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Abstract— To perform manipulation tasks in the real world,
robots need to operate on objects with various shapes, sizes
and without access to geometric models. To achieve this it
is often infeasible to train monolithic neural network policies
across such large variations in object properties. Towards this
generalization challenge, we propose to learn modular task
policies which compose object-centric task-axes controllers.
These task-axes controllers are parameterized by properties
associated with underlying objects in the scene. We infer these
controller parameters directly from visual input using multi-
view dense correspondence learning. Our overall approach
provides a simple and yet powerful framework for learning
manipulation tasks. We empirically evaluate our approach on
3 different manipulation tasks and show its ability to generalize
to large variance in object size, shape and geometry.

I. INTRODUCTION

Manipulation tasks in the real world involve objects of
varying, and often unknown, shapes and sizes. Learning to
perform manipulation tasks across a wide range of objects,
without access to their underlying geometric models, is a
challenging problem. Recent work has shown how simple
keypoint representations can be used to obviate the need of
known geometric models [1], [2]. These keypoint representa-
tions, which are learned purely from visual data, are easy to
acquire and provide accurate and robust intra-category gen-
eralization capabilities. Such keypoint representations have
been utilized to formulate optimization problems, whose
solutions results in a one-step S FE(3) action that is performed
by the robot [1], [2]. Alternately, they have also been used
for state estimation [2], [3], wherein the keypoints are often
directly used as inputs to monolithic neural networks that
output the action to be performed at each step.

Instead of using monolithic policies for task learning,
recent work [4] has proposed a more modular approach
by defining task-axis controllers for each possible subtask.
These controllers are attached to different objects (or their
parts) in the scene, such as the normal of a table or middle
of the door handle. This object-centric nature of controllers
provides important invariances to certain object properties
such as a controller that reaches close to an object will be
invariant of its position. More importantly, these controllers
are reusable across multiple different tasks and provide a
structured action space for the robot to explore and act.
This approach results in improved sample complexity and
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Fig. 1: Overview of our proposed approach. We extend task-
axes controllers to operate on visual input and use them
to present a simple and generalizable approach for learning
manipulation tasks.
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much better generalization for manipulation tasks [4], and is
referred to as object-centric task-axes controllers.

One limitation of [4] is that they do not infer the controller
parameters directly from the observed data. Instead, they use
heuristics to define the set of possible controller parameter-
izations for each task. These controller parameters include
both the position targets, i.e., 3D positions for relevant
objects or other semantically meaningful points on the object
such as edges or corners, as well as the relevant axes, i.e.,
the axes along which the controller acts.

In this work, we extend [4] to allow it to infer the
controller parameters directly from visual input. Thus we
avoid the use of fixed heuristics to find position-target
parameters for the controllers. This is important since such
heuristics are often defined as functions of object properties,
and thus assume direct knowledge of an object’s shape, size,
and overall geometry, which may not be easily available in
the real world. Instead, we propose to use keypoint repre-
sentations based on dense object descriptors to infer these
parameters directly from visual data. Additionally, instead
of using heuristics to provide axes-parameters we populate
them automatically for each of the task-axes controllers. This
results in a simple approach that allows the robot to learn
complex manipulation tasks directly through interaction.

Our overall contributions include: 1) We extend object-
centric task-axes controllers to infer the controller parameters
directly from visual input. 2) Since learning both task-
specific controller parameters and task-specific controller
combinations (i.e. task-policy) together is a challenging
problem, we propose to solve this problem by learning to



bootstrap controller parameters using dense correspondence
learning. 3) We empirically validate our approach on multi-
ple manipulation tasks and show its generalization abilities
across objects with different shape, size and geometry.

II. RELATED WORK

Task Frames: Task frames (or task-spaces) have long
been used by robotics community for robust task execution.
Early works of [5]-[7] formalized the notion of task-axes and
constraint based task-frames for manipulation tasks. For ro-
bust task execution, roboticists often design specific motions
relative to some fixed task-frame or task-axes [8]-[11]. More
recent works have proposed techniques to learn to select the
appropriate task frame for the given task [12]-[16]. These
methods use Imitation Learning (IL) combined with manu-
ally defined heuristics such as inter-trial variance between
demonstrations to rank proposed task-frames. Recent work
[4] have also proposed using Reinforcement Learning (RL)
to choose multiple different controllers both sequentially and
in parallel to complete a task. Each controller in [4] is defined
with respect to some task axes or target keypoint. To avoid
controllers at each step from interferring with each other
null-space projections are employed. In this work, we further
extend this line of research by learning controller targets and
axes from visual observations.

