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Abstract

Cosegmentation is a newly emerging computer vision technique used to segment an object

from the background by processing multiple images at the same time. Traditional plant phe-

notyping analysis uses thresholding segmentation methods which result in high segmenta-

tion accuracy. Although there are proposed machine learning and deep learning algorithms

for plant segmentation, predictions rely on the specific features being present in the training

set. The need for a multi-featured dataset and analytics for cosegmentation becomes critical

to better understand and predict plants’ responses to the environment. High-throughput

phenotyping produces an abundance of data that can be leveraged to improve segmenta-

tion accuracy and plant phenotyping. This paper introduces four datasets consisting of two

plant species, Buckwheat and Sunflower, each split into control and drought conditions.

Each dataset has three modalities (Fluorescence, Infrared, and Visible) with 7 to 14 tempo-

ral images that are collected in a high-throughput facility at the University of Nebraska-Lin-

coln. The four datasets (which will be collected under the CosegPP data repository in this

paper) are evaluated using three cosegmentation algorithms: Markov random fields-based,

Clustering-based, and Deep learning-based cosegmentation, and one commonly used seg-

mentation approach in plant phenotyping. The integration of CosegPP with advanced

cosegmentation methods will be the latest benchmark in comparing segmentation accuracy

and finding areas of improvement for cosegmentation methodology.

Introduction

To ensure that crop production will sufficiently satisfy the needs of a human population that is

expected to grow to more than 9 billion by 2050 is a tremendous challenge for plant science

and agriculture [1]. This goal is challenging primarily because the average rate of crop produc-

tion is increasing only 1.3% per year, and it cannot keep pace with population growth. There-

fore, it is important to achieve efficient, automatic [2, 3], and reliable physical and cyber
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infrastructures to enable self-managing and sustainable farming [4]. Researchers will need to

identify a plants’ ability to respond and adapt to environmental changes. Fahlgren et al. [5]

states that the recent developments in high-throughput phenotyping can be leveraged to aid in

the maintenance and improvement of crop yield. Previously, researchers used manual inter-

ventions to measure plant phenotypes causing a disruption to the plant growth. Therefore, it is

imperative that data collection of plants is fast, efficient, and accurate. Collecting data via a

high-throughput imaging system will yield more complex datasets versus the current method

of manual data collection [5]. With the potential of creating complex, object-evolving datasets

that can synthesize the time cycle of a plant, using high performing algorithms is crucial.

Segmenting an object from a background is considered a low-level (initial/beginning)

image processing method that uses thresholding [6]. There are works that currently use

machine learning and deep learning algorithms to acquire training data in plant phenotyping

[7]. However, the training obtained is specifically meant for datasets with limited features.

Rother [8] argued that complete automatic segmentation is possible but prone to error, and

interactive input or fusion with other modalities, is normally needed to correct those errors.

Consequently, it is a method that is dependent on the amount of training data available in a

given dataset and the process to obtain training data is tedious, long, and manually done by

humans.

Existing cosegmentation algorithms have been classified by Merdassi [6] into eight different

categories: Markov random fields-based cosegmentation (MRF-Coseg), Co-saliency-based

cosegmentation, Image decomposition-based cosegmentation, Random Walker-based coseg-

mentation, Maps-based cosegmentation, Active contours-based cosegmentation, Clustering-

based cosegmentation (Cl-Coseg) and Deep learning-based cosegmentation (DL-Coseg).

Below is a list for the hypothesized impact of our datasets on the performance of three cho-

sen algorithms based on the code availability and ability to handle large collections of images.

1. MRF-Coseg [9]: for its use of inter-group information passing.

Hypothesis: Will benefit temporal analysis.

GitHub Code: MIG.

Commit Used: 001093 on April 20, 2017.

2. Cl-Coseg [10]: for its use of clustering using overlapping information.

Hypothesis: Will benefit temporal and multi-perspective analysis.

GitHub Code: Subdiscover.

Commit Used: f01e63f on December 24, 2014.

3. DL-Coseg [11]: for its use of self-supervised learning.

Hypothesis: Will benefit multi-modality analysis.

GitHub Code: DeepCO3.

Commit Used: 7c14b18 on April 29, 2019.

This paper will introduce 1) a benchmark analysis [12], 2) the Cosegmentation for Plant

Phenotyping, CosegPP, data repository, and 3) a comprehensive study to establish a bench-

mark between the integration of plant phenotyping and cosegmentation. CosegPP’s objects,

i.e., the plants, vary in color and texture as they grow to maturity. Due to its growth in size,

the plants also vary the background due to the camera’s zoom ability to capture the full plant.

Therefore, we hypothesize that cosegmentation will have greater success with mature plants

that have more surface area in the visible light modality.

By implementing cosegmentation in the plant phenotyping field, we make the following

contributions:
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1. First, we introduce a benchmark analysis establishing the performance and gaps in com-

puter science of current cosegmentation algorithms and datasets.

2. Second, we construct CosegPP, a data repository consisting of four datasets. CosegPP has

technical features including temporal, multi-perspective, and multi-modal, and plant fea-

tures such as drought vs control conditions, and species type. In total there are 500 images

and 48 groups. Each image has a ground truth image of the segmented object.

3. Third, we present a comprehensive study that introduces the first coupling between coseg-

mentation algorithms and a plant phenotyping dataset (CosegPP).

Related work

Cosegmentation datasets

There have been a few datasets proposed in the field of cosegmentation [11, 13–17] as shown

in Table 1. The Microsoft Research Cambridge (MSRC) dataset was one of the first datasets to

be created for recognizing objects in a group of images. PASCAL Visual Object Classes (PAS-

CAL-VOC) and Interactive Cosegmentation (iCoseg) followed five years later with much

larger datasets increasing their number of groups and total count of images. PASCAL-VOC

had 20 groups with 10,103 images (approximately 505 images per group) and iCoseg had 38

groups with 643 images (approximately 17 images per group). During the next few years, the

Internet and Flicker Media Forensic Challenge (FlickerMFC) dataset was released, in which

the images were collected online to obtain large training datasets with pixel-level masks. This

significantly increased the number of images and range of foreground objects per image.

