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Abstract—This work presents a novel approach combining
radial basis function (RBF) interpolation with Galerkin projection
to efficiently solve general optimal control problems. The goal is
to develop a highly flexible solution to optimal control problems,
especially nonsmooth problems involving discontinuities, while
accounting for trajectory accuracy and computational efficiency
simultaneously. The proposed solution, called the RBF-Galerkin
method, offers a highly flexible framework for direct
transcription by using any interpolant functions from the broad
class of global RBFs and any arbitrary discretization points that
do not necessarily need to be on a mesh of points. The RBF-
Galerkin costate mapping theorem is developed that describes an
exact equivalency between the Karush—Kuhn-Tucker (KKT)
conditions of the nonlinear programming problem resulted from
the RBF-Galerkin method and the discretized form of the first-
order necessary conditions of the optimal control problem, if a set
of discrete conditions holds. The efficacy of the proposed method
along with the accuracy of the RBF-Galerkin costate mapping
theorem is confirmed against an analytical solution for a bang-
bang optimal control problem. In addition, the proposed
approach is compared against both local and global polynomial
methods for a robot motion planning problem to verify its
accuracy and computational efficiency.

Index Terms—Costate estimation, direct trajectory optimization,
Galerkin projection, numerical optimal control, radial basis function
interpolation.

I. INTRODUCTION

IRECT methods are extensively used for solving optimal
D control problems, mainly due to their ability to handle
path constraints, robustness to initial guess of parameters, and
greater radii of convergence compared to indirect methods
[1]-3]. Direct transcription is based on approximating states
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and/or controls with a specific function with unknown
coefficients and discretizing the optimal control problem with
a set of proper points (nodes) to transcribe it into a nonlinear
programming (NLP) problem. The resulting NLP can then be
efficiently solved by NLP solvers available. Many direct
methods are collocation-based approaches using either local
or global polynomials depending on the type of function used
in the approximation. Runge-Kutta methods [4], [5] and B-
spline approaches [6], [7] are examples of local collocation
methods that leverage low-degree local polynomials for the
approximation of states and controls. The main drawback of
these methods is their algebraic convergence rate, so their
solution is not usually as accurate as the solution of global
polynomial methods [3].

Pseudospectral (PS) methods [8]-[14], on the other hand,
use a high-degree global polynomial for the approximation of
states and controls and a set of orthogonal nodes associated
with the family of the polynomial for the discretization of the
optimal control problem. Due to their spectral (exponential)
accuracy and ease of implementation, PS methods have been
widely used for direct trajectory optimization in recent years
[1], [3]. However, their spectral accuracy only holds for
sufficiently smooth functions. If the problem formulation or
the optimal solution contains discontinuities (nonsmoothness),
PS methods will converge poorly even with a high-degree
polynomial [2]. Also, the use of a PS method is limited to a
specific mesh of points; For instance, the Gauss PS [11]
method can only use Legendre-Gauss nodes, or the Legendre
PS method [12] is tied with the Legendre-Gauss-Lobatto
nodes for the problem discretization. This limitation becomes
problematic when the optimal solution has discontinuities
requiring denser nodes around them to accurately capture the
switching times of the solution, as will be later demonstrated
in Section V. Variations of PS methods were proposed in the
literature [15]-[18] to overcome this issue, but such modified
PS schemes impose new limitations to the mathematical
formulation of the problem, are usually sensitive to the initial
guess of parameters, and cannot typically find an accurate
solution to non-sequential optimal control problems [15], [19].
Thus, a significant gap exists in the literature with respect to a
computationally efficient numerical approach that can find
high accuracy solution to nonsmooth optimal control problems
without applying further limitations to the problem and this
work intends to address it.

