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ABSTRACT

We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy
clusters using convolutional neural networks (CNNs). We discuss the statistical background of approx-
imate Bayesian neural networks and demonstrate how variational inference techniques can be used to
perform computationally tractable posterior estimation for a variety of deep neural architectures. We
explore how various model designs and statistical assumptions impact prediction accuracy and uncer-
tainty reconstruction in the context of cluster mass estimation. We measure the quality of our model
posterior recovery using a mock cluster observation catalog derived from the MultiDark simulation
and UniverseMachine catalog. We show that approximate Bayesian CNNs produce highly accurate
dynamical cluster mass posteriors. These model posteriors are log-normal in cluster mass and recover
68% and 90% confidence intervals to within 1% of their measured value. We note how this rigor-
ous modeling of dynamical mass posteriors is necessary for using cluster abundance measurements to

constrain cosmological parameters.

Keywords: cosmology: theory - galaxies: clusters: general - galaxies: kinematics and dynamics -

methods: statistical

1. INTRODUCTION

Galaxy clusters are the most massive gravitationally
bound systems in the universe, consisting of hundreds
of luminous galaxies and hot gas embedded in dense
dark matter halos. The distribution of cluster masses
dominates the sensitive high mass regime of the halo
mass function (HMF) and is a useful probe of large-scale
structure. Measurements of cluster abundance as a func-
tion of halo mass and redshift are a major method for
constraining cosmological models, but such analyses re-
quire large, well-defined cluster samples and robust mass
measurement methods (e.g. Voit 2005; Allen et al. 2011;
Mantz et al. 2015; Planck Collaboration et al. 2016). As
the number of high-quality cluster observations is ex-
pected to radically increase with current and upcoming
cosmological surveys such as the Dark Energy Spectro-
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scopic Instrument (DESI), the Vera C. Rubin Observa-
tory, and Euclid (Dodelson et al. 2016), the need for
precise and efficient cluster mass estimators is impera-
tive.

Dynamical mass estimators are a class of cluster
measurements which leverage information from spectro-
scopic observations of member galaxies in order to infer
cluster masses. The theoretical foundations of dynami-
cal methods are grounded in the M-o relation, a funda-
mental power-law relationship which connects the mass
of a stable, isotropic cluster system to the line-of-sight
(LOS) velocity dispersion of its constituent galaxies.
Such methods were famously used to produce the first
inference of the existence of dark matter in the Coma
cluster (Zwicky 1933). Despite this historical signifi-
cance, vanilla applications of the M-o relation produce
significant biases and scatter in realistic cluster mass
predictions, owing to drastic departures from the ide-
alistic assumptions for which the M-o holds. Gravita-
tional instabilities (Old et al. 2018) and member galaxy
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selection effects (Wojtak et al. 2018) are prime examples
of complex systematics which violate M-o assumptions
and introduce error into dynamical cluster mass esti-
mates. Considerable work has been done toward quan-
tifying and mitigating the uncertainties caused by these
systematics (e.g. Wojtak et al. 2007; Mamon et al. 2013;
Farahi et al. 2016, 2018; Abdullah et al. 2018). This
proper modeling of cluster systems is crucial to the use
of cluster abundance measurements for constraining cos-
mology.

Deep neural networks (DNNs; LeCun et al. 2015) are
extremely versatile machine-learning tools for modeling
complex, nonlinear relationships in data-rich environ-
ments such as cosmological analyses. In recent years,
DNN modeling has met a large variety of useful appli-
cations, both broadly in physics (e.g. Carleo et al. 2019)
and specifically in cosmology (e.g. Hoyle 2016; Lanusse
et al. 2018; Ntampaka et al. 2019). In Ho et al. (2019),
we showed that DNNs are able to mitigate systemat-
ics of dynamical cluster measurements to produce mass
predictions with remarkably low bias and scatter. In
addition, DNNs were computationally efficient to eval-
uate and robust to variations in sample richness, both
requisite qualities for modern cluster mass estimators.
In our comparative analysis, DNNs outperformed both
simple and idealized M-o analyses as well as other mod-
ern machine-learning approaches (Ntampaka et al. 2015,
2016; Calderon & Berlind 2019)

While the increasingly precise inferences produced in
Ho et al. (2019) prove effective for the task of point mass
inference, a natural extension would be to ask how one
can quantify the uncertainty of our predictions. Esti-
mates of measurement confidence are vital to recovering
Bayesian constraints on cosmological parameters. Es-
timating Bayesian uncertainties of deep learning mod-
els has been an exceedingly active field of study in re-
cent years (e.g. Neal 2012; Gal 2016; Caldeira & Nord
2020). While theoretically sound, the exact calculation
of deep learning uncertainties is numerically intractable
due to the necessary integration over hundreds of thou-
sands of parameter posteriors. However, by assuming
specific conjugate priors over neural network weights
(e.g. Blundell et al. 2015; Gal & Ghahramani 2016a),
the computational complexity of this calculation can be
drastically reduced. These approximate Bayesian uncer-
tainties have been shown to accurately recover empirical
variance in a wide variety of real datasets (e.g. Kendall
& Gal 2017; Moller & de Boissiere 2020), with particu-
larly strong performance in modeling out-of-sample in-
puts (e.g. Gal & Ghahramani 2016a).

In this paper, we seek to apply deep learning uncer-
tainty estimation techniques to the cluster mass infer-

ence models presented in Ho et al. (2019). We discuss
deep learning models in a Bayesian context and how as-
sumptions of parameter priors can be used to tractably
perform weight marginalization. Using a synthetic cata-
log of realistic cluster observations, we measure how well
deep learning models can recover confidence intervals of
dynamical cluster mass estimates. We investigate how
choices of predictive distribution and parameter priors
impact the quality of these deep learning predictions,
both for individual clusters and for cosmological analy-
ses. This paper is organized into the following sections:
in Section 2, we describe the generation of the mock
cluster catalog. In Section 3, we detail the theoretical
considerations for Bayesian deep learning as well as the
specific designs of the presented models. In Section 4,
we evaluate model performance empirically and discuss
the results. We summarize conclusions in Section 5. The
code developed for this analysis is made publicly avail-
able on Github!.