These datasets characteristics are shown in Table 1.

Although these datasets have advanced cosegmentation methodology, they lack in object

temporal characteristics. CosegPP provides a temporal aspect of the object (plant) which cre-

ates more unique size, color, and texture features for a single object. This is a challenge for

cosegmentation since previous analyses have been focused on segmenting a wide range of

large objects. More so, objects (such as people, and animals) are different sizes, and colors, and

previous datasets have focused on solely children or adults as a group.

Cosegmentation methods

Current cosegmentation methods have achieved promising performance when attempting to

segment foregrounds from an image. This paper investigates three methods from the DL-Co-

seg, Cl-Coseg, and MSF-Coseg category. The latest DL-Coseg method is Deep Instance Co-

Table 1. Characteristics of existing cosegmentation datasets with our four proposed datasets. For our analysis, we will use iCoseg, MSRC, and Internet.

Dataset Year #Groups #Images #Foreground Objects Object Type

iCoseg [14] 2010 38 643 1-3 Landmarks, sports, animals, misc.

MSRC [13] 2005 8 240 1-8 Animals, foliage, man-made structures, misc.

Internet [15] 2013 3 18,618 1-12 Airplane, car, horse

FlickrMFC [16] 2012 14 263 3-8 Animals, people, foliage, man-made structures

PASCAL-VOC [17] 2010 20 10,103 1-5 People, animals, vehicles, indoor objects

Buckwheat-C-1 (ours) 2021 12 84 1 Plants

Buckwheat-D-1 (ours) 2021 12 84 1 Plants

Sunflower-C-1 (ours) 2021 12 168 1 Plants

Sunflower-D-1 (ours) 2021 12 168 1 Plants

https://doi.org/10.1371/journal.pone.0257001.t001

PLOS ONE Multi-feature data repository development and analytics for image cosegmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0257001 September 2, 2021 3 / 21

https://doi.org/10.1371/journal.pone.0257001.t001
https://doi.org/10.1371/journal.pone.0257001


Segmentation by Co-Peak Search and Co-Saliency Detection (DeepCO3) [11] where it

attempts to segment all the foreground objects per image using instance cosegmentation. This

method uses a Convolutional Neural Network (CNN)-based network in its instance mask seg-

mentation sub task while using four datasets: MS COCO [18] (divided into two datasets due to

its size), PASCAL VOC [17, 19], and SOC [20]. The authors used CorLocr and mean average

precision (mAP) to evaluate their results. Chen’s Subcategory Discovery (Subdiscover) method

[10] is a Cl-Coseg method that uses the Internet database [15] to automatically discover objects

and their segmentations from noisy images. Their metrics for evaluation are Precision, which

is the average number of pixels correctly labeled, and Jaccard, which is the average intersec-

tion-over-union for foreground objects. Multiple Image Groups (MIG) [9] is a MSF-Coseg

method that uses a multi-group image cosegmentation framework. This framework recognizes

inter-image information, and transfers the information among the different groups in the

datasets. They verified their method using Jaccard, and Precision. For our work, we will focus

on previous works metrics, such as Precision and Jaccard, to homogenize the test. A summary

of the cosegmentation methods that will be used in this paper is in Table 2.

Segmentation methods in plant phenotyping

In plant phenotyping, there are three common segmentation methods that are used when

attempting to segment the foreground (plant) from the background. The first method is binary

thresholding (also known as global thresholding) [29] where the image is converted to gray-

scale and the researcher determines the threshold number that will yield the most plant pixels.

The second method, more advanced, is mean adaptive thresholding [29, 30] where the

researcher looks at smaller portions of the object to determine the threshold number for each

portion. However, with this method, the number of portions were determined beforehand

with a trial and error approach that would yield the most plant pixels. If the portions were too

small, it could lead to poor segmentation. Davies [29] found that this method only worked if

the image had “nonuniform” lighting. The last method is Otsu thresholding [31] where the

thresholding number is chosen to minimize the within-class variance. Adams [32] recently did

work on plant phenotyping segmentation where he compared the three methods mentioned

above with images taken in the same facility as CosegPP’s images. Based on Adams approach it

was found that the three thresholding methodologies have no difference. Adams determined

that since the lighting unclearly makes any part of the plant appear lighter, the performance of

all three methods is similar. Therefore, this paper will use only Otsu’s thresholding in our com-

parison analysis since it is the common algorithm used by plant scientists due to its simplicity

and automation (with knowledge that Otsu’s thresholding segmentation prevents certain com-

ponent and holistic phenotypes).

Table 2. A condensed review of the three cosegmentation methods.

Model Name/

Year

Cosegmentation

Category

Supervised

Level

Training Data Components Evaluation Metrics

DeepCO3 [11]

Year: 2019

DL-Coseg Weakly-

supervised

MS COCO [18], PASCAL VOC [17, 19],

SOC [20]

VGG-16 [21], MatConvNet [22],

ImageNet [23], ADAM [24]

CorLocr, mAPr
0:25

,

mAPr
0:50

Subdiscover
[10]

Year: 2014

Cl-Coseg Unsupervised Internet [15] Latent-SVM detector [25], NEIL [26] Precision, Jaccard

MIG [9]

Year:2016

MRF-Coseg Unsupervised iCoseg [14], Caltech-UCSD Birds 200 [27],

Cat-Dog [28], Noise Image [15]

MRF [8], EM IOU (a.k.a Jaccard)

Precision

https://doi.org/10.1371/journal.pone.0257001.t002
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The CosegPP data repository

Image acquisition

CosegPP is derived from a larger dataset that contains an abundance of species (Sesame,

Canna, Millet, Okra, Mo, etc.), modalities (infrared, near infrared, visible, and hyperspectral),

more temporal points, and perspectives, and more experimental samples which were collected

using the LemnaTec Scanalyzer at the University of Nebraska-Lincoln, USA (Fig 1). LemnaTec

is a 3D high-throughput plant phenotyping system. The system transfers each plant through

four imaging chambers in succession with attempts to be imaged daily. There is one camera

type per chamber. Chamber one has the visible light (VIS) side-view (SV) and top-view (TV);

chamber two has infrared (IR) SV and TV; chamber three has fluorescent (Fluo) SV and TV;

and chamber four has near infrared (NIR) TV. Each imaging chamber has rotating lifters for

up to 360-degree SV images.

