations of individuals evolve in response to natural 

selection. As a result, our understanding of many biological processes is grounded in the 

individual and many field-based survey methods focus on collecting data with individual trees as 

the primary unit of measurement. While forest inventories hold information of the individual 

trees ineach plot (Newnham et al., 2015), plot level estimates from remote sensing typically do 

not include information about the relative distribution of individuals and their traits within the 

plot, thus reducing the amount of information about community structure. To fully understand 

how traits vary across space and time, and are determined by biological processes, it is important 
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to develop approaches linking these fundamental characteristics to individual trees in ways that 

can be applied at scales of hundreds of km2. 

Despite its importance for biological research, few studies have attempted to model both leaf and 

structural traits using remote sensing at the individual level over landscape scales (but see 

Chadwick & Asner 2016, Martin et al., 2018). Even when crown level models are developed, the 

resulting leaf trait predictions are made for pixels, not crowns, due to the challenges in crown 

segmentation, poor spatial resolution of hyperspectral data, or misalignment between LiDAR and 

hyperspectral data (Blaschke, 2010). Similarly, there are few studies estimating structural traits 

(like crown height and area) at crown level, with traditional methods predicting tree height and 

cover at the plot level (Kaartinen et al., 2012). Perhaps as a result of these differences, structural 

and chemical leaf traits are not currently predicted together at large scales. Consequently, 

ecology lacks the large scale individual level trait estimates that are necessary to fully 

understand tradeoffs between leaf and tree structural traits, and to explore how trait variability 

relates to species and the environment. Data from NEON Airborne Observatory Platform NEON 

(AOP) provide co-registered, georeferenced, and atmospherically corrected high resolution 

hyperspectral data and LiDAR, whose integration represents a great opportunity to circumvent 

these challenges. 

To address this gap, we developed a pipeline for making crown level trait predictions at scales of 

~400 km2 with associated uncertainties on both crown segmentation and trait estimation. 

Building on Chadwick & Asner (2016) and Martin et al. (2018), we: (1) identify individual 

crowns in remote sensing imagery that are associated with field-based trait measurements; (2) 

build models relating the remote sensing data to the field-based trait measurements; and (3) 

apply those models to estimate trait values and examine patterns of tree structural and chemical 

traits from individual to landscape scales. We advance the state of the art (Chadwick & Asner 

2016, Martin et al. 2018) in this pipeline by using crown-level models and comparing them to 

pixel- and crown average-level models, directly estimating uncertainty in trait predictions using 
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likelihoods, and predicting traits at the crown-level. Finally, derived data products on the 

location, size, shape, and leaf traits of millions of individual trees distributed over tens of 

thousands of hectares. 

2.   Methods 

In our pipeline for predicting crown level leaf and structural traits from remote sensing we used: 

1) field measurements of traits for building and evaluating models; 2) data on the shape and 

location of individual tree crowns (ITCs) for building accurate models and assessing uncertainty 

in crown segmentation algorithms; and 3) high resolution remote sensing LiDAR (for 

crown segmentation and estimation of structural traits) and hyperspectral data (for estimation of 

leaf chemical traits). To obtain these components, we combined National Ecological Observatory 

Network’s (NEON)  airborne observatory data with field data we collected at NEON sites on leaf 

traits as well the location and shape of individual tree crowns.  

2.1.         Site descriptions 

The study was conducted at two core terrestrial NEON sites; Ordway Swisher Biological Station 

in Florida (OSBS, NEON Domain 03) and the Oakmulgee Management District of Talladega 

National Forest in Alabama (TALL, NEON Doman 08). The two sites (Appendix S1: Figure S1) 

have a mix of deciduous, evergreen, and mixed forest types (Homer et al., 2012). Upland areas at 

both sites are dominated by fire-tolerant oaks and pine species, primarily longleaf pine (Pinus 

palustris). The longleaf pine at OSBS forms open stands whereas the longleaf pine canopy at 

TALL is more closed. Lowland areas near lakes or wetlands (OSBS), and riparian areas (TALL) 

are dominated by closed canopy hardwood forests (Beckett and Golden 1982, Cox and Hart 

2015).  

2.2.         Remote sensing data 

https://mc.manuscriptcentral.com/ecologicalapps?XIK_TAGACT=DOWNLOAD_FILE_BY_NAME&XIK_DOCU_ID=38258574&FILE_TO_DOWNLOAD=http://www.jstor.org/stable/pdf/4033029.pdf?DOWNLOAD=TRUE&PARAMS=xik_DUjCVPGj9cWkLKcx18eVjVRCxX4tYNtKXNgDoZfZR5Kj9ktvYdEcmk6j1Ej98v3MnGtTtnLiwZSJcNDu6GPZ74JG7ZqMEhtSY1PFMtSXnWYRQ32pY1fKD2nLKaGA3fsuU69wSMGzLj7Ere5GSkwbDvEUMDfn6nr4bwyhwob7EGLSTPyyJfMW2MrBUqXcsKoBj1iJ2fwyG8HMvyB3J5KGtDvM1jdsy4gPbRd6wyjJjkGDSH4a
https://www.sciencedirect.com/science/article/pii/S1470160X14005780
https://www.sciencedirect.com/science/article/pii/S1470160X14005780
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All aerial remote sensing data products were provided by the NEON Airborne Observation 

Platform (NEON-AOP, Table 1). We used data from the May 2014 flight for OSBS, and the 

June 2015 flight for TALL. We used the raw L1 data products: (1) “classified LiDAR point 

cloud”, and (2) “hyperspectral surface reflectance” data, orthorectified and atmospherically 

corrected (details in data.neonscience.org/api/v0/documents/NEON.DOC.001288vA). To 

reduce the effects of non-lambertian diffuse scattering, we applied the topographic 

and bidirectional reflectance distribution function (BRDF) corrections by adapting scripts from 

the HyTools repository (https://github.com/EnSpec/HyTools-sandbox) to our dataset.  The 

LiDAR data consist of 3D spatial point coordinates (4-6 points/m2) which provides high 

resolution information about crown shape and height. These data are released in 1 km x 1 km 

tiles. Hyperspectral reflectance data consist of 1m2 spatial resolution images with 426 channels 

(or bands), each one collecting the magnitude of reflectance in 5 nm wide interval of 

wavelengths, ranging from visible to near infrared light (from 350 to 2500 nm). These images 

were provided as multiple ~15 km x 0.8 km flight lines with a total area of ~215 km2 in OSBS, 

and ~145 km2 in TALL. The hyperspectral images were provided as “prototype” data, pre-

processed differently than post 2017 data, and delivered on hard drives. Prototype airborne data 

showed misalignments between LiDAR and hyperspectral products, (as well as across 

hyperspectral flightpaths), on the scale of 1-2 meters (Marconi et al. 2019, Appendix S1: Figure 

S6), primarily affecting pixels at crown borders. Despite the prototype data being potentially of 

lower quality than the newer NEON AOP data, we used it to match the collection dates of the 

field data. The only difference with current L1 and L3 data is in the nomenclature of the .h5 data 

structure, making the methods presented here suitable with more recent NEON data.  

