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Highlights
Phenological responses can be hetero-
geneous across species, communities,
and landscapes and can vary across
spatiotemporal scales.

Global patterns of phenological sampling
exhibit strong geographic trends and
critical scale gaps.

Phenological measurements dealing
with the beginning or end of a process
are especially sensitive to spatial and
Phenology, or the timing of life history events, can be heterogeneous across
biological communities and landscapes and can vary across a wide variety of
spatiotemporal scales. Here, we synthesize information from landscape phenology
studies across different scales of measurement around a set of core concepts. We
highlight why phenology is scale dependent and identify gaps in the spatiotemporal
scales of phenological observations and inferences.We discuss the consequences
of these gaps and describe opportunities to address the inherent sensitivities of
phenological metrics to measurement scale. Although most studies we review
and discuss are focused on plants, our work provides a broadly relevant overview
of the role of observation scale in landscape phenology and a general approach
for measuring and reporting scale dependence.
temporal measurement scale.

Constructing scaling relationships and
estimating their mathematical forms is
necessary for forming null expectations
about how spatiotemporal scale (resolu-
tion and extent) influences inferred
phenological patterns and for resolving
observed mismatches between pheno-
logical metrics measured at different
scales.

Phenological scaling rules can unlock
new insights into the causes and
consequences of shifting phenological
landscapes and into broader questions
about the spatial and temporal organi-
zation of ecological communities and
interactions.
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Phenology in the anthropocene
Changes in phenology (see Glossary) are among the most dramatic biological responses to
climate change and have widespread consequences for species and ecosystem processes that
support human society [1–4]. Phenological responses of individual species and entire communities
have shifted substantially in recent decades [5–8]. In the northeastern USA, for example, many
plant species now flower 7–10 days earlier, on average, than they did 100 years ago [9,10].
Globally, phenological changes track changing climate, with spring onset arriving an average
of 2.3 days earlier per decade [11]. Studies of changes in temporal community composition com-
prise a large and growing body of research, as such changes can affect resource availability, agri-
culture, trophic interactions, diversity of associated communities, and ecosystem services [12–17].
Phenological studies have traditionally focused on scales of individual organisms and plots, using
field observations and experiments [18,19]. More recently, large-scale digitization of natural history
collections [20], citizen science programs [21], and the advent of remotely sensed land surface
phenologymeasurements via satellite [22] have facilitated research at more extensive taxonomic,
spatial, and temporal scales, some of which integratesmultiple methods [23–25]. Much of this new
work suggests that phenologies and their responses to climate change are heterogeneous within
communities and across landscapes, varying both within and among species [26–31]. Interpreting
and synthesizing these diverse phenological patterns across taxonomic, temporal, and spatial
scales is important for understanding their causes and making realistic predictions under climate
change. This has proved to be a serious scientific challenge, exacerbated both by the lack of
rigor in reporting the relevant spatiotemporal scale of studies and by the lack of a robust theoretical
framework that allows us to integrate results across scales, which would thereby allow the synthe-
sis of diverse and sometimes conflicting measurements.

The nascent field of landscape phenology, which studies the causes and consequences of
scale-dependent spatial variation in the timing of biological events, integrates spatial patterns
and temporal processes within heterogeneous environments across multiple scales to elucidate
seasonal biodiversity dynamics [32,33]. Landscape phenology studies use transplant experi-
ments, in situ observations, remote sensing data, and spatiotemporal analyses of phenological
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Glossary
Environmental forcing: an
exogenous perturbation to a baseline
trend of environmental patterns or
factors; for example, climate change
may force start of season phenology
to occur earlier in the year than
historical baselines.
Exogenous: arising from factors
external to the narrowly defined system
under consideration; for example,
climate change is exogenous to the
effect of landscape heterogeneity on
phenology (where factors of landscape
heterogeneity can be quantified in the
absence of climate change).
Fully nested data: data with sufficient
spatial and/or temporal precision that
individual records can be resolved at a
given small scale and then aggregated
to larger or ‘coarser’ scales that fully
contain the smaller units and all their
individual records and have the same
extent, without loss of information. This
process can be repeated for multiple
changes in resolution.
Land surface phenology: variation in
vegetation patterns across land surfaces
due to seasonality, as observed from
remote sensing.
Landscape phenology: the study of
the causes and consequences of spatial
variation in the timing of biological
events.
Nonstationarity: a property of system
variables in which modeled relationships
or parameter choices are valid in one
environment (or at a particular scale) but
may not hold when applied to
substantially different systems or future
environments.
Phenological firsts and lasts: Of the
many available phenological metrics that
can be measured or estimated, firsts
and lasts represent the beginning and
ending of processes, respectively (rather
than the peak or duration). Firsts include,
for example, first flower, first egg laying,
first fruiting, start of (growing) season,
and onset of fall leaf color and their
associated dates. Lasts include (dates
of) senescence, end of (growing)
season, and last frost. Phenological firsts
are not uniquely associated with spring
phenology, and phenological lasts are
not uniquely associated with fall
phenology, which makes these
concepts useful even in aseasonal
tropical systems.
Phenological metrics: measures of
the timing of biological events, including
their beginning, peak, end, duration, and
patterns to address questions related to ecosystem processes, ecological interactions,
evolutionary dynamics, and ecological change. Landscape phenology studies are increasingly
important in understanding how environmental heterogeneity affects species interactions [34],
unpacking the relationship between climate and ecosystem processes [35], and understanding
trends in economically damaging climatic events such as spring freezing [36]. To date, landscape
phenology studies tend to be more commonly associated with plant systems, and thus many of
the following examples pertain to such. However, many of the concepts we discuss are broadly
applicable across taxa and even to abiotic patterns such as ice melt and carbon fluxes.