Manipulation with Keypoints: We use keypoints to
define targets for the different task-axes controllers. For
this we build upon the recent work on using keypoints
for manipulation learning [1], [2], [17]-[19]. Most closely
related to our work are [1], [18], [20], all of which use
keypoint representations for manipulation tasks. In [1] the
authors use supervised learning to detect keypoints, while
[20] uses self-supervised learning. However, both [1], [20]
use keypoints to solve a task-specific optimization problem,
whose solution in SE(3) is used to perform the task in an
open-loop manner. Concurrent to our work kPAM [1] was
extended to use the notion of oriented keypoints [18] (kPAM
2.0), i.e. keypoints with local orientations. In addition to
local orientations, [18] also uses object-centric actions with
respect to these keypoints. Although the use of keypoints and
local frames attached to keypoints is common between [18]
and our work, there are some major differences. First, our
approach disassociates keypoints and task-axes, i.e., while
kPAM 2.0 only uses local axes around a keypoint, our
framework allows for any axes (e.g. global axes) with a
keypoint. Second, instead of a fixed manually defined control
policy [18], we use RL to learn a policy that composes
parameterized task-axes controllers for task completion.

Learning with Parameterized Actions: Learning to se-
lect the task-axes controller to execute at each step (task-
policy), as well as the target and axes parameter for this
controller is closely related to learning with parameterized
actions. Parameterized action spaces consider the problem
where each action of an MDP is parameterized by a low
dimensional input. In [21], parameterized action-MDPs were
referred to as PAMDPs. PAMDPs are challenging to solve
since they require a bilevel optimization algorithm, wherein

the outer loop searches over the continuous action parame-
ters, while the inner loop optimizes for the discrete action
selection to complete the task. Since the inner loop requires
solving an RL problem, this bilevel optimization is chal-
lenging to perform for high-dimensional spaces. Alternative
works [22] propose to avoid this bilevel optimization by
exploring both, the parameter-space and the action-selection
space together. However, [22] uses uniform distributions to
explore over action parameters, which is unsuitable when
these parameters need to be inferred from high dimensional
input, e.g., selecting a pixel (keypoint) from an image.
In current work, we avoid the computational complexity
of this bilevel optimization by bootstrapping the controller
parameters using multi-view correspondence learning.

III. PRELIMINARIES

Manipulation tasks often involve different objects and ma-
nipulating them through contact to achieve desirable effects.
The use of object-centric task-axes controllers provides a
structured action space for the robot to both explore and act
in. We briefly describe the different types of controllers and
their associated parameters.

Controller Parameters: We use multiple controllers in-
cluding position, force and rotation controllers. Each con-
troller is associated with some underlying object in the scene
and acts along some specific task axes. These task axes are
centered at some task-specific target positions, such as object
centers or other semantically useful points on the object
e.g. edges or corners. Thus each controller has a small set
of parameters associated with it. More specifically, position
controllers are parameterized with (x4,u), where x4 € R3
is some position target, u € R? is the target axes along
which the controller acts. Similarly, force controllers require
(fa,u), where f; € R is the force target to achieve. While
rotation controllers require (rg,u) where r4 € R3 is the
desired rotation target and w represents some axes of the
end-effector which needs to be aligned with ry4. Finally,
since each controller is either implemented as a PD, PI or
PID controller, they also require suitable gain parameters.
In this work, we focus on learning parameters that can be
directly inferred from visual input, i.e., the position targets
(z4), rotation target 4 and target-axes (u). We fix the other
parameter values. From hereon we use the term learned
controller parameters to refer to this initial set of parameters.

IV. LEARNING CONTROLLER PARAMETERS

In [4], desired position targets x4 are defined using task-
specific heuristics such as middle of the door handle or
the middle of the wall as target positions. Task-specific
knowledge is also required for task-axes parameter u and
rotation targets r4. For instance, for the door opening task
only rotation controllers that align the downward end-effector
axes with the door normal are used. By contrast, we want
to infer these parameters from visual input and learn the
appropriate parameters based on task interaction instead of
heuristics or a priori information.
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Fig. 2: Overview of proposed approach to learn keypoint
parameters using the bootstrapped task policy.