  

2.3.         Field Data 

http://data.neonscience.org/api/v0/documents/NEON.DOC.001288vA
https://github.com/EnSpec/HyTools-sandbox
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During this project, leaf trait data collected by the NEON Terrestrial Observation System (TOS) 

were not available. Instead, we used a dataset of leaf samples collected for 157 trees, many of 

which were near NEON inventory plots that are randomly located across the study site and 

stratified by land cover type. The sampled trees were located away from major roads, had 

crowns visible from airborne aircraft and identifiable in the image, and had sunlit branches that 

were accessible for leaf collection. Trees were not sampled within NEON plots to avoid 

disturbing NEON’s long-term monitoring efforts.  As wide a range of species as possible were 

collected, including some rarer species that occured far from NEON plots (Appendix S1: Figure 

S2). 

Trait data were collected in the early part of the peak growing season in 2015. 

Specifically, 81 individual trees (of 17 species) were sampled from OSBS in May-June 2015, 

and 78 individuals (26species) in July 2015 from TALL. Leaves were sampled from the sunlit 

portion of the canopy with a shotgun. Immediately after collection, the leaves were placed in a 

labeled plastic bag and stored in a cooler until they could be processed in the field lab within 2-4 

hours of collection. The collected leaves were randomly sampled for further processing in two 

ways. First, a sample of leaves (at least 20 grams of fresh leaves) was analyzed for nitrogen 

(%N), carbon (%C), phosphorus (%P) by weight, according to standard protocols, with the 

exception that petioles were removed (Murphy and Riley 1962; Cornelissen et al. 2003). Second, 

a sample was processed for LMA using the Carnegie Institute for Science spectronomics 

protocol (https://gao.asu.edu/spectranomics, Asner et al., 

2011).  Wholeleaves were weighed then scanned on a flatbed scanner to determine leaf area. The 

leaves were then dried at 60 C for at least 72 hours and reweighed to get the dry leaf mass. For 

needle-leaf species, a sample of individual needles (at least 3 fascicles per sample) was scanned 

and weighed. The needled dimensions of a subset of the samples were also measured with 

calipers to calculate total surface area. These measurements showed good agreement with the 
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projected surface area from the scans (R2 > 0.75). This data and complete metadata will be added 

to TRY database v.6 (Kattge et al., 2020). 

Individual trees were mapped in the remote sensing images using a field tablet and GIS 

software. Mapping was done on 2014 imagery for OSBS, and on 2015 imagery for TALL. This 

process involved mapping individual tree crowns on the hyperspectral image in the field to 

ensure the sampled trees matched directly with image pixels (Graves et al., 2018a). This 

individual tree crown (ITC) data provides the most accurate link of field measurements with 

pixels from remote sensing spectral data and was used to quantify uncertainty in crown 

segmentation algorithms.  

2.4.            The algorithm pipeline 

We developed a modular pipeline based on three steps: (1) build and evaluate crown 

segmentations from LiDAR data (section 2.6); (2) develop an ensemble of statistical models to 

infer leaf mass per area (LMA, g m-2), nitrogen (%N), phosphorus (%P), and carbon (%C) per 

tree from hyperspectral data (section 2.5), and models to estimate structural traits [diameter at 

breast height, DBH (cm), crown area, CA (m2) and stem height, H (m)] from LiDAR data; (3) 

make predictions for every individual tree crown in both NEON sites. For each crown, we also 

extracted values of elevation, slope and aspect provided as NEON AOP data products (Table 1), 

aiming to build a comprehensive dataset including topographic, leaf chemical and tree structural 

traits for any tree detected within the AOP footprint. We limited our analysis to individual tree 

crowns taller than 2 meters and wider than 1m2. Since the field traits dataset was for sunlit 

foliage, we  predicted traits only from the upper portion of the canopy. The structure of the 

pipeline presented in this paper is summarized in Figure 1.  

2.5.         Leaf chemistry model 
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After correcting the hyperspectral data with the bidirectional reflectance distribution function 

and topographic correction, we extracted all pixels within the boundaries of the field-

delineated ITCs.Shadowed or low vegetation pixels within the ITCs were removed using 

thresholds for both a near infrared band (reflectance in 860 nm < 0.3) and the Normalized 

Difference Vegetation Index (NDVI < 0.7) (Appendix S1: Figure S.3) Colgan et al., 2012, 

Graves et al., 2016). We normalized the spectral values for each pixel by dividing each spectral 

vector by its root sum of squares. We used this method to further reduce the effect of peripheral 

light and shadows within each crown (Singh et al., 2015, Feilhauer et al., 2010).  

Field data were split at the tree level, and stratified by species, into training (n = 115), validation 

(n = 18), and test sets (n = 24). Since the two sites have similar species composition, we 

aggregated the two datasets to build a joint model. As is common for trait studies, our field data 

on foliar traits was averaged to a single value for each individual tree. Most algorithms require 

associating a single vector of predictor variables (i.e. the spectra) to a single response value (e.g. 

tree crown or plot). However, individual crowns contain multiple pixels, and crowns vary in the 

number and quality of these pixels. In each crown, some pixels will be better for linking traits to 

hyperspectral signatures because they reflect light primarily from leaves, whereas other pixels 

include reflectance from branches, understory, or ground. To address this, we used a bagging 

approach (Song et al., 2013) that takes advantage of different pixel characteristics by training, 

weighting, and ensembling models fit to different subsets of pixels. This approach weights the 

predictions from models fit to different pixels to produce a more generalizable and accurate 

representation of the relationship between foliar traits and their spectral signatures. To capture 

the range of possible models from different subsets of  pixels in each crown, we 

randomly sampled one pixel from each training crown 1000 times, and used the resulting 1000 

vectors of pixels (one pixel for each crown in the dataset) to build 1000 independent partial least 

squares generalized linear regression (PLS-GLR) models (Bastien et al., 2005, Bertrand et al, 

2014). Instead of the regular PLS regressions used in most trait modeling (e.g., Singh et al., 
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2015, Wang et al., 2020, Chadwick et al., 2018) we used PLS-GLR because it uses maximum 

likelihood estimation to calculate the regression parameters. This is an improvement over current 

approaches because it: (1) allows the calculation of AIC  for model averaging (Burnham & 

Anderson 2002); (2) provides a robust measure of uncertainty in the form of a prediction interval 

(Christoffersen, 1998), which allows estimating the range of out of sample predictions rather 

than the range of mean response; and (3) does not require bootstrapping, making the method 

more scalable. We used a log-normal link function for all models to reflect the fact that all traits 

are positive numbers. We treated site (OSBS versus TALL) as a one hot encoder fixed 

effect (Harris & Harris, 2010) to account for site specific ancillary conditions. The number of 

components included in each model were determined using 5-fold cross-validation (CV) using 

the PRESS statistic (Tapley, 2000) on the training set. Models for each leaf trait were trained 

independently.  