This paper presents a novel optimal control approach that
employs global radial basis functions (RBFs) for the
approximation of states and controls and arbitrarily selected
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points for the problem discretization. The proposed solution,
called the RBF-Galerkin, combines the RBF interpolation
with Galerkin projection for direct trajectory optimization and
costate estimation. Since the global RBFs comprise a broad
class of interpolating functions, including Gaussian (GA)
RBFs, multiquadrics (MQ), and inverse multiquadrics (IMQ),
the proposed method offers a great flexibility in terms of basis
functions (interpolants) for parameterizing an optimal control
problem. In addition, unlike a PS method tied with specific
type of points, the proposed method leverages a completely
arbitrary discretization scheme—which do not even need to be
on a mesh of points— providing a highly efficient framework
for solving nonsmooth optimal control problems such as a
bang-bang problem [16], as will be later demonstrated in
Section V. It should be noted that there have been recent
attempts at leveraging global RBFs as the interpolants in
direct transcription methods [20]-[25], but the use of RBFs
was limited to specific type of problems (e.g., quadratic
problems [20]) and specific discretization points (e.g.,
Legendre-Gauss-Lobatto points [21]-[25]). In contrast, the
proposed method leverages a completely arbitrary
discretization scheme and can be used in solving any general
optimal control problems. In addition, unlike many direct
methods, including previous RBF-based approaches
[20]-[25], the RBF-Galerkin method possesses proof of
optimality for solving optimal control problems. It will be
shown through the RBF-Galerkin costate mapping theorem in
Section IV that there will be an exact equivalency between the
Karush-Kuhn-Tucker (KKT) multipliers of the NLP resulted
from the RBF-Galerkin method and the discretized form of
the costates of the original optimal control problem, if a set of
discrete conditions (closure conditions) holds.

The major contribution of this work is to present a highly
flexible numerical solution to general optimal control
problems, especially the nonsmooth problems whose
formulation or optimal solution involves discontinuities that
cannot be accurately estimated by classical optimal control
methods. Another contribution is the proof of optimality via
RBF-Galerkin costate mapping theorem guaranteeing that the
solution of the proposed method is equivalent to the solution
of the original optimal control problem. To the best of the
authors’ knowledge, this is the first time that a highly flexible,
computationally efficient, accurate solution with the proof of
optimality is presented for general optimal control problems.

The rest of the paper is organized as follows: A general
optimal control problem is formulated in Section II. The RBF-
Galerkin solution is described in Section III. The costate
estimation along with the proof of optimality is presented in
Section IV. Numerical examples are provided in Section V,
and finally, the conclusions are drawn in Section VI.

II. OPTIMAL CONTROL PROBLEM FORMULATION
The general optimal control problem is defined in Bolza
form [3] as to determine the state x(7) € R", control u(r) € R™,
initial time #, and final time #; that minimize the cost
functional

tr—1o

J=T(x(=1), t0,x(1),17) + 2

subject to state dynamics,

[ L@, u@dr )
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X(1) = @f (x(1),u(r)) )
boundary conditions,
y(x(=1),10,x(1),t7) =0 € R” (3)
and mixed state-control path constraints,
q(x(1),u(r)) <0 eRY. 4)

It is assumed that the optimal solution to this problem
exists. Please note that (1)—(4) can be transformed from the
time interval 7 € [-1,1] to the time interval t € [fo, ;] using an
affine transformation

tr—1 tr+1
t= (f—20)7' + % (5)
where £y and #; are the initial and the final optimization time,
respectively.

III. RBF-GALERKIN METHOD FOR DIRECT TRAJECTORY
OPTIMIZATION

A direct method combining global RBF parameterization,
Galerkin projection, and arbitrary discretization is proposed to
discretize the optimal control problem of (1)—(4). The
discretized problem can be solved with the NLP solvers
available.

RBF Definition: RBF is a real-valued function whose value
depends on the distance from a fixed point, called center [26]

p(y.c)=p(ly—cl) (6)
where p, y, ¢, and || || denote the RBF, function variable, RBF
center, and the Euclidean norm, respectively. Any function
satisfying (6) is called an RBF function, which can be either
infinitely smooth such as GA, MQ, and IMQ RBFs, or
piecewise smooth such as Polyharmonic Splines. Infinitely
smooth RBFs are also called global RBFs.