2. DATASET

In this section, we summarize important properties
of the mock cluster observations used in this analysis.
The mock catalog is a new realization of the contami-
nated mock observation procedure described in Ho et al.
(2019). The catalog generation code is made available
on Github! and pregenerated catalogs are available upon
request.

The catalog is generated from a z = 0.117 snapshot of
the MultiDark Planck 2 N-body simulation (MDPL2;
Klypin et al. 2016), which assumes a ACDM cosmol-
ogy consistent with 2013 Planck data (Planck Collab-
oration et al. 2014). Host halos and subhalos are
identified in the MDPL2 simulation using the ROCK-
STAR halo finder (MDPL2 Rockstar; Behroozi et al.
2013). We model clusters as host halos in the MDPL2
Rockstar catalog with spherical overdensity masses of
Mosgpe > 10130 h_lM@. Galaxies are painted onto sub-
halos via the UniverseMachine galaxy assignment proce-
dure (Behroozi et al. 2019) and restricted to Mgteliar >
1095 h='Mg. Clusters and galaxies in our sample in-
herit mass, position, and velocity from their respective
halos in the MDPL2 Rockstar and UniverseMachine cat-
alogs. Throughout the paper, we use the shorthand m to
denote logarithmic spherical overdensity cluster masses,

m = logy, [MQ()OC (h_lMQ)] . (1)

The dynamical observables reported for each mock
cluster are the LOS velocities vy,s and sky-projected ra-
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dial positions Rp.; of its selected member galaxies. For
a given LOS, vios and Ry, are calculated for all galaxies
in a large neighborhood around each simulated cluster
from the perspective of a z = 0 observer. Member galax-
ies are then selected around each cluster in dynamical
phase space {vios, Rproj} via a large cylindrical selection
cut. The selection cylinder is centered at each true clus-
ter center and oriented along the LOS, with half-length
Veny = 2500 km s™1 and radius Raperture = 1.6 A~ Mpc.
Finally, after the selection cut, valid mock clusters are
further restricted to a richness cut of Ng, > 10. This
large, simplistic member cut ensures that the sample can
be contaminated by interloping galaxies, cluster mor-
phology, and halo environment effects, the likes of which
have been shown to introduce considerable error into
traditional dynamical mass estimates (e.g. Old et al.
2018; Wojtak et al. 2018). Strong model performance
under these conditions would suggest that our model
could handle systematics in real observations even with
very basic galaxy selection.

Mock cluster observations are taken from multiple
LOSs to augment the catalog and shape the mass dis-
tributions of the training, test, and validation sets. To
mitigate biases introduced in model training, we con-
struct the training set to have a constant number den-
sity of dn/dm = 10~%2 h*Mpc 3dex " across all clus-
ter masses Magge > 1013 h~'Mg. To achieve this
evenly-distributed training set, abundant low-mass clus-
ters are downsampled and scarce high-mass clusters are
upsampled. The upsampling procedure involves taking
additional projections of the same clusters from vari-
ous LOSs. To avoid duplicate observations, these addi-
tional LOSs are distributed with roughly even spacing
on the unit sphere. To emulate realistic measurement
conditions, the test set is weighted to follow the theo-
retical HMF' of the MDPL2 simulation and is comprised
of exactly three orthogonal LOS projections per cluster.
Lastly, a validation set is created by taking a disjoint
10% random sampling of the test set. In total, our cat-
alog contains mock observations of 90,000 unique host
halos in the MDPL2 simulation, each observed at an av-
erage of 2.9 line-of-sights and with 37.6 member galaxy
data points.

3. METHOD

In this section, we discuss the deep learning models
and uncertainty estimation techniques used to recon-
struct cluster masses from member galaxy dynamics.
Due to the variety of possible treatments of this prob-
lem, we seek to implement several model designs and
investigate how they perform in the context of cluster
mass estimation. We present a suite of twelve models,
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each with a different combination of input type, predic-
tive distribution, and weight priors.

3.1. Input

The models presented in this paper infer cluster
masses from one of two member galaxy distributions:
the univariate distribution of LOS velocities, {vios}, or
the joint distribution of LOS velocities and projected
radial distances, {vios, Rproj}. We refer to these input
types as one-dimensional (1D) or two-dimensional (2D)
inputs, respectively. In Ho et al. (2019), we showed
that the inclusion of Ry.j information significantly im-
proved the prediction performance of deep learning mod-
els. Here, we seek to investigate the impact of additional
input dimensions on mass uncertainty estimation.

We use Kernel Density Estimators (KDEs; Scott 2015,
chap. 6) to preprocess each cluster’s member galaxy
observables (i.e. vips and Rp.j) into image represen-
tations of their distributions in dynamical phase space.
For an unknown random variable, KDEs can generate a
non-parametric estimate of the probability density func-
tion (PDF) given independent samples from its distri-
bution (Eq. 2 in Ho et al. 2019). In our application,
we use KDEs to ‘smooth’ each cluster’s list of discrete
Vlos and Rpyoj data points into a continuous estimated
PDF. The nature and scale of this smoothing is deter-
mined by a chosen kernel function which, in our case, is a
Gaussian kernel with a fixed bandwidth scaling factor of
ho = 0.25. The KDE smoothing allows our model inputs
to be more robust to fluctuations in sample richness, a
desirable property for galaxy-based cluster observations.

We create input images by evaluating each cluster’s
KDE-generated PDF at regular intervals across the dy-
namical phase space. 1D inputs are generated query-
ing ves PDFs at 48 evenly-spaced points along the
range |vjos| < Veut. 2D inputs are derived from joint
{Vos, Rproj} PDFs evaluated on a regular grid of 48 x 48
points spanning the area defined by |vjos| < veut and
0 S Rproj S Raperture~ Herev Vcut and Raperture de-
fine the bounds of the cylinder cut for the mock catalog
(§2). Example 1D and 2D inputs are shown in Figure 1
For more information on our preprocessing and a back-
ground on KDEs, refer to Ho et al. (2019).

