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Abstract

Cosegmentation is a newly emerging computer vision technique used to segment an object
from the background by processing multiple images at the same time. Traditional plant phe-
notyping analysis uses thresholding segmentation methods which result in high segmenta-
tion accuracy. Although there are proposed machine learning and deep learning algorithms
for plant segmentation, predictions rely on the specific features being present in the training
set. The need for a multi-featured dataset and analytics for cosegmentation becomes critical
to better understand and predict plants’ responses to the environment. High-throughput
phenotyping produces an abundance of data that can be leveraged to improve segmenta-
tion accuracy and plant phenotyping. This paper introduces four datasets consisting of two
plant species, Buckwheat and Sunflower, each split into control and drought conditions.
Each dataset has three modalities (Fluorescence, Infrared, and Visible) with 7 to 14 tempo-
ral images that are collected in a high-throughput facility at the University of Nebraska-Lin-
coln. The four datasets (which will be collected under the CosegPP data repository in this
paper) are evaluated using three cosegmentation algorithms: Markov random fields-based,
Clustering-based, and Deep learning-based cosegmentation, and one commonly used seg-
mentation approach in plant phenotyping. The integration of CosegPP with advanced
cosegmentation methods will be the latest benchmark in comparing segmentation accuracy
and finding areas of improvement for cosegmentation methodology.

Introduction

To ensure that crop production will sufficiently satisfy the needs of a human population that is
expected to grow to more than 9 billion by 2050 is a tremendous challenge for plant science
and agriculture [1]. This goal is challenging primarily because the average rate of crop produc-
tion is increasing only 1.3% per year, and it cannot keep pace with population growth. There-
fore, it is important to achieve efficient, automatic [2, 3], and reliable physical and cyber
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infrastructures to enable self-managing and sustainable farming [4]. Researchers will need to
identify a plants’ ability to respond and adapt to environmental changes. Fahlgren et al. [5]
states that the recent developments in high-throughput phenotyping can be leveraged to aid in
the maintenance and improvement of crop yield. Previously, researchers used manual inter-
ventions to measure plant phenotypes causing a disruption to the plant growth. Therefore, it is
imperative that data collection of plants is fast, efficient, and accurate. Collecting data via a
high-throughput imaging system will yield more complex datasets versus the current method
of manual data collection [5]. With the potential of creating complex, object-evolving datasets
that can synthesize the time cycle of a plant, using high performing algorithms is crucial.

Segmenting an object from a background is considered a low-level (initial/beginning)
image processing method that uses thresholding [6]. There are works that currently use
machine learning and deep learning algorithms to acquire training data in plant phenotyping
[7]. However, the training obtained is specifically meant for datasets with limited features.
Rother [8] argued that complete automatic segmentation is possible but prone to error, and
interactive input or fusion with other modalities, is normally needed to correct those errors.
Consequently, it is a method that is dependent on the amount of training data available in a
given dataset and the process to obtain training data is tedious, long, and manually done by
humans.

Existing cosegmentation algorithms have been classified by Merdassi [6] into eight different
categories: Markov random fields-based cosegmentation (MRF-Coseg), Co-saliency-based
cosegmentation, Image decomposition-based cosegmentation, Random Walker-based coseg-
mentation, Maps-based cosegmentation, Active contours-based cosegmentation, Clustering-
based cosegmentation (Cl-Coseg) and Deep learning-based cosegmentation (DL-Coseg).

Below is a list for the hypothesized impact of our datasets on the performance of three cho-
sen algorithms based on the code availability and ability to handle large collections of images.

1. MRF-Coseg [9]: for its use of inter-group information passing.
Hypothesis: Will benefit temporal analysis.
GitHub Code: MIG.
Commit Used: 001093 on April 20, 2017.

2. Cl-Coseg [10]: for its use of clustering using overlapping information.
Hypothesis: Will benefit temporal and multi-perspective analysis.
GitHub Code: Subdiscover.

Commit Used: f01e63f on December 24, 2014.

3. DL-Coseg [11]: for its use of self-supervised learning.
Hypothesis: Will benefit multi-modality analysis.
GitHub Code: DeepCO”,

Commit Used: 7c14b18 on April 29, 2019.

This paper will introduce 1) a benchmark analysis [12], 2) the Cosegmentation for Plant
Phenotyping, CosegPP, data repository, and 3) a comprehensive study to establish a bench-
mark between the integration of plant phenotyping and cosegmentation. CosegPP’s objects,
i.e., the plants, vary in color and texture as they grow to maturity. Due to its growth in size,
the plants also vary the background due to the camera’s zoom ability to capture the full plant.
Therefore, we hypothesize that cosegmentation will have greater success with mature plants
that have more surface area in the visible light modality.

By implementing cosegmentation in the plant phenotyping field, we make the following
contributions:
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1. First, we introduce a benchmark analysis establishing the performance and gaps in com-
puter science of current cosegmentation algorithms and datasets.

2. Second, we construct CosegPP, a data repository consisting of four datasets. CosegPP has
technical features including temporal, multi-perspective, and multi-modal, and plant fea-
tures such as drought vs control conditions, and species type. In total there are 500 images
and 48 groups. Each image has a ground truth image of the segmented object.

3. Third, we present a comprehensive study that introduces the first coupling between coseg-
mentation algorithms and a plant phenotyping dataset (CosegPP).

Related work
Cosegmentation datasets

There have been a few datasets proposed in the field of cosegmentation [11, 13-17] as shown
in Table 1. The Microsoft Research Cambridge (MSRC) dataset was one of the first datasets to
be created for recognizing objects in a group of images. PASCAL Visual Object Classes (PAS-
CAL-VOC) and Interactive Cosegmentation (iCoseg) followed five years later with much
larger datasets increasing their number of groups and total count of images. PASCAL-VOC
had 20 groups with 10,103 images (approximately 505 images per group) and iCoseg had 38
groups with 643 images (approximately 17 images per group). During the next few years, the
Internet and Flicker Media Forensic Challenge (FlickerMFC) dataset was released, in which
the images were collected online to obtain large training datasets with pixel-level masks. This
significantly increased the number of images and range of foreground objects per image.
These datasets characteristics are shown in Table 1.