In the proposed method, global RBFs are leveraged as the
basis functions for parameterizing the optimal control
problem. For brevity and without loss of generality, it is
assumed that the same type of RBFs, p, and the same number
of RBFs, N, are used for the approximation of states x(7) and
controls u(t) as

N N

¥~ x"@ = Y aiplie-7i) = ) @i pi(r) )
i=1 i=1
N N

u@ ~uf@ = Biplr—=il) = Y Bipi(r) @®)
i=1 i=1

where x%(7) and u®(r) denote the RBF approximation of x(t)
and u(7), respectively. Also, p;(7) is the RBF and «; and B; are
RBF weights for x%(t) and uf (1), respectively.

A set of global RBFs {p|(7),02(7),...,on(7)} forms a space
of continuous, linearly independent basis functions. Taking
derivative of (7) with respect to 7 yields

N N
O~ @ =Y aple-tid =) aip@. O
i=1 i=1

By substituting (9) in (2), the defect constraints (residuals)
Y (1) are defined as
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N
Ir—to .
W) = T2 f @ ipio) - ;aip,-m (10)
for i =1,...,N. The Galerkin method [27] is applied to (10) in
which the projection of defect constraints ¥(7) on the space of
global RBFs {p1(1),02(7),...,pon(T)} is set to zero. This will be
obtained by setting the projection of defect constraints on each

element of the RBF basis set equal to zero, i.e.,
1
[ ¥@pimdr=0  forj=12...N (1)

According to [27], it implies that the defect constraints
converge to zero in the mean (in the limit N — o). If xR
satisfies the boundary conditions of (3) and ¥ converges to
zero in the mean, the approximated solution x® converges to
the exact solution x in the mean, i.e.,

lim

Jim [ -], =

(12)

In other words, by applying the Galerkin projection, the
defect constraints are being minimized in [2-norm sense.
Now, substituting (10) in (11) and approximating the integral
of (11) with a proper quadrature yield

N
2

k=1

L= F i B pia) - . a,mrk)]p §(T) =0 (13)
i=1

fori=1,...,Nand j=1,...,N, where wy, k=1,2,...,N, are
quadrature weights corresponding to the type of quadrature
points used for approximating the integral.

A slack variable function p(t) is defined to convert the
inequality path constraints of (4) to equality constraints. p(7)
can be approximated using N global RBFs as

N N

PO =P @ = K pllr=7l)= ) Kk pr(@)

r=1 r=1

(14)

where pR(7) is the RBF approximation of p() and k, denote
the RBF weights for the pR(r). The residual of path
constraints, Ry, is calculated as

Ry = q(@i, Bi, i) +p"(0) o p(0)
N N
= q(@;, B, piT) + ) K pr(0) 0 D k1 pi(T)
r=1 =1
for i=1,...N,where o is the entry-wise product of two
vectors. Similar to (11), a Galerkin projection is applied to the
residual R, to set it orthogonal to every member of the RBF
basis set and can be shown in the discretized form as

(15)

N
Z wi| g (@i, Bi,pi(Ti))
)

N
+| > kepr(m)o me(r)]]p,(rk) (16)
r=1

for i=1,...,Nand j=1,...,N, where w; are the same
quadrature weights used in (13). By applying the same
numerical quadrature to approximate the running cost L in (1),
the optimal control problem of (1)—(4) is transcribed into the

following NLP problem:
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Determine A (ZN)Tan, B =(B15: "'.BN)TNXW

=(0’1(12'~

K = (k1,k2,. ..,KN)Tqu, fo, and ¢y that minimize the cost
T =T (ipi(=1),p:i(1), 10, 17)
tr—1o N
Zwk L(a;, Bi,pi(tr)) (17)
=1
subject to:
N - N
Zwk( — ',Bi,Pi(Tk))—Z(Yipi(Tk)]pj(Tk) =0
k=1 i=1
7 (@ipi(=1),pi(1), 10,7) = 0
N
Z wi| g (@i, Bi, pi(Tk))
N N
+ (Z Kepr(T) 0 ) szz(T))]p (1) =0 (18)
r=1 =1

fori=1,...,Nand j=1,2,...,N. The discretization method
is called the RBF-Galerkin approach for solving optimal
control problems.