3.2. Deep Neural Networks

Deep neural networks (DNNs; LeCun et al. 2015) are
a class of parametric ML models which are commonly
used for learning nonlinear relationships in rich, com-
plex datasets (e.g. Carleo et al. 2019). Within a DNN,
input and output are related through a series of layered
neural connections. Evaluation of a DNN involves pass-
ing input values through this sequence of neural layers,
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Figure 1. General convolutional neural network (CNN) architecture used for our models. In our analysis, we explore a suite
of twelve models, each with different choices of inputs, outputs, and weight priors. For all models, the central core CNN
architecture is identical. We generalize our input images to have shapes 48 x M, where M is equal to 1 or 48 for 1D or 2D
models, respectively. All layer convolutions are taken over the vjos axis. We show an example convolutional filter highlighted
in red over the input distributions. Dropout connections are not shown here but are assumed to exist in between all layers
for Dropout models. All layers utilize a rectified linear activation function (ReLU). In the diagram, convolutional layers are
described using their filter shape and number of filters, respectively. Dense layers are characterized by their output layer shape.
Here, we have used the notation Ry := {z|x € R,z > 0}. Details of the neural architectures are further described in §3.5.

with each layer pass representing tensor multiplication
with a weight matrix followed by an element-wise, non-
linear activation function. DNNs can be viewed as a
functional mapping y = f(x;0,7n) between inputs x
and outputs y, which is parameterized by weight ma-
trices @ and hyperparameters n (e.g. choices of neural
architecture, activation function, etc.). In general and in
this application, hyperparameters 1 are assumed to be
fixed, though algorithms for optimizing these have been
explored in recent literature (e.g. Zoph & Le 2016). For
a more detailed explanation of DNNs and their evalua-
tion, see Ho et al. (2019).

Classically, training a DNN involves attempting to
find the optimal weight parameters 8* which produce
the best mapping of inputs to outputs. The metric cho-
sen to dictate model performance is called an objective
loss function £. Given a training set of example data
D = {(x;,y:)}"1, we seek to minimize this loss func-
tion over the space of possible parameters ©.

i=1

Supervised training of DNNs then becomes an opti-
mization problem, whose solution can be found from
stochastic gradient descent. Common choices of ob-
jective loss functions include mean squared error (for
regression problems) and categorical cross-entropy (for
classification problems). The power of neural networks
arises from the fact that this optimization is numeri-
cally tractable, despite their highly nonlinear structure
and thousands to millions of free parameters.

3.3. Bayesian Uncertainties

As DNNs prove to be powerful and versatile tools
for point regression and classification tasks, considerable
work has gone into modeling their uncertainties (e.g. Gal
2016). Broadly, Bayesian uncertainties of deep learning
models can be characterized as either aleatoric or epis-
temic. Aleatoric uncertainties capture intrinsic scatter
in input-output relationships, wherein information en-
coded in input data is insufficient to precisely estimate
true outputs, even given an ideal model. For example,
the loss of 3D dynamical information inherent in pro-



jected cluster observations introduces aleatoric uncer-
tainties. FEpistemic uncertainties occur when training
data or model flexibility is limited, such that we are un-
able to tightly constrain model parameters around the
optimal setting, 8*. In the context of deep learning
cluster mass estimates, epistemic uncertainties would
typically arise from insufficient network depth, train-
ing time, or training catalog diversity. Specific design
choices and approximations must be made for proper,
computationally-tractable modeling of these uncertain-
ties. In this paper, we investigate several of these choices
in the context of deep learning cluster mass estimates.

To capture aleatoric uncertainties, the functional out-
put of a DNN can be used to dictate a distribution of
outputs p(y|x,0,m) (e.g. Bishop 1994). For example,
we can train a DNN to predict parameters of a uni-
variate Gaussian. The final layer of the network would
output estimates of means and variances, f (x;0,n) =
(p,log o) € R2. This framework would allow neural net-
works to express not only what output predictions they
can make, but also the statistical confidence that they
have in those predictions. The type of predictive dis-
tribution is a design choice and should be closely rep-
resentative of the true conditional distribution, p(y|x).
Under ideal modeling conditions (i.e. infinite model flex-
ibility, training data, and training time), aleatoric un-
certainties are entirely sufficient for Bayesian modeling
with DNNs.

However, under realistic modeling conditions, it is im-
portant to consider impacts of epistemic uncertainty on
prediction. In traditional DNN training, we seek to find
a single parameter setting 6 which optimizes some loss
metric £ for the training data D. However, even with
an idealized training procedure, the recovered setting 0
is often highly degenerate over the parameter space ©.
When training data is limited, it is possible to recover
parameter settings which minimize loss over the train-
ing set but are not representative of the data at large.
To model epistemic uncertainties, we marginalize pre-
dictive distributions over the conditional probability of
all possible weight parameters given the training data.

p(.VIx,n,D)=/p(.VIx,0»77)p(0ln,D) de, (3)

where p (y|x,n, D) is the weight-marginalized posterior
distribution, p(y|x,80,n) is the chosen predictive dis-
tribution, and p(@|n, D) is the distribution of weight
parameters informed by training data. The weight pa-
rameter distribution can be derived from Bayes rule,

p(68n,D) o<p(D|6,n)p(0n), (4)

where p (D]0,m) = [, p(yi|x:,0,n) and p(0|n) is a
chosen weight prior. Eqn. 3 represents exact Bayesian
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inference, incorporating both aleatoric and epistemic
uncertainties.