As noted previously, to learn both — relevant x4, u, rq4 for
each task-axes controller as well as the composition of these
controllers for task completion, is a challenging problem.
This is because it requires solving a bilevel optimization
problem with an inner loop that involves solving an RL prob-
lem [21]. This challenge is further magnified when controller
parameters have to be inferred from high dimensional inputs
such as images, e.g., 3D controller position target parameters
can lie anywhere on the image space.

To overcome these challenges we propose to bootstrap
learning the controller position parameters x4 through multi-
view correspondence learning and a few human annotations.
While we simultaneously infer a set of candidate axes param-
eters for both u and r4 from the given objects in the scene.
Using these bootstrapped parameters we learn a task-axes
controller composition policy 7 using RL. Using = we can
subsequently learn x4 parameters for novel objects for which
no human annotations are available. In the following sub-
sections we explain the proposed approach in more detail.

A. Learning to Bootstrap Controller Parameters

We now discuss our approach to bootstrapping the position
target and target-axes parameters. First, we look at the case
of 3D position parameters x4, and subsequently we look at
the axes parameters u and 4.

1) Keypoint Parameters: We refer to the 3D position
target parameters (z4) of each controller as keypoint pa-
rameters. These keypoint parameters are associated with
semantically meaningful parts of underlying objects such as
middle of the door handle, center of the button, edge of
a block. To bootstrap learning the keypoint parameters, we
propose to use multi-view dense correspondence learning.
Specifically, we use DenseObjectNets [2], [17] which learn
dense object descriptors for each pixel from multi-view data
in a completely self-supervised manner. Not only does this
setup avoid the need of any expensive manual data-labeling
procedure, prior works have shown that the learned object
descriptors are quite robust to the presence of mild occlusions
and importantly, lead to category-level generalizations [2].
As we show empirically in Section [V} such category level
generalization allows us to infer consistent controller targets
irrespective of the object’s size and position as well as
variation in its shape and geometry.

To train dense object descriptors, we use a small set of
objects (= 10) relevant to each task family and learn dense
descriptors on these objects. All of these objects belong to
the same category, e.g., for the door opening task we learn
descriptors across doors with varying sizes of door handles

Fig. 3: Tasks used to evaluate our proposed approach. From
left to right: Button Press, Block Tumble, and Door Opening.

as well as their locations on the door frame. Thus, the learned
dense object descriptors should generalize to other novel
objects that belong to the same category, e.g., door handles
with more complex shapes. Figure [f] visualizes some learned
object descriptors. We refer to this dense-object network
model as our bootstrapped keypoint model ¢.

Given ¢, we infer keypoint parameters for each controller
by using a reference image (I,.) from the dataset collected
for training dense descriptors. This reference image is used
as representative for the object category being manipulated.
To extract keypoints we manually label a set of reference
pixels on I,., denoted as P := {p.,p?,---}. These reference
pixels pi. encode semantic information about the scene which
is relevant for the task. For instance, for the door open task
we label pixels near the edge and middle of the door handle
since these keypoints afford grasping and rotating the door
handle compared to pixels closer to the handle’s rotation
joint. Similarly for the block tumble task we label pixels
near the edge instead of the middle of the block. Figure [3]
shows example keypoints for the tasks considered in our
current work. Assuming known camera parameters we get
3D position targets {x}, 2%, -} from {pl,p?, -} directly.
To get position targets for a new image, which contains a
novel object of the same category as I,.,, we use pixels that
are closest to the reference pixels in the descriptor space i.e.,
p' = argmin, ||¢(p;.) — ¢(p)|2, where p is any pixel on the
image, and p* is used to get the i’th controller target x;.

2) Axes Parameters: Both rotation target ry and target-
axes u parameters require valid 3D axes. To find these
axes we initially extract a relevant set of 3D axes for the
given scene. We refer to this as the candidate axes set,
A = {a';a?---}. There exist multiple approaches to
extract these candidate axes. For instance, possible candidate
axes include both the global (world) axes as well as object
axes. Additionally, we can also extract candidate axes by
using the local geometry of the object around each inferred
keypoint e.g., using the axes normal to surface or along the
surface. In this work, we directly use the object axes and the
global axes as our candidate axes.