We compared four modeling strategies that varied in how the models were developed and how 

the models were applied for testing (Appendix S1: Table S1).  The models are labelled based on 

how the model was applied as “pixel based” (applied to individual pixels) or “crown based” 

(applied to segmented crowns).  The models were built as follows: 1) a pixel-based approach 

with the spectra of a single pixel randomly extracted from each crown (SPM). This approach 

represents the case in which only the coordinates of the leaf sample are available, and 

spectral information can be extracted by sampling from a pixel corresponding to the stem or leaf 

location; 2) A pixel based approach (hereafter referred as the “ensemble pixel based model” (or 

EPBM) that included information on crown identity by labelling each pixel with an individual 

crown identifier and using it to ensemble a selection of 100 SPM models using multi-model 

averaging based on delta AIC (Burnham & Anderson 2002). In this step, we selected the 100 

models for each trait that best performed on the independent validation dataset (n =15). This step 

was fundamental to: (a) drop models that performed worse than chance (R2 < 0) and therefore 

held not meaningful relationships; (b) massively reduce the computational resources required to 
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scale predictions to hundreds of km2.This approach requires crown boundaries information for 

training but not for application, since it applies to individual pixels; 3) a simple 

crown average approach, hereafter “Crown Average Spectra” (CAS), where each individual tree 

was represented by the average of the spectra across all green pixels (i.e. pixels with NDVI >0.7 

and NIR > 0.3) within the crown polygon;  4) A crown average approach, that we refer to as the 

“Crown Ensemble Aggregation Model” (CEAM), consisting on averaging predictions from the 

EPBM for all sunlit pixels belonging to individual tree crown polygons.  We tested the 

performance of each approach in two ways, on pixels extracted from (1) ground delineated 

crowns (Graves et al., 2018b), and (2) algorithmically delineated crowns (Silva et al., 2016). This 

step was fundamental to quantify the effect of uncertainty in crown detection 

and segmentation on predicting leaf traits at crown level across the landscape where no field 

delineated crowns are available.  

All models were tested on the 24 crowns withheld in the test dataset. The test data were not used 

at any phase of the fitting or the ensemble process. Accuracy was evaluated using the predictive 

coefficient of determination (R2) and the root-mean-square error (RMSE). The coefficient of 

determination produces values between 1 and negative infinity, where negative values indicate 

that the model predictability is lower than the sample average. As such, negative 

R2 values indicate that the statistical model did not learn any meaningful information from the 

data. A value of 1 indicates that predicted values perfectly match observations. We evaluated the 

uncertainty of predictions for each model using the coverage of the 95% prediction interval 

(95PI). The prediction interval is the rangeof values that is expected to contain 95% of the 

observed data points, and therefore a model with good estimates of uncertainty should have 

approximately 95% of the test data falling within this range. Since the CEAM was generated by 

the ensemble of the 100 best SPMs, we estimated the 95PI for CEAM predictions by averaging 

the error functions for the same 100 SPMs. We used the same data split, data transformation and 

PLS-GLR parameterization for all models. For pixel-based estimations (SPM and EPBM), we 
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compared ground measures of LMA, N, C, and P with predictions from each pixel in the test 

dataset. For crown-based estimations (CAS and CEAM), we averaged pixel-based predictions 

belonging to all of the pixels in the crown. The same rationale was used for comparing pixel and 

crown-based uncertainty.  

2.6.         Tree structural traits and crown segmentation 

We used the lidR R package (Roussel & Auty, 2017) to process point cloud LiDAR data to 

create a 0.5 m2 resolution canopy height model (CHM) and produce algorithmically 

delineated crowns.Despite there was little difference to the 1m2 resolution of NEON CHM, we 

chose an higher resolution CHM to produce smoother polygons and leverage the information in 

regions where the point cloud was more dense.  We used the CHM to determine the number of 

trees in the scene (i.e. tree detection) using local maxima filtering (Popesco et al., 2004). We 

tested three alternative methods for crown segmentation (Dalponte & Coomes 2016, Silva et al., 

2016, and a watershed algorithm as in Barnes et al., 2014) and chose the best performing one to 

generate crown boundaries (Appendix S1: Table S2, Appendix S1: Section S1). To evaluate 

accuracy of crown detection and segmentation on the targeted landscapes, we calculated: (1) an 

estimate of precision from all predicted crowns whose boundaries overlapped with the field 

ITCs; (2) pairwise Jaccard index coefficient (Real & Vargas, 1996), which represents the 

intersection over union between the areas of two polygons, and is the standard benchmarking 

metric for image analysis (Rezatofighi et al.,  The Jaccard index was calculated by comparing 

ITCs collected in the field with the single most overlapping predicted crown(Marconi et 

al.,  Field delineated crowns that do not overlap with any crown segmented by the algorithm 

were labelled as undetected. 2019). We estimated tree structural traits from the derived polygons 

and the CHM. Crown area (CA) was calculated from the polygon geometry using the geoPandas 

python package (https://geopandas.readthedocs.io/). Tree height (H) was extracted from the 

CHM as the maximum height within each ITC. Diameter at breast height (DBH) was calculated 
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using an allometric regression model relating the log-transformed DBH taken from 

the NEON woody plant vegetation structure data to the log-transformed height and canopy 

area of the matching algorithmically delineated crowns for 566 individual stems. Delineated 

crowns were matched to field-mapped stems in the NEON dataset visually (Appendix S1: Table 

S3). 

2.7.          Building individual-level derived data for full flight paths 

Each remote sensing image was split into 1 km2 tiles to optimize computational resources and 

allow parallelization on hundreds of cores. We pre-processed each tile using the same filters used 

for developing the models. To make predictions we used the EPBMs ensemble models to 

produce rasters of LMA, %C, %P and %N predictions and the 95PI for each suitable pixel and 

averaged them to crown level by using algorithmically delineated crowns.  Crown-based 

predictions were achieved by averaging the values of all suitable pixels within the 

corresponding predicted ITC boundaries. For those areas where the ITC overlapped with more 

than one flight path (flight paths overlap by ~30%), we averaged the crown-based predictions 

from both flight paths.  

We stored flight-paths level maps of traits into raster data-products. The crown level dataset was 

then compiled as a comma delimited file containing all the geometry information to rebuild 

polygon shapes and locations. The data is distributed in a Zenodo archive 

(http://doi.org/10.5281/zenodo.3991815). 