The proposed method is flexible in terms of both interpolant
functions and discretization points, as it can use any type of
global RBFs as the interpolants and any arbitrary-selected
points as the discretization points. The arbitrary discretization
scheme is based on the fact that the RBF interpolation is
always unique for global RBFs, regardless of the type and
number of points used in the interpolation [26].

IV. COSTATE ESTIMATION

In this Section, it will be shown that the KKT optimality
conditions of the NLP problem of (17) and (18), are exactly
equivalent to the discretized form of the first-order necessary
conditions of the optimal control problem of (1)—(4), if a set of
conditions will be added to the KKT conditions.

A. KKT Optimality Conditions

Lagrangian or augmented cost of the NLP problem is
written as

Ja =T (as,pi(=1),pi(1), 0,17

i»Bi,pi(Tk))

DAL

J=

= f (@i pilri) - Zmp,m)}p,(rk)
+ "y (@i pi(=1),pi1), 10, )

JT Z Wk[‘l (@, Bipi(T))

N

r(0)
=1

KIPI(T)]]P,/'(T ) (19)
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fori=1,...,N, where & i, 0, i} are KKT multipliers associated
with the NLP constraints of (18). Differentiating J, with
respect to &, B, fm,ﬁm, U,Kp, to, t; and setting them equal to
zero provide the KKT optimality conditions: To save space

and make it easier to follow, shortened notation x¥ = x®(-1),

xR =xR), ul =uR(-1), uf =uR1), fi=f(@Bipi(T0)),

qr = q(@;, Bi, pi(t)), and Ly = L(a;, Bi,pi(tx)) are used
throughout the paper.
aJ, or or
— = (=D + —pn(l
oa,y, 6x’fpm( ) axﬁpn( )
tr—1to oLy
+4 kZ (1)
N N
- tr—to 0
£ ,Tkz (’ . afj;pm(rk) ~ ()| (r0)
=1 k=l
0 0
+ T 22 pu -+ 5" (1)
Ox| Xy
N N
Z kZ S LePn(T0P,(T0). 0
Lemma 1:

N N
£ wipm(Top () = D & pu(Dpy(1)
=1 k=1 J=1
. N
= D E pu(=Dpj(-1)- Wi (Ti) ().

j=1 j=1 k 1
21
Proof: Using integration by parts, it can be written that

=

Mz

1
j_lpm(T)pj(T)dT = pm(Dp (1) = pm(=Dp(=1)

[ w0 (22)

Approximating the integrals of (22) with a numerical
quadrature where wy, k=1,2,...,N, are the quadrature
weights and multiplying both 51des of (22) with ZN 1{,:7
complete the proof.

Now, applying Lemma [ to (20) and rearranging the
equations yield

N N
OLy T Ofi
Zwk{w +]Z:;§jpj(Tk)(W

k=1

oJ, Iyt
da,, 2

0
Zn, p,(m)ﬁ}pm(rk)

a 7’
|l TV + f P( 1) pm( 1)
{ﬁx’f xR Z ’ ]

Similarly,

P/(l)]pm(l) =0. (23)
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Bn 2

{a R"‘Zf; ](Tk) fk

N
(24)

