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Abstract

We target the problem of estimating the center of mass of noisy 2-D images. We assume that the noise

dominates the image, and thus many standard approaches are vulnerable to estimation errors. Our approach

uses a surrogate function to the geometric median, which is a robust estimator of the center of mass. We

mathematically analyze cases in which the geometric median fails to provide a reasonable estimate of the center

of mass, and prove that our surrogate function leads to a successful estimate.

One particular application for our method is to improve 3-D reconstruction in single-particle cryo-electron mi-

croscopy (cryo-EM). We show how to apply our approach for a better translational alignment of macromolecules

picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline

the entire cryo-EM pipeline, saving valuable computational time and supporting resolution enhancement.

1 Introduction

The center of mass, also known as the centroid for objects with uniform densities, is the point around which all the

mass of a system (or object) is concentrated. Formally, the center of mass is defined as the arithmetic mean of all

the points in the system (object) weighted by their local densities. Alternatively, the center of mass can be defined

as the point for which the sum of squared distances from all other points in the system (object) is minimized. The

correct identification of this point is crucial to many applications for several reasons.

One reason for the importance of the center of mass is that we can consider the sum of external forces that act

on a system (object) as working on an object of the same mass located at the center of mass. Therefore, this point

is essential when describing the motion of a system (object), see, e.g., [3]. In astrophysics, for example, the correct

identification of the center of mass of a cloud of stars (orbiting each other) allows to represent the motion caused

by external forces (this is true for binary stars, galaxies, etc.), see, e.g., [2, 28].

Another reason for the importance of the center of mass is its role as a reference point. Specifically, the center

of mass can be used to facilitate the reconstruction of a 3-D structure from multiple tomographic projections. This

property follows from the Fourier slice theorem, which states that the Fourier transform of a 2-D tomographic

projection of a 3-D object is a central slice in the Fourier transform of the 3-D object. A consequence of this

theorem is that the 3-D object can be reconstructed from its tomographic projections by fitting together the

Fourier transforms of many 2-D projection images [30]. However, since any translation in image space leads to

a modulation in Fourier space, all the tomographic projections must be aligned. This alignment can be done via

the center of mass as, under the assumption of linearity in the projection and image detector stages, the center of

mass of an object is projected to the center of mass of each of its tomographic projections (this assumption holds

in many cases, e.g., under the weak-phase object approximation in our case study of cryo-electron microscopy [5]).

Such alignment is especially important as many areas of science and engineering involve tomographic projection

(mostly through imaging techniques), including archeology, medical imaging, structural biology, geophysics, plasma

physics, materials science, astrophysics, and more.

When the available data is noisy, identification of the center of mass becomes challenging. This, however, is

precisely the type of observations available in many applications in astrophysics [18, 28] and biology [5]. To address
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Figure 1: Cryo-EM experimental image of β-galactosidase taken from the EMPIAR-10017 dataset [9, 21] and 80S

ribosome taken from the EMPIAR-10028 [32] dataset. (a) A section of an experimental image of β-galactosidase.

There are many projections located close together. (b) - (c) Zoom-in of projection images of β-galactosidase and

ribosome, correspondingly. For the reader’s convenience, we demarcated the projection of interest. (d) Regions

containing projections of β-galactosidase. The size of each region is 180× 180 pixels. We note that, as the particles

are dispersed with high density throughout the experimental image, we will often need to identify the center of a

projection given a window that contains multiple projections. This will cause a direct computation of the geometric

median to fail. (e)-(f) Approximated centers of panel b and c. The center of mass and geometric median coincide

with the origin (which is the pixel located at the intersection of the central row and central column) of the projection

image (an explanation of this appears in Section 2.1), while our method provides a better approximation of the

center of mass of the projection.

the difficulties in estimating the center of mass in the presence of high levels of noise, several approaches have been

introduced. These include template matching [24], thresholding and weighted center of mass [18]. In this paper, we

follow a different approach, wherein the median of mass (also known as the geometric median) serves as a robust

estimator of the center of mass [4]. Unfortunately, while the geometric median is more robust to noise than the

center of mass, its computation is affected by noise with non-zero mean and by near-by systems (objects). We

therefore present a new tool for estimating the center of mass of systems (objects) in noisy images. Our suggested

tool is closely related to the geometric median, while retaining robustness to non-zero mean noise and to near-by

systems (objects).

As such, we present in this paper the following contributions. First, we introduce a surrogate function to the

center of mass. We explore the mathematical properties of this function and, specifically, its connection with the

geometric median, which is a robust approximation of the center of mass. Furthermore, we show that in cases

where the geometric median is affected by near-by objects or extreme noise, our surrogate function retains its

reliability. Another contribution is the idea of angular denoising, wherein uncorrelated noise, found along each ring

of a constant radius in the image, is averaged out. This denoising is self-contained in each image, as we do not use
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any data external to the image. Due to the angular denoising, our surrogate function has higher robustness to noise

and offers a powerful tool to analyze noisy images.

As a case study, we use single particle cryo-electron microscopy (cryo-EM). The goal of cryo-EM is to resolve

the 3-D structure of macromolecules at near atomic resolutions (typically under 0.3− 0.4 nm) [15]. In this method,

many instances of a specimen are embedded into vitreous ice and imaged in an electron microscope. As a result,

each experimental image contains many noisy projections located in close proximity, and the center of mass of each

projection is of interest. An example of such experimental images is presented in Figures 1a and 1d. A demonstration

of the advantages of our surrogate function over direct computation of the center of mass and geometric median is

presented in Figures 1b, 1c, 1e and 1f.

We use images of macromolecules collected by an electron microscope to experimentally verify our centering

method. In particular, we show that for a dataset of the 80S ribosome our method decreases the average shift of the

estimated center of mass from the true center of mass by 35%. We demonstrate similar improvements in assessing

the image centers on a dataset of β-galactosidase. Furthermore, we confirm that our method facilitates the use of

projections that would otherwise be unusable. We demonstrate the importance of these additional projections on

a TRPV1 dataset, where the employment of our method leads to a better reconstruction. Lastly, we show that

reconstruction from centered projection images will reduce the overall runtime for reconstruction.

This paper is organized as follows. In Section 2, we establish the theoretical aspects of our alignment method.

Section 3 describes in detail the proposed algorithm. In Section 4, we present numerical examples to demonstrate

the performance of our algorithm in various settings, as well as the effect of our method on 3-D reconstruction in

cryo-EM. Finally, we conclude the paper in Section 5.

For research reproducibility purpose, MATLAB code is publicly available as a package at the following link:

https://github.com/nirsharon/RACER. Additionally, GPU-enabled code of our method is also available at the link:

https://github.com/ayeletheimowitz/noisy image centering.

2 Translational Alignment

2.1 Center of mass and geometric median

In this section we present the formal definitions of the center of mass and the geometric median and show they are

unsuitable for center of mass estimation in noisy experimental images.