  

3. Results 

We chose the crown segmentation algorithm described in Silva et al. (2016) (Appendix 

S1: Table S2) to produce algorithmically delineated crowns. The approach detected ~88% of 

the field crowns (Appendix S1: Table S5), but showed lower accuracy in estimating the shape 
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and size of the canopies for individual trees, with Jaccard Index ranging between 0 

(for undetected trees) and 0.81, with an average of 0.35. Crowns identified by the algorithm were 

generally larger than those delineated in the field, resulting in overestimated crown 

areas (especially for smaller trees) and weak correlations between field data and algorithmic 

crown areas (Figure 2).  Low goodness of fit in predicting Crown Area (CA) was exacerbated by 

uncertainty in alignment with field and remote sensing data. For example, field crowns were 

delineated on the hyperspectral images to incorporate only the pure pixels of the crown (Graves 

et al., 2018b, Appendix S1: Figure S4, Appendix S1: Figure S5) leading to potentially 

underestimating the full extent of tree crown size. Moreover, visual assessment of paired field 

and algorithmically delineated crowns shows shifts by 1-2 meters that likely 

result fromimperfect alignment between LiDAR and hyperspectral data (Appendix S1: Figure 

S.6; Marconi et al. 2019), further affecting uncertainty in field to algorithmically estimated 

crowns. Estimates of other structural traits from the algorithmic tree crowns were better than 

crown area estimates. Height showed the highest correspondence between field and remotely 

sensed measures (R2 = 0.90 for trees higher than 3m). Despite low accuracy in its predictions, 

CA showed a significant effect in estimating DBH from LiDAR (Appendix S1: Table S3). 

However, tree height was the most important variable in predicting DBH, which therefore 

resulted in good estimates for both sites (0.62 R2), in the range of other recent appications (0.59 

in Dalla Corte et al., 2020, 0.62 to 0.83 from Yao et al., 2012).   

We compared the four methods - two applied to pixels (the single pixel methods, SPM, and 

ensemble pixel methods, EPBM) and two applied to crowns (the crown average, CAS and the 

crown based ensemble methods, CEAM) - using RMSE. When tested on pixels extracted from 

field delineated crowns, CEAM performed the best for %N and %P (RMSE of 0.20 and 0.026), 

and CEAM and EPBM performed equivalently for LMA (RMSE of 40.3 and 40.8 respectively) 

(Figure 3A, Appendix S1: Figure S7).  CEAM explained 75% of the variance in LMA, 66% of 

the variance in %N, 46% of the variance in %P, and 41% of the variance in %C (Appendix 
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S1: Table S4, Appendix S1: Figure S8). These results were comparable to those obtained by 

Martin et al. (2018) for trees in Borneo (71%, 46%, 44%, 48% respectively for LMA, %N, %P, 

%C). Despite “site” ancillary information was an important feature for all models, its influence 

on traits predictions was always relatively low compared to reflectance (as shown by 

the models’ parameters, Appendix S1: Figure S9). The root mean squared error (normalized by 

traits observations range, NRMSE) was always between 8 and 16% of the range of the field 

observations, meeting the quality threshold recommended by Singh et al. (2015). 

The ensemble approaches (CEAM and EPBM) performed better than methods based on pixels as 

the fundamental unit (SPM) or simple averaging of all green pixels in a crown (CAS) when the 

assessment was on field delineated crowns (Appendix S1: Table S4; Figure 3A).  Few 

individual SPMs performed better than the EPBM ensembles (Appendix S1: Figure S10) and 

when individual pixel models did outperform the ensemble, they usually were not among the 

best SPM models (i.e., the models with the lowest delta AIC in the validation). This suggsts that 

EPBM provides the best method for making out-of-sample predictions at the pixel level. CEAM 

generally produced the best estimates of uncertainty. CEAM 95PI showed an average coverage 

of 95% of held out observations, CAS 94%, EPSM 91%, Plot and SBM 90%, with the ideal 

value being 95% (Figure 3D).  

The CEAM approach performed best when making predictions using pixels extracted from 

algorithmically delineated crowns (Figure 3). Compared to when crown boundaries are collected 

from the field, the accuracy of predictions using algorithmically delineated crowns was reduced 

due to the uncertainty associated with crown segmentation. However, CEAM showed the lowest 

reduction in accuracy compared to the other approaches (ΔNRMSE ~ 2%, Figure 3C), resulting 

in the lowest NRMSE for all traits (Figure 3B). 

Scaling algorithmic crown segmentation and trait estimation to the full extent of the NEON 

remote sensing data yielded trait predictions for approximately 5 million canopy trees for the two 
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sites combined (Figure 4, Appendix S1: Figure S11, S12, S13). Landscape patterns in traits are 

evident, including east-west gradients in LMA, %N, and %P at OSBS (Figure 4). At TALL, 

lower LMA and higher %N and %P are found in a dendritic pattern associated with the stream 

network (Appendix S1: Figure S12). Some traits show a bimodal distribution at each site, which 

is probably related to differences in needleleaf versus broadleaf species but would need to 

be further tested with trait estimation coupled with species predictions.  On average, OSBS 

showed higher %N and %P compared toTALL (Figure 5). Distributions of LMA, %N, and %P in 

OSBS shifted to higher values than TALL, following patterns observed from the field data 

(Figure 5, Appendix S1: Figure S15). Assessing correlations between estimated structural traits, 

leaf traits, and abiotic environmental conditions showed strong correlations between LMA, %N, 

and %P, consistent with the leaf economic spectrum (Wright et al., 2004) (Appendix S1: Figure 

S14). Of the environmental variables, elevation had the strongest relationship with leaf traits 

with leaf N and P decreasing and LMA increasing with elevation (Figures S.15, S.16). Leaf traits 

and tree structure were correlated at OSBS (e.g. LMA with tree H, figure 5B) but not TALL.   

4.   Discussion 

The individual organism is one of the fundamental units of biology. As a result, studying the 

distribution of individuals and their traits across space and through time is central to many 

aspects of ecology. However, collecting individual level data at the large scales required for 

many ecological questions is challenging. To address this limitation we develop a fully 

automated modular pipeline to link remote sensing products from the National Ecological 

Observatory Network (NEON) to data collected in the field, convert the remote sensing data into 

estimates of the leaf and structural traits for all canopy trees detected at landscape scales, 

and estimate the traits for millions of individual trees in an open and accessible format (Cassey et 

al., 2006, Hampton et al., 2016) for use by the broader scientific community.   
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We found that modeling and predicting leaf traits at the individual crown level resulted in 

improved accuracy and uncertainty in the predictions compared to pixel based approaches 

(Figure 3). Linking pixels to crowns allows the ensembling of models built from the 

different pixels making up the crowns. Different pixels contain different combinations of leaves, 

branches, understory and ground, which affects the underlying chemometric relationship 

between foliar traits and their spectral signature. Weighted ensembling provides one way to 

address this, by allowing the models to identify the best combinations of pixels for relating traits 

and hyperspectral signatures. Aggregating pixel predictions to the crown level may also reduce 

the influence of outlier pixels. Our method produced models with predictive power comparable 

to two other crown-based estimation methods (Barbosa and Asner, 2017; Martin et al., 2018), 

suggesting that the performance of these approaches may generalize beyond the current study. In 

addition to providing robust leaf trait estimates, crown level methods allow the simultaneous 

estimation of structural traits, allowing these two sets of traits to be analyzed together at large 

scales. 