Although these datasets have advanced cosegmentation methodology, they lack in object
temporal characteristics. CosegPP provides a temporal aspect of the object (plant) which cre-
ates more unique size, color, and texture features for a single object. This is a challenge for
cosegmentation since previous analyses have been focused on segmenting a wide range of
large objects. More so, objects (such as people, and animals) are different sizes, and colors, and
previous datasets have focused on solely children or adults as a group.

Cosegmentation methods

Current cosegmentation methods have achieved promising performance when attempting to
segment foregrounds from an image. This paper investigates three methods from the DL-Co-
seg, Cl-Coseg, and MSF-Coseg category. The latest DL-Coseg method is Deep Instance Co-

Table 1. Characteristics of existing cosegmentation datasets with our four proposed datasets. For our analysis, we will use iCoseg, MSRC, and Internet.

Dataset

iCoseg [14]

MSRC [13]

Internet [15]
FlickrMFC [16]
PASCAL-VOC [17]
Buckwheat-C-1 (ours)
Buckwheat-D-1 (ours)
Sunflower-C-1 (ours)
Sunflower-D-1 (ours)

https://doi.org/10.1371/journal.pone.0257001.t001

Year
2010
2005
2013
2012
2010
2021
2021
2021
2021

#Groups #Images #Foreground Objects Object Type
38 643 1-3 Landmarks, sports, animals, misc.
8 240 1-8 Animals, foliage, man-made structures, misc.
3 18,618 1-12 Airplane, car, horse
14 263 3-8 Animals, people, foliage, man-made structures
20 10,103 1-5 People, animals, vehicles, indoor objects
12 84 1 Plants
12 84 1 Plants
12 168 1 Plants
12 168 1 Plants
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Table 2. A condensed review of the three cosegmentation methods.

Model Name/ Cosegmentation Supervised Training Data Components Evaluation Metrics
Year Category Level
DeepCO3 [11] DL-Coseg Weakly- MS COCO [18], PASCAL VOC [17, 19], VGG-16 [21], MatConvNet [22], CorLoc', mAP; ,;,
Year: 2019 supervised SOC [20] ImageNet [23], ADAM [24] mAP;
Subdiscover Cl-Coseg Unsupervised Internet [15] Latent-SVM detector [25], NEIL [26] | Precision, Jaccard
(10]
Year: 2014
MIG [9] MRF-Coseg Unsupervised | iCoseg [14], Caltech-UCSD Birds 200 [27], MRE [8], EM 10U (a.k.a Jaccard)
Year:2016 Cat-Dog [28], Noise Image [15] Precision

https://doi.org/10.1371/journal.pone.0257001.t002

Segmentation by Co-Peak Search and Co-Saliency Detection (DeepCO?) [11] where it
attempts to segment all the foreground objects per image using instance cosegmentation. This
method uses a Convolutional Neural Network (CNN)-based network in its instance mask seg-
mentation sub task while using four datasets: MS COCO [18] (divided into two datasets due to
its size), PASCAL VOC [17, 19], and SOC [20]. The authors used CorLoc" and mean average
precision (mAP) to evaluate their results. Chen’s Subcategory Discovery (Subdiscover) method
[10] is a Cl-Coseg method that uses the Internet database [15] to automatically discover objects
and their segmentations from noisy images. Their metrics for evaluation are Precision, which
is the average number of pixels correctly labeled, and Jaccard, which is the average intersec-
tion-over-union for foreground objects. Multiple Image Groups (MIG) [9] is a MSF-Coseg
method that uses a multi-group image cosegmentation framework. This framework recognizes
inter-image information, and transfers the information among the different groups in the
datasets. They verified their method using Jaccard, and Precision. For our work, we will focus
on previous works metrics, such as Precision and Jaccard, to homogenize the test. A summary
of the cosegmentation methods that will be used in this paper is in Table 2.

Segmentation methods in plant phenotyping

In plant phenotyping, there are three common segmentation methods that are used when
attempting to segment the foreground (plant) from the background. The first method is binary
thresholding (also known as global thresholding) [29] where the image is converted to gray-
scale and the researcher determines the threshold number that will yield the most plant pixels.
The second method, more advanced, is mean adaptive thresholding [29, 30] where the
researcher looks at smaller portions of the object to determine the threshold number for each
portion. However, with this method, the number of portions were determined beforehand
with a trial and error approach that would yield the most plant pixels. If the portions were too
small, it could lead to poor segmentation. Davies [29] found that this method only worked if
the image had “nonuniform” lighting. The last method is Otsu thresholding [31] where the
thresholding number is chosen to minimize the within-class variance. Adams [32] recently did
work on plant phenotyping segmentation where he compared the three methods mentioned
above with images taken in the same facility as CosegPP’s images. Based on Adams approach it
was found that the three thresholding methodologies have no difference. Adams determined
that since the lighting unclearly makes any part of the plant appear lighter, the performance of
all three methods is similar. Therefore, this paper will use only Otsu’s thresholding in our com-
parison analysis since it is the common algorithm used by plant scientists due to its simplicity
and automation (with knowledge that Otsu’s thresholding segmentation prevents certain com-
ponent and holistic phenotypes).
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Fig 1. The proposed dataset, CosegPP, was collected using the LemnaTec Scanalyzer 3D plant phenotyping facility located at
the University of Nebraska-Lincoln, USA. This facility is meant to create high throughput plant phenotyping datasets. The first
image shows plants being imaged with a visible, infrared, fluorescent, and near infrared camera and exiting the LemnaTec chambers.
The second image shows a row of plants on a conveyer belt in the greenhouse located next to the LemnaTec chamber.