Definition 1 (center of mass). The center of mass (CM) of a finite set of points {pi}ni=1 ⊂ RN and their associated

non-negative weights {ωi}ni=1 ⊂ R+ is defined as their weighted average,

µ =
1∑n

j=1 ωj

n∑
i=1

ωipi. (1)

An alternative way to define the CM is as follows,

Definition 2 (center of mass). The center of mass (CM) of a finite set of points {pi}ni=1 ⊂ RN and their associated

non-negative weights {ωi}ni=1 ⊂ R+ is defined as the minimizer of the Fréchet variance,

µ = arg min
x

n∑
i=1

ωid
2(pi, x). (2)

The Fréchet mean is greatly influenced by outliers and extreme values. We therefore suggest the use of the

Fréchet median as a robust estimation of the CM [4]. The Fréchet median is also known as the median of mass or

the geometric median.
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(a) (b) (c)

Figure 2: Illustration of the misidentification of the GM. (a) Image of a hedgehog silhouette and a partial hedgehog

silhouette. This image includes the GM of the hedgehog (blue +) and the GM of the total image (red x). (b)

Landscape of the GM of the single hedgehog. (c) Landscape of the GM of the image in panel (a). The landscape

of the GM is defined as
∑
pi∈P I (pi) d(pi, x).

Definition 3 (geometric median). The geometric median (GM) of a finite set of points {pi}ni=1 and their associated

non-negative weights {ωi}ni=1 is defined using the Fréchet median as

µ1 = arg min
x

n∑
i=1

ωid(pi, x). (3)

In our setting, the set of points P = {pi}ni=1 is the parametric description of the image (that is, the image grid)

and the weights are the intensities of the image (pixel values). We therefore reformulate the CM of an image as

µ = arg min
x∈P

∑
pi∈P

I (pi) d
2(pi, x), (4)

where I is the image we aim to center. We further reformulate the GM as

µ1 = arg min
x∈P

∑
pi∈P

I (pi) d(pi, x). (5)

We note that, as I(pi) represents mass, the pixel values of the noiseless image are assumed to be non-negative.

Additionally, since the image is discretized, the true CM may be off-grid. As we do not have any interest in

sub-pixel accuracy, we ignore this option, and search for a minimizer on the pixel grid. That is, we limit x ∈ P
in (4) and (5). In addition, unless the nonzero pixels in the image are collinear, the GM is uniquely determined [31].

Therefore, we will consider only cases of images having a unique GM.

While the GM has higher robustness to noise than the CM, it is still susceptible to errors. One such scenario

is when the object1 we wish to center is in close proximity to other entities. In cryo-EM, for example, several

projections of a particle will often appear next to each other. In this case, the value of
∑
pi∈P I (pi) d(pi, x) can

contain contributions from nearby objects, effectively masking the minimum of (5). This is exemplified in Figure 2.

For images containing high levels of noise, as is the case with cryo-EM experimental images, the Fréchet mean

is mostly determined by the noise. The GM, on the other hand, is more resilient to zero-mean noise. For other

noise models, the GM is also highly affected by the added non-zero mean noise. An illustration of this effect is

presented in Figure 3, where we observe gradual contamination by two types of noise. In our centering method,

which we present next, we suggest a surrogate function to the CM. As seen in Figure 3, our approach is robust to

the aforementioned limitations of the CM and GM.

1By object we mean a single, connected (physically and conceptually) region in the image with non-zero mass.
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(b)

Figure 3: The effect of noise over the CM, GM, and our centering. From left to right, we present a clean shifted

image followed by a series of noisy shifted silhouettes. In (a), we use growing levels of Gaussian noise (which

will cause pixel values to become negative) while in (b) the added noise is positive uniform. As the level of noise

increases, the CM gravitates towards the origin. In (a), the GM and our centering remain in approximately the

same location along the entire series whereas in (b) the GM joins the CM while our centering stays in the same

location.

2.2 Angular averaging

We once again consider the simple example of the silhouette of a hedgehog. The pixel values within the (noiseless)

silhouette are strictly positive and equal one, while the background pixel values equal zero. We will compare the case

where the CM of the hedgehog coincides with the origin of image and the case where it does not, and demonstrate

that the rotational average (that is the average of all possible rotations) in each case is distinct.

In the case where the silhouette image has its CM at the origin, any application of a rotation operator spins the

silhouette around its CM while keeping the CM in place. Summing all possible rotations results in a rotationally

symmetric “spread silhouette.” We illustrate this process in Figures 4a–4d. Specifically, in Figure 4a we present a

centered silhouette of a hedgehog. Then, we carefully rotate the hedgehog to obtain several rotated copies of this

image, as seen in Figure 4b. Adding these rotated copies together results in the image of Figure 4c. Finally, by

averaging over all possible rotations, we obtain Figure 4d.

The principal observation is that any translation of the original hedgehog image, moving its CM away from the

origin, will cause the “spread silhouette” to cover a larger area of the rotationally averaged image. To visualize

this, we shift the hedgehog by 10% of the maximum possible shift, that is 20 pixels along each axis in our 400× 400

image, as seen in Figure 4e. As before, we introduce in Figure 4f the same finite set of rotations as in Figure 4b,

now applied over the shifted image of Figure 4e. The sum of these rotations causes the average image to be smeared

across a larger area, as seen both in the partial sum of Figure 4g as well as the average of all possible rotations in

Figure 4h. The difference between Figure 4d (the centered case) and Figure 4h (the shifted case) is clearly seen.

One significant advantage of rotational averaging is its denoising effect. Namely, the pixels along each circle of

a fixed radius are averaged, so the impact of noise decreases. Our angular denoising is therefore geared towards

problems where the rotational average of an image is sufficient knowledge of its content. This allows us to contend

with levels of noise that would render techniques applied directly on the noisy images useless. A demonstration of
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origin

center of mass

(a) Centered (b) rotated copies (c) Sum of rotations

in (b)

(d) Average of all pos-

sible rotations

origin

center of mass

(e) Shifted (f) rotated copies (g) Sum of rotations

in (f)

(h) Average of all pos-

sible rotations

Figure 4: The difference in energy spread of rotational averaging of centered (top row) and uncentered (bottom

row) hedgehogs. In each row, from left to right, we present the original silhouette, a few possible rotations, the sum

of these rotated copies, and the average of all possible rotations of the leftmost image.

this phenomenon is given in Figure 5.

The above demonstration shows how to reduce the problem of centering silhouettes to that of measuring the

energy spread of rotationally averaged images. We obtain this measurement by posing a metric in which we can

quantify the distance between a given rotationally averaged projection and the ideal centered image, which is a

delta-image where the total pixel energy is concentrated in the origin. We expect that, as the CM of an image nears

its origin, its rotational average will become closer to the delta-image.

We formally define our surrogate function next, in Section 2.3.

2.3 Surrogate function for center of mass

In Section 2.1 we discussed the limitations of direct estimation of the CM of projection images as well as the

limitations of the GM as a robust estimator of the CM. In this section, we present our suggested surrogate function,

which supplies a robust estimate of the CM. We note that, in the following, we assume that in a noiseless image

the pixel values of the object are strictly larger than those of the background which consists of zero-valued pixels,

corresponding to zero mass. This setting is typical in many applications [6, 28].

We begin the definition of our surrogate function with some notations. First, we denote the parametric descrip-

tion of the image (the image grid) as the set of pixels P. We further denote the mth ring of pixels around p ∈ P
as Am(p). Formally, we define Am(p) as

Am(p) =
{
s ∈ P | m− 1 < d (p, s) ≤ m

}
, m = 1, . . . , R.