Given A the set of candidate axis, we can find u for
each controller by finding the most relevant axes from A.
However, this requires task-specific knowledge e.g., in the
form of user defined priors as used in [4]. Instead, we
avoid this by associating each position target with every axis
a’ € A. Additionally, each axes in A can be used to create
a unique rotation target r4. One drawback of this approach
is that it results in a combinatorial number of controllers,



since we associate every position target with each axes in A.
This can result in a large action space for 7 to explore. In
Section we empirically validate how this choice affects
the sample complexity of using task-axes controllers for
different manipulation tasks. Figure [I] visualizes the pipeline
of our overall approach.

B. Learning Controller Parameters via Learned Task-Policy

Using the above approach we can bootstrap controller
parameters and learn a task-specific manipulation policy
m. This policy learns to compose different task-axes con-
trollers to achieve the overall manipulation task. As we
show empirically, this combination of bootstrapped controller
parameters and learned task-policy can now be used on
novel objects of varying shapes and sizes. This impressive
level of generalization is a result of both the category level
generalization provided by dense-keypoint parameters and
the object-centric nature of task-axes controllers.

However, in some scenarios we may want to use the
learned task policy on objects of a different category as
compared to objects used to learn the bootstrapped keypoint
parameters. For such cases, the keypoints p’ inferred by the
bootstrapped dense-object network (¢) can be unsuitable.
Rather than re-training the dense-object network on this
new set of objects and relying on human annotations to get
corresponding reference pixels P, we can instead utilize the
learned task policy 7 and learn keypoint parameters directly
from the image space. This is possible since 7 is implicitly
parameterized by the controller target parameters x4. Hence,
we can learn x4’s value for the new set of objects based
on the feedback from evaluating 7. This assumes that 7 is
approximately similar across both sets of objects, i.e., the
set of objects used during bootstrap learning and the new set
of objects. This assumption holds for the tasks we consider,
e.g., to learn a door opening policy, we only need to reach
close to the handle, grasp it from a location which affords
grasping, rotate the handle and pull it.

To learn keypoint parameters for a new set of objects,
we learn a new neural network g, with weights 6, by
rolling out 7 and learning to optimize the underlying task
reward J(0) = E;wr(|s,40(1,)) [7(7T)], Where 1(I;) denotes
the keypoint parameters inferred from image I, at state
s, and 7 represents the learned task policy. We do not
update 7 during this keypoint learning stage. .J(6) can be
optimized using any policy gradient method e.g. Reinforce
[23], VJ(0) = E, [r(17)V log e (s)]. We represent 1y using
a fully-convolutional network, with the last layer of the
network containing as many channels as the number of
keypoint parameters to infer. We use a softmax over each last
channel and sample the appropriate pixel to get p’ which is
then used to infer the controller target ;. Figure [2| provides
an overview of our approach.

V. EXPERIMENTAL SETUP

With our experiments we aim to evaluate: 1) How well
does our proposed approach using bootstrapped controller
parameters perform? Since a combinatorial mix of axes

and keypoint parameters leads to a large action space,
we investigate its affect on task performance and sample
complexity. 2) How well does the combination of dense-
object net based keypoint model and object-centric task-axes
controller generalize to new objects of varying shapes, sizes
and geometry? 3) How well can a learned task policy be
utilized to learn keypoint controller parameters for new set
of objects?

A. Tasks

We evaluate our approach on 3 different manipulation
tasks (Figure [3) of increasing complexity — Button Press,
Block Tumble, and Door Opening.

Button Press: In this task, a 7-DoF Franka Panda arm is
used to push down a button which is positioned on a box
placed infront of the robot (Figure [3] left). Instead of using
only one type of button object, we use multiple objects with
different shapes and sizes. These variations include the button
position on top of the box object, sizes of both the button as
well as its underlying box object.

Block Tumble: In this task, a 7-DoF Franka Panda arm is
required to tumble a block along a particular axis (Figure
middle). This task is particularly interesting since there exist
multiple different ways to accomplish it. For instance, the
robot can tumble the block by applying a downward force
anywhere along its edge. To test generalization for this task,
we vary the size of the block between 0.07m to 0.16m.