2019). This is likely because height is directly measured by LIDAR and height was the most 

important factor in the allometric models used to predict DBH. 2018, Jucker et al. 2016). While 

our crown-based methods were effective for estimating a number of leaf and structural traits, 

there is substantial uncertainty even for the best performing traits. Quantifying this uncertainty 

provides information on the range of likely trait values for each individual and allows this 

uncertainty to be propagated when using these derived data values to test scientific hypotheses 

(Miller-Gulland and Shea, 2017). We used methods for leaf trait estimation that allowed us to 

estimate uncertainty (pls-GLR) and the crown-based method (CEAM) provided the best 

uncertainty estimates (Figure 3, Appendix S1: Table S.4). Current methods for delineating 

crowns do not include explicit measures of uncertainty (Dalponte & Coomes 2016, Silva et al., 

2016). It is important for future methods to address this limitation because comparisons to field 

data suggested high uncertainty in segmentation.  
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One of the challenges for crown level approaches is that they rely on crown segmentation 

algorithms to identify the location and size of individual trees. While we used the best 

performing crown segmentation the algorithm from a recent methods competition (Marconi et al. 

2019) and had reasonable correspondence between the presence of an algorithmic crown and 

each field crown, the algorithmic crowns averaged only 35% overlap in area with the most 

similar field delineated crown. Heterogeneity in point cloud density and misalignment between 

lidar and hyperspectral sensors could contribute to misalignment between field and 

algorithmically delineated crowns (Marconi et al, 2019, Kamoske et al., 2019, Appendix 

S1: Section S1). Despite this uncertainty, estimates of DBH and height were well correlated with 

field values. Therefore data derived from our pipeline should be useful for assessing estimates of 

individual tree biomass by applying allometric functions linking biomass to DBH and height 

(Graves et al. 2018a). Crown area was more susceptible to the segmentation uncertainty, but is 

also more sensitive to small errors in segmentation and CHM resolution(Appendix 

S1: Section S1). 

Uncertainty in crown segmentation can also have cascading impacts on the estimation of leaf 

traits, which was tested by comparing results from field versus algorithmically delineated tree 

crowns. Prediction accuracy is generally lower when using algorithmically delineated crowns 

because the pixels used for making predictions both include pixels that are not in the true crown 

and exclude pixels that are in the true crown. However, these decreases in accuracy were 

generally quite small, with decreases in NRMSE of <0.05 across all methods. The crown-based 

ensemble method (CEAM) was particularly robust to this uncertainty, with the smallest increases 

in NRMSE and all traits maintaining NRMSE below Singh et al. (2015)’s threshold (Figure 

3C, Appendix S1: Table S4). This robustness may result because the weighted ensembles in 

CEAM provide the ability to weight pixels algorithmically, allowing it to ignore pixels from 

outside of the true crown. 
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Generating derived individual level data on leaf and structural traits at the landscape scale allows 

trait patterns at these scales to be effectively assessed. While a complete analysis of the 

spatial distribution of tree traits is beyond the scope of this paper, our results 

showed some general patterns worth future investigations. LMA, %N, and %C showed bimodal 

distributions at both sites (with %N peaks particularly close in OSBS), likely because pines and 

oaks, the most common needleaf and broadleaf genera respectively at these two sites, occupy 

distinct regions of the worldwide Leaf Economic Spectrum (LES)(Wright et 

al., 2004). Correlation patterns between LMA and %N, %N and %P, and LMA and %P 

match the global scale patterns observed globallyin the LES. Despite the limited number of 

species and geographical extent, both sites showed range and spread of LMA, %N and %P 

overlapping with most of the global range of the worldwide LES tradeoffs (Appendix S1: Figure 

S14). This suggests that variation in the local environment could be driving large intra-species 

variability of leaf traits, while conserving the general trade-offs observed across species (Asner 

et al., 2016). Among the environmental variables we tested, elevation showed the strongest 

correlation with leaf traits (Appendix S1: Figure S16, Appendix S1: Figure S17), possibly 

because elevation represents a proxy of different soil conditions in these sites, which can affect 

both species distributions and leaf traits (Walter & Gerlach, 2013). For example, small 

differences in elevation at OSBS often means transitioning from drained sandhill (that favor 

pines) to marshy and richer soils that favor the establishment of large-crowned broadleaf 

species, rich in foliar %N and %P (Bodker et al., 2015). 

Producing derived data at the individual level also facilitates landscape scale assessments of 

relationships between leaf and structural traits at the level of individual organisms. For 

example, although the two sites have similar species composition, our results showed different 

correlational patterns between structural (height and DBH) and chemical traits (LMA, %N, %P, 

%C) (Figure 5, Appendix S1: Figure S.17), especially the relationship between height and LMA 

(r = 0.24 in OSBS, r = -0.08 in TALL). Possible explanations for these relationships may be 
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related to differences in management histories across patches of the landscape that can influence 

species assembly, successional stages, which are important determinants of tree size and leaf 

traits (Sameulson and Stokes 2012; Ishida et al. 2005). Our pipeline, integrated with further 

remote sensing derived information (e.g. species identities) and local history (e.g. management 

and fire history) could be used to address how these drivers affect local distribution of plant 

traits, their trade-offs, and their effects on the ecosystems across a multitude of landscapes. 

Our crown-based approach to modeling and predicting tree traits produces individual data similar 

to that collected in the field. This approach has a number of benefits. First, it will make data 

integration with field-based forest and trait surveys easier because both derived remote sensing 

data and field surveys will be composed of the same fundamental unit (individual trees). Second, 

crown-based approaches are likely better for aligning trait data across years. The same pixel in 

two consecutive years could vary significantly in a trait because of small errors in spatial 

alignment of pixels through time, whereas large crown-level regions will be more robust to small 

errors at the edges of the crown. Moreover, multi-temporal and multi-sensor images can 

be potentially leveraged to align and improve segmentation for crown objects captured in the 

same scene (Bovolo & Buzzone, 2017, Sumbul et al., 2020). Finally, this approach allows a 

more compact representation of derived trait data in tabular formas spatial polygons instead of 

rasters. While this will not be the best representation for all analyses, for individual level 

analyses it results in vastly reduced storage computational requirements compared to raster data.  