For m = 0 we set A0(p) = {p}. We further define the disk

BR(x) =
R⋃

m=0

Am(x).

Unless stated otherwise, the metric d is the standard Euclidean metric.
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Figure 5: Illustration of the SNR increase attained via rotational averaging. We compare the SNR between images

(a), (b), (e) and (f), to their rotational averages, (c), (d), (g) and (h), respectively. The noise levels have dropped

from SNR of 1/45 in(b) and (f) to SNR of 1 and 1/5 in the rotational averages of the hedgehog and the shark,

respectively. The difference between these two cases lies in the angular spread of the two objects. For a formal

definition of SNR see (29).

Definition 4 (surrogate function for center of mass). We define the surrogate function for the CM (sCM) of an

image I as the minimizer of the following sum of absolute deviations:

µs = arg min
x∈P

R∑
l=0

Emax −
l∑

m=0

∑
s∈Am(x)

I(s)

 . (6)

Here, the image I is normalized such that all pixel values are non-negative, R is an upper bound on, and strictly

larger than, the radius of the object we aim to center and Emax = maxx∈P
∑R
`=0

∑
p∈A`(x)

I(p) is, in the case of a

noiseless image, the total mass of the object.

As our goal is to approximate the center of mass of an object, it follows that our estimate µs must rely on the

entire mass of the object, and only the mass of this object. The parameter R is determined such that the entire

object will fit in a disk of diameter 2R+ 1 around the true GM of the object, thereby guaranteeing that µs relies on

the entire mass of the object. In Figure 6 we illustrate the effect of the parameter R on µs. To this end, we use an

image of a hedgehog, where the diameter of the hedgehog is 112. When R < 57 our estimate of µs has a constant

change. However, when R > 57, µs intersects with the GM and remains unchanged as R grows. We discuss formal

bounds on R such that the optimum µs is unaffected by nearby objects in Theorem 8.

We now explore the connection between the GM and the sCM in the noiseless case.

Theorem 5. Consider a noise-free setting, where image I contains a single object of non-zero mass. Then, the GM

of (5) with respect to the composed metric d(x, y) =
⌈
‖x− y‖

⌉
(where d·e is the operation of rounding up) coincides

with a local minimum of the landscape of the sCM,

LI(x) =
R∑
l=0

Emax −
l∑

m=0

∑
s∈Am(x)

I(s)

 . (7)
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Figure 6: Illustration of the effect of R on the sCM, µs. As R grows beyond Rmin (the radius of the hedgehog), µs

remains stable and intersects with the GM µ1.

Proof. Recall that all pixel values of the image I are non-negative. Then, for any pixel x where BR(x) contains the

entire object, (7) becomes

LI(x) =
R∑
l=0

Emax −
l∑

m=0

∑
s∈Am(x)

I(s)

 = (R+ 1) Emax −
R∑
l=0

l∑
m=0

∑
s∈Am(x)

I(s), (8)

We further note that

R∑
l=0

l∑
m=0

∑
s∈Am(x)

I(s) = (R + 1)I(x) +R
∑

s∈A1(x)

I(s) + (R − 1)
∑

s∈A2(x)

I(s) + · · ·+
∑

s∈AR(x)

I(s) (9)

=
∑

s∈BR(x)

(R+ 1−
⌈
‖x− s‖

⌉
)I(s),

We denote the GM as µ1. By definition, for any point x and, specifically, for any point x 6= µ1 where BR(x) contains

the entire object ∑
s∈P

⌈
‖µ1 − s‖

⌉
I(s) <

∑
s∈P

⌈
‖x− s‖

⌉
I(s). (10)

Equivalently, this can be expressed as∑
s∈BR(µ1)

⌈
‖µ1 − s‖

⌉
I(s) +

∑
s/∈BR(µ1)

⌈
‖µ1 − s‖

⌉
I(s) <

∑
s∈BR(x)

⌈
‖x− s‖

⌉
I(s) +

∑
s/∈BR(x)

⌈
‖x− s‖

⌉
I(s). (11)

We note that, by the construction of the disk BR(x), every pixel s /∈ BR(x) must equal zero. The same is true for

every pixel s /∈ BR(µ1). Therefore, ∑
s∈BR(µ1)

⌈
‖µ1 − s‖

⌉
I(s) <

∑
s∈BR(x)

⌈
‖x− s‖

⌉
I(s). (12)

Furthermore, as the object is fully contained in BR(x) and in BR(µ1),

(R+ 1)
∑

s∈BR(µ1)

I(s) = (R+ 1)
∑

s∈BR(x)

I(s). (13)

In conclusion,∑
s∈BR(µ1)

⌈
‖µ1 − s‖

⌉
I(s)− (R+ 1)

∑
s∈BR(µ1)

I(s) <
∑

s∈BR(x)

⌈
‖x− s‖

⌉
I(s)− (R+ 1)

∑
s∈BR(x)

I(s). (14)

Thus, (14) together with (8) and (9) imply the claim.
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Theorem 5 states that in the regime where the GM provides a valid estimate of the CM, that is, a clean image

containing a single object, the sCM is guaranteed to reach a local minimum at the GM. This will become a global

minimum under the condition that for any disk Bm(x), where 0 ≤ m ≤ R, the intensity in the outer R−m rings is

limited relative to the internal m rings (or, in other words, the intensity values of the object do not increase rapidly

as we move away from its GM). We formally pose this condition in the following Theorem.

Theorem 6. Consider a noise-free setting, where image I consists of a single object. Assume that for any x ∈ P
the object satisfies ∑

s∈P

⌈
‖µ1 − s‖

⌉
I(s) <

∑
s∈BR(x)

⌈
‖x− s‖

⌉
I(s) + (R + 1)

∑
s∈P\BR(x)

I(s), (15)

where R is an upper bound on, and strictly larger than, the radius of the object we aim to center. Then, the GM

of (5) with respect to the composed metric d(x, y) =
⌈
‖x− y‖

⌉
coincides with the global minimum of the landscape

of the sCM (6).

Proof. By (15), we have∑
s∈P

⌈
‖µ1 − s‖

⌉
I(s) <

∑
s∈BR(x)

⌈
‖x− s‖

⌉
I(s) + (R + 1)

∑
s∈P

I(s)− (R+ 1)
∑

s∈BR(x)

I(s), (16)

that is ∑
s∈P

⌈
‖µ1 − s‖

⌉
I(s)− (R+ 1)

∑
s∈P

I(s) <
∑

s∈BR(x)

⌈
‖x− s‖

⌉
I(s)− (R+ 1)

∑
s∈BR(x)

I(s). (17)

Additionally, any pixel x ∈ P which has value other than zero must be in the disk BR(µ1). Therefore,∑
s∈BR(µ1)

⌈
‖µ1 − s‖

⌉
I(s)− (R+ 1)

∑
s∈BR(µ1)

I(s) <
∑

s∈BR(x)

⌈
‖x− s‖

⌉
I(s)− (R+ 1)

∑
s∈BR(x)

I(s). (18)

Recall (8) and (9), to say, the GM is the global minimum of the landscape of the sCM.