T an
”jpj(zk) 5 R}Pm(lk) =0

=

N l‘f o

Z =5 Za piCTi) |om(Ti) = 0

k=1

o, - >

6i]a Z Wi [q,f + [Z K" pr(Ti)o Z Kszz(Tk)]]pm(T =0

=1 r=1 =1
o= =7 (pi=D.pi1).10.17) =0
of N N N
> a =22wk ZKr,Or(Tk) o ZﬁJT»pj(Tk) om(Te) = 0
Kim k=1 r=1 j=1
aJ, ar ~Tay
o _6_t0+ _—Zwk Lk+;§ piTfi|=
- N N
oj, or _poy | -
= —— = _—— L O = O
1, a7 v a1 2;Wk k+jz:;§/pj(7'k)fk
(25)
for m=1,2,...,N. Equations (23)—(25) are KKT optimality

conditions for the NLP problem of (17) and (18).

B. First-Order Necessary Conditions of the Optimal Control
Problem

Assuming A(7) € R" is the costate, and pu(r) e R? is the
Lagrange multiplier associated with the path constraints,
Lagrangian of the Hamiltonian (augmented Hamiltonian) of
the optimal control problem of (1)—~(4) can be written as

Hx,u,p,A) = Lix,u)+ AT f(x,u)+u’ (g(x,u)+pop) (26)

where H is the augmented Hamiltonian and p is the slack
variable function. Please note that the notation 7 has been
removed from (26) for simplicity. The first-order necessary
conditions of the optimal control problem are derived as

T tf—t() T —1o 6H
X = 2 f (x7u) 2 6/1
: da ty—to (OL of o0q
/lTZ—:— _— /lT_ T_
it 2 \ox " ox H o
=t 0H
2 Ox
L
0 2 Taf ﬂT(?q G_H
ou ou ou Ou
¥  (x(=1),10,x(1),t7) =0
ar oy
A-H=-=— v ==
b 0x r=—1 0x lr=-1
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ar dy
ATy=— r-Z
M) 0X |r=1 v ox

=1
0H
q"(x.u)+p"op” =0, o =2ulop=0

19 gy 9L _ oy

oty oty ! ot f ot f

where v € R” is the Lagrange multiplier associated with the
boundary conditions .

27)

C. RBF-Galerkin Discretized Form of First-Order Necessary
Conditions

The first-order necessary conditions of (27) are discretized
using the RBF-Galerkin method. To this end, the costates
A(t) e R" and Lagrange multipliers u(7) € R? are approxi-
mated using N global RBFs as

N
A0 =@ = ) & p(lr =)l

=1

(28)

N
)= &0
J=1

N N
p@~pf@ = "nip(le-7l)= > nipim 9

j=1 Jj=1
where A®(t) and pR(r) are the RBF approximations of A(7)
and u(tr). Also, &;and n; are the RBF weights for AR(1) and
uR (1), respectively. By using (7), (8), and (14) along with (28)
and (29), the first-order necessary conditions of (27) are
parameterized with the global RBFs. Then, applying the
Galerkin projection to the residuals and approximating the
Galerkin integral with a numerical quadrature discretize the
first-order necessary conditions as

N t
dow (f "7 - Zapmﬂme- (30)
k=1

N N
tr—1to oLy Ofx
7 klek{m—R+;§,TPj(Tk)m—R

N
+Z']]p](7'k)_

=1

: G1)
N
S { DAL
k=1

N

0qx

+;N;Pj(7k)ﬁ}pm(7k) =0 (32)

¥ (@ipi=1.piCD).10.17) = 0

or oy
ot —=‘fo pID

GF o7 8)/
xR

Zq,m

N
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N

N
Z Wi (qk (Z k" pr(Ti)o Z KITPI(Tk)]\}ﬂm(Tk) =0

k=1 = =1

N N N
2 Z W [Z njpj(Ti) © Z Krpr(Tk)]pm(Tk) =0
= A =

o oy

r
H(to)—6—+v 6_ ——v [)tf'

o 33)