CosegPP needed to be reorganized in the folder format that would be acceptable for the

cosegmentation methods. The datasets were chosen based on:

1. having two physically different species for challenging segmentation. Buckwheat is a thin

plant with a variety size of leaves and the Sunflower is a bushy plant that contains flowering;

2. having the most used induced environments in plant phenotyping such as a control and

drought-induced;

3. having a temporal resolution that begins with the plants vegetative stage and ends with the

plant fully matured;

4. having modalities (infrared, visible, near infrared) that are commonly used in plant pheno-

typing analysis; and

5. having multiple perspectives that are becoming widely acquired in plant phenotyping anal-

ysis due to its potential for three-dimensional analysis.

Fig 1. The proposed dataset, CosegPP, was collected using the LemnaTec Scanalyzer 3D plant phenotyping facility located at

the University of Nebraska-Lincoln, USA. This facility is meant to create high throughput plant phenotyping datasets. The first

image shows plants being imaged with a visible, infrared, fluorescent, and near infrared camera and exiting the LemnaTec chambers.

The second image shows a row of plants on a conveyer belt in the greenhouse located next to the LemnaTec chamber.

https://doi.org/10.1371/journal.pone.0257001.g001
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Data organization

CosegPP (Fig 2) has Buckwheat-C-1, Buckwheat D-1, Sunflower-C-1, and Sunflower-D-1 as

datasets. Dataset name starts with the name of the plant. C indicates control, D indicates

drought, and 1 represents the plant ID number. Each dataset has 12 groups that are labeled

with combinations of the three modalities (fluorescence, IR, Vis), perspectives (SV), and

degree angles (0, 72, 144, 216) the photo was taken. Some example groups are: Fluo_SV_0,

IR_SV_72, Vis_SV_144. Each group has a range of PNG images named after timestamps.

Ground truth images were obtained using Photoshop2020’s Action feature that pipelined

the following actions: Quick Selection, Masking, Mode Conversion, Thresholding, and Inver-

sion. After a binary mask was produced, two computer scientists checked each binary mask’s

quality and added or removed pixels to produce a final binary mask. A binary mask was pro-

duced for each timestamp for each modality and perspective. Previous works have also used

Photoshop in full or partial manual techniques when generating binary masks [12, 33–35].

Benchmark experiment setup

Benchmark protocols

We evaluated three existing cosegmentation datasets: iCoseg [14], MSRC [13], and Internet

[15]. Between the three datasets, there are 20 groups totaling 156,688 images. For a fair analy-

sis, we run the available code of the chosen cosegmentation methods with their default settings

(including retraining DeepCO3 per dataset run). Modifications were made to the GPU arrays

to handle CosegPP. No cropping was done on the images in CosegPP in order to challenge

some of the cosegmentation methods on their claim of higher performance “with complex and

diverse intra-class variations and background clutters” [11]. These experiments will evaluate

three cosegmentation models: DeepCO3 [11], Subdiscover [10], and MIG [9] and one plant

phenotyping segmentation model: Otsu’s thresholding [31], against CosegPP (ours), iCoseg

[14], MSRC [13], and Internet [15].

Evaluation metrics

For the evaluation, we will use Precision (P) (the average number of pixels correctly labeled)

and Jaccard (J) (average intersection-over-union for the foreground objects) for segmentation

accuracy since previous works in cosegmentation [6, 9, 36–38] has also used Precision and Jac-

card. These metrics will be used to evaluate cosegmentation performance.

Let

D ¼ fG1; . . . ;Gk; . . . ;Gqg

where D is the whole dataset

q is the qth image group Gk

Iki is the ith image in image group Gk

ð1Þ

Let

Gk ¼ fIk
1
; . . . ; Iki ; . . . ; IkNk

g

where Nk is the number of images in the Gk

ND is the total number of images in the whole dataset D

ð2Þ
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Fig 2. Preview of the proposed CosegPP. CosegPP is a data repository that contains four datasets: Buckwheat-C-1,

Sunflower-C-1, Buckwheat-D-1, and Sunflower-D-1. The dataset names include the species name, C or D that

represents Control or Drought induced, and a number representing the experimental repetition number. Each dataset

includes visible, fluorescence, infrared, and ground truth images with 7 to 14 temporal images from 3 July to 18 August

2019. This preview shows only 3 temporal images in the 0-degree side view.

https://doi.org/10.1371/journal.pone.0257001.g002
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Each metric will have its own calculated mean score ϑ 2 {P, J} for each dataset. The mean

metric of each dataset will be defined as

QWðDÞ ¼
1

ND

Xq

i¼1

XNi

k¼1

WðIki Þ ð3Þ

Furthermore, we will also provide the group mean score defined as

TWðGiÞ ¼
1

Ni

XNi

k¼1

WðIki Þ ð4Þ

Quantitative comparisons

These analyses were computed at the Holland Computing Center (HCC) at the University of

Nebraska-Lincoln. We were able to compute all cosegmentation and segmentation methods in

the HCC using the Tesla V100 GPU nodes with Omni-Path Architecture using an average

190GB of RAM. HCC also has the capability to use CUDA, Docker, MATLAB, Matcaffe, and

singularity, which are all needed to run the previous works’ code.