So far we have seen that in the regime where the GM provides a reliable estimate of the CM, the sCM will

identify the GM as either a local or a global minimum. We will now consider two cases where the GM fails to

identify the CM, whereas the sCM retains its reliability.

In the first case, we consider image I as a sum of two images, I1 and I2. Image I1 fully contains a single object

supported on the set of pixels P1. Image I2 includes a constant background, that is I2(p) = α > 0 at any pixel p.

Lemma 7. Assuming the number of pixels at each disk Br(p), r ≤ R is fixed for any p ∈ P. Then, the sCM of I1,

which agrees with the assumptions of Theorem 5, is preserved for I = I1 + I2, with I2(p) = α > 0 at any pixel p.

Proof. Since the value LI2(p) of the cost function (7) is constant for all p ∈ P and the landscape of (7) is linear,

that is LI(p) = LI1(p) + LI2(p), it follows that arg min
p∈P

LI(p) = arg min
p∈P

LI1(p).

A consequence of Lemma 7 is that the the sCM will be uneffected by an addition of some constant to the image

I. It follows that iid noise with zero mean and iid noise with positive mean will have the same effect on the sCM.

This is not the case for the GM, as was illustrated in Figure 3b. To see this, we turn to the landscape of the GM

LGI (x) =
∑
p∈P

I(p)d(p, x). (19)

This landscape is also linear, that is, LGI (x) = LGI1(x) + LGI2(x). As the two images I1 and I2 have distinct GMs, it

follows that the overall GM of I may deviate from the GM of the object in I1. In particular, since we assume I2 is

constant, its GM appears at (or very close to) the central pixel, that is, the origin. This is usually not the case for
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image I1 (otherwise, centering would be unnecessary). Therefore, there is no result analogous to Lemma 7 for the

GM.

In the second case where the GM fails to provide a reliable estimate of the CM of an object, images I1 contains

a single object supported on the set of pixels P1 and image I2 contains a single partial object supported on the set

of pixels P2. As the objects are distinct, it follows that P1 ∩P2 = ∅. Recall that our aim is to identify the center of

the object supported on P1. As before, since the objects have distinct GMs, the overall GM of I is not guaranteed

to coincide with GM of the object in I1. Indeed, such an example is presented in Figure 2, where the minimum of

LGI migrates towards the area between both objects, since the distance to all non-zero pixels is reduced there. This

is not the case for the sCM. We analyze the performance of the sCM in the following theorem.

Theorem 8. Consider a noise-free setting, where image I = I1+I2 is a sum of two images. Image I1 fully contains

a single object supported on the set of pixels P1. Image I2 contains a single partial object supported on the set of

pixels P2. Then, the minimizer of the sCM will remain unchanged so long the following conditions are satisfied:

1. distance assumption: The GM of I1 has a distance of at least R from any non-zero pixels in I2.

2. intensity assumption:

max
x∈P

∑
s∈BR(x)

I(s) =
∑
s∈P1

I1(s).

Proof. We divide the landscape (8) into two parts,

LI(x) = (R+ 1) Emax −
R∑
l=0

l∑
m=0

∑
s∈Am(x)

I1(s)

︸ ︷︷ ︸
LI1

(x)

−
R∑
l=0

l∑
m=0

∑
s∈Am(x)

I2(s)

︸ ︷︷ ︸
L−(x)

. (20)

By Theorem 5, the landscape LI1(x) reaches a minimum at the GM of the object, x∗1. Furthermore, by the distance

assumption, L−(x∗1) = 0. That is, for any pixel x such that the object depicted in I2 is outside the disk BR(x),

LI(x) = LI1(x). (21)

Since x∗1 is a (local) minimum of LI1(x) it must also be a (local) minimum of LI(x).

Additionally, when x∗1 is the global minimum of LI1(x), it is also the global minimum of LI(x). To show this,

we assume in contradiction that there exists a pixel p such that LI(p) < LI(x
∗
1). Then, by (21), we have

(R+ 1) Emax −
R∑
l=0

l∑
m=0

∑
s∈Am(p)

I1(s)−
R∑
l=0

l∑
m=0

∑
s∈Am(p)

I2(s) <

(R+ 1) Emax −
R∑
l=0

l∑
m=0

∑
s∈Am(x∗1)

I1(s)−
R∑
l=0

l∑
m=0

∑
s∈Am(x∗1)

I2(s).

However,
∑R
l=0

∑l
m=0

∑
s∈Am(x∗1)

I2(s) = 0 and so,

R∑
l=0

l∑
m=0

∑
s∈Am(p)

(
I1(s) + I2(s)

)
>

R∑
l=0

l∑
m=0

∑
s∈Am(x∗1)

I1(s). (22)

In conclusion, (22) contradicts the intensity assumption, which proves that no such pixel p exists.

Contrary to the GM, the sCM (6) uses an upper bound on the radius of the object as additional information. It

is natural to examine a similar restriction on the cost function (19) of the GM. We therefore define the landscape

of the local geometric median as

LRI (x) =
∑

s∈BR(x)

I(s)d(s, x). (23)
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Figure 7: Comparison between the landscape functions of the GM, local GM, and the sCM for images of a single

and multiple hedgehogs. The leftmost column contains the hedgehog images. The center-left column contains at

each pixel x the sum (19). The center-right column contains at each pixel x the sum (23). The rightmost column

contains the landscape of the sCM, that is, for each pixel x the sum (7)

Both the sCM (6) and the local GM (23) provide an indication on the object’s GM. Additionally, the compact

support of both landscapes ensures that distant partial objects will not affect the center estimation at the vicinity

of an object. Nevertheless, these methods differ in other aspects. For example, the landscape of LRI1(x) reaches a

local minimum at the GM and grows with distance from the GM. It then falls to zero, and remain zero at pixels x

where BR(x) does not contain any object. The low values outside an object can create spurious minima at pixels

residing between multiple objects. In comparison, at these locations the landscape of the sCM will remain high

due to the comparison with Emax and our regularization, which assigns higher weights to the inner rings. A visual

comparison between the GM, local GM, and the sCM in the case of single and multiple objects is given in Figure 7.

This comparison summarizes the above analysis.

2.4 The connection to Earth Mover’s Distance

To conclude this section, we present the connection between the sCM and the Earth Mover’s Distance (EMD). We

have previously alluded to this connection in Section 2.2 when discussing the motivation for our method. Here we

present this connection in more detail. We start with the definition of EMD, see e.g., [19].

Definition 9 (Earth Mover’s Distance). The EMD between two images I1 and I2 given a joint parameterization is

defined as

dEMD(I1, I2) = min
{fi,j}

∑
i,j∈P fi,jdi,j∑
i,j∈P fi,j

, s.t.
∑
j

fi,j ≤ I1(pi), (24)

∑
i

fi,j ≤ I2(pj),

∑
i,j

fi,j = min

∑
p∈P

I1(p),
∑
p∈P

I2(p)

 , fi,j ≥ 0.

Here di,j = d(pi, pj) is the ground distance and {fi,j} denotes the flows from I1 to I2.
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A key ingredient is what we define as a delta-image.

Definition 10. Given an image I, the associated delta-image δp(I) at the pixel p, is the image with the same size

as I, defined as

δp (I) (s) =

{
0 if s 6= p∑
j

∣∣I(j)
∣∣ if s = p.