https://doi.org/10.1371/journal.pone.0257001.9001

The CosegPP data repository
Image acquisition
CosegPP is derived from a larger dataset that contains an abundance of species (Sesame,
Canna, Millet, Okra, Mo, etc.), modalities (infrared, near infrared, visible, and hyperspectral),
more temporal points, and perspectives, and more experimental samples which were collected
using the LemnaTec Scanalyzer at the University of Nebraska-Lincoln, USA (Fig 1). LemnaTec
is a 3D high-throughput plant phenotyping system. The system transfers each plant through
four imaging chambers in succession with attempts to be imaged daily. There is one camera
type per chamber. Chamber one has the visible light (VIS) side-view (SV) and top-view (TV);
chamber two has infrared (IR) SV and TV; chamber three has fluorescent (Fluo) SV and TV;
and chamber four has near infrared (NIR) TV. Each imaging chamber has rotating lifters for
up to 360-degree SV images.

CosegPP needed to be reorganized in the folder format that would be acceptable for the
cosegmentation methods. The datasets were chosen based on:

1. having two physically different species for challenging segmentation. Buckwheat is a thin
plant with a variety size of leaves and the Sunflower is a bushy plant that contains flowering;

2. having the most used induced environments in plant phenotyping such as a control and
drought-induced;

3. having a temporal resolution that begins with the plants vegetative stage and ends with the
plant fully matured;

4. having modalities (infrared, visible, near infrared) that are commonly used in plant pheno-
typing analysis; and

5. having multiple perspectives that are becoming widely acquired in plant phenotyping anal-
ysis due to its potential for three-dimensional analysis.
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Data organization

CosegPP (Fig 2) has Buckwheat-C-1, Buckwheat D-1, Sunflower-C-1, and Sunflower-D-1 as
datasets. Dataset name starts with the name of the plant. C indicates control, D indicates
drought, and 1 represents the plant ID number. Each dataset has 12 groups that are labeled
with combinations of the three modalities (fluorescence, IR, Vis), perspectives (SV), and
degree angles (0, 72, 144, 216) the photo was taken. Some example groups are: Fluo_SV_0,
IR_SV_72,Vis_SV_144. Each group has a range of PNG images named after timestamps.
Ground truth images were obtained using Photoshop2020’s Action feature that pipelined
the following actions: Quick Selection, Masking, Mode Conversion, Thresholding, and Inver-
sion. After a binary mask was produced, two computer scientists checked each binary mask’s
quality and added or removed pixels to produce a final binary mask. A binary mask was pro-
duced for each timestamp for each modality and perspective. Previous works have also used
Photoshop in full or partial manual techniques when generating binary masks [12, 33-35].

Benchmark experiment setup
Benchmark protocols

We evaluated three existing cosegmentation datasets: iCoseg [14], MSRC [13], and Internet
[15]. Between the three datasets, there are 20 groups totaling 156,688 images. For a fair analy-
sis, we run the available code of the chosen cosegmentation methods with their default settings
(including retraining DeepCO” per dataset run). Modifications were made to the GPU arrays
to handle CosegPP. No cropping was done on the images in CosegPP in order to challenge
some of the cosegmentation methods on their claim of higher performance “with complex and
diverse intra-class variations and background clutters” [11]. These experiments will evaluate
three cosegmentation models: DeepCO? [11], Subdiscover [10], and MIG [9] and one plant
phenotyping segmentation model: Otsu’s thresholding [31], against CosegPP (ours), iCoseg
[14], MSRC [13], and Internet [15].

Evaluation metrics

For the evaluation, we will use Precision (P) (the average number of pixels correctly labeled)
and Jaccard (J) (average intersection-over-union for the foreground objects) for segmentation
accuracy since previous works in cosegmentation [6, 9, 36-38] has also used Precision and Jac-
card. These metrics will be used to evaluate cosegmentation performance.

Let

D={G,...,G,...,G}

where D is the whole dataset
q is the gth image group G,
IF is the ith image in image group G,
Let

G ={It,... IF, .15}

where N, is the number of images in the G, (2)

N, is the total number of images in the whole dataset D
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Fig 2. Preview of the proposed CosegPP. CosegPP is a data repository that contains four datasets: Buckwheat-C-1,
Sunflower-C-1, Buckwheat-D-1, and Sunflower-D-1. The dataset names include the species name, C or D that
represents Control or Drought induced, and a number representing the experimental repetition number. Each dataset
includes visible, fluorescence, infrared, and ground truth images with 7 to 14 temporal images from 3 July to 18 August
2019. This preview shows only 3 temporal images in the 0-degree side view.

https://doi.org/10.1371/journal.pone.0257001.9002

Ground Truth
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Each metric will have its own calculated mean score 9 € {P, J} for each dataset. The mean
metric of each dataset will be defined as

QD) = 5->°>_8(1) o)

1 k=1

Quantitative comparisons

These analyses were computed at the Holland Computing Center (HCC) at the University of
Nebraska-Lincoln. We were able to compute all cosegmentation and segmentation methods in
the HCC using the Tesla V100 GPU nodes with Omni-Path Architecture using an average
190GB of RAM. HCC also has the capability to use CUDA, Docker, MATLAB, Matcaffe, and
singularity, which are all needed to run the previous works’ code.

Performance on the iCoseg dataset

iCoseg is a dataset that has a variety of group objects such as animals, landmarks, and sports.
Table 3 shows the result’s Precision and Jaccard values per group for each cosegmentation and
segmentation method.