3.4. Variational Inference

Unfortunately, the full calculation of Eqn. 3 is nu-
merically intractable for large DNNs. The integration
over the space of hundreds of thousands of DNN weights
is not feasible, even with highly efficient Monte Carlo
methods. Variational inference is an alternative ap-
proach which instead interprets the posterior inference
problem as an optimization. In this approach, we ap-
proximate the true weight distribution p (8|n, D) with a
variational distribution ¢(8|¢) whose form is chosen to
simplify the integration in Eqn. 3. The optimal varia-
tional parameters c?) can then be found by minimizing
the metric distance (i.e. Kullback-Leibler divergence)
between distributions p (8|n, D) and ¢(0|¢). This mini-
mization objective, referred to as F(D, ¢), is often called
the variational free energy or the expected lower bound
(ELBO).

F(D,¢) =KL[q(0]9) |lp (6n,D)]

— Eq01) [p (DI0,m)] + KL1q (016) |Ip (6lm)

()
where [Egg|¢)[-] represents the expectation over
q(0|¢). Equipped with the analytic forms of ¢ (0|¢),
p(y|x,0,n), and p (0|n), we can minimize the objective
loss in Eqn. 5 over the space of ¢’s using optimization
techniques such as gradient descent. Under this vari-
ational technique, Bayesian posterior inference then re-
duces to a two-step process: a training stage wherein the
optimal variational parameters (2) are determined from
data and an inference stage which folds q(0|¢A>) into Eqn.
3.

The functional forms of wvariational distributions
q(0|¢) and priors p(0|n) are design choices. Sev-
eral forms of variational distributions have been imple-
mented in the literature (e.g. Gal & Ghahramani 2016a;
Blundell et al. 2015), but there lacks a consensus for
an ideal choice. The most trivial variational distribu-
tion is a delta function with ¢ (6|¢) = 6 (6 — ¢). Here,
we assume epistemic uncertainty to be negligible, as
Eqn. 3 reduces to the chosen predictive distribution
with @ = ¢. If we set the predictive distribution to
be a fixed-mean Gaussian or a multinomial, the objec-
tive loss simplifies to the classical mean squared error
or categorical cross-entropy, respectively. Furthermore,
the inclusion of Gaussian or Laplacian priors p(0|n),
respectively, adds L2 or L1 regularization penalties to
weight parameters in the loss function.

Another common choice of weight prior is a multivari-
ate Bernoulli distribution. Gal & Ghahramani (2016a)
investigated the nature of a Bernoulli-distributed ¢ (8|¢)
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with a zero-mean, diagonal Gaussian p (6|n). In their
implementation, they utilized the popular regularization
technique, Dropout, to perform stochastic integration
(Eqn. 3). In both the training and inference stages,
Dropout layers are allowed to randomly set some frac-
tion, pg € [0,1], of the weight parameters equal to 0.
The Dropout layers are stochastic, causing each func-
tional evaluation of the model to use a different weight
configuration. During training, this acts to regularize
the iterative updates of stochastic gradient descent (Sri-
vastava et al. 2014). During inference, one can average
many realizations of the Dropout layers to effectively
produce a Monte Carlo estimate of the model output.
Gal & Ghahramani (2016a) showed that such a train-
ing and evaluation procedure approximates a Gaussian
Process and is able to accurately recover uncertainties
for both in- and out-of-sample data.

3.5. Models

The models presented in this paper attempt to in-
fer logarithmic cluster mass, m (Eqn. 1), from map-
pings of dynamical phase space, x (§3.1). All mod-
els are set up with a fixed neural architecture, n, and
trained with a labeled set of mock cluster observations,
D := {(xi,m;)}!,. Using the approximate Bayesian in-
ference techniques described in §3.3, each model outputs
a posterior distribution over logarithmic cluster masses,
p(m|x,m, D).

We investigate the impact of various design choices on
the performance of our models. We implement a suite
of twelve models, each with a different configuration of
input type x, predictive distribution p(m|x, 8,n), and
variational distribution ¢(@|¢). For modeling aleatoric
uncertainty, we choose one of three predictive distribu-
tions: a fixed-width Gaussian (Point), a variable-width
Gaussian (Gauss), and a 50-bin Categorical distribu-
tion spanning 13 < m < 16 (Class). For modeling
epistemic uncertainty, we implement two forms of vari-
ational distributions: a standard Dirac delta function
and a Bernoulli distribution (Gal & Ghahramani 2016a).
Models implementing Dropout marginalization with a
Bernoulli variational distribution are named with the
suffix -d’. Table 1 contains a list of each model and its
respective configuration. A schematic of each model’s
architecture is shown in Figure 1. The posterior dis-
tributions and objective loss functions derived for each
model are tabulated in Table A1, respectively.

Model architectures and other hyperparameters n are
the same for all models. The core architecture of each
model is a convolutional neural network (CNN; LeCun
et al. 1998). CNNs are widely recognized as a gold stan-

dard for solving image recognition and computer vision
problems in machine learning (LeCun et al. 2015). Their
strong performance is made possible by their use of con-
volutional filters, neural layers which can learn patterns
in localized subregions of input data. The motivation
behind our use of CNNs is based in the fact that ef-
fects which add error to dynamical mass estimates, e.g.
groups of interloping galaxies, halo environments, and
cluster mergers, also tend to produce artifacts in the
distribution of galaxy observables. Whereas other meth-
ods attempt to directly remove or mitigate the effects of
these artifacts (e.g. Wojtak et al. 2007; Mamon et al.
2013; Farahi et al. 2016), we intend to use CNNs to au-
tonomously detect, account for, and even utilize these
artifacts to produce improved mass estimates. While
the specifics of these calculations are hidden in deep
learning machinery, we show in Ho et al. (2019) that
these CNNs evaluated on our catalog can outperform
even idealized M-o measurements. The CNN architec-
tures applied here are the same as those introduced in
Ho et al. (2019) and are depicted in Figure 1.

Model weight priors p(@|n) are also held constant. For
each model, we use a zero-mean, diagonal Gaussian prior
on all model weights, i.e. p(@|n) = N (0, \]) with A =
10~*. This choice serves to regularize model training
and avoid overfitting. Inclusion of this prior amounts
to adding a weight decay regularization term \||@]|3 to
each objective loss function.