Next, we obtain the EMD of an image with its delta-image.

Lemma 11. Denote by E =
∑
s∈P

∣∣I(s)
∣∣ the total sum of pixel intensities of an image I. Then,

dEMD(I, δp (I) (c)) =
∑
s∈P

I(s)d(s, p)/E, (25)

where c is the central pixel (origin) of the image I.

Proof. By the definition of δp (I) (c), we get that, of the flow fi,j between I and δp (I) (c), only fi,jp is nonzero,

where jp is the index associated with the pixel p. Consider si to be associated with i, the constraints on the flow

imply that fi,jp = I(si). Then, the lemma follows by the EMD definition (24).

Focusing on the case of a single object and the composed metric d(x, y) =
⌈
‖x− s‖

⌉
as the ground distance, we

combine Theorem 6 and Lemma 11 to deduce:

Corollary 12. Let I be an image that fully contains a single, noise-free object. Assume that p1 is the center pixel

as determined by the sCM (6). Then, under the condition (15) of Theorem 6, and for any pixel p2 6= p1,

dEMD(I, δp1 (I) (c)) ≤ dEMD(I, δp2 (I) (c)).

In other words, with the above settings, the sCM minimizes the EMD to the delta-image.

3 The algorithm

In this section, we describe the implementation of our suggested approach. For convenience, we present a sequential

algorithm, focusing on a single input image. In practice, one can easily apply a concurrent version of the algorithm,

and process a stack of multiple input images simultaneously.

3.1 Surrogate function reformulated

Let zp be the rotational summation vector around the pixel p. The mth entry of this vector is defined as

zp[m] =
∑

s∈Bm(p)

I(s), m = 0, . . . , R.

Then, the induced vector of cumulative sum is

up[m] =
m∑
`=0

zp[`], m = 0, . . . , R.

Recall that we normalize the image I to ensure that all pixel values are non-negative. Therefore, the total accumu-

lated energy of an image I over the disk BR(p) is

up[R] =
R∑
`=0

∑
s∈B`(p)

I(s).

12



Denote by P ⊂ P the set of pixels p such that BR(p) is fully contained in the image I. Now, our minimization

criterion can be expressed as

µs = arg min
p∈P

L̂I(p), where L̂I(p) =
∥∥up/Emax − 1

∥∥
1
. (26)

Here, 1 = (1, . . . , 1) is the all ones vector, ‖·‖1 is the standard `1 norm and Emax = max
p∈P

up[R].

3.2 Algorithm description

We note that any object can be contained in an image of size (2R+ 1)× (2R + 1), where R is an upper bound on

the radius of the object and the origin of the image coincides with the center of the object. In our case, the location

of the center is initially unknown. As the general location of the object is known, we can take as the initial center

p0 a point within the object. This guarantees that our initial center is at some distance smaller than R from the

true center. It follows that the object is fully contained within an image I of size (4R + 1)× (4R + 1) around our

p0, and we therefore apply the sCM to this image.

Given the image I, our goal is to find a pixel p that is best centered with respect to the object’s CM. We do this

by computing the scaled version of the sCM for each pixel p ∈ P and then identifying the minimizer, as seen in (26).

This process includes cropping images around possible center pixels in P and applying rotational averaging. The

averaging is done through expansion over a basis of orthogonal, rotationally symmetric functions, and is presented

in detail in Section 3.3. Once the rotational averaging has produced the vector zp for each p ∈ P , we compute the

cumulative sums up, Emax and, finally, the landscape of (26).

We summarize the above process with pseudo-code given in Algorithm 1. In Line 1 we set the initial grid of

potential centers P . The search over these centers starts with the main loop in Line 2. Rotational averaging is done

on Line 4 and L̂I(·) is calculated on Line 5. After a search over all potential centers, the point that minimizes the

sCM is chosen, and the algorithm terminates.

Algorithm 1 Robust Translational Centering

Input: A (non-negative) image I, and the particle radius R

Output: The chosen center µs

1: Define the set P of possible centers.

2: for all p ∈ P do

3: Ip ← Crop I around the pixel p according to R

4: up ← Apply rotational averaging over Ip

5: L̂I(p)← Calculate and store, see (26)

6: end for

7: µs ← arg minp∈P L̂I(p)

8: Return µs

3.3 Rotational averaging via steerable basis functions

When computing a rotational average of an image, it is natural to convert the image into polar coordinates.

Averaging directly in Cartesian coordinates will produce an inexact result due to the discretization of the image.

Therefore, in our implementation, the image is decomposed into polar-separable building blocks (that is, basis

functions of the form f(ρ, θ) = g(ρ)Φ(θ), where ρ and θ are the radial and angular coordinates, respectively).

The rotational averaging can now be attained directly from the expansion coefficients that are associated with the

zero-frequency of the angular part, Φ. Once an average is computed, the sum zp is easily recovered.
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The above radial coordinate system is supported by many possible bases. One popular example is the 2-D

prolates spheroidal wave functions (PSWFs). PSWFs have been known for more than a century, but it was not

until the 1960s that they received a comprehensive analysis in several seminal papers [11, 12, 26, 27]. The PSWFs

functions rise as a solution to the optimal concentration problem, which strives to identify the most concentrated

function inside a given disk out of all band-limited functions defined on the plane. This optimality property allows

a very efficient representation of band-limited functions mainly supported inside a disk or functions on a disk that

are “almost” band-limited. Since we examine objects which are concentrated on a compact disk and as images

are naturally band-limited, we fit precisely the central assumption in the backbone of the PSWF construction.

Therefore, following [10], we use orthogonal 2-D PSWFs for calculating the rotational average of a projection image

Ip by expanding over basis functions of the form

ΨR
n,m(ρ, θ) =


1√
2π
gRm,n(ρ)eimφ ρ < R,

0 otherwise.
(27)

The rotational average is then

AI(ρ) =

nR∑
n=0

αnΨR
n,0(ρ), (28)

where, from orthogonality, the expansion coefficients take the form αn =
∫
ρ≤R I(ρ)Ψn,0(ρ)dρ , and are calculated

via numerical integration using quadratures [22]. The radial truncation parameter nR is determined by the support

size R and its size is of O(R), see details in [10]. Note that by (27), the expansion (28) does not depend on θ and

is therefore rotationally symmetric, as required.

3.4 Computational complexity

We begin our complexity analysis with some notations. We denote the size of the input image I by N × N , the

search grid by G, and the number of pixels on this grid (potential centers) by |G|. Each potential center is tested

using a subimage of size (2R+ 1)× (2R+ 1). The following analysis is given as a function of the parameters N , R,

and |G|.
The main loop in the algorithm (Lines 2–6) runs over G, which is made of |G| potential centers. In Line 3,

we crop the image. This step is quadratic in R for each potential center, and yields O(|G|R2) operations. The

rotational averaging of Line 4 is performed as explained in Section 3.3 which consists of the following three steps.

First, the transform that obtains the coefficients of the zero angular frequencies is applied. Next, the resulting

low-frequency approximation (28) is formed, and, lastly, the rotationally symmetric image is sampled to obtain a

representative radial vector zp.