DeepCO?, at a glance, shows to not have acquired the highest scores for a majority of the
groups. However, TrackandField, gymnastics1, and gymnastics2 were the groups with the low-
est number of images: 5, 6, and 4, respectively. This demonstrates the advantage of DeepCO>
has on groups with a low number of images as long as the object is similar despite its position/
stance. All three groups had objects as people that wore the same uniform and were of same
skin color. The only difference was the poses/perspective views.

MIG acquired the highest average Precision value and Jaccard for the iCoseg dataset at
0.7889 and 0.5606, respectively. MIG performs best when the object color is consistent while
using SIFT features [39]. The groups with the highest Precision and Jaccard score (Kendo2 and
skate) all contain objects that are similar in size and color.

Subdiscover was not able to compute a segmentation mask for some of the groups (Christ,
Monks, bear2, brown_bear, cheetah, gymanstics1, gymanstics2, gymnastics3, and skate). Despite
that some of the group’s objects were not relatively in the same location of each image. Thus,
having the segmentation masks include some noise, justifying the high precision and low Jac-
card for all groups.

It is worth noting that the goose group achieved the highest Precision and Jaccard result
from the Otsu Thresholding. An explanation of the goose’s group accuracy is that the object of
the images (goose) is predominantly white. When thresholding, it is able to accurately segment
the object due to the contrast between the predominately white goose and the blue water
background.

iCoseg’s animal groups exhibit multiple features such as perspective and temporal. Having
demonstrated that MIG performed well on 5 out of 7 animal groups (with the exception of the
elephant and goose group) shows the potential of its capability to handle datasets that have at
least multi-perspective and temporal features. Furthermore, the goose group is an excellent
representation of CosegPP’s bimodal color images where Otsu Thresholding performed fairly
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Table 3. Results of three cosegmentation methods and one plant phenotyping segmentation method on the iCoseg

dataset.
DeepCO’® MIG Subdiscover Otsu Thresholding
P J P J P J P J
Christ 0.75 0.58 0.81 0.68 (1 [ 0.48 0.32
HotBalloons 0.53 0.32 0.92 0.60 0.96 0.68 0.21 0.02
Kendo 0.55 0.35 0.96 0.87 0.85 0.56 0.05 0.02
Kendo2 0.69 0.46 0.98 0.91 0.90 0.61 0.02 0.00
Liverpool 0.56 0.25 0.84 0.50 0.88 0.14 0.43 0.07
Monks | 0.64 0.43 0.90 0.77 0 0 0.53 0.26
StatueofLiberty 0.64 0.44 0.94 0.74 0.88 0.62 0.09 0.06
TrackandField 0.72 0.31 0.51 0.22 (1 (] 0.44 0.19
Windmill 0.64 0.16 0.78 0.38 0.87 0.25 0.57 0.21
WomanSoccer 0.68 0.35 0.90 0.66 091 0.54 0.33 0.08
WomanSoccer2 0.81 0.42 0.85 0.51 0.87 0.44 0.50 0.19
baseball 0.45 0.15 0.71 0.35 0.96 0.62 0.62 0.27
bear2 0.51 0.29 0.77 0.53 [] [ 0.29 0.06
brown_bear 0.70 0.51 0.90 0.71 [ [ 0.40 0.18
cheetah 0.66 0.48 0.87 0.59 [ [ 0.57 0.34
elephant 0.50 0.24 0.57 0.32 0.89 0.59 0.36 0.03
ferrari | 0.72 0.46 0.89 0.64 [ 0 0.47 0.05
goose 0.72 0.47 0.84 0.58 0.81 0.38 0.95 0.80
gymnasticl | 0.90 0.58 0.19 0.05 0 0 0.90 0.48
gymnastic2 | 0.89 0.51 0.38 0.15 0 0 0.85 0.37
gymnastic3 0.85 0.51 0.85 0.61 [] (] 0.90 0.54
helicopter 0.43 0.20 0.98 0.79 0.99 0.88 0.18 0.04
pandal 0.63 0.47 0.86 0.75 0.78 0.48 0.48 0.25
panda?2 0.59 0.48 0.77 0.63 0.61 0.32 0.50 0.33
pyramid 0.86 0.52 0.77 0.45 0.95 0.80 0.22 0.03
skate 0.81 0.60 0.96 0.91 [ [ 0.15 0.04
skate2 0.35 0.10 0.77 0.48 0.97 0.72 0.04 0.01
skate3 0.39 0.11 0.51 0.11 0.86 0.19 0.26 0.02
stonehenge 0.87 0.73 0.93 0.88 0.77 0.50 0.43 0.26
taj_mahal 0.82 0.47 0.76 0.45 0.84 0.49 0.62 0.29
All 0.66 0.40 0.79 0.56 0.55 0.33 0.43 0.19

P is Precision, ] is Jaccard, and [] is no data available. Bold text represents the highest score of both Precision and

Jaccard per group. “All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t003

well in achieving high segmentation accuracy. These advantages can be leveraged for our
multi-feature CosegPP.

Performance on the Internet dataset

The Internet dataset is focused on three objects: Airplane, Car, and Horse, demonstrating the
difference between having 100 images of an object versus 4,300-6,300 images of an object.
Table 4 shows the results of the Internet dataset when analyzed against the cosegmentation
and segmentation algorithms.

DeepCO” performed well in the Car and Car100 group versus the others. It is worth noting
that the Internet dataset had collections of other objects in a group. For example, the Airplane
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Table 4. Results of three cosegmentation methods and one plant phenotyping segmentation method on the Inter-
net dataset.