3.6. Implementation

For models using a delta function variational distri-
bution, training and inference are exactly equivalent to
classical DNN models. Since this distribution assumes
0 = ¢, optimization reduces to solving Eqn. 2 via gra-
dient descent for the loss functions shown in Table Al.
Inference simplifies to an evaluation of our chosen pre-
dictive distribution at the optimized parameterization,
p (m|x, m, D) - p(m|x, 0, 77)

We follow the procedure detailed in Gal & Ghahra-
mani (2016b) to implement weight marginalization for
models using Bernoulli variational distributions. During
both model training and inference, we include Dropout
layers after all existing neural layers in the core network
architecture (Figure 1). Dropout layers do no tensor op-
erations, but instead randomly set some prescribed frac-
tion of values from their input tensor equal to 0. This
effectively makes the functional output of our neural net-
work stochastic, as each pass includes random realiza-
tions of the several Dropout layers. Gal & Ghahramani
(2016a) showed that using gradient descent to minimize
the loss functions in Table A1l under these stochastic
evaluation conditions solves Eqn. 5. To perform in-



Table 1. Configuration of Investigated Models

Model Name x f(x;6,m) p(ml|x,0,mn) q(0]9)

IDPoint (o1} () €R Nmmod) 11,00 — o0

1DPoint-d {v10s } () er N(m; i, 0%) [ I, Bernoulli [6(0; — ¢4); pal
1DGauss {V10s } (u,log o) € R? N(m; p, o) I1,0(0: — ¢:)

1DGauss-d {V10s } (p,log o) € R? N (m; p, 0%) [ 1, Bernoulli [6(6; — ¢:); pa]
1DClass {V10s } g € R Categorical [m; S (g)] T[,6(6: — ¢:)

1DClass-d {V10s } g € R Categorical [m; S (g)] ], Bernoulli [6(6; — ¢:); pa]
2DPoint (Roorve) (W) €R N(mimod) 1,005 — o)

2DPoint-d {Rproj; Vios } (n) eR N(m;p, 03) [, Bernoulli [6(6; — ¢:); pal
2D Gauss {Rproj, Vios} (1, log o) € R? N(m; pu, o) IL,6(6: — i)

2DGauss-d {Rproj, Vios} (1, log o) € R? N(m; i, o) I 1, Bernoulli [6(6: — ¢:); pa]
2DClass {Rproj; Vios } g € R Categorical [m; S (g)] TI,6(6: — ¢:)

2DClass-d {Rproj; Vios } g € R Categorical [m; S (g)] [, Bernoulli [6(6; — ¢:); pd]

NoTE—Models are presented with the design choices made for their inputs x, functional outputs
f(x;0,m), predictive distributions p(m|x, 8, n), and variational weight distribution ¢(@|¢). For Point
models, 0% is equal to the mean squared error of model predictions after training. For clarity, the
dependence of functional outputs p, o, and g on (x;0,n) has been suppressed. We use the notation

D[x;pl,p27 .-
x. S(-) denotes the softmax function.

ference, we approximate marginalization over the varia-
tional distribution by combining the network outputs of
many realizations of the Dropout layers (Table Al). In
our implementation, we set our dropout rate to pg = 0.1
and take T = 100 realizations of the neural evaluation
to produce inference.

We use a 10-fold cross-validation scheme to train and
evaluate our models. For a given fold, we train on 9/10
of the cluster candidates in our catalog and test on the
remaining, independent 1/10. This process cycles for
10 folds until predictions have been made for the en-
tire test set. Cluster candidates are grouped along with
their rotated LOS duplicates in the training-test split,
such that we are never training and testing on the same
cluster from different LOSs. This ensures independence
of training and testing data for each fold. On average,
there are ~ 10, 000 training and ~ 7000 test cluster can-
didates for a given fold.

During training, we use the Adam optimization proce-
dure (Kingma & Ba 2014) with a learning rate of 1073
and a batch size of 100. We achieve loss convergence
within 40 epochs of training. All models are imple-
mented using the Keras? deep learning library with a
Theano® backend.

2 https://keras.io/

3 http://deeplearning.net /software/theano/

.] to denote an evaluation of the PDF of distribution D with parameters (p1,p2,...) at

4. RESULTS

We quantify the validity of our uncertainty estima-
tion techniques in the context of astronomical and cos-
mological analyses. The objectives of our analysis are
twofold. First, we confirm that these models accurately
reproduce the point prediction performance presented in
Ho et al. (2019). Second, we characterize the nature of
our uncertainty predictions, including how well our pre-
dictive distributions match the empirical distribution of
cluster masses. All analyses are conducted on the con-
taminated cluster catalog described in §2 wherein true
masses are known. Model predictions are made using
the 10-fold training and inference procedure described
in §3.5.

4.1. Point Predictions

We evaluate the accuracy and Gaussianity of point
predictions made by our models. In this context, we
define point predictions to be the mean of the estimated
posterior distribution for logarithmic cluster mass (Eqn.

1),

E[m|x,n, D

= /m p(m|x,7’],D)dm~ (6)

Following from this definition, we utilize the following
characterization of the point residual € as the difference
between the point prediction and true logarithmic mass,

e :=E[m|x,n, D] — Myirye. (7)


https://keras.io/
http://deeplearning.net/software/theano/
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Table 2. Descriptive Statistics of Model Performance.