The transform includes reading the cropped image which is quadratic in R (and linear in the number of pixels of

the cropped image), that is O(R2). We have O(R) radial basis functions, all calculated in advance. The coefficients

are computed via inner product in a total complexity of O(|G|R3) operations. Note that in practice, most of the

above-mentioned work can be carried out in parallel. The evaluation of the low-frequency approximation (28) is

done in an economical way; recall that any such image is rotationally symmetric, and thus we have to evaluate it

over a single radial direction, that is, using O(R) coordinates per basis function or, in total, O(R2) operations.

For the full algorithm, this task costs O(|G|R2). Finally, calculating the metric (26), we once again act on vectors

of size O(R), which yields O(|G|R) operations.

In conclusion, the complexity of the algorithm is of leading order

O
(
|G|R3

)
,

where the next leading term is of O(|G|R2), and |G| is bounded by (2R+ 1)× (2R+ 1).
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4 Numerical examples

We present a few numerical examples to illustrate the performance of our centering method. We begin, in Section 4.1,

with an example of a synthetic data image. In Section 4.2 we demonstrate the performance of our method on

experimental data obtained from the Electron Microscopy Public Image Archive (EMPIAR) [9]. Specifically, we

test our centering method on datasets of 80S ribosome, β-galactosidase and TRPV1 macromolecules.

In the synthetic experiments, the noise is additive. We therefore measure the level of noise in a given image I

using the following signal-to-noise ratio (SNR),

SNR (I) =‖Ic‖2 /‖ε‖2 , (29)

where Ic is the clean image and ε = I − Ic is the noise added to Ic.

4.1 Synthetic demonstration

We start with a comparison of our algorithm and the standard method of cross-correlation. While cross-correlation

is a traditional method, it is still the basis for many of today’s algorithms. In this method, we compute the shift s∗

from the center of the template as

s∗ = arg max
s=(s1,s2)

∑
i,j

IR(i, j)I(i+ s1, j + s2),

where I is the test image and IR is the template. That is, for each test image we find a shift from the template’s

center by identifying the peak of the cross-correlation function.

Our experimental setup is as follows; we use a centered image of a hedgehog, including its background, as the

basic template IR. The size of this image is 101× 101. The image itself is restricted to a disk, as seen in Figure 8.

Next, we create our test image I. This image, shown in the leftmost column of Figure 8, is of size 211 × 211. The

reference IR is embedded within I in an arbitrary deviation of about 10% along the horizontal axis and 15% along

the vertical axis from the origin of I. Next, we contaminate the test image (left picture in Figure 8) with colored

added noise that has a spectrum which decays like 1/
√

1 + ρ2 over the radial direction ρ. The noise levels vary

between SNR of 1/2 and 1/200. The input to our algorithm includes the noisy test image and the radius of our

object (the hedgehog), which is 50 pixels. The output is the estimated CM for this noisy image. We compare

our method to the cross-correlation algorithm. As cross-correlaiton requires a template, and to obtain a realistic

setting, we provide four different references as templates. The first two references, presented in the third and fourth

columns of Figure 8, consist of noisy versions of the hedgehog image, where the corrupting noise is Gaussian and

iid. One of the noisy references has SNR of approximately 2.5, and the other has SNR of approximately 1/2. The

third reference image is a low-pass filtered version of the first reference. The low-pass filter disposes of much of

the iid Gaussian noise, yielding a template with SNR of approximately 6. Our last template is simply a Gaussian

with width determined by the known width of the hedgehog. The low-pass template and the Gaussian reference

are presented in the rightmost columns of Figure 8. Note that, in this example, the template image is rotationally

aligned with the test image. Thus, we only need to seek the translation and not to consider rotating the template.

In this perspective, the setting is optimal for the cross-correlation method.

Since the true CM of I is known and is identical in this test image to the GM, we compute the sum of pixel

deviation of each estimated center from this true center. For robustness, we repeat each test ten times and average

over the pixel deviations. The results are presented in Figure 9. Our centering method, which is represented by a

solid blue line, outperforms cross-correlation methods, and retains the center throughout the entire range of noise.

While our centering method produces better results, we note that it is also slightly higher in runtime. Specifically,

the runtime for centering the silhouette is 0.04 seconds for cross-correlation and 1.65 seconds for our method to run

on a 2.6 GHz Intel Core i7 CPU with four cores and 16 GB of memory.
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Figure 8: Data for the synthetic comparison. We present, from left to right, the clean non-centered test image,

the clean reference image, and the four templates for the cross-correlation method. The references consist of three

noisy copies of the centered hedgehog image contaminated with varying noise levels and a Gaussian reference.
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Figure 9: Comparison between performances of cross-correlation and our centering method. The comparison is

performed over noisy versions of the hedgehog test image (see Figure 8). We measure the error as the sum of

pixel deviation (in each axis) from the ground truth shift. As shown, the performance of the cross-correlation is

profoundly affected by the quality of the template and is outperformed by our centering method.

Additionally, we use the hedgehog silhouette to demonstrate the connection between the GM (see Definition 3)

and the sCM (see Definition 4). In Section 2, we focused on the noise-free setting. Now, in Figure 10 we present a

numerical test that visually shows the effect of noise on the landscape of the local GM (23) and the sCM (8). This

comparison illustrates that in the presence of noise, the landscape of the GM dramatically varies (see the middle

column). In particular, the region of minimum value stretches across many areas of the image. Thus, choosing the

point that leads to a minimum may result in a substantial deviation from the real median of mass. On the other

hand, the overall landscape of the sCM remains similar to the noiseless case (see the rightmost column), and the

point that leads to the minimum provides a reasonable estimation of the true CM. In Figure 11 we repeat this

numerical test for the case of two silhouettes.

4.2 Cryo-electron microscopy

Before presenting our numerical results, we provide a short background of the centering problem in cryo-EM, which

we use as a case study in the following.

In single-particle cryo-EM, data is acquired by embedding many instances of a particle in vitreous ice and

projecting along the axis perpendicular to the ice. Let φ : R3 → R be the Coulomb potential of the 3-D volume
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Figure 10: Two examples of comparison between the landscapes of the local GM, as appears in (23) versus the

suggested cost function of (8). The left upper image includes the clean hedgehog silhouette, and beneath it is a

noisy version with SNR = 1/10. The maps of the level set in the case of local GM (`GM) appear in the middle

column. While a unique minimizer is available in the noise-free setting, with noise, many minima appear as the

landscape varies between areas that are close to the correct GM and regions far away. On the other hand, our

centering cost function has a unique minimizer, as seen in the images on the rightmost column in both cases. The

minimum in the noisy case is marked by a plus sign (bottom right picture).
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Figure 11: Two examples of comparison between the landscapes of the local GM, as appears in (23) versus the

suggested cost function of (8). The left upper image includes a clean hedgehog silhouette and a partial hedgehog

silhouette, and beneath it is a noisy version with SNR = 1/10. The maps of the level set in the case of local GM

appear in the middle column. In the noise-free setting, the global minimum is far from the silhouettes. Additionally,,

the area between both silhouettes contains the local minimum. When noise is added, once again many spurious

minima appear as the landscape varies between areas that are close to the correct GM and regions far away. On

the other hand, our centering cost function has a unique minimizer, as seen in the images on the rightmost column

in both cases. The minimum in the noisy case is marked by a plus sign (bottom right picture).
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(particle). We define the projection operator P : R3 → R2 as

Pφ(x1, x2) :=

∫ ∞
−∞

φ(x1, x2, x3) dx3.