DeepCO® MIG Subdiscover Otsu Thresholding
P J P J P ] P J

Airplane 0.77 0.27 0.70 0.41 0.90 0.61 0.45 0.17
Airplanel00 0.56 0.28 0.67 0.37 0.90 0.50 0.49 0.18
Car 0.73 0.49 0.76 0.59 0.88 0.72 0.45 0.21
Car100 0.77 0.62 0.75 0.58 0.90 0.70 0.45 0.20
Horse 0.74 0.28 0.70 0.42 0.86 0.58 0.45 0.13
Horsel00 0.56 0.30 0.70 0.40 0.89 0.48 0.46 0.13
All 0.69 0.37 0.71 0.46 0.89 0.60 0.46 0.17

P is Precision and J is Jaccard. Bold text scores indicate the highest score of both Precision and Jaccard per group.

“All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t1004

group had airplane, helicopter, and outliers as objects. The Horse group contained both fake
and real horses. These objects not only are visually different, they are texturally different, as
well.

MIG uses K nearest-neighbor search to calculate the foreground distance measurement.
With the Internet dataset, the backgrounds are inconsistent which allows MIG to confuse
parts of the background as the object. Although Internet contains similar objects, the back-
ground scenario is considered to be different in each image for MIG to segment properly.

The Subdiscover algorithm was verified using the Internet dataset. It is apparent in Table 4
where it shows the biases the Internet dataset has towards Subdiscover resulting in tight clus-
ters (low Jaccard, high Precision). Subdiscover exploits dataset’s group objects being mono-
chrome and in the same relative area in the image (center). It is worth noting that in the work
of Subdiscover [9], the Internet dataset produced a Precision 0£.9042 (number converted to
follow our paper’s format) in the Car group. Our results show 0.8809 Precision score for the
Car group. The reason for the difference in the Precision score is because Subdiscover uses
NEIL [26]. This object discovery and segmentation algorithm is constantly generating new
segmentations using web data.

Otsu Thresholding performed the worst of all the algorithms due to the Internet dataset’s
versatile background containing multiple colors, noise objects, and outlier images.

For each group in Internet, there are vast object variety images (different model/species
types) and outlier images (starkly different from the object). Having groups with object variety
images are similar to the multi-species and multi-environment feature where the object can be
visually different towards the end of an experiment due to its induced environment. Subdis-
cover proves to be the superior method for these types of groups, and that can handle outlier
images. In plant phenotyping, there are cases where some outlier images are captured such as
an empty pot, a damaged plant, or inaccurate camera zoom.

Performance on the MSRC dataset

MSRC’s groups mostly have 30 to 32 images except for the cat group at 24 images. Table 5
shows the Precision and Jaccard scores for the MSRC dataset against the cosegmentation and
segmentation algorithms.

DeepCO? obtained the highest Precision and Jaccard score for only one group: bike.
Although the Jaccard score was 0.4455, the bike group does contain a complex object with an
array of different defining features.
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Table 5. Results of three cosegmentation methods and one plant phenotyping segmentation method on the MSRC

dataset.
DeepCO® MIG Subdiscover Otsu Thresholding
P ] P J P J P J
bike 0.68 0.45 0.68 0.27 0.68 0.25 0.35 0.17
bird|  0.49 0.22 0.92 0.59 0 i 0.51 0.23
car 0.65 0.52 0.69 0.38 0.80 0.55 0.37 0.19
cat 0.51 0.32 0.84 0.50 0.80 0.20 0.43 0.16
chair 0.57 0.34 0.79 0.39 0.83 0.37 0.48 0.24
cow 0.58 0.35 0.93 0.74 0.90 0.60 0.33 0.15
dog| 0.49 0.29 0.86 0.54 [ il 0.43 0.19
face 0.65 0.48 0.80 0.57 0.84 0.60 0.51 0.29
flower 0.67 0.47 0.82 0.63 0.72 0.32 0.69 0.47
house 0.65 0.49 0.83 0.63 0.71 0.33 0.45 0.22
plane 0.61 0.30 0.84 0.51 0.89 0.53 0.59 0.19
sheep 0.57 0.36 0.93 0.77 0.90 0.65 0.67 0.33
sign 0.70 0.47 0.86 0.63 0.85 0.61 0.60 0.36
tree 0.74 0.58 0.66 0.44 0.79 0.64 0.31 0.18
All 0.61 0.40 0.69 0.40 0.69 0.40 0.48 0.24

P is Precision, ] is Jaccard, and [] is no data available. Bold text represents the highest score of both Precision and

Jaccard per group. “All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t1005

MIG performed best in the cow and sheep group since both groups contain consistent back-
grounds with similar sized objects.

In this dataset, Subdiscover was unable to identify clusters for the bird and dog class. Look-
ing at the images within the two groups, it is understandable that the cosegmentation method
struggled since both classes included a variety of species within the images. For example, the
bird class has peacocks, swans, ducks, seagulls, pigeons, etc. All these birds have different phys-
ical features.

None of the groups had a high value for any of the metrics in the Otsu Thresholding algo-
rithm. That indicates that MSRC’s images within the groups have multiple colors in the fore-
ground and background.

MSRC has similar group objects as Internet and iCoseg where it contains object variety
images, objects with multiple perspectives, and objects with temporal features (mostly for the
animal groups). This dataset helps reiterate the claim that MIG and Subdiscover do well with
multi-species, multi-perspective, multi-environment, and temporal features.

Summary performance of iCoseg, internet, and MSRC

Fig 3 displays a summary of all the Precision and Jaccard performance values in each coseg-
mentation dataset. These distributions reaffirm the claim that each dataset performed best in
one or two of the tested methods without having a large range and the capability of detecting
outliers.