H(ty) =

D. Costate Mapping Theorem

So far, two sets of equations were derived corresponding to
two different problems: The KKT optimality conditions of the
RBF-Galerkin method shown by (23)—(25) in Section A and
the discretized form of the first-order necessary conditions of
the optimal control problem described by (30)—(33) in Section
B. It was shown in the literature [3], [9] that dualization and
discretization are not commutative operations, in general. In
fact, when a continuous-time optimal control problem is
discretized, a fundamental loss of information occurs in either
primal or dual variables. Similar to the costate mapping
theorem previously shown in the literature for PS methods
[11], [28], [29], the RBF-Galerkin costate mapping theorem is
developed here to restore this loss of information by adding a
set of discrete equations to the problem defined in Section A.

To provide an exact equivalency between the KKT
optimality conditions of the NLP derived from the RBF-
Galerkin method and the discretized form of the first-order
necessary conditions of the optimal control problem, a set of
conditions must be added to (23)—(25). These conditions are

ar 6)/
5 7 o’ ——Zg,<n

N
or _r oy T
P ﬁ=2§jpj(1). (34)
N N =1

Also, comparing (23)—(25) with (30)—(33) implies that

_ } 1Y N
H(ty) = H(tf) = 3 Zwk [Lk+Z§ijj(Tk)fk]- (35)
k=1 =1

Discrete conditions of (34) and (35) are known as closure
conditions in the literature [28], [29] and applied to the
costates and Hamiltonian boundaries to guarantee that first-
order necessary conditions of the NLP (i.e., KKT conditions)
are equivalent to the discretized form of the first-order
necessary conditions of the optimal control problem. In other
words, by adding (34), (35) to the KKT conditions, the
dualization and discretization are made commutative and
hence the solution of the direct method is the same as the
solution of indirect method.

RBF-Galerkin Costate Mapping Theorem: There is an exact
equivalency between the KKT multipliers of NLP derived
from the RBF-Galerkin method and Lagrange multipliers
(costates) of the optimal control problem discretized by the
RBF-Galerkin method.

Lemma 2: The Lagrange multipliers of the optimal control
problem can be estimated from the KKT multipliers of NLP at
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discretization points by the equations

£ =¢; m— (36)

Proof: Substltutlon of (36) in (31), (32), and (33) proves
that (23)—(25) and (30)—(33) are the same, and hence the
equivalency condition holds. [ |

q],v v, j=1,2,..

V. NUMERICAL EXAMPLES

Two numerical examples are provided to demonstrate the
efficiency of the proposed method. Example 1 is a bang-bang
optimal control problem for which an analytical solution is
available. The optimal trajectories calculated by the RBF-
Galerkin method are evaluated against the exact solutions.
Also, the costates computed by the RBF-Galerkin costate
mapping theorem are compared against the exact costates
from the analytical approach. Bang-bang is a typical
nonsmooth optimal control problem in which the optimal
solution has a switching time needed to be accurately
estimated. Therefore, the efficacy of the RBF-Galerkin
approach in solving a nonsmooth optimal control problem as
well as the accuracy of the RBF-Galerkin costate mapping
theorem will be thoroughly investigated in this Example.

Example 2 is a robot motion planning problem with obstacle
avoidance in which the optimal trajectories from the RBF-
Galerkin method are evaluated against those calculated from
the two existing optimal control methods: DIDO [30], a
commercial optimal control software tool using Legendre PS
method (global polynomial), and OPTRAGEN [31],
academic optimal control software package using B-Spline
approach (local polynomial) for direct trajectory optimization.
Comparison studies between the proposed approach and the
existing methods are presented to demonstrate the superior
performance of the RBF-Galerkin solution for a typical
motion planning problem.

A. Example 1

Consider a bang-bang optimal control problem with
quadratic cost as to minimize

=2 [ (g0 + Bw)a (37)
subject to:
x1(2) = x2(2)
Xo(#) = —x1() + x2(0) + u(?)
x1(0) =0.231, x(0) =1.126, |u(r)| <0.8. (38)

According to [16], the solution can be calculated from an
analytical approach as
-0.8 0<r<1.275

(@) =
0.8 1.275<tr<5.