Performance on the iCoseg dataset

iCoseg is a dataset that has a variety of group objects such as animals, landmarks, and sports.

Table 3 shows the result’s Precision and Jaccard values per group for each cosegmentation and

segmentation method.

DeepCO3, at a glance, shows to not have acquired the highest scores for a majority of the

groups. However, TrackandField, gymnastics1, and gymnastics2 were the groups with the low-

est number of images: 5, 6, and 4, respectively. This demonstrates the advantage of DeepCO3

has on groups with a low number of images as long as the object is similar despite its position/

stance. All three groups had objects as people that wore the same uniform and were of same

skin color. The only difference was the poses/perspective views.

MIG acquired the highest average Precision value and Jaccard for the iCoseg dataset at

0.7889 and 0.5606, respectively. MIG performs best when the object color is consistent while

using SIFT features [39]. The groups with the highest Precision and Jaccard score (Kendo2 and

skate) all contain objects that are similar in size and color.

Subdiscover was not able to compute a segmentation mask for some of the groups (Christ,
Monks, bear2, brown_bear, cheetah, gymanstics1, gymanstics2, gymnastics3, and skate). Despite

that some of the group’s objects were not relatively in the same location of each image. Thus,

having the segmentation masks include some noise, justifying the high precision and low Jac-

card for all groups.

It is worth noting that the goose group achieved the highest Precision and Jaccard result

from the Otsu Thresholding. An explanation of the goose’s group accuracy is that the object of

the images (goose) is predominantly white. When thresholding, it is able to accurately segment

the object due to the contrast between the predominately white goose and the blue water

background.

iCoseg’s animal groups exhibit multiple features such as perspective and temporal. Having

demonstrated that MIG performed well on 5 out of 7 animal groups (with the exception of the

elephant and goose group) shows the potential of its capability to handle datasets that have at

least multi-perspective and temporal features. Furthermore, the goose group is an excellent

representation of CosegPP’s bimodal color images where Otsu Thresholding performed fairly
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well in achieving high segmentation accuracy. These advantages can be leveraged for our

multi-feature CosegPP.

Performance on the Internet dataset

The Internet dataset is focused on three objects: Airplane, Car, and Horse, demonstrating the

difference between having 100 images of an object versus 4,300-6,300 images of an object.

Table 4 shows the results of the Internet dataset when analyzed against the cosegmentation

and segmentation algorithms.

DeepCO3 performed well in the Car and Car100 group versus the others. It is worth noting

that the Internet dataset had collections of other objects in a group. For example, the Airplane

Table 3. Results of three cosegmentation methods and one plant phenotyping segmentation method on the iCoseg

dataset.

DeepCO3 MIG Subdiscover Otsu Thresholding

P J P J P J P J

Christ 0.75 0.58 0.81 0.68 [] [] 0.48 0.32

HotBalloons 0.53 0.32 0.92 0.60 0.96 0.68 0.21 0.02

Kendo 0.55 0.35 0.96 0.87 0.85 0.56 0.05 0.02

Kendo2 0.69 0.46 0.98 0.91 0.90 0.61 0.02 0.00

Liverpool 0.56 0.25 0.84 0.50 0.88 0.14 0.43 0.07

Monks 0.64 0.43 0.90 0.77 [] [] 0.53 0.26

StatueofLiberty 0.64 0.44 0.94 0.74 0.88 0.62 0.09 0.06

TrackandField 0.72 0.31 0.51 0.22 [] [] 0.44 0.19

Windmill 0.64 0.16 0.78 0.38 0.87 0.25 0.57 0.21

WomanSoccer 0.68 0.35 0.90 0.66 0.91 0.54 0.33 0.08

WomanSoccer2 0.81 0.42 0.85 0.51 0.87 0.44 0.50 0.19

baseball 0.45 0.15 0.71 0.35 0.96 0.62 0.62 0.27

bear2 0.51 0.29 0.77 0.53 [] [] 0.29 0.06

brown_bear 0.70 0.51 0.90 0.71 [] [] 0.40 0.18

cheetah 0.66 0.48 0.87 0.59 [] [] 0.57 0.34

elephant 0.50 0.24 0.57 0.32 0.89 0.59 0.36 0.03

ferrari 0.72 0.46 0.89 0.64 [] [] 0.47 0.05

goose 0.72 0.47 0.84 0.58 0.81 0.38 0.95 0.80

gymnastic1 0.90 0.58 0.19 0.05 [] [] 0.90 0.48

gymnastic2 0.89 0.51 0.38 0.15 [] [] 0.85 0.37

gymnastic3 0.85 0.51 0.85 0.61 [] [] 0.90 0.54

helicopter 0.43 0.20 0.98 0.79 0.99 0.88 0.18 0.04

panda1 0.63 0.47 0.86 0.75 0.78 0.48 0.48 0.25

panda2 0.59 0.48 0.77 0.63 0.61 0.32 0.50 0.33

pyramid 0.86 0.52 0.77 0.45 0.95 0.80 0.22 0.03

skate 0.81 0.60 0.96 0.91 [] [] 0.15 0.04

skate2 0.35 0.10 0.77 0.48 0.97 0.72 0.04 0.01

skate3 0.39 0.11 0.51 0.11 0.86 0.19 0.26 0.02

stonehenge 0.87 0.73 0.93 0.88 0.77 0.50 0.43 0.26

taj_mahal 0.82 0.47 0.76 0.45 0.84 0.49 0.62 0.29

All 0.66 0.40 0.79 0.56 0.55 0.33 0.43 0.19

P is Precision, J is Jaccard, and [] is no data available. Bold text represents the highest score of both Precision and

Jaccard per group. “All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t003
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group had airplane, helicopter, and outliers as objects. The Horse group contained both fake

and real horses. These objects not only are visually different, they are texturally different, as

well.