Model Name  é+Ae® o0 40 kb Varimx,n, D¢ #(0.5)% 16-84 EPRY 5.95 EPRY
1DPoint —0.03270-1%%  0.172  0.427 0.758 0.032 0.425 0.697 0.919
1DPoint-d —0.03670152  0.170  0.469 0.911 0.035 0.415 0.725 0.931
1DGauss —0.033T01%  0.173  0.382 0.774 0.026 0.425 0.682 0.891
1DGauss-d —0.03070:187  0.169 0.497 1.033 0.036 0.427 0.773 0.945
1DClass —0.03470:165  0.178  0.429 0.873 0.030 0.463 0.673 0.904
1DClass-d —0.045T0-180 0.178 0.581 1.203 0.033 0.430 0.715 0.929
2DPoint —0.02479:129 0.138  0.362 1.385 0.024 0.422 0.752 0.935
2DPoint-d —0.030T0:127 0.134  0.353 1.372 0.027 0.406 0.776 0.949
2DGauss —0.01179:132  0.132 0.193 1.535 0.018 0.460 0.708 0.915
2DGauss-d —0.003T9119  0.123 0.333 1.886 0.023 0.488 0.778 0.947
2DClass —0.0307012%  0.140 0.289 1.762 0.020 0.433 0.680 0.904
2DClass-d —0.02670122  0.136  0.340 2.015 0.021 0.446 0.711 0.925

%Point residual median and 16-84 percentile range (dex)

bPoint residual standard deviation scatter (dex), skewness, and excess kurtosis, respectively

€ Average posterior variance

dEmpirical percentile (Eqn. 10) median, 16-84 range, and 5-95 range, respectively. Ri-R2 empirical percentile ranges are

equivalent to #(R2%) — 7(R1%).

NoTE—Quantities are averaged over all cross-validation folds of test clusters in the mass range 14 < myrue < 15.

1DPoint
1DPoint-d |
1DGauss

1DGauss-d
1DClass ]
1DClass-d

PDF
LTI

—_
T
1

2DPoint
2DPoint-d |
2DGauss

2DGauss-d
2DClass 7
2DClass-d

PDF

—-04 76.2 0.0 0?2 0.4
€= E[TTL|X, n, D] — Mitrue

Figure 2. Distribution of point prediction residuals (Eqn.
7) for models in Table 1. Point residual distributions are
averaged over all cross-validation folds of test clusters in the
mass range 14 < myrue < 15.

It is self-evident that, for this choice of point predic-
tion, the models utilizing constant-variance Gaussian

predictive distributions, 1DPoint and 2DPoint, are func-
tionally equivalent to the models presented in Ho et al.
(2019) and should have equivalent performance. We also
note that other choices of cumulative statistics such as
the median or mode of the predictive distribution are
also valid point predictors of cluster mass, though they
are not considered here.

Our analysis shows that point residuals produced by
each model in our suite have low scatter, demonstrate
very low statistical bias, and are roughly Gaussian-
distributed when averaged over the test dataset. This
is shown in Figure 2 and Table 2 where we have calcu-
lated the empirical distributions of point residuals and
their cumulative statistics. The scatters of point esti-
mate residuals for 1D and 2D models are approximately
equal to those described in Ho et al. (2019), where 1D
and 2D scatters were recorded to be 0.174 dex and 0.132
dex, respectively. The difference in predictive scatter
between 1D and 2D models is motivated by the inclu-
sion of supplemental R,,; information in 2D inputs. In
addition, measurements of skewness v and excess kur-
tosis k of the residual distributions are consistent with
near-Gaussianity.

4.2. Uncertainty Estimation

Figure 3 shows posteriors produced by all investigated
models for four randomly-selected mock clusters. In the
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Figure 3. Posterior distributions estimated by each model in Table 1 for four randomly-selected clusters across a variety of
true masses. Each column shows mass posteriors generated from a single LOS projection of a mock cluster in our test set. Each
cluster’s true logarithmic mass, M¢rue, is stated in the column title and plotted as a black dashed line. For clarity, 1D and 2D
model distributions are shown on separate rows.
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Figure 4. Posterior variance of mock cluster mass estimates (Eqn. 8) as a function of true logarithmic mass. Standard
deviation distributions are binned along true mass and shown at their median and 16-84 percentile range. Binned distributions
are averaged over all cross-validation folds in the test set. For each input type, we plot a black dashed line representing the point
residual variances o2, as reported by Table 2. We note that, although posterior variances of 1DPoint and 2DPoint models are
fixed by construction, we observe small variations in their estimates on account of the cross-validation training and evaluation
procedure.

examples shown, all models are able to accurately re- posteriors are strongly consistent. Classification mod-
cover true cluster masses to within a 90% confidence els, whose posterior family is highly flexible, produce
interval. Each model assigns probabilities to small, lo- posteriors which are near-Gaussian, lending to the fact
calized regions of logarithmic masses roughly centered that assumptions of Gaussian predictive distributions
at myge. Classification models only assign a non-zero for Point and Gauss models are well-founded.

probability to mass bins where there exists training data To compare recovered uncertainties, we approximate

(i.e. 13.5 < m < 15.3). For a given input type, model each model posterior as a point estimate with Gaussian



10 Ho

1DPoint 1DPoint-d

ET AL.

2DPoint 2DPoint-d

]..0 T T T

0.6 ’ T

02t /2 T

- 4 =+ 4 -

1DGauss 1DGauss-d

1 1 1 1 1 1
0.0 02 04 06 08 00 02 04 06 0.8

00 02 04 06 08 00 02 04 06 0.8
2DGauss 2DGauss-d

]..0 T T T T T
0.8F 7/ T
0.6 ’ T 7

04f e + .

02t/ 2 T/,

- - 4 4

0.0

1DClass 1DClass-d

Empirical Percentile 7(r)
N
\

1 1 1 1 1 1 1
0.0 02 04 06 08 00 02 04 06 0.8

00 02 04 06 08 00 02 04 06 0.8
2DClass 2DClass-d

1.0 —— —
0.8 A +
0.6 2 T ‘
04f ,/ + ‘

02t /2 T /.0

&

0.0

1 1 1 1 1 1
0.0 02 04 06 08 00 02 04 06 08

1 1 1 1 1 1 1
00 02 04 06 08 00 02 04 06 038

Predictive Percentile r

—_— Mye < 14

— 14 S Mirue < 15

— 15 S Mtrue

Figure 5. Empirical percentiles #(r) (Eqn. 10) as a function of predictive percentile r for all investigated models (Table 1). As
implemented here, empirical percentiles capture the fraction of times the true mass of a cluster sample in our test set falls below
the r-th quantile of our model posterior (Eqn. 9). We show empirical percentiles recovered for test clusters in three disjoint

mass ranges.

noise of variance Var [m|x,n, D]. Here, we define poste-
rior variance as:

Var [mlx, n, D] = E [m2[x,n, D] — E mlx,n, D> (8)

The distribution of posterior variances across our test
set is shown in Figure 4.