This example was thoroughly investigated in [16], in which
the authors concluded that a PS method in the classic form
cannot accurately solve it due to the discontinuity of the
optimal control. For instance, it has been shown that the
switching time of the solution cannot be accurately estimated
from the Chebyshev PS method of [10] and the numerical

(39)
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solution from the PS method includes undesired fluctuations
at the boundaries (see [16] for more details).

On the other hand, modified PS schemes [15]-[18] may
provide better performance than their classic counterparts for
solving nonsmooth optimal control problems. However, they
suffer from serious constraints limiting their applicability for
solving such problems. For instance, a modified PS technique
is more prone to the initial guess of parameters (reduced
robustness), imposes higher computational loads, and can only
handle limited form of state dynamics (i.e., dynamic
constraints must be converted to explicit or implicit integral
form), compared to a classic PS method [15].

In light of the current limitations with the existing methods,
we investigated the efficiency of the RBF-Galerkin method
for solving the nonsmooth optimal control problem of (37)
and (38). To leverage the capability of arbitrary discretization
of the proposed method, a set of pseudorandom points along
with the trapezoidal quadrature was chosen for the
discretization. 40 randomly distributed points were selected in
the interval [0 5] from which at least five points were located
between [1.2 1.3]. Increasing the density of discretization
points around the discontinuity, i.e., £ =1.275, which is not
typically possible in other direct methods, enhances the
performance of the RBF-Galerkin method in accurately
capturing the switching time of the solution. By
parameterizing the states and control with the IMQ RBFs and
applying the aforementioned discretization points, the
problem of (37) and (38) was transcribed into an NLP, which
was solved by SNOPT [32], a sparse NLP solver, with default
feasibility/optimality tolerances (= 107%).

Fig. 1 shows the states and control trajectories obtained
from the RBF-Galerkin method for 40 pseudorandomly
distributed points along with their exact solutions. Also, the
costates estimated from the proposed method are illustrated
along with the exact costates in Fig. 2. The accuracy of the
proposed method is clearly demonstrated in graphs even for
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Fig. 1.
method for 40 pseudorandomly distributed points along with the exact

States and control trajectories calculated by the RBF-Galerkin

solutions.
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Fig. 2.  Costates computed by the RBF-Galerkin costate mapping theorem

along with the exact costates for 40 pseudorandomly distributed points.

those points located near the control discontinuity (¢ = 1.275).
The cost value calculated from the RBF-Galerkin method was
5.663 (error =~ 0.003), and the switching time of the optimal
control was estimtaed as 1.279 (error =~ 0.004). The maximum
absolute errors of the states x;(¢) and x,(7) (over all 40 random
points) were 2.5x 1076 and 7.9 x 107°, respectively. Also, the
maximum absolute error of the optimal control u(f) was 0.63.
This occurs during the switching time (maximum error of the
optimal control was 2.3 x 107 without considering the points
located between [1.2 1.3]).

The maximum absolute errors for costates Ay, (¢) and Ay, (f)
(over 40 points) were 6.6x 107 and 3.6x 107>, respectively.
This numerically verifies the accuracy of RBF-Galerkin
costate mapping theorem as in (36). Even higher accuracy can
be achieved by increasing the number of discretization points.
For instance, the maximum absolute errors of Ay, (t) and A, ()
will be decreased to 3.4x10™®and 3.0x107°® (close to the
level of feasibility and optimality tolerances set in the NLP
solver) by increasing the discretization points to 80.