Thanks to the modular nature of our approach, crown segmentation can easily be substituted with 

methods based on RGB (Weinstein et al., 2020) or hyperspectral imaging (Dalponte et al., 2016) 

when LiDAR data is poor or not available. Yet, individual level approaches are limited by data 

availability and are not suitable for addressing ecological questions at continental to global scale. 

High resolution airborne remote sensing is still limited to relatively few sites, while the 

resolution of AVIRIS or satellite data is more appropriate for plot level analyses (e.g., Singh et 

al. 2015, Martin et al. 2018, Ma et al. 2019). However, these two approaches can be potentially 
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integrated to scale sub-pixel properties from satellite data, and merge the gap between local, 

regional and global scale ecological information, and better address emergent cross-scale 

ecological questions related to variation of leaf traits, diversity and functions (Carmona et al., 

2016). 

The data produced by our individual level pipeline could be extended by including predictions 

for species identity, other leaf and structural traits, environmental variables, management, or 

disturbance. Moreover, our pipeline can potentially be used to extract ecological information for 

every tree that can be detected across all NEON AOP sites for the full life of the observatory. 

This will produce a publicly available, spatially explicit database of detailed ecological 

information for hundreds of millions of trees across the US that could be fused with other 

continental data (e.g. Forest Inventory and Analysis) and integrated to area based analyses from 

satellite data, to address cross scale functional ecological questions 

(http://doi.org/10.5281/zenodo.3991815). Such data could be used to further understand the 

biology behind trait tradeoffs and investigate cross scale ecological processes and patterns from 

individual to landscape to continental scale.  
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Table 1. Data products and sources (National Ecological Observatory Network, 2016). 

Information about data products can be found on the NEON data products catalogue 

(http://data.neonscience.org/data-product-catalog).  

Name NEON data product ID Data 

date 

How it was used 

Spectrometer orthorectified 

at-sensor radiance  

NEON.DP1.30008  2014 

and 

2015 

Hyperspectral images used to 

model foliar chemical and 

physical properties   

Discrete return LiDAR point 

cloud  

NEON.DP1.30003.001  2014 

and 

2015 

Crown segmentation and 

calculation of tree height 

AOP L2 and L3 data products 

(Albedo, Elevation, Slope, 

Aspect) 

NEON.DP2.30012.001,  

DP3.30024.001,  

DP3.30025.001 

2014 

and 

2015 

Link modeled tree crown 

properties with other NEON-

AOP data products 

Woody plant vegetation 

structure 

DP1.10098.001 2014-

2018 

Build allometric relationship to 

infer DBH from Crown Area 

and Tree Height 

Field ITC Graves et al. 2018b 2017 Validate crown segmentation, 

define tree objects.  

   

http://data.neonscience.org/data-product-catalog
http://data.neonscience.org/data-product-view?PARAMS=xik_9nAtp6XMFEEt71J8PAH659Hd8CaLWRcufkxoiBpPHZRfTYzo3Uyi5DVPn9nQqUHj8L
http://data.neonscience.org/data-product-view?PARAMS=xik_9nAtp6XMFEEt71J8PAH659RJdMdAS84bZXqTL3kcb2UqEo2uzXtgTNm5gVH2eXooWf


 

38 

 

Figures  

 

 

Figure 1. Workflow of the pipeline following Unified Modeling Language (UML). Left side 

shows the method to build and test three modeling approaches: PBM (pixel-based model), EPBS 

(ensemble of pixel-based models), CEAM (crown ensemble averaged model). Right side 

represents the part of the pipeline dealing with scaling, fusion, and public distribution of derived 

data. NEON L3 products fused to the derived traits data are: Aspect (DP3.30025.001), Elevation 

(DP3.30024.001), and Slope (DP3.30025.001). 
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Figure 2. Comparison between observed and predicted tree structural traits for algorithmically 

delineated crowns corresponding to ground delineated ITCs: (A) tree crown height (m), (B) tree 

diameter at breast height (cm), and (C) tree crown area (m2). Yellow and blue points represent 

OSBS and TALL site data points respectively. Black diagonal is the 1:1 line. 
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Figure 3. Model evaluation and comparison of pixel based (SPM, red), ensemble pixels (EPBM, 

grey), crown spectra average (CAS, yellow), and crown ensemble average (CEAM, blue) 

predictions on an independent test set of 24 observed crowns for %P, LMA, %N and %C. (A) 

Evaluation and comparison of RMSE from models built on pixels extracted from ground 

delineated crowns; (B) Evaluation and comparison of RMSE from models built on pixels 

extracted from algorithmically delineated crowns; (C) difference in performance (RMSE) 

between models tested on pixels extracted from field and algorithmically delineated crowns. 

Positive values mean that for that comparison model built on automatically delineated crowns 

performed better. (D) Coverage of the 95 predictions intervals on held out data for the 

four models (LMA, N, P and C). Dash-dotted line represent the ideal coverage value of 95%. 
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Figure 4. Example of predictions at the landscape scale for individual tree crowns (ITC) at 

Ordway Swisher Biological Station (OSBS). In the center, predictions of tree height for ~2.5 

million trees within NEON AOP footprint (215 km2), plotted in a quantile scale using the viridis 

color palette. Cropped images represent a ~1 km2 detail of LMA, %N, %C, and %P predictions 

at scale. Expected values are presented on a quantile scale using a spectral color palette (with 

lower values in red, and higher values in blue). Range of the 95% probability intervals for the 

same area are presented on the intensity scale of blues (with lower values in white, and higher 

values in deep blue). 
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Figure 5. Leaf chemical distributions and relationship with tree height on a random sample of 

100,000 derived individual tree crowns (ITCs). On the top row, comparison between 

distributions of C, LMA, %P, and %N for the two sites, OSBS (blue), and TALL (yellow). 

Vertical dotted lines represent the average for the site. Rug plots on the x-axis represent the 

marginal distribution of OSBS and TALL data between the minimum and maximum range of 

derived observations. On the lower row, example of relationship between tree height and the 

same three leaf chemical traits: from left to right, LMA, %N, %P. Linear trends and 95CI 

ellipses are represented for each relationship and site, following the same color scheme as 

above.  

  

1 
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Supporting Information. Marconi, S., S.J. Graves, B.G. Weinstein, S. Bohlman, and E.P. White. 

2021. Estimating individual level plant traits at scale. Ecological Applications.  

Appendix S1  

 

Section S1: Evaluation of crown segmentation. 