We observe that estimated posterior variances are
non-constant for all models except 1DPoint and
2DPoint, whose variances are fixed by construction. For
1DPoint-d and 2DPoint-d models, posterior variances
are largely independent of true mass. Scatter in these
variance estimates arises entirely from the stochastic es-
timates of epistemic uncertainty. For Gauss and Class

models, the estimated posterior variance exhibits a no-
ticeable dependence on true mass. For these models,
posterior variance is low for clusters at the edges of our
test mass range and high for clusters around My ue ~ 14.
This dependence is contrary to expectations of galaxy-
based cluster mass estimators, where scatter is expected
to decrease with increasing cluster richness and mass
(Wojtak et al. 2018). However, the mass-dependence of
our models’ posterior variances is likely biased by the
mass cut placed on our training set (i.e. Mmypue > 13.5).
Because of this mass cut, models are trained to mini-
mize any probability assigned to mass estimates lower
than m = 13.5. This cut thereby removes a consider-



able amount of variability in low mass cluster predic-
tions. This same reasoning applies to posterior vari-
ances of high mass clusters, and its reduction effects can
be observed in Figure 4. However, in the safe inner
range of cluster masses (14 < myge < 15), posterior
variance decreases with increasing cluster mass, as ex-
pected. To mitigate the impact of the mass cut biases,
future work could explore solutions such as lowering the
training mass cut or reweighting low mass posteriors.

Design choices such as input type and variational dis-
tribution directly impact the magnitude of recovered
posterior variances (Table 2). On average, the poste-
rior variance estimated by 2D models is 69% that of 1D
models. This is expected, as the additional R, in-
formation given to 2D models allows recovery of tighter
constraints on cluster mass (Ho et al. 2019). Alterna-
tively, the use of a Bernoulli variational weight distri-
bution over a delta function increases posterior variance
by 17% on average. This difference amounts to inclu-
sion of epistemic uncertainties, which are assumed to be
negligible when using a delta function.

To validate posterior recovery, we compare the poste-
rior distributions predicted by our investigated models
to the empirical distribution of true masses in the test
set. To do so, we compare predictive percentiles r re-
covered by our model posteriors to the corresponding
empirical percentiles 7#(r) present in the data (Gneit-
ing et al. 2007). We first define the predictive quantile
myq (1;x,m, D) as the logarithmic mass which satisfies:

mq(rx,n,D)
= | p(mx.n.D) dm,  (9)

— 00

for a percentile r and posterior p(m|x,60,n). We then
define empirical percentile 7(r) as the fraction of clusters
in our test set Diest = {(xi,mi)}f\iﬁ“ with masses less
than or equal to the predictive quantile.
Ntcst

H[mi < Mg (T;X%Thp)] ) (10)
i=1

1

7(r) = N

where I[-] is the indicator function. Under this construc-
tion, a perfectly calibrated posterior would produce pre-
dictive percentiles which exactly match empirical per-
centiles, #(r) = r for » € [0,1]. A model posterior
which consistently biases toward low masses would pro-
duce 7#(r) < r for r € [0,1], and vice versa for high
mass biasing. If a model posterior is unbiased but un-
derestimates variance, then 7(r) > r for r € [0,0.5] and
7(r) < r for r € [0.5,1], and vice versa for overesti-
mation. This metric allows us to compare, on average,
how well our models recover percentiles and confidence
intervals of the true cluster mass distribution.
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Figure 5 shows empirical percentiles for all investi-
gated models. To demonstrate mass-dependent biases,
we show separate lines for empirical percentiles calcu-
lated from low (myrue < 14), medium (14 < mypye < 15),
and high (15 < mygye) clusters. We observe noticeable
mean reversion for model predictions on the edges of our
training set. All model posteriors tend to bias toward
the middle of our mass range, meaning that clusters with
high true masses are assigned lower mass posteriors and
vice versa. This mean reversion is an inherent artifact
of the interpolating behavior of machine-learning mod-
els. As non-analytic models, the DNNs implemented in
this analysis struggle to extrapolate predictions to the
edges of our dataset, but perform well in the inner re-
gions. This systematic bias was also observed for point
estimate masses in Ntampaka et al. (2016) and Ho et al.
(2019).

For observed clusters in the reliable inner mass range
(14 < myrue < 15), predictive percentiles closely resem-
ble empirical percentiles with a slight bias toward low
mass predictions. We characterize this bias by the me-
dian empirical percentile #(0.5), as tabulated in Table
2. We find that median empirical percentiles are less
than 50% by at least 1.2% (2DGauss-d) and at most
9.4% (2DPoint-d). As a result, model predictions of
median cluster mass can be expected to fall, on aver-
age, between the 40th and 49th percentile of the true
distribution, p(m/|x). This slight negative bias echos the
findings of the point prediction analysis (§4.1) in Figure
2 and Table 2.

We construct a metric to quantify our models’ cali-
bration of predictive confidence intervals. We define the
Ri-Rsy empirical percentile range (EPR) as the fraction
of true masses captured between the Ry and Roth quan-
tiles of our predictive posteriors. This quantity is equiv-
alent to 7#(R2%) — #(R1%) and should equal Ra% — R1%
for an ideal model. Table 2 tabulates the empirical per-
centile ranges for 16-84 and 5-95 confidence intervals.
Despite median biases, model posteriors are able to re-
cover empirical confidence intervals with a high degree
of accuracy. All models are able to recover both 16-84
and 5-95 confidence intervals to within £10% of their
empirical value, with 2/3 of models estimating confi-
dence intervals to within +5%. The best performing
models, 1DGauss and 2DClass, are able to reproduce
both 16-84 and 5-95 confidence intervals to within 1%
of their empirical range. The 16-84 and 5-95 EPRs of a
majority of models (2/3) tend to be greater than their
fiducial values, suggesting that these models are slightly
overpredicting predictive variance.