MIG uses K nearest-neighbor search to calculate the foreground distance measurement.

With the Internet dataset, the backgrounds are inconsistent which allows MIG to confuse

parts of the background as the object. Although Internet contains similar objects, the back-

ground scenario is considered to be different in each image for MIG to segment properly.

The Subdiscover algorithm was verified using the Internet dataset. It is apparent in Table 4

where it shows the biases the Internet dataset has towards Subdiscover resulting in tight clus-

ters (low Jaccard, high Precision). Subdiscover exploits dataset’s group objects being mono-

chrome and in the same relative area in the image (center). It is worth noting that in the work

of Subdiscover [9], the Internet dataset produced a Precision of.9042 (number converted to

follow our paper’s format) in the Car group. Our results show 0.8809 Precision score for the

Car group. The reason for the difference in the Precision score is because Subdiscover uses

NEIL [26]. This object discovery and segmentation algorithm is constantly generating new

segmentations using web data.

Otsu Thresholding performed the worst of all the algorithms due to the Internet dataset’s

versatile background containing multiple colors, noise objects, and outlier images.

For each group in Internet, there are vast object variety images (different model/species

types) and outlier images (starkly different from the object). Having groups with object variety

images are similar to the multi-species and multi-environment feature where the object can be

visually different towards the end of an experiment due to its induced environment. Subdis-

cover proves to be the superior method for these types of groups, and that can handle outlier

images. In plant phenotyping, there are cases where some outlier images are captured such as

an empty pot, a damaged plant, or inaccurate camera zoom.

Performance on the MSRC dataset

MSRC’s groups mostly have 30 to 32 images except for the cat group at 24 images. Table 5

shows the Precision and Jaccard scores for the MSRC dataset against the cosegmentation and

segmentation algorithms.

DeepCO3 obtained the highest Precision and Jaccard score for only one group: bike.
Although the Jaccard score was 0.4455, the bike group does contain a complex object with an

array of different defining features.

Table 4. Results of three cosegmentation methods and one plant phenotyping segmentation method on the Inter-

net dataset.

DeepCO3 MIG Subdiscover Otsu Thresholding

P J P J P J P J

Airplane 0.77 0.27 0.70 0.41 0.90 0.61 0.45 0.17

Airplane100 0.56 0.28 0.67 0.37 0.90 0.50 0.49 0.18

Car 0.73 0.49 0.76 0.59 0.88 0.72 0.45 0.21

Car100 0.77 0.62 0.75 0.58 0.90 0.70 0.45 0.20

Horse 0.74 0.28 0.70 0.42 0.86 0.58 0.45 0.13

Horse100 0.56 0.30 0.70 0.40 0.89 0.48 0.46 0.13

All 0.69 0.37 0.71 0.46 0.89 0.60 0.46 0.17

P is Precision and J is Jaccard. Bold text scores indicate the highest score of both Precision and Jaccard per group.

“All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t004
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MIG performed best in the cow and sheep group since both groups contain consistent back-

grounds with similar sized objects.

In this dataset, Subdiscover was unable to identify clusters for the bird and dog class. Look-

ing at the images within the two groups, it is understandable that the cosegmentation method

struggled since both classes included a variety of species within the images. For example, the

bird class has peacocks, swans, ducks, seagulls, pigeons, etc. All these birds have different phys-

ical features.

None of the groups had a high value for any of the metrics in the Otsu Thresholding algo-

rithm. That indicates that MSRC’s images within the groups have multiple colors in the fore-

ground and background.

MSRC has similar group objects as Internet and iCoseg where it contains object variety

images, objects with multiple perspectives, and objects with temporal features (mostly for the

animal groups). This dataset helps reiterate the claim that MIG and Subdiscover do well with

multi-species, multi-perspective, multi-environment, and temporal features.

Summary performance of iCoseg, internet, and MSRC

Fig 3 displays a summary of all the Precision and Jaccard performance values in each coseg-

mentation dataset. These distributions reaffirm the claim that each dataset performed best in

one or two of the tested methods without having a large range and the capability of detecting

outliers.

Performance on the CosegPP repository

Detailed results of our CosegPP analyses are shown in Table 6.

DeepCO3 was unable to properly segment a majority of the groups in all four datasets since

the Jaccard for all groups was nearly 0 except for Fluo_SV_0 in the Sunflower-D-1 dataset and

Table 5. Results of three cosegmentation methods and one plant phenotyping segmentation method on the MSRC

dataset.

DeepCO3 MIG Subdiscover Otsu Thresholding

P J P J P J P J

bike 0.68 0.45 0.68 0.27 0.68 0.25 0.35 0.17

bird 0.49 0.22 0.92 0.59 [] [] 0.51 0.23

car 0.65 0.52 0.69 0.38 0.80 0.55 0.37 0.19

cat 0.51 0.32 0.84 0.50 0.80 0.20 0.43 0.16

chair 0.57 0.34 0.79 0.39 0.83 0.37 0.48 0.24

cow 0.58 0.35 0.93 0.74 0.90 0.60 0.33 0.15

dog 0.49 0.29 0.86 0.54 [] [] 0.43 0.19

face 0.65 0.48 0.80 0.57 0.84 0.60 0.51 0.29

flower 0.67 0.47 0.82 0.63 0.72 0.32 0.69 0.47

house 0.65 0.49 0.83 0.63 0.71 0.33 0.45 0.22

plane 0.61 0.30 0.84 0.51 0.89 0.53 0.59 0.19

sheep 0.57 0.36 0.93 0.77 0.90 0.65 0.67 0.33

sign 0.70 0.47 0.86 0.63 0.85 0.61 0.60 0.36

tree 0.74 0.58 0.66 0.44 0.79 0.64 0.31 0.18

All 0.61 0.40 0.69 0.40 0.69 0.40 0.48 0.24

P is Precision, J is Jaccard, and [] is no data available. Bold text represents the highest score of both Precision and

Jaccard per group. “All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t005
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Vis_SV_216 in the Buckwheat-C-1 dataset. Each Sunflower dataset had a total of 168 images

(14 in each group) and each Buckwheat dataset had a total of 84 images (7 in each group).