Why is phenology scale dependent?
It has been long recognized that ecological patterns are scale dependent, from matters of species
diversity and abundance [37,38] to relationships among native and exotic taxa [39,40]. The ecology
of temporal events is no exception. The conclusions we draw about phenological transitions
such as flowering onset [41], leaf unfolding [42], or insect emergence [43] are inherently sensitive to
how the original measurements were aggregated over space, time, and taxonomy. This ‘scale
dependence’ arises for three major reasons. First, with scale defined as the grain (or resolution)
and extent of a set of measures, the spatiotemporal scale at which measurements are made will
change the mean and variance of a metric, even in completely homogeneous environments, purely
due to statistical aggregation [44] (Figure 1). These biases are additional to other effects, such as
those based on measurement error and lack of precision due to small sample sizes, and therefore
need to be accounted for when comparing metrics across scales. Second, many environmental
cues that trigger life-history transitions (e.g., temperature) can vary dramatically across space.
Some common environmental cues, such as the timing of changes in day length across the season,
vary smoothly across latitude, while others, such as the departure of seasonal snow in temperate
mountains, vary greatly over much shorter distances [45]. Third, individuals, populations, and ecolog-
ical communities often respond differently to a given set of environmental cues. This can occur be-
cause of differences in the plastic responses of individuals or species (phenological sensitivities or
norms of reaction [46]) or because of ecological interactions that result in different distributions of phe-
nological sensitivities within communities [47]. These processes often occur simultaneously, leading
to complex patterns of phenological variation across space, and scale-dependent relationships be-
tween measures of phenology and their underlying drivers (Figure 2).

Phenological events, such as the beginning and end of a growing season, dates of migration or
hibernation, or dates of first and last frost, can vary in how sensitive they are to issues of scaling
and sampling (Figure 1). The degree of scale dependence of any landscape metric ultimately de-
pends on the ‘window size,’ or spatial or temporal grain, to which a metric is being aggregated
[44], the spatial and temporal extent studied [48], endogenous factors such as landscape hetero-
geneity and spatial autocorrelation of the locations of species’ individuals [49], and the degree of
aggregation across different species or functional types [50]. Because many current studies of
phenology use data from a single spatial or temporal scale, conclusions from those studies are
also limited to those scales [44,51,52], a ‘lurking’ limitation that is not often recognized [53].
Most attempts to directly link observations made at different scales in landscape phenology
(e.g., ground-based observations of individuals vs. satellite-derived landscape observations)
have relied on direct correlations between measurements made at different spatial or temporal
grains, which often yield relationships with significant unexplained variability or even direct contra-
dictions [54–58]. Direct integration of data at different scales and resolutions in a remote sensing
context can result in loss of information, introduction of mathematical artifacts, and conclusions
that are dependent on how the data were aggregated [50,59]. Measurements taken using remote
sensing tools often aggregate over taxonomy aswell as space, leading to ambiguity in the best way
to link species-level field measurements with remote sensing [50,60]. For these reasons, it is not
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velocity; these can be extracted from
phenological time series.
Phenological peaks: phenological
metrics that represent the highest
amplitude of a process (or occasionally
the estimated highest point based on the
midpoint of the duration of the process).
Phenological peaks include, for
example, (dates of) peak greenness,
peak flowering, peak Normalized
Differential Vegetation Index (NDVI), and
peak autumn leaf color. Timing of
phenological peaks is not necessarily
correlated with timing of phenological
firsts and lasts.
Phenological sensitivity: differences
in phenological responses among
groups of organisms to climate change
or other exogenous factors.
Phenological time series: records of
biological events or other seasonal
variables (e.g., greenness, productivity,
presence of snowpack, multiyear
observations of bird arrivals during
migrations, leaf senescence,
phytoplankton blooms) that are tracked
through time. Phenological metrics can
be extracted from these time series; for
example, start of season and end of
season dates can be estimated from the
Normalized Differential Vegetation Index
(NDVI). Phenological time series are
often regressed against time series of
other variables, such as climate, to
understand the drivers of phenology.
Phenology: the timing of life-history
events and other seasonal phenomena.
Scale dependence: the property of
metrics or patterns (including ecological
ones) to change with the scale of
observation. Scale dependence is a
universal property of complex systems.
Scaling laws: mathematical
relationships between the expected
value of a metric (such as a phenological
metric) and the spatial or temporal scale
at which it is measured. Scaling laws are
important in landscape ecology and
macroecology to bridge scales and
predict metrics at scales that have not
been measured.
)
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possible to simply extrapolate phenological knowledge across existing scale gaps, and scale gaps
present in the literature directly represent gaps in our knowledge of phenology across the globe.