 

We applied three unsupervised crown segmentation algorithms (Dalponte & 

Coomes 2016, Silva et al., 2016, and a watershed algorithm as in Barnes et al., 2014) 

to generate crown boundaries. We used a single parametrization (Table A-1) for each 

method at both sites to facilitate cross-model and cross-sites comparison. Data were 

processed using the lidR R package (Roussel & Auty, 2017). To address the accuracy 

in detecting tree crowns we calculated the (1) recall and precision using 3 thresholds 

(10, 20, 30%) to estimate the ability in detecting trees; (2) the Jaccard index (i.e. 

intersection over union between field and algorithmic crowns) to estimate the ability in 

estimating crowns shape and area. The Jaccard index was calculated by comparing 

ITCs collected in the field with the single most overlapping predicted crown. Field 

delineated crowns that do not overlap with any crown segmented by the algorithms for 

more than 10% of their surface were labelled as undetected. The Silva et al. (2016) 

segmentation algorithm performed the best on our data (Table A-1, see results section), 

consistent with results from a multi-group data science competition (Marconi et al. 

2019). Therefore, this algorithm was used to extract ITCs from the CHM data for the full 

remote sensing footprint for both NEON sites. 

The crown segmentation algorithm described in Silva et al. (2016) yielded the highest 

overlap with the field-delineated ITC crowns (Table A-2). The approach detected 88% of 
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the ground delineated crowns (using a 10% threshold of overlapping). For individual 

trees, the Jaccard Index ranged between 0 (undetected trees) and 0.81, with an 

average of 0.35 and median of 0.34.  

Low goodness of fit in predicting Crown Area (CA) was exacerbated by uncertainty in 

alignment with field and remote sensing data. For example, field crowns were 

delineated on the hyperspectral images to incorporate only the pure pixels of the crown 

(Graves et al., 2018), leading to potentially underestimating the full extent of tree crown 

size. Moreover, visual assessment of paired field and algorithmically delineated crowns 

shows shifts by a couple of meters that are likely a result of imperfect alignments 

between LiDAR and hyperspectral data (Figure A-6).  

While this level of overlap suggests that improved methods for crown delineation are 

needed, it is also the result of limitations in the resolution and alignment of the remote 

sensing products. The resolution of the remote sensing data (1 m2 pixels) relative to the 

scale of most tree crowns (average tree crown area in this study = 35 m2) means that 

even single pixel errors can have a large influence. For example, if the extent of a 4x4 

m crown (area = 16 m2) is overestimated by a single pixel in each direction (6x6m = 36 

m2), the Jaccard index is only 0.44 and CA more than doubled. In addition, remote 

sensing data from multiple sensors often have imperfect alignments between products. 

The prototype NEON AOP data used in this study may have misalignments between 

LiDAR and Hyperspectral products on the scale of 1-2 meters (Marconi et al. 2019). 

Misalignment of this extent will primarily affect pixels at crown borders. When estimating 

plant traits, the key question is how the errors in delineation driven by models, 

resolution, and alignment influence the accuracy of structural and leaf trait models. 
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While crown-based leaf trait models are robust to these errors (see above) the structural 

trait estimates are directly related to crown delineation and are therefore strongly 

influenced by errors in that delineation. Fortunately estimates of DBH and height were 

well correlated with field values.    
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Table S1. Schematic description of the four approaches used compared in the study 

 

Approach Description 
Requires 
ITCs for 
training 

Requires 
ITCs for 
making 
predictions 

Tested on 

PBM 

Random extraction of 
one pixel per crown to 
build chemometric 
models.  

NO NO Pixels (n = 750) 

EPBM 

Ensemble of a number 
of PBMs to create a 
robust multiple 
instance approach 

YES NO Pixels (n = 750) 

CAV 
Average of the spectra 
of all green pixels in a 
crown 

YES YES Crowns (n = 26) 

CEAM 
Average of the PBM 
predictions on all green 
pixels in a crown 

YES YES Crowns (n = 26) 
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Table S2. Comparison of the Jaccard Index measure for the overlap between 

the  ground-delineated ITC crowns and algorithmically delineated ITC crowns. 

 

Min. 
25th 
percentile 

Median Mean 
75th 
Percentile 

Max 

Barnes et al., 2014 

0 0.2 0.3 0.31 0.43 0.72 

Dalponte & Coomes 2016 

0 0.24 0.33 0.34 0.44 0.78  

Silva et al., 2016 

0 0.25 0.35 0.35 0.45 0.81  
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Table S3. Parameters of the allometric relationship derived from linking dbh measured by NEON 

woody vegetation structure dataset (n = 458) to tree height and crown area predicted by the 

pipeline (R2 on 108 held out data points of 0.62). 

 

(A) Parameter Std.Error DF t-value p-value 

(Intercept) -4.446325 3.124267 454 -1.423158 0.1554 

CHM 1.645523 0.084261 454 19.52896 0 

CA 0.098375 0.020195 454 4.871191 0 

 
     

(B) AIC BIC logLik Obs Groups 

  3127.317 3147.919 -1558.659 458 2 
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Table S4. Models performance on 24 held-out crowns (predicted R2 and RMSE) for the four modeling strategies CEAM (Crown 

ensemble average model), Crown average spectra (CAV), EPBM (Ensemble pixel based model) and SPM (single pixel model). 

Higher performance in bold. (a) Train, validation and test pixels extracted from ground delineated crowns (least uncertainty in pixel 

labeling). (b)  Train, validation and test pixels extracted from automatically delineated crowns (highest uncertainty in pixel labeling).  

  R2
 RMSE Coverage %RMSE 

 Tested on field delineated crowns (n = 24) 

 PBM CAS EPBM CEAM PBM CAS EPBM CEAM PBM CAS EPBM CEAM PBM CAS EPBM CEAM 

N 0.54 0.53 0.67 0.72 0.27 0.63 0.22 0.2 0.97 1 0.96 1 0.11 0.26 0.09 0.08 

P 0.36 0.38 0.48 0.48 0.03 0.05 0.03 0.03 0.91 0.92 0.9 0.92 0.14 0.28 0.13 0.14 

C 0.15 0.39 0.26 0.41 1.26 2.27 1.17 1.22 0.9 0.92 0.9 0.92 0.16 0.29 0.15 0.16 

LMA 0.68 0.72 0.75 0.75 45.56 54.88 40.33 40.8 0.84 0.92 0.88 0.96 0.13 0.15 0.11 0.11 

 Tested on algorithmically delineated crowns (n = 24) 

N 0.38 0.49 0.49 0.6 0.36 0.65 0.32 0.25 0.88 0.95 0.88 0.86 0.15 0.27 0.13 0.1 

P 0.27 0.4 0.34 0.44 0.04 0.06 0.03 0.03 0.86 0.91 0.81 0.91 0.18 0.28 0.18 0.15 

C -0.07 0.26 0.03 0.28 1.36 2.15 1.3 1.14 0.87 0.95 0.85 0.91 0.17 0.27 0.17 0.15 

LMA 0.52 0.61 0.58 0.6 62.2 72.46 58.43 55.83 0.77 0.91 0.8 0.91 0.17 0.2 0.16 0.16 
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Table S5. Crown detection scores of Recall and Precision applied to algorithmically delineated 

crowns overlapping with field delineated crowns. Note, precision and recall are calculated on an 

arbitrary threshold of overlap with ground-truth object. There is no general consensus about 

which threshold is better fit to crown objects, and it is not always clear which threshold is used in 

different studies. For this reason, we are presenting here the results at three different levels of 

overlap: 10, 20, 30%. 