B. Example 2

A robot motion planning problem with obstacle avoidance
in 2-dimensional space is considered. It is desired to find an
optimal trajectory for a mobile robot that spends minimum
kinetic energy to navigate through three circular obstacles in a
fixed time span [0 20]. The obstacles are located at (40,20),
(55,40), and (45,65) with the radius » = 10. The horizontal
and vertical speeds of the mobile robot cannot exceed 10. The
optimal control problem is formulated as to minimize the cost
function

I= [ @0+ 0y
subject to the constraints
|X(0) <10, [y()| <10
0<x(1)<80, 0<y(1) <80
x(0)=40, y(0)=5
x(20) =55, ¥(20) =70
and nonlinear path constraints (obstacles)

(40)

(41)
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10% < (x(1) — 40)? + (y(1) — 20)* < 807
10% < (x(1) = 55)% + (y(1) — 40)* < 807

10% < (x(1) - 45)% + (y(r) — 65)> < 80°. (42)

The optimal trajectory for the mobile robot was computed
from three different methods: The RBF-Galerkin approach,
Legendre PS method (DIDO), and B-Spline approach
(OPTRAGEN). All three methods use the same environment
(MATLAB) along with the same NLP solver (SNOPT). To
conduct a fair comparison, Legendre-Gauss-Lobatto points
—type of points used in the Legendre PS method — were
incorporated in the other two methods, as well. The cost and
computation time of each method are demonstrated in Table I
for different number of discretization points, i.e., N = [10, 20,
30].

TABLE I
CoST AND COMPUTATION TIME OF RBF-GALERKIN, LEGENDRE PS,
AND B-SPLINE METHODS FOR ROBOT MOTION PLANNING EXAMPLE
FOR N=[10, 20, 30]

Method N Cost Time (s)
RBF-Galerkin 10 255.62 0.89
Legendre PS 10 278.43 2.50
B-Spline 10 260.67 0.98
RBF-Galerkin 20 255.40 1.02
Legendre PS 20 260.70 18.32
B-Spline 20 256.44 1.50
RBF-Galerkin 30 254.32 1.27
Legendre PS 30 254.37 44.63
B-Spline 30 254.35 1.87

By increasing the number of discretization points, the
accuracy of trajectories improves at the expense of higher
computation time. Among the three methods, the RBF-
Galerkin had the least cost value and the shortest computation
time for each value of N. For instance, the cost function from
the RBF-Galerkin approach for N = 10 had about 2% and 8%
less value (more accurate) than the B-Spline and Legendre PS
method, respectively. Also, the computation time of the RBF-
Galerkin approach was 9% faster than B-Spline and about
64% faster than Legendre PS method for the same number of
discretization points. The computational efficiency of the
RBF-Galerkin method is more profound for N = 20 and N=
30. This comparison studies clearly demonstrate superior
accuracy and computational efficiency of the proposed
approach against the state of the art in a motion planning
example. The optimal trajectory calculated by the RBF-
Galerkin approach for N =30 is shown in Fig. 3.

VI. CONCLUSION

The RBF-Galerkin method combining RBF interpolation
with Galerkin projection was presented for solving optimal
control problems numerically. The proposed method
incorporates arbitrary global RBFs along with the arbitrary
discretization scheme offering a highly flexible framework for
direct transcription. The RBF-Galerkin costate mapping
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Fig. 3.
motion planning with obstacle avoidance, N = 30.

Optimal trajectory estimated by RBF-Galerkin method for robot

theorem was developed through which the costates of the
optimal control problem can be exactly estimated from the
KKT multipliers of NLP at the discretization points. The
efficacy of the proposed method for computing the states,
costates, and optimal control trajectories as well as accurately
capturing the switching time of the control function was
verified through a bang-bang example for which an exact
solution was available. Also, the superior accuracy and
computational efficiency of the RBF-Galerkin approach were
confirmed against a local and a global polynomial method for
a motion planning example with obstacle avoidance. As the
future extension, it is suggested to find an automated strategy
to fine-tune the design parameters of global RBFs, including
free shape parameter, to minimize the RBF interpolation error
and promote the overall performance of the RBF-Galerkin
approach.
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