DeepCO3 claims to be able to segment where each group has 10 images. Therefore, CosegPP
demonstrates that DeepCO3 has complications in properly segmenting the object despite the

number of images per group.

Similarly, MIG was unable to segment all the fluorescence and infrared groups for all data-

sets. Although it was able to segment the visible group, it is near zero. MIG starts its computa-

tions by performing single image segmentation. If the single image segmentation results in no

output or low Jaccard, the rest of the MIG algorithm fails when attempting to do single group

and multiple group segmentation.

Buckwheat-D-1 is similar to Buckwheat-C-1 where Subdiscover was not able to segment

the fluorescence and infrared modality. This could be due to the branches being too thin in

Buckwheat. Subdiscover scored the highest in Precision and Jaccard for all the dataset’s visible

group.

All the datasets had their best Jaccard score for the fluorescence and infrared group with

Otsu Thresholding. Otsu Thresholding performed relatively well in these modalities since the

grayscale intensities are relatively bimodal after converting the RGB image to grayscale. The

Fig 3. Precision and Jaccard distribution over all the cosegmentation datasets from the benchmark analysis. (a) and (b) are Precision

and Jaccard distributions for iCoseg, respectively. (c) and (d) are the Precision and Jaccard distributions for Internet, respectively. (e) and

(f) are the Precision and Jaccard distributions for MSRC, respectively.

https://doi.org/10.1371/journal.pone.0257001.g003
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Table 6. Results of three cosegmentation methods and one segmentation method on CosegPP.

DeepCO3 MIG Subdiscover Otsu Thresholding

P J P J P J P J

Buckwheat-C-1 Fluo_SV_0 0.98 0.00 0.98 0.00 [] [] 0.97 0.38

Fluo_SV_144 0.98 0.00 0.98 0.0000 [] [] 0.97 0.38

Fluo_SV_216 0.98 0.00 0.98 0.00 [] [] 0.97 0.38

Fluo_SV_72 0.98 0.00 0.98 0.00 [] [] 0.97 0.36

IR_SV_0 0.98 0.00 0.98 0.00 [] [] 0.91 0.08

IR_SV_144 0.98 0.00 0.98 0.00 [] [] 0.90 0.05

IR_SV_216 0.97 0.00 0.97 0.00 [] [] 0.89 0.03

IR_SV_72 0.98 0.07 0.98 0.00 [] [] 0.91 0.07

Vis_SV_0 0.91 0.00 0.15 0.01 0.99 0.30 0.93 0.15

Vis_SV_144 0.93 0.01 0.14 0.00 0.99 0.28 0.93 0.14

Vis_SV_216 0.80 0.13 0.15 0.01 0.99 0.22 0.93 0.15

Vis_SV_72 0.78 0.00 0.14 0.01 0.99 0.56 0.93 0.14

All 0.94 0.02 0.70 0.00 0.33 0.11 0.94 0.19

Buckwheat-D-1 Fluo_SV_0 0.98 0.00 0.98 0.00 [] [] 0.97 0.38

Fluo_SV_144 0.97 0.00 0.97 0.00 [] [] 0.97 0.38

Fluo_SV_216 0.97 0.00 0.97 0.00 [] [] 0.97 0.38

Fluo_SV_72 0.97 0.00 0.97 0.00 [] [] 0.97 0.36

IR_SV_0 0.96 0.05 0.97 0.00 [] [] 0.91 0.08

IR_SV_144 0.96 0.01 0.96 0.00 [] [] 0.90 0.05

IR_SV_216 0.96 0.00 0.96 0.00 [] [] 0.89 0.03

IR_SV_72 0.96 0.06 0.96 0.00 [] [] 0.91 0.07

Vis_SV_0 0.76 0.00 0.15 0.01 0.98 0.23 0.93 0.15

Vis_SV_144 0.59 0.01 0.15 0.01 0.98 0.17 0.93 0.14

Vis_SV_216 0.80 0.00 0.15 0.01 0.97 0.43 0.93 0.15

Vis_SV_72 0.59 0.01 0.15 0.01 0.96 0.12 0.93 0.14

All 0.87 0.01 0.69 0.00 0.32 0.08 0.94 0.19

Sunflower-C-1 Fluo_SV_0 0.53 0.07 0.97 0.00 0.83 0.13 0.87 0.30

Fluo_SV_144 0.60 0.07 0.97 0.00 0.86 0.10 0.87 0.27

Fluo_SV_216 0.63 0.07 0.97 0.00 0.82 0.09 0.87 0.28

Fluo_SV_72 0.86 0.13 0.97 0.00 0.88 0.08 0.86 0.21

IR_SV_0 0.92 0.06 0.92 0.00 0.93 0.24 0.91 0.34

IR_SV_144 0.93 0.04 0.93 0.00 0.94 0.21 0.91 0.31

IR_SV_216 0.94 0.02 0.95 0.00 0.95 0.14 0.91 0.29

IR_SV_72 0.94 0.04 0.94 0.00 0.95 0.19 0.92 0.31

Vis_SV_0 0.70 0.17 0.26 0.04 0.98 0.50 0.93 0.33

Vis_SV_144 0.73 0.12 0.26 0.04 0.98 0.52 0.92 0.31

Vis_SV_216 0.78 0.13 0.26 0.04 0.98 0.51 0.92 0.31

Vis_SV_72 0.75 0.11 0.25 0.03 0.98 0.37 0.92 0.26

All 0.78 0.08 0.72 0.01 0.92 0.26 0.90 0.29

(Continued)
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plant images have dominantly two colors (green for the plant and white for the background).