Each instance of the particle is captured in some unknown rotation. We denote the rotation applied to the jth

particle instance as Rj . We further denote the rotated particle as Rjφ. The jth projection image Ij is formed

by tomographically projecting Rjφ. This projection is filtered by the point spread function [14, 17, 29], which

is denoted by hj . Furthermore, each projection image is contaminated by high levels of noise mainly due to an

inherent restriction on the number of imaging electrons.

Mathematically, the image formation model of Ij is [1, 5]

Ij = hj ∗ P
(
Rjφ

)
+ εj , Rj ∈ SO(3), j = 1, . . . , n. (30)

Here, εj is a random field modeling the additive noise term and SO(3) is the 3-D special orthogonal group consisting

of orientation-preserving rotations. While the shot noise follows a Poisson distribution, for discretized projection

images of size N × N , it is often modeled as a random field εj ∼ N (0, σ2IN2), j = 1, . . . , n. Our algorithm can

operate under this and other noise models.

We assume the image has been corrected for h (this is known as CTF correction). Thus, the image formation

model is

Ij = P
(
Rjφ

)
+ ej . (31)

One method of such correction is called phase-flipping. This method preserves the noise statistics. Therefore, when

εj has a Gaussian distribution, so will ej .

So far, we have assumed that all projection images I1, . . . , In are perfectly aligned. In practice, this is not the

case. Rather, many models use an additional translation operator to describe the projections. The challenge of

reverting to the shift-free model of (31) is what we refer to as “the centering problem in cryo-EM.”

This alignment problem indicates that centering should be applied individually on each image in such a way

that it will be possible to register it, up to a global rotation, with the 3-D volume φ. A different perspective is

given in the reciprocal space; by the Fourier slice theorem, the Fourier transform of each image equals to a slice

in the 3-D Fourier transform of the volume. A translation that acts on the projection image modulates its Fourier

transform. Therefore, the Fourier transform of unaligned projection images equals to slices in different modulations

of the 3-D reciprocal space of φ. Centering the images means modulating their Fourier transform so the resulting

projections will, in reciprocal space, form slices that originate from the same 3-D Fourier volume.

To exemplify the difficulty of the centering problem, we present in Figure 12 an experimental image, called a

micrograph, which is a tomographic projection of a section of the ice and the many particles embedded within

(each in unknown location and with an unknown rotation). Additionally, we present individual projection images

selected out of the micrograph using the APPLE-picker [8]. Visually identifying the center of each projection is a

daunting task. Particle pickers, such as the APPLE-picker, will provide many roughly centered projection images

as well as other projection images which are poorly centered.

Currently, centering of projection images is typically done during 2-D classification and 3-D refinement. This is

problematic as many reconstruction methods assume, implicitly or explicitly, that the projection images outputted

by the particle picker are (all) roughly centered. This assumption is explicitly stated in works on 2-D classifica-

tion [23] and implicitly manifested in the assumption that the projection exists only within a circle of some radius

within the projection images. This assumption is used, e.g., for normalizing noise [20] or when expanding projec-

tion images over a steerable basis with a finite number of radial frequencies [10]. Another manifestations of the

aforementioned assumption appears in the initial modeling stage, as the initial model is created prior to transla-

tional alignment. The last manifestation we mention appears during 3-D refinement, as only a limited amount of
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Figure 12: Example of experimental images from the EMPIAR-10017 [21] publicly available dataset. On the left

we present one micrograph, which is the raw data containing over 600 individual projection images. On the right

we present individual projection images extracted from the micrograph.

Figure 13: Results of 2-D classification and 3-D refinement. On the left we present the results of 2-D classification,

that is, averages of projections obtained from similar viewing directions. These were computed using RELION [33].

On the right we present two different views of the 3-D macromolecule resolved during 3-D refinement. The 3-

D model used here is publicly available on The Electron Microscopy Data Bank (EMDB) at the Protein Data

Bank in Europe (PDBe) as EMD-2824. The experimental data related to this model is available on EMPIAR as

EMPIAR-10017.

translations are considered [20, 25]. Older modeling methods contain this assumption as well. For example, in 3-D

ab-initio modeling method of [7], the statistical moments of a 3-D object are estimated from the moments of its

2-D projection images. Once again, for the moments to be meaningful, the projection images must be centered.

An example of the output of the 2-D classification stage and the 3-D refinement stage is presented in Figure 13.

On the left are class averages. A class average is an average of many projection images, each with similar viewing

direction. While in some of these class averages we do see images of high quality and improved resolution, others

are very blurred. The blurred class averages include many outliers and must be discarded. Centering the projection

images prior to 2-D classification will reduce the number of blurred class averages.

One method of accomplishing this was suggested in [16] as the first part of an algorithm known as reference-free

alignment (RFA). In this method, when centering the ith projection image (out of n images), first the average image

is computed by averaging over the remaining n− 1 projection images,

Iavg =
∑

k=1,...,n
k 6=i

Ik.
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Original Our centering RFA [16]

Mean shift 16 10.2 12.4

Median shift 14.7 9.2 11.7

Table 1: Results for EMPIAR-10028. The center-left column presents mean and median shift for the original

centers included in the dataset. The center-right column presents mean and median shifts for our corrected centers.

The rightmost column presents mean and median shift for the RFA method [16], which is currently the prevalent

method of alignment in cryo-EM. The baseline centers are taken from the output of RELION 3-D iterative refinement

reconstruction. Shifts are given in pixels, where the pixel spacing is 1.34 Å.

Next, the cross-correlation between Iavg and the i-th image is calculated. The peak of this function will determine

the shift leading to the best match between Ii and Iavg. This operation is done for each image i = 1, . . . , n, and

repeated until convergence. Since projections typically have random in-plane rotations, the average image in the

final iterations is approximately circularly symmetric. As a result, the performance of this method is similar to

cross-correlation with a Gaussian template. In other words, individual projections are not centered independent

of their rotations. Instead, this method aligns each set of images where a similar viewing direction is applied. In

contrast, our method is geared towards aligning all projection images, regardless of their rotation. We note that

this is an advantage when reconstructing a 3-D volume, as the Fourier transform of aligned projection images are

slices in the same 3-D volume.

In the following, we use three publicly available datasets to provide numerical results for a comparison between

non-centered projection images, RFA and our centering method. We show that our method will reduce the neces-

sary translations for 3-D reconstruction of macromolecules, may reduce runtimes and can increase the number of

projections used in the reconstruction and, therefore, may improve resolution.

4.2.1 Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine

We test our suggested framework on an 80S ribosome dataset, which is publicly available as EMPIAR-10028 [32].

This dataset contains 1081 micrographs, each of size 4096 × 4096. Additionally, this dataset includes a CTF-

estimation2 performed by CTFFIND3 [14] and a particle picking of more than 100, 000 projection images (deter-

mined automatically by RELION [21]) .