The ecological consequences of scale gaps in phenology
The studies reviewed here each make important contributions to our understanding of landscape
phenology, but most are suited to a particular scale. As a consequence of scale dependence,
landscape ecology theory [44,48,51,52,61] suggests that most of the climate–phenology
relationships that are derived from small-scale field studies should not be directly used to inform
models of ecological processes at coarser spatial grains without accounting for the effects of
scale mismatch. Similarly, downscaling climate–phenology relationships derived from coarse-
grain climate models or remote sensing to the scale of individual organisms or study sites is a
nontrivial problem. Indeed, the effects of spatiotemporal observation scale on phenological
inferences have been documented in a handful of recent empirical studies. For instance, Tian
et al. [62] found that rural–urban differences in phenology can be amplified with spatial resolution,
and Xie and Wilson [58] demonstrated that 8-day and twice-daily time series can differ in
inferences of leaf senescence by over 30 days.

Scale gaps represent a lack of knowledge about landscapes and regions, which may have
profound consequences for the study of ecological processes. In particular, because organisms
interact with landscapes at fundamentally different spatial and temporal scales, the seasonal
progression of biological and ecological events that they experience and how those events
are changing in response to forcings such as climate change may differ dramatically [63]. For
example, pollinators with very different foraging distances, such as hummingbirds [64] and polli-
nating insects [65,66], may have different capacities to track resources over heterogeneous
landscapes. This means that the spatial scale at which pollinators’ phenological synchrony with
their floral resources is relevant might differ between these two groups, and they may experience
climate change very differently.