As the object of interest gets smaller compared to the background area, then the histogram will

no longer exhibit bimodality [40].

In summary, Subdiscover continues to demonstrate accurate segmentation for a group of

images that contain variety (plant youngling to plant maturity), but only for the visible modal-

ity. MIG performed similarly to Otsu thresholding in the Fluorescence and Infrared modality

both demonstrating the ability to segment a group of images with multiple perspectives and

temporal data.

An averaging was done across each feature for all datasets in CosegPP to determine which

algorithms scored the highest for Precision and Jaccard as shown in Table 7. The final sum-

mary table is in Table 8.

Table 6. (Continued)

DeepCO3 MIG Subdiscover Otsu Thresholding

P J P J P J P J

Sunflower-D-1 Fluo_SV_0 0.99 0.19 0.99 0.00 0.87 0.02 0.87 0.14

Fluo_SV_144 0.91 0.12 0.99 0.00 0.84 0.01 0.87 0.12

Fluo_SV_216 0.92 0.06 0.99 0.00 0.85 0.00 0.87 0.13

Fluo_SV_72 0.99 0.07 0.99 0.00 0.82 0.00 0.87 0.12

IR_SV_0 0.97 0.12 0.97 0.00 0.97 0.04 0.94 0.28

IR_SV_144 0.98 0.01 0.98 0.00 0.98 0.09 0.93 0.18

IR_SV_216 0.98 0.01 0.98 0.00 0.98 0.13 0.92 0.17

IR_SV_72 0.98 0.01 0.98 0.00 0.98 0.12 0.93 0.20

Vis_SV_0 0.71 0.05 0.21 0.02 0.96 0.12 0.93 0.16

Vis_SV_144 0.73 0.04 0.21 0.01 0.98 0.05 0.93 0.14

Vis_SV_216 0.74 0.01 0.21 0.02 0.99 0.32 0.93 0.15

Vis_SV_72 0.80 0.07 0.21 0.01 0.99 0.15 0.93 0.13

All 0.89 0.06 0.73 0.01 0.93 0.10 0.91 0.16

P is Precision, J is Jaccard, and [] is no data available; therefore, it will be treated as zero. Bold text represents the highest score of both Precision and Jaccard per group.

“All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t006

Table 7. Averages of each feature in the CosegPP data repository.

DeepCO3 MIG Subdiscover Otsu

Thresholding

P J P J P J P J

Modality Fluorescence 0.89 0.05 0.98 0.00 0.42 0.03 0.92 0.29

Infrared 0.96 0.03 0.96 0.00 0.48 0.07 0.91 0.16

Visible 0.76 0.05 0.19 0.02 0.98 0.30 0.93 0.19

Perspective 0 0.87 0.06 0.71 0.01 0.63 0.13 0.92 0.23

144 0.86 0.04 0.71 0.01 0.63 0.12 0.92 0.21

216 0.87 0.04 0.71 0.01 0.63 0.15 0.92 0.20

72 0.88 0.05 0.71 0.01 0.63 0.13 0.92 0.20

Species Buckwheat 0.91 0.01 0.70 0.00 0.33 0.10 0.94 0.19

Sunflower 0.83 0.07 0.72 0.01 0.93 0.17 0.91 0.23

Condition Control 0.86 0.05 0.71 0.01 0.63 0.19 0.92 0.24

Drought 0.88 0.04 0.71 0.00 0.63 0.08 0.92 0.18

P is Precision, J is Jaccard. Bold text represents the highest score of both Precision and Jaccard per group.

https://doi.org/10.1371/journal.pone.0257001.t007
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Summary performance of CosegPP repository

Fig 4 demonstrates that all cosegmentation methods, including the plant phenotyping segmen-

tation method, had difficulties processing CosegPP due to its multiple features. Currently,

there is no cosegmentation method that gives a promising performance for segmenting plant

phenotyping multi-feature datasets. Even Otsu’s thresholding, despite it having the best perfor-

mance, still has difficulties in overall segmentation resulting in less than 0.5 Jaccard.

By using a collection of methods for each feature in CosegPP, as shown in Table 8, the bene-

fits can be leveraged to achieve higher segmentation accuracy.

Qualitative comparisons

Figs 5 and 6 shows the visual results of CosegPP against MIG, DeepCO3, Subdiscover, and

Otsu Thresholding. Notice how Subdiscover has empty slots in Buckwheat-C-1 and Buck-

wheat-D-1’s Fluo_SV_0 and IR_SV_0.

Looking at the images of Otsu Thresholding, the method was capable of segmenting both

the Buckwheat and Sunflower plant relatively well. However, it also segmented parts of the

LemnaTec chamber in which the tests were conducted. This is not an ideal segmentation for

plant phenotyping since it will produce inaccurate phenotype results. Even in computer sci-

ence, this is not an ideal segmentation since more than the targeted object was segmented.

MIG was only capable of segmenting the visible light images for both Buckwheat and Sun-

flower. Even though it segmented a majority of the LemnaTec chamber, it is worth noticing

that the outline of each plant was ignored. MIG has the potential to generate an accurate object

outline if complimented.

DeepCO3 was not able to segment Buckwheat from the images regardless of modality. It

was only able to segment parts of the LemnaTec chambers in the visible light modality. Most

likely due to the branch thinness and leaf thickness of the Buckwheat plant. Interestingly,

DeepCO3 was capable of segmenting the Sunflower plant in the fluorescence and visible group

in the control feature along with the visible modality in the drought feature.

Subdiscover was only able to segment the visible modality in both Buckwheat samples. Sub-

discover seems to have segmented a visual “blob” of the overall location of the Sunflower plant

and did a more accurate segmentation in the visible modality. Even though the segmentation

Table 8. Summary of the algorithms with the highest Precision and Jaccard for each feature in CosegPP.