Door Opening: In this task the Franka robot needs to
open a door by first turning its door handle and then pulling
the door beyond an opening threshold. In contrast to [4],
which tests generalization by only varying the position of the
door handle on the door frame, we vary both the size of the
door handle and the location of the door handle on the door.
Additionally, we also change the door shape and evaluate on
cuboidal, cylindrical and more complex door handle shapes.

B. Compared Approaches

We compare our proposed approach against multiple dif-
ferent methods. In the below sections we refer to task-axes
controllers using the shorthand TAC.

1) EE-Space: We verify the utility of the structured action
space provided by object-centric task-axes controllers
by comparing against an approach that directly controls
the robot via end-effector delta targets.

2) TAC (Manual) We also evaluate our approach against
manually specified controller parameters. We note that
we do not aim to use the smallest possible number of
controllers and their parameters. Instead, we specify
the controllers and their parameters only to provide
some useful priors for overall task learning.

3) TAC (Keypoints): We evaluate one version of our
proposed approach in which we only infer the keypoint
parameters i.e. the target positions for each position or
force controller. We reuse the axes specified for TAC
(Manual) with the inferred keypoints.
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Fig. 4: Left: Task Success Rate for all 3 environments with bootstrapped controller parameters. Right: Task success rate on
two different configs (door-handle types) for learning keypoints using a learned policy for the Door-Open Task. Figure [§]
visualizes both configs. The dark line shows mean sucess-ratio, shaded region plots std across 5 seeds.

Env EE-Space TAC (Manual)*  TAC (Keypoints+Axes)
Button Press 0.98 (0.01) 1.0 (0.0) 1.0 (0.0)

Block Tumble  0.487 (0.26)  0.96 (0.03) 0.932 (0.04)

Door Opening 0.0 (0.0) 0.97 (0.01) 0.94 (0.05)

TABLE I: Mean (std) for each method on all three different
manipulation tasks.

4) TAC (Keypoints+Axes): We evaluate our proposed
approach wherein both the keypoints as well as the
axes parameters are inferred for each scene.

Metrics: We show qualitative and quantitative results for
two scenarios. First, we show results for learning task policy
using bootstrapped controller parameters. Second, we use
this learned task policy to show results for learning controller
parameters using direct interactions. For both scenarios we
compare approaches using the success ratio metric.

RL Training: For training the task policy we use Proximal
Policy Optimization (PPO) [24] based on stable-baselines
[25]. While for learning controller parameters we found a
simple Reinforce [23] based approach to be sufficient. All
results are run and reported for 5 different seeds.

VI. RESULTS
A. Learning Task Policy

1) Training Results: Figure |4 plots success ratio for all
approaches and tasks. As seen above, we observe that for the
simplest task i.e. button press, all methods are able to learn
the task quickly. Also, since the underlying task is not com-
plex, each method has little variance across multiple seeds.
For the Block Tumble task (Figure 4] middle), although all
methods perform well on the training task, methods that use
task-axes controllers are much more sample efficient. This is
true even when we use a much larger set of controllers i.e.
the TAC (Keypoints + Axes) approach. This is because most
of the keypoints used in the task (Figure 5) can be used to
accomplish the task. Also, since there is only one axes along
which the block needs to be flipped, the robot is quickly able
to find this relevant axes using the provided dense rewards.
Thus, inferring the keypoints and axes parameters does not
affect the sample complexity significantly.

Figure [] (right) plots success ratios for the door opening
task. From this figure, we observe that the EE-space is

unable to solve the overall task. Similar results were also
observed in [4]. The main reason for this failure is the overall
task complexity, especially since task completion requires
different subtasks (reaching, grasping, turning the handle and
pulling it back) to be performed in sequence. On the other
hand, TAC based methods perform well on the task. However
in contrast to the previous tasks, TAC (Keypoints+Axes)
does require more samples as compared to TAC (Manual).
Additionally, only inferring the keypoints and not the axes
(TAC-Keypoints) is still quite sample efficient. This indicates
that the agent in TAC Keypoints+Axes does spend initial time
exploring different axes which can be used to accomplish the
task. This is possible because there exist multiple ways to
grasp the handle, e.g., it is possible to grasp the handle both
along the vertical and the horizontal axes. However, using
the vertical axes is not robust, since it can easily collide with
the door frame. Thus, as a large number of actions are not
particularly useful for the task, the agent will have to interact
and learn the most suitable and robust ways to achieve it.