Performance on the CosegPP repository

Detailed results of our CosegPP analyses are shown in Table 6.
DeepCO” was unable to properly segment a majority of the groups in all four datasets since
the Jaccard for all groups was nearly 0 except for Fluo_SV_0 in the Sunflower-D-1 dataset and
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Fig 3. Precision and Jaccard distribution over all the cosegmentation datasets from the benchmark analysis. (a) and (b) are Precision
and Jaccard distributions for iCoseg, respectively. (c) and (d) are the Precision and Jaccard distributions for Internet, respectively. (e) and

(f) are the Precision and Jaccard distributions for MSRC, respectively.

https://doi.org/10.1371/journal.pone.0257001.9003

Vis_SV_216 in the Buckwheat-C-1 dataset. Each Sunflower dataset had a total of 168 images
(14 in each group) and each Buckwheat dataset had a total of 84 images (7 in each group).
DeepCO? claims to be able to segment where each group has 10 images. Therefore, CosegPP

demonstrates that DeepCO” has complications in properly segmenting the object despite the
number of images per group.

Similarly, MIG was unable to segment all the fluorescence and infrared groups for all data-
sets. Although it was able to segment the visible group, it is near zero. MIG starts its computa-
tions by performing single image segmentation. If the single image segmentation results in no
output or low Jaccard, the rest of the MIG algorithm fails when attempting to do single group
and multiple group segmentation.

Buckwheat-D-1 is similar to Buckwheat-C-1 where Subdiscover was not able to segment
the fluorescence and infrared modality. This could be due to the branches being too thin in
Buckwheat. Subdiscover scored the highest in Precision and Jaccard for all the dataset’s visible
group.

All the datasets had their best Jaccard score for the fluorescence and infrared group with
Otsu Thresholding. Otsu Thresholding performed relatively well in these modalities since the
grayscale intensities are relatively bimodal after converting the RGB image to grayscale. The
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Table 6. Results of three cosegmentation methods and one segmentation method on CosegPP.

DeepCO? MIG Subdiscover Otsu Thresholding
p J 3 J p J 3 J
Buckwheat-C-1 Fluo_SV_0 0.98 0.00 0.98 0.00 0 0 0.97 0.38
Fluo_SV_144 0.98 0.00 0.98 0.0000 0 [ 0.97 0.38
Fluo_SV_216 0.98 0.00 0.98 0.00 [ ] 0.97 0.38
Fluo_SV_72 0.98 0.00 0.98 0.00 (] (] 0.97 0.36
IR_SV_0 0.98 0.00 0.98 0.00 ] ] 0.91 0.08
IR_SV_144 0.98 0.00 0.98 0.00 ] (] 0.90 0.05
IR_SV_216 0.97 0.00 0.97 0.00 ] (] 0.89 0.03
IR_SV_72 0.98 0.07 0.98 0.00 (] (] 0.91 0.07
Vis_SV_0 0.91 0.00 0.15 0.01 0.99 0.30 0.93 0.15
Vis_SV_144 0.93 0.01 0.14 0.00 0.99 0.28 0.93 0.14
Vis_SV_216 0.80 0.13 0.15 0.01 0.99 0.22 0.93 0.15
Vis_SV_72 0.78 0.00 0.14 0.01 0.99 0.56 0.93 0.14
All 0.94 0.02 0.70 0.00 0.33 0.11 0.94 0.19
Buckwheat-D-1 Fluo_SV_0 0.98 0.00 0.98 0.00 0 0 0.97 0.38
Fluo_SV_144 0.97 0.00 0.97 0.00 0 0 0.97 0.38
Fluo_SV_216 0.97 0.00 0.97 0.00 ] ] 0.97 0.38
Fluo_SV_72 0.97 0.00 0.97 0.00 ] (] 0.97 0.36
IR_SV_0 0.96 0.05 0.97 0.00 ] (] 0.91 0.08
IR_SV_144 0.96 0.01 0.96 0.00 (] (] 0.90 0.05
IR_SV_216 0.96 0.00 0.96 0.00 (] (] 0.89 0.03
IR_SV_72 0.96 0.06 0.96 0.00 (] (] 0.91 0.07
Vis_SV_0 0.76 0.00 0.15 0.01 0.98 0.23 0.93 0.15
Vis_SV_144 0.59 0.01 0.15 0.01 0.98 0.17 0.93 0.14
Vis_SV_216 0.80 0.00 0.15 0.01 0.97 0.43 0.93 0.15
Vis_SV_72 0.59 0.01 0.15 0.01 0.96 0.12 0.93 0.14
All 0.87 0.01 0.69 0.00 0.32 0.08 0.94 0.19
Sunflower-C-1 Fluo_SV_0 0.53 0.07 0.97 0.00 0.83 0.13 0.87 0.30
Fluo_SV_144 0.60 0.07 0.97 0.00 0.86 0.10 0.87 0.27
Fluo_SV_216 0.63 0.07 0.97 0.00 0.82 0.09 0.87 0.28
Fluo_SV_72 0.86 0.13 0.97 0.00 0.88 0.08 0.86 0.21
IR_SV_0 0.92 0.06 0.92 0.00 0.93 0.24 0.91 0.34
IR_SV_144 0.93 0.04 0.93 0.00 0.94 0.21 0.91 0.31
IR_SV_216 0.94 0.02 0.95 0.00 0.95 0.14 0.91 0.29
IR_SV_72 0.94 0.04 0.94 0.00 0.95 0.19 0.92 0.31
Vis_SV_0 0.70 0.17 0.26 0.04 0.98 0.50 0.93 0.33
Vis_SV_144 0.73 0.12 0.26 0.04 0.98 0.52 0.92 0.31
Vis_SV_216 0.78 0.13 0.26 0.04 0.98 0.51 0.92 0.31
Vis_SV_72 0.75 0.11 0.25 0.03 0.98 0.37 0.92 0.26
All 0.78 0.08 0.72 0.01 0.92 0.26 0.90 0.29
(Continued)
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Table 6. (Continued)