P J

Modality Fluorescence MIG Otsu Thresholding

Infrared MIG Otsu Thresholding

Visible Subdiscover Subdiscover

Perspective 0 Otsu Thresholding Otsu Thresholding

144 Otsu Thresholding Otsu Thresholding

216 Otsu Thresholding Otsu Thresholding

72 Otsu Thresholding Otsu Thresholding

Species Buckwheat Otsu Thresholding Otsu Thresholding

Sunflower Subdiscover Otsu Thresholding

Condition Control Otsu Thresholding Otsu Thresholding

Drought Otsu Thresholding Otsu Thresholding

P is Precision, J is Jaccard.

https://doi.org/10.1371/journal.pone.0257001.t008
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was not accurate, it was able to determine the general location of the object via the blob which

is a technique that can be leveraged to find neighboring plant pixels.

Discussion

High-throughput phenotyping is a technique that has shown promising development to

replace at least some traditional methods that are currently being used in plant phenotyping to

access traits [5]. This is a field that must begin to transition from manual data acquisition and

analyses to automatic, efficient hardware and software for resilient and sustainable farming.

This study creates plant phenotyping datasets based on data obtained with a high-throughput

imaging system that allows the analysis of multiple factors (multi-species, multi-perspective,

multi-conditions, multi-modality, and temporal).

It is expected that the current cosegmentation datasets (iCoseg, Internet, and MSRC) had a

bias in performance (Tables 3–5) for a single cosegmentation method. iCoseg performed the

best with MIG, Internet with Subdiscover, and MSRC with MIG. This study demonstrates that

each cosegmentation method leverages only 1-2 features (multi-perspective, and multi-spe-

cies) restricting the type of datasets it can process.

Fig 4. Precision and Jaccard distribution over CosegPP from the benchmark analysis. (a) and (b) are Precision and Jaccard

distributions for Buckwheat-C-1, respectively. (c) and (d) are the Precision and Jaccard distributions for Buckwheat-D-1, respectively. (e)

and (f) are the Precision and Jaccard distributions for Sunflower-C-1, respectively. (g) and (h) are the Precision and Jaccard distributions

for Sunflower-D-1, respectively.

https://doi.org/10.1371/journal.pone.0257001.g004
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This paper contributes CosegPP to further challenge cosegmentation by introducing multi-

ple features to reduce biases. When using our dataset with the four methods, it is apparent that

the cosegmentation methods performed equally or worse than the Otsu Thresholding for plant

phenotyping (Tables 6–8). The quantitative and qualitative results shows that the cosegmenta-

tion methods have some computer science downfalls in not being able to 1) properly detect

the full object (a.k.a. plant); and 2) ignore the cluttered background (a.k.a. LemnaTec chamber

edges). It is possible that conducting some pre-processing on the images, such as cropping,

can significantly improve the segmentation performance. However, having an algorithm smart

enough to ignore the background will be more beneficial to the computer science and plant

phenotyping field.

This paper also contributes a comparative study that suggests combining aspects of some

or all the algorithms to improve segmentation accuracy with CosegPP. The ability for coseg-

mentation methods to accurately segment not only temporal images, but use a variety of

Fig 5. Qualitative performance examples of CosegPP’s Buckwheat with three cosegmentation methods (DeepCO3,

MIG, Subdiscover) and one plant phenotyping segmentation methods (Otsu Thresholding). Each binary mask

produced is the output of each cosegmentation methods with CosegPP where the white pixels are the pixels for the

identified object(s). Subdiscover was unable to produce a binary mask for Buckwheat-C-1 and Buckwheat-D-1 in the

fluorescence and infrared modality.

https://doi.org/10.1371/journal.pone.0257001.g005

PLOS ONE Multi-feature data repository development and analytics for image cosegmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0257001 September 2, 2021 17 / 21

https://doi.org/10.1371/journal.pone.0257001.g005
https://doi.org/10.1371/journal.pone.0257001


modalities for inter-group information passing, along with different species, has the potential

to introduce novel phenotypes are beneficial for plant scientists.

This study shows the benefit in the plant phenotyping community by demonstrating that

image cosegmentation has the potential to increase phenotyping accuracy. More so, there are

also benefits in the computing community by introducing a dataset that creates new challenges

in a computer vision algorithm. Future work would be to evolve cosegmentation methodology

to handle plant specific datasets to increase phenotyping accuracy to help address the problem

of intensifying sustainable food production.

Conclusion

This paper presents a complete group-level segmentation performance analysis using coseg-

mentation. These results identify a serious data bias, i.e., if each group of images contains

Fig 6. Qualitative performance examples of CosegPP’s Sunflower with three cosegmentation methods (DeepCO3,

MIG, Subdiscover) and one plant phenotyping segmentation methods (Otsu Thresholding). Each binary mask

produced is the output of each cosegmentation methods with CosegPP where the white pixels are the pixels for the

identified object(s).

https://doi.org/10.1371/journal.pone.0257001.g006
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similar visual appearances of the objects in current cosegmentation datasets. We created four

new datasets within CosegPP that challenges the latest cosegmentation algorithms by having 1)

a temporal component of plant growth; 2) different modalities for a variety of data type; and 3)

introduction of varying colors and textures in the plant based on control or drought condi-

tions. Our datasets combined total 330 images not including ground truth data. CosegPP is

derived from a larger dataset containing a higher variety of species, temporal data, and an

extra modality. Therefore, CosegPP has the potential to be expanded further to challenge the

latest cosegmentation methods. Our datasets provide a leap in object physical characteristic

diversity. Furthermore, this paper provided a comprehensive benchmark analysis that contains

three of the latest cosegmentation methods and one segmentation method in plant phenotyp-

ing. These results provide a deeper analysis as to the issues and downfalls of the cosegmenta-

tion methods. Future work would be to create a new self-learning algorithm using multiple

cosegmentation methods and coupling it with plant phenotyping ideologies to increase the

segmentation accuracy in color, texture, and size changing objects.
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