 

  Precision Recall True positive 
False 
Negative 

False 
positive 

Overlapping with 10% of a field crown 

TALL 0.95 0.82 72 4 16 

OSBS 0.81 0.84 65 15 13 

FULL 0.88 0.83 137 19 29 

Overlapping with 20% of a field crown 

TALL 0.69 0.81 63 15 28 

OSBS 0.61 0.74 60 21 38 

FULL 0.65 0.77 123 36 66 

Overlapping with 30% of a field crown 

TALL 0.65 0.76 59 19 32 

OSBS 0.59 0.72 58 23 40 

FULL 0.62 0.74 117 42 72 
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Figure S1. Regional map showing OSBS and TALL locations in the southeastern US ecoregions. 

Insets show TALL and OSBS locations of individual tree crowns (gray triangles) over the 2011 

National Land Cover Database. 
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Figure S2. Variability in observed values in the four traits analyzed in this work (respectively 

LMA, %C, %N, and %P). Boxplots represent distribution of values per species sampled (34).  10 

species were sampled only once, therefore could not be represented in the validation and test. 

Random out of sample dataset was extracted making sure that most of the remaining species 

were represented (22 out of 24).  
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Figure S3. False color image from hyperspectral image before and after removal of pixels that do 

not meet the pixel screening threshold. Left panel represents the raw hyperspectral data in false 

colors (bands 17, 87, 117). Center panels show the NIR (top) and NDVI (bottom) masks where 

white pixels were removed. Right panel shows the result of filtering. Only pixels with NDVI > 

0.7 and reflectance in 860 nm > 0.3 were kept.  
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Figure S4. Example of relatively good (top row) and less precise (bottom row) of algorithmic 

delineated crowns. Yellow polygons represent ground truth data. Magenta polygons represent the 

single predicted ITCs overlapping with the ground truth crown. Panels represent a 40x40 m 

centered on the field crown centroid. Left panel represent the scene in RGB, the center panel is 

the NEON canopy height model, and the right panel is a false color composite RGB image 

(bands 17, 87, 117) superimposed on the CHM.  
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Figure S5. Example of segmentation results for OSBS (Box A) and TALL (Box B). Fill colored 

polygons represent the field delineated crowns (brown for OSBS, yellow for TALL); Hollow 

barred black polygons represent the algorithmically delineated crowns. Despite crowns are 

generally detected, algorithmically delineated crowns show over segmenting (splitting a field 

crown in multiple polygons), and area overestimation (especially for trees with smaller size). The 

left panel show an example of segmentation for a longleaf pine section in  outside of the training 

area. Red polygons represent individual algorithmically delineated crowns. The background is a 

L3 Orthophoto (resolution of 0.25m) from NEON AOP data. 
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Figure S6. Example of misalignment between LiDAR data (here represented by a 1 m2 CHM, in 

grayscale), and two different hyperspectral images registered at two different flightpaths (blue 

and red). (A) Misalignment between overlapping CHM and the first flightpath, showing a shift 

east of the hyperspectral image; (B) Misalignment between two consecutive flightpaths, showing 

an offset up to 4m; (C) Misalignment between overlapping CHM and second HSI flightpath, 

showing a shift west of the hyperspectral image. 
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Figure S7. Model validation on held out test data. (A-D) Comparison of EPBM (yellow) and 

CEAM (blue) predictions on 24 held out observed crowns for %C (A), LMA (B), %P (C)  and 

%N (D) respectively. Black diagonal is the 1:1 line. 
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Figure S8. Evaluation and comparison of R2 on held out test data (24 crowns) for the four 

approaches: (A) models built on pixels extracted from ground delineated crowns; (B) models 

built on pixels extracted from algorithmically delineated crowns 
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Figure S9. Distribution of coefficients of the 100 PBMs used to build the EPBM model. Plots 

show the 80% range of the values of PLS-GLM parameters for each band. Wavelengths whose 

interquartile range includes the value of 0 are scarcely or no informative. Note that ancillary site 

effects (first two bands) showed significant effect on all traits but relatively little influence 

compared to reflectance.  
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Figure S10. Comparison of coefficients of determination on the validation data, using the 100 

best SPMs (histogram), the EPBM (grey dashed line), and the CEAM (blue dashed lines), 

assessed based on field delineated crowns. An R2 of 0 represents the threshold below which the 

residual sum of squares (RSS) is higher than the total sum of squares (TSS). A negative R2 value 

means that the observed sample mean is a better predictor than the model, and so that specific 

model is meaningless.  
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Figure S11. Predictions maps for LMA, %N and %P for the OSBS site  (215 km2). The maps 

show the centroid of around 2.5 million trees, colored by quantile gradient. The top panel (viridis 

palette) represents individual predictions for %N, %P, %C and LMA. The lower panel (blue) 

represents the uncertainty for each tree-based prediction, plotted as the width of the 95%PI.   
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Figure S12. Thematic maps for LMA, %N and %P for the OSBS site (145 km2). The maps show 

the centroid of around 2.5 million trees, colored by quantile gradient. The top panel (viridis 

palette) represents individual predictions for %N, %P, %C and LMA. The lower panel (blue) 

represents the uncertainty for each tree-based prediction, plotted as the width of the 95%PI.  
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Figure S13. Distribution of BDH (cm) of derived ITCs at TALL and OSBS sites. 
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Figure S14. Comparison of the leaf economic spectrum relationships between data derived from 

the pipeline in yellow and data from worldwide leaf economic spectrum dataset in blueTop row 

shows the log-log relationships in OSBS (N:LMA, N:P, and LMA:P); bottom row shows the log-

log relationships in TALL (N:LMA, N:P, and LMA:P) 
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Figure S15. Distribution in %C, LMA, %P, and %N across the two sites. On average, OSBS 

showed higher quantities for all four traits, possibly as an effect of richer soils than in TALL. 
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Figure S16. Correlation between terrain, leaf and structural traits for both OSBS and TALL 

predicted crowns (5M ITCs). Circles size scaled by Pearson’s correlation coefficient. Site 

specific relationships in appendix. 
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Figure S17. Correlation between terrain, leaf and structural traits for OSBS (top) and TALL 

(bottom) derived tree crowns at landscape scale. Circles size scaled by Pearson’s correlation 

coefficient 
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