The critical links between behavior, dispersal scale, and environmental heterogeneity have been
explored in a few systems [67], but more suchwork is needed across different types of ecosystems
and communities to understand the broad consequences of scale-dependent phenology.With the
possible exception of overstory trees, the phenology of many organisms remains understudied at
landscape to regional spatial scales. Perhaps more troubling is the notion that the sensitivity of
phenological metrics to exogenous forcings such as climate change is also scale dependent
[68–70]. As researchers scramble to assemble ecological data into predictive frameworks
for anticipating the impacts of global change on biodiversity [71,72], the climate sensitivities of
phenological transition dates serve as critical links between climate, ecosystems, and the global
carbon cycle [73]. Approaches for reconciling observations made at different taxonomic and
spatiotemporal resolutions and extents are therefore at the forefront of current landscape phenology
research [74].
Figure 1. The effects of spatial and temporal sampling grain on phenological observations due to aggregation.
(A) A large number of small grain size (or high-resolution) ‘pixels’ (α) covering a given spatial extent will capture greater
variance in a phenological metric than a larger grain size (α < β < γ < δ). However, as grain size increases, (B) individual
phenological firsts within each pixel (or grain) are tallied earlier and (D) phenological lasts are tallied later, while
(C) phenological peaks, defined here as the mean date of a phenological event, remain relatively constant. (E) The
temporal grain of a study represents the frequency of observation. As observations become less frequent, (F) phenological
firsts tend to be recorded later and (H) phenological lasts earlier, while (G) phenological peaks are observed relatively
consistently. These phenological trends are based on randomly generated distributions of numbers and thus reflect scale
dependence purely due to statistical aggregation. This illustrates that if detection is perfect, observations made at high
spatial resolution will report less extreme phenological firsts and lasts over the average pixel, while higher-frequency
observations will report more extreme dates for firsts and lasts.
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Figure 2. Measures of phenology, and the relationships between those measures and environmental forcing,
are inherently scale dependent. At small spatial scales (top row), study units are often individual organisms (left panel),
which have unique trajectories of attributes such as greenness across the season (phenology time series; colored curves
in the center panel). Measures that are extracted from these time series, such as the timing of greenup onset [start of
season (SOS); triangles] are often related to environmental forcing to derive measures of phenological sensitivity,
expressed as the slope of the best-fit line relating environmental forcing to the phenology measure. As the spatial grain of
observation becomes coarser and the extent larger, encompassing landscapes (center row) or regions (bottom row),
phenology time series are aggregated over increasingly heterogeneous individuals and environments. This can change the
shape of the phenology time series and measurements (such as SOS) that are extracted from them. Changes in
observation scale can change both the absolute values of phenology measures and the relationships between those
measures and environmental forcing, resulting in changes from linear to nonlinear relationships [68,69,91] (center right
panel) and changes in phenological sensitivity (bottom right panel).

Trends in Ecology & Evolution
What are the spatial and temporal scale gaps in landscape phenology?
Spatial and temporal grains surveyed in landscape phenology research have historically been
constrained by logistical considerations and the availability of sensing platforms and datasets,
resulting in dramatic scale gaps in space and time. We assessed the multitude of scales and
methods used through a systematic review of the recent landscape phenology literature (Box 1)
and identified gaps and biases present in landscape-level examinations of phenological patterns
in natural systems.

Despite the increasingly global coverage of freely available remote sensing data (i.e., satellite
imagery), landscape phenology studies were concentrated in the temperate Northern Hemisphere,
with the vast majority of studies from northeastern North America, Western Europe, and Northeast
Asia (Figure 3). Less than one-third of the studies examined phenology in the Southern Hemisphere
(26%), and fewer still took place in the tropics (~15%). In terms of spatial scale, the literature was
dominated by field studies of individual organisms, small study plots, and coarse-grain remote
sensing studies, with relatively few studies dealing with phenology at intermediate spatial grains
(10–250 m; 12%). Likewise, <2% of the studies that reported sampling frequency used
Trends in Ecology & Evolution, August 2021, Vol. 36, No. 8 713
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Box 1. Systematic review of the recent landscape phenology literature

Our systematic and quantitative review of landscape phenology literature consisted of a survey of theWeb of Science on August 1, 2020, using the Boolean search term
‘((phenology OR phenological) AND climat* AND (scal* OR spatial OR landscape*)) NOT ALL=(agricult* OR crop* OR agronom* OR horticult* OR cultivar* OR wine OR
viticult* OR cultivation* OR farm*) AND LANGUAGE: (English),’ excluding reviews and non–peer-reviewed literature. This resulted in 754 articles across the 12 journals
that had the most articles meeting these initial criteria. We excluded studies that solely involved human-controlled and/or human-manipulated systems in order to focus
our review on natural systems and responses. We removed studies not primarily focused on phenological patterns, those focused only on abiotic systems, and those
focused on the changing migration patterns of highly vagile organisms, as it is difficult to assign spatial scale to such systems. As a result, of the 258 studies that met our
criteria, only 19 studies examining the phenology of organisms other than terrestrial plants were included (10 animal, 1 fungal, and 8 plankton). Phenological metrics
(i.e., dates or durations of specific events) were extracted from phenological time series (e.g., greenness, color, flowering, and measures of abundance). Most of the
studies reviewed used remote sensing techniques and used spectral indices to infer the onset of phenological events and processes (Figure I). This trend has led to
distinct gaps in spatiotemporal resolution across the literature.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Variation in study method, phenological time series examined, and phenological metric of concern across the reviewed literature. Numbers
represent percentages among all datasets examined by the reviewed studies for which information was reported.
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Figure 3. Heatmaps of the geographic distributions and spatial and temporal scales of analysis in the papers
included in our review of the landscape phenology literature. Top panel shows the density of study area centroids,
highlighting hotspots