2) Generalization Results: Table |l] shows the generaliza-
tion performance for three different methods. This gener-
alization performance was recorded on 15 different envi-
ronment settings with varying object sizes and shapes. We
note that for TAC (Manual) we only used primitive shapes
(cuboids and cylinders) since we need to manually provide
keypoint parameters. See Figure [/| for test configurations
used for TAC (Keypoints+Axes), for door open task. As seen
in Table [, methods that use TAC are able to generalize
quite well across all tasks. On the other hand, the EE
action-space provides good generalization capabilities only
for the simplest task (Button Press). While even for the
moderately complex Block Tumble task its performance
reduces significantly. One reason for this is the lack of any
inductive bias in the EE-space, and since we train on a small
set of objects only, the EE-space policy fails to generalize to
large variations in objects. Figure [/| shows some objects with
complex underlying geometry that were never used either
for dense descriptor or policy training. While TAC (Manual)
cannot be applied to such objects, we show in the attached
video results that our method is successfully able to zero-shot
generalize to such large variations as well.
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Fig. 5: Visualization for reference images and pixels (left image in each column) and corresponding pixels predicted using
learned descriptors. For door open, one reference pixel is closer to door joint to show that our approach learns to not use it.

Fig. 6: Dense object descriptor results for Door Open Task.

Fig. 7: Qualitative Results we show that our learned control
policy although not trained on any of the above models does
successfully transfer to them (see results in project-page).

3) Qualitative Results: We show qualitative results for
both descriptors and keypoints. Figure [5] plots the keypoints
used for each task. The left image in each column is the
reference image annotated with reference keypoints. While
the right column shows scenes with 2 different test set objects
used to evaluate the learned policies. Figure [f] plots the
learned descriptors for the door opening task. As seen above,
the learned descriptors are able to approximately cluster
semantically meaningful regions together, e.g., the handle
part close to its rotation joint, the middle and end of the door
handles, as well as the right end of the hinge are all well esti-
mated. While in Figure [7]we see that the reference pixels are
also able to generalize to objects with very different shapes
and geometry. We show policy results for these samples in
our video. This is not surprising since as the above keypoints
afford grasping and rotating the door handle, the underlying
task-axes controllers should be able to generalize. See video
results for all tasks at https://sites.google.com/
view/robotic-manip-task—axes—ctrlrs.

B. Learning Controller Parameters with Learned Task Policy

We now show results (FigEl (right)) for learning controller
parameters (keypoints) using the learned task policy. We only
use one keypoint for this task policy, since it is sufficient to
perform the door opening task. This task policy is trained
on simple door handles only, visualized in Figure [6| While
the keypoint policy is trained on 2 completely different door-
handle configurations, visualized in Figure [8] Additionally,
as seen in Figure [8] we ensure that the door handle can lie
anywhere on the image space and not necessarily near the
image center or always orthogonal to the camera. This makes

Fig. 8: Keypoint Parameters learned using a learned task
policy. Top Row is Config-A, bottom row is Config-B.

the keypoint learning problem much more challenging.
Although both configurations (config-A and config-B) are
visually quite similar, they result in very different sample
complexities when learning keypoint parameters (Figure [
(right)). This is because for config-A there exists a much
larger region of the door handle that can be selected to per-
fectly execute the learned parameterized task-policy. This can
be seen in Figure 8] (top-row) where different keypoints along
the door handle have been selected to successfully open the
door. While for config-B this valid region is quite small
(to the left of the vertical handle bar). Additionally, small
inconsistencies in keypoint predictions, such as visualized in
Figure [§] (bottom-row right) fail to open the door. This makes
the keypoint learning problem much more challenging, which
consequently results in a much larger sample complexity.

VII. CONCLUSION

In this paper we propose a modular architecture for
learning manipulation tasks. Our approach uses task-specific
keypoints on objects and task-axes controllers parameterized
by these keypoints for task learning. As we show empirically,
our approach improves generalization and works well on a
large set of objects beyond the small set used during training.
Additionally, a modular architecture allows us to reuse the
control policy while retraining the perceptual network on a
new set of objects and still perform the underlying task. This
is in contrast to end-to-end DeepRL approaches where the
perceptual network is closely tied with the control policy and
it is not possible to update one without the other. Finally, our
approach also improves the interpretability of the learned
models. This is a consequence of both semantic keypoints
and task-axes controllers which operate on semantic inputs.
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