By a small margin, Point models report the worst re-
covery of empirical percentiles among the various choices
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of predictive distributions. Apart from the 16-84 EPR
calculated for 1DPoint, performance metrics for Point
models appear to deviate the most from fiducial values.
The performances of Gauss and Class models appear
to be roughly equal, with both model classes report-
ing the best recovery of empirical percentile ranges (i.e.
1DGauss and 2DClass, respectively). This suggests that
the added variance parameter of Gauss posteriors is well-
utilized in our cluster mass estimation task. However,
further flexibility (e.g. non-Gaussian posteriors in Class
models) does not necessarily improve our predictive per-
formance.

For the metrics reported in Table 2, there is little to
no model performance improvement from the inclusion
of a Bernoulli variational distribution. In all cases, mod-
els with Bernoulli-distributed weight priors have larger
and further deviated 16-84 and 5-95 EPRs than their
delta function weight prior counterparts. The inclusion
of Bernoulli weight priors seems to consistently overes-
timate predictive uncertainties. This suggests that our
training dataset is sufficiently large to tightly constrain
weight parameters and that epistemic uncertainties can
be safely assumed to be negligible. Other applications
of Bernoulli-distributed weighting have found that im-
provements are very model dependent and should be
tested empirically before practical application (Gal &
Ghahramani 2016b; Caldeira & Nord 2020).

5. CONCLUSION

This paper is an extension of Ho et al. (2019) in
which we implement modern Bayesian uncertainty re-
construction techniques for deep learning mass estimates
of galaxy clusters. The deep learning models learn loga-
rithmic cluster mass m = log, [Magoe (h™'Mg)] from
dynamical cluster observables such as LOS velocities
(vios) and projected radial distances (Rpyoj) of member
galaxies. We seek to estimate posterior distributions
p(m|x,n, D) over cluster masses given dynamical inputs
x, network architectures m, and training data D. We re-
view methods for deep learning uncertainty estimation
and investigate several configurations of model design
choices in our implementation. The full list of models
and their respective designs is given in Table 1.

We train and evaluate our models using a mock cluster
observation catalog derived from a single redshift snap-
shot of a dark matter simulation. The mock catalog is
designed to incorporate physical and selection systemat-
ics which impact real dynamical observations of galaxy
clusters. We use a 10-fold cross-validation scheme to
train and test our models. We measure performance
metrics which characterize how well each model can both
predict point estimates of cluster mass as well as recover

full mass posteriors. The findings of our analysis are as
follows:

e To enable reconstruction of mass posteriors, we in-
troduce additional complexity to the models first
presented in Ho et al. (2019). We find that this ad-
ditional complexity does not diminish our ability
to estimate point masses efficiently and precisely.
All model implementations produce point mass es-
timates with Gaussian scatter at the same level as
that reported in Ho et al. (2019).

e Mass posteriors from all models in our suite are
mutually consistent and assign probability to a
small, localized region of cluster masses centered
at the true cluster mass. The highly flexible poste-
riors of Class models converge to a near-Gaussian
shape, suggesting that model assumptions of a
Gaussian predictive distribution are well-founded.

e Inclusion of Rp.; information in model in-
puts reduces predictive variance by 31% on av-
erage. Modeling epistemic uncertainties with
the Dropout approximation (Gal & Ghahramani
2016a) increases predictive variance by 17% on av-
erage.

e Model predictions at the edges of our test set ex-
hibit a noticeable mean-reversion effect, biasing
mass posteriors toward the center of our mass
range. In the inner region of our test set, model
posteriors are slightly biased toward low masses on
average.

e All models are able to recover both 16-84 and 5-95
confidence intervals to within +£10% of their empir-
ical value. The best performing models, 1DGauss
and 2DClass, are able to recover 16-84 and 5-95
confidence intervals on cluster mass to within 1%
of their empirical value.

e Modeling of epistemic uncertainties does not im-
prove posterior recovery of our models. The im-
pacts of epistemic uncertainties are negligible rela-
tive to posterior variances introduced by aleatoric
uncertainties. This suggests that our mock cata-
log and training procedure are sufficient to fit the
mass-observable relation.

We note that the results presented here are only tested
for the simplistic mock catalogs described in §2 and may
not necessarily hold in the presence of other realistic ob-
servational systematics such as complex survey selection
functions, cluster miscentering, and fiber collisions. It



will be necessary to investigate the impacts of these ad-
ditional systematics before this method can be applied
to wide-field surveys for constraining cosmology. We
also remark that the approximate Bayesian technique
described here is not the only method for reconstruct-
ing uncertainties from DNNs. An alternative method
introduced by Kodi Ramanah et al. (2020) utilizes neu-
ral flows to infer prediction uncertainties and achieves
promising results. In addition, they apply their method
on spectroscopic data from the the NASA /IPAC Extra-
galactic Database to make preliminary dynamical mass
estimates of several real galaxy clusters.

In conclusion, we design and investigate a numerical
procedure for performing approximate Bayesian infer-
ence on DNNs for galaxy cluster mass estimation. We
find that this procedure is capable of recovering point
estimates and confidence intervals of dynamical masses
to a remarkably high degree of fidelity. The develop-
ment of these uncertainty estimation techniques is a vi-
tal step toward constraining cosmology with deep learn-
ing cluster abundance measurements. Future work in-
volving this method would investigate how more com-
plex model inputs (e.g. 3D dynamical phase space,
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multi-wavelength observations), finer tuning of hyper-
parameters (e.g. model architecture, KDE bandwidth),
and alternative choices of variational weight distribu-
tions (e.g. Blundell et al. 2015) might improve recovery
of mass posteriors. In addition, it will be important
to study how mean-reversion biases for clusters on the
low- and high-mass ends of our training catalog can be
mediated in cluster abundance measurements.
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ing this project. We thank Andrew Hearin and Pe-
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APPENDIX

This appendix contains Table A1 which details explicit loss functions and output posteriors used for practical

application of each investigated model.
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