We correct for CTF according to the parameters computed by CTFFIND3, and run our centering framework on

the picked particles supplied as part of the dataset. Next, we perform 3-D refinement in RELION [33] using 1) the

original projection images. 2) centered projection images, where the centering was done via our centering method,

and, 3) centered projection images, where the centering was done via RFA [16]. We use as a reference to the 3-D

refinement task the model supplied as EMD-2660 [32] in EMDB3. As RELION outputs the translations performed

on each projection image during the reconstruction process, we compare the average translation reported for each

reconstruction. We summarize the results in Table 1.

In the above experiments, we ran only 3-D refinement, and all reconstructions were created using the same

parameters. The resolution of the reconstruction (3.8 Å) was unchanged by centering. Unlike resolution, runtimes,

reported in Table 2, were influenced. Our centering leads to a 50 minute speedup in the 3-D refinement task which

runs on 4 GPUs (and 10 CPU cores). While the centering itself ran for an hour and nine minutes, we note that, as

it ran on a single GPU due to platform constraints (and 12 CPU cores), these runtimes are not comparable.

2That is, an estimation of h in (30)
3https://www.ebi.ac.uk/pdbe/emdb/
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RELION task run-time run-time run-time

(original projections) (centered projections) (RFA [16])

3-D refinement 6:51:12 6:00:20 06:40:51

Table 2: Runtimes for centering and for RELION’s 3-D refinement task on the EMPIAR-10028 dataset. We note

that all 3-D refinement tasks were initialized with the same parameters, and utilized four nVidia P100 GPUs, 5

MPI processes and 10 cores.

4.2.2 β-galactosidase

We test our suggested framework on a β-Galactosidase dataset, which is publicly available as EMPIAR-10017 [21].

This dataset contains 84 micrographs, each of size 4096× 4096. A typical micrograph of this dataset includes a few

hundred projections.

Our computational setup was as follows; we ran the APPLE picker [8] on the raw micrographs, and performed

particle picking as detailed in Section 3.1 of [8]. This led to 42664 picked particles. After this initial picking, we ran

our suggested framework on phase-flipped (i.e. CTF-corrected) projection images selected by the APPLE picker.

The parameters of the CTF were estimated using CTFFIND4 [17].

We use RELION to compare three reconstructions. The first reconstruction is made from the original projection

images supplied by the APPLE-picker. The second and third reconstructions are made from the centered projection

images, where the centering was done via our centering method and RFA, respectively. We present a comparison

of the runtime of each stage in the RELION pipeline in Table 3. We see that using our centering method will

cause a speedup of 10% in 2-D classification and allow the final reconstruction to be made from an additional 4000

projection images. These additional images do slow down the reconstruction process. However, in general, we prefer

to use as many projections as possible to resolve the 3-D structure of macromolecules. Furthermore, we see from

Table 3 that a reconstruction produced from projection images centered via RFA achieves comparable resolution

with fewer projection images as compared to the original (non-centered) projection images. This indicates that

reconstruction from centered projection images improves the success rate of 3-D classification.

For a complete picture of runtimes, we note that the runtime of our suggested method is five minutes when

running on a single nVidia P100 GPU and 12 CPU cores.

In Table 4 we present the average shifts RELION applies to the set of projection images during reconstruction.

We note that the average shift is significantly smaller after our centering is applied.

4.2.3 TRPV1

Lastly, we verify our centering method on the dataset EMPIAR-10005 [13]. This dataset contains 80443 picked

particles, as well as a subset of 32387 particles that were used in the reconstruction uploaded to EMDB. We used

RELION to reconstruct a 3-D volume using the entire subset of 32387 picked particles. Additionally, we ran our

alignment algorithm on all the picked particles, and used RELION to reconstruct a 3-D volume out of all particles

that were not discarded during reconstruction. The same was done after centering with RFA. We summarize the

results of this experiment in Table 5. Our centering allowed us to use 43701 particles with no adverse effect on

resolution. We do not compare the average shift as the reconstructions are all done using a vastly different number

of projection images.

As shown in Table 5, RFA reduces the number of projection images that survive 2-D classification. We note

that approximately 10000 projections are discarded because their class averages contain a partial 2-D view of the

macromolecule. We believe this is caused by nearby projections. That is, it is possible that projection images that

contain a projection and a partial projection will produce unexpected results in the cross-correlation employed by
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RELION task run-time run-time run-time

(original projections) (centered projections) (RFA [16])

2-D classification 00:42:12 00:38:08 00:44:23

# remaining projections 32594 37693 37698

Initial modeling 0:40:05 00:40:37 00:41:04

3-D classification 00:25:42 00:28:16 00:29:47

remaining projections 24148 28861 22321

3-D refinement 00:17:34 00:18:17 00:16:58

Overall 02:05:33 02:05:18 02:12:12

Resolution 4.3 Å 4.2Å 4.2Å

Table 3: Run times for RELION’s 3-D reconstruction on EMPIAR-10017. We present runtimes for the full recon-

struction pipeline when run on original projections selected by the APPLE picker [8] (center-left column), centered

projections when using our suggested method (center-right column) and centered projections when using RFA [16]

(rightmost column). All runtimes refer to 4 nVidia P100 GPUs and multiple cores (between 10 and 112 depending

on the task).

APPLE picking Our centering RFA [16]

Mean shift 12.3 8.1 10.7

Median shift 10.6 7.9 8.9

Table 4: Average shifts during 3-D refinement as reported by RELION on EMPIAR-10017. Shifts are given in

pixels, where the pixel spacing is 1.77 Å.
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RELION task run-time run-time run-time

(original projections) (centered projections) (centered projections [16])

2-D Classification runtime 01:29:50 01:24:31 01:50:15

Number of particles 32,387 43,701 23,535

3-D Refinement runtime 00:51:40 01:23:13 00:40:40

Resolution 4.45 Å 4.32 Å 4.72 Å

Table 5: Results for EMPIAR-10005. After centering, the reconstruction can be done from an extra 11000 particles.

Without our centering method, these projections would be dismissed during 2-D classification resulting in slightly

reduced resolution. The 2-D Classification task utilized 4 nVidia P100 GPUs and 112 CPU cores. The 3-D

Refinement task utilized 4 nVidia P100 GPUs, 5 MPI processes and 10 CPU cores. Our centering method utilized

a single nVidia P100 GPU and 12 CPU cores and RFA utilized a single nVidia P100 GPU and single CPU core.

RFA, causing large shifts and reducing the number of usable projection images. Indeed, the class averages that

contained partial 2-D views of the macromolecule all included blurred areas, indicating that nearby projections were

averaged in.

5 Conclusion

The main contribution in this paper is the introduction of a surrogate function to the center of mass, which leads

to a robust estimator of the center of mass. We mathematically motivate our construction, along with examples for

which the geometric median fails to provide an accurate estimate of the center of mass, yet our surrogate function

prevails. We further analyze the mathematical base behind our surrogate function, including the connection with

the geometric median and the earth mover’s distance. In the computational part, we present a comparison with

state-of-the-art methods, which highlights the advantage of our approach for extremely noisy images. Lastly, we

show that, when applied to experimental cryo-EM data, our centering algorithm enables faster 3D recovery and

better exploitation of valuable computational resources.
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