DeepCO? MIG Subdiscover Otsu Thresholding

p J 3 J p J P J
Sunflower-D-1 Fluo_SV_0 0.99 0.19 0.99 0.00 0.87 0.02 0.87 0.14
Fluo_SV_144 0.91 0.12 0.99 0.00 0.84 0.01 0.87 0.12
Fluo_SV_216 0.92 0.06 0.99 0.00 0.85 0.00 0.87 0.13
Fluo_SV_72 0.99 0.07 0.99 0.00 0.82 0.00 0.87 0.12
IR_SV_0 0.97 0.12 0.97 0.00 0.97 0.04 0.94 0.28
IR_SV_144 0.98 0.01 0.98 0.00 0.98 0.09 0.93 0.18
IR_SV_216 0.98 0.01 0.98 0.00 0.98 0.13 0.92 0.17
IR_SV_72 0.98 0.01 0.98 0.00 0.98 0.12 0.93 0.20
Vis_SV_0 0.71 0.05 0.21 0.02 0.96 0.12 0.93 0.16
Vis_SV_144 0.73 0.04 0.21 0.01 0.98 0.05 0.93 0.14
Vis_SV_216 0.74 0.01 0.21 0.02 0.99 0.32 0.93 0.15
Vis_SV_72 0.80 0.07 0.21 0.01 0.99 0.15 0.93 0.13
All 0.89 0.06 0.73 0.01 0.93 0.10 0.91 0.16

P is Precision, ] is Jaccard, and [] is no data available; therefore, it will be treated as zero. Bold text represents the highest score of both Precision and Jaccard per group.

“All” is the average score on the whole dataset.

https://doi.org/10.1371/journal.pone.0257001.t006

plant images have dominantly two colors (green for the plant and white for the background).
As the object of interest gets smaller compared to the background area, then the histogram will
no longer exhibit bimodality [40].

In summary, Subdiscover continues to demonstrate accurate segmentation for a group of
images that contain variety (plant youngling to plant maturity), but only for the visible modal-
ity. MIG performed similarly to Otsu thresholding in the Fluorescence and Infrared modality
both demonstrating the ability to segment a group of images with multiple perspectives and
temporal data.

An averaging was done across each feature for all datasets in CosegPP to determine which
algorithms scored the highest for Precision and Jaccard as shown in Table 7. The final sum-
mary table is in Table 8.

Table 7. Averages of each feature in the CosegPP data repository.

DeepCO? MIG Subdiscover Otsu

Thresholding

P J P J P ] P ]
Modality Fluorescence 0.89 0.05 0.98 0.00 0.42 0.03 0.92 0.29
Infrared 0.96 0.03 0.96 0.00 0.48 0.07 0.91 0.16
Visible 0.76 0.05 0.19 0.02 0.98 0.30 0.93 0.19
Perspective 0 0.87 0.06 0.71 0.01 0.63 0.13 0.92 0.23
144 0.86 0.04 0.71 0.01 0.63 0.12 0.92 0.21
216 0.87 0.04 0.71 0.01 0.63 0.15 0.92 0.20
72 0.88 0.05 0.71 0.01 0.63 0.13 0.92 0.20
Species Buckwheat 0.91 0.01 0.70 0.00 0.33 0.10 0.94 0.19
Sunflower 0.83 0.07 0.72 0.01 0.93 0.17 0.91 0.23
Condition Control 0.86 0.05 0.71 0.01 0.63 0.19 0.92 0.24
Drought 0.88 0.04 0.71 0.00 0.63 0.08 0.92 0.18

P is Precision, ] is Jaccard. Bold text represents the highest score of both Precision and Jaccard per group.

https://doi.org/10.1371/journal.pone.0257001.t1007
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Table 8. Summary of the algorithms with the highest Precision and Jaccard for each feature in CosegPP.

p J

Modality Fluorescence MIG Otsu Thresholding
Infrared MIG Otsu Thresholding

Visible Subdiscover Subdiscover
Perspective 0 Otsu Thresholding Otsu Thresholding
144 Otsu Thresholding Otsu Thresholding
216 Otsu Thresholding Otsu Thresholding
72 Otsu Thresholding Otsu Thresholding
Species Buckwheat Otsu Thresholding Otsu Thresholding
Sunflower Subdiscover Otsu Thresholding
Condition Control Otsu Thresholding Otsu Thresholding
Drought Otsu Thresholding Otsu Thresholding

P is Precision, J is Jaccard.

https://doi.org/10.1371/journal.pone.0257001.t008

Summary performance of CosegPP repository

Fig 4 demonstrates that all cosegmentation methods, including the plant phenotyping segmen-
tation method, had difficulties processing CosegPP due to its multiple features. Currently,
there is no cosegmentation method that gives a promising performance for segmenting plant
phenotyping multi-feature datasets. Even Otsu’s thresholding, despite it having the best perfor-
mance, still has difficulties in overall segmentation resulting in less than 0.5 Jaccard.

By using a collection of methods for each feature in CosegPP, as shown in Table 8, the bene-
fits can be leveraged to achieve higher segmentation accuracy.

Qualitative comparisons

Figs 5 and 6 shows the visual results of CosegPP against MIG, DeepCO3, Subdiscover, and
Otsu Thresholding. Notice how Subdiscover has empty slots in Buckwheat-C-1 and Buck-
wheat-D-1’s Fluo_SV_0 and IR_SV_0.

Looking at the images of Otsu Thresholding, the method was capable of segmenting both
the Buckwheat and Sunflower plant relatively well. However, it also segmented parts of the
LemnaTec chamber in which the tests were conducted. This is not an ideal segmentation for
plant phenotyping since it will produce inaccurate phenotype results. Even in computer sci-
ence, this is not an ideal segmentation since more than the targeted object was segmented.

MIG was only capable of segmenting the visible light images for both Buckwheat and Sun-
flower. Even though it segmented a majority of the LemnaTec chamber, it is worth noticing
that the outline of each plant was ignored. MIG has the potential to generate an accurate object
outline if complimented.

DeepCO” was not able to segment Buckwheat from the images regardless of modality. It
was only able to segment parts of the LemnaTec chambers in the visible light modality. Most
likely due to the branch thinness and leaf thickness of the Buckwheat plant. Interestingly,
DeepCO” was capable of segmenting the Sunflower plant in the fluorescence and visible group
in the control feature along with the visible modality in the drought feature.

Subdiscover was only able to segment the visible modality in both Buckwheat samples. Sub-
discover seems to have segmented a visual “blob” of the overall location of the Sunflower plant
and did a more accurate segmentation in the visible modality. Even though the segmentation
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Fig 4. Precision and Jaccard distribution over CosegPP from the benchmark analysis. (a) and (b) are Precision and Jaccard
distributions for Buckwheat-C-1, respectively. (c) and (d) are the Precision and Jaccard distributions for Buckwheat-D-1, respectively. (e)
and (f) are the Precision and Jaccard distributions for Sunflower-C-1, respectively. (g) and (h) are the Precision and Jaccard distributions
for Sunflower-D-1, respectively.

https://doi.org/10.1371/journal.pone.0257001.9004

was not accurate, it was able to determine the general location of the object via the blob which
is a technique that can be leveraged to find neighboring plant pixels.

Discussion

High-throughput phenotyping is a technique that has shown promising development to
replace at least some traditional methods that are currently being used in plant phenotyping to
access traits [5]. This is a field that must begin to transition from manual data acquisition and
analyses to automatic, efficient hardware and software for resilient and sustainable farming.
This study creates plant phenotyping datasets based on data obtained with a high-throughput
imaging system that allows the analysis of multiple factors (multi-species, multi-perspective,
multi-conditions, multi-modality, and temporal).

It is expected that the current cosegmentation datasets (iCoseg, Internet, and MSRC) had a
bias in performance (Tables 3-5) for a single cosegmentation method. iCoseg performed the
best with MIG, Internet with Subdiscover, and MSRC with MIG. This study demonstrates that
each cosegmentation method leverages only 1-2 features (multi-perspective, and multi-spe-
cies) restricting the type of datasets it can process.
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Fig 5. Qualitative performance examples of CosegPP’s Buckwheat with three cosegmentation methods (DeepCO?,
MIG, Subdiscover) and one plant phenotyping segmentation methods (Otsu Thresholding). Each binary mask
produced is the output of each cosegmentation methods with CosegPP where the white pixels are the pixels for the
identified object(s). Subdiscover was unable to produce a binary mask for Buckwheat-C-1 and Buckwheat-D-1 in the
fluorescence and infrared modality.

https://doi.org/10.1371/journal.pone.0257001.g005

This paper contributes CosegPP to further challenge cosegmentation by introducing multi-
ple features to reduce biases. When using our dataset with the four methods, it is apparent that
the cosegmentation methods performed equally or worse than the Otsu Thresholding for plant
phenotyping (Tables 6-8). The quantitative and qualitative results shows that the cosegmenta-
tion methods have some computer science downfalls in not being able to 1) properly detect
the full object (a.k.a. plant); and 2) ignore the cluttered background (a.k.a. LemnaTec chamber
edges). It is possible that conducting some pre-processing on the images, such as cropping,
can significantly improve the segmentation performance. However, having an algorithm smart
enough to ignore the background will be more beneficial to the computer science and plant
phenotyping field.

This paper also contributes a comparative study that suggests combining aspects of some
or all the algorithms to improve segmentation accuracy with CosegPP. The ability for coseg-
mentation methods to accurately segment not only temporal images, but use a variety of
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Fig 6. Qualitative performance examples of CosegPP’s Sunflower with three cosegmentation methods (DeepCO?,
MIG, Subdiscover) and one plant phenotyping segmentation methods (Otsu Thresholding). Each binary mask
produced is the output of each cosegmentation methods with CosegPP where the white pixels are the pixels for the
identified object(s).

https://doi.org/10.1371/journal.pone.0257001.g006

modalities for inter-group information passing, along with different species, has the potential
to introduce novel phenotypes are beneficial for plant scientists.

This study shows the benefit in the plant phenotyping community by demonstrating that
image cosegmentation has the potential to increase phenotyping accuracy. More so, there are
also benefits in the computing community by introducing a dataset that creates new challenges
in a computer vision algorithm. Future work would be to evolve cosegmentation methodology
to handle plant specific datasets to increase phenotyping accuracy to help address the problem
of intensifying sustainable food production.

Conclusion

This paper presents a complete group-level segmentation performance analysis using coseg-
mentation. These results identify a serious data bias, i.e., if each group of images contains
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similar visual appearances of the objects in current cosegmentation datasets. We created four
new datasets within CosegPP that challenges the latest cosegmentation algorithms by having 1)
a temporal component of plant growth; 2) different modalities for a variety of data type; and 3)
introduction of varying colors and textures in the plant based on control or drought condi-
tions. Our datasets combined total 330 images not including ground truth data. CosegPP is
derived from a larger dataset containing a higher variety of species, temporal data, and an
extra modality. Therefore, CosegPP has the potential to be expanded further to challenge the
latest cosegmentation methods. Our datasets provide a leap in object physical characteristic
diversity. Furthermore, this paper provided a comprehensive benchmark analysis that contains
three of the latest cosegmentation methods and one segmentation method in plant phenotyp-
ing. These results provide a deeper analysis as to the issues and downfalls of the cosegmenta-
tion methods. Future work would be to create a new self-learning algorithm using multiple
cosegmentation methods and coupling it with plant phenotyping ideologies to increase the
segmentation accuracy in color, texture, and size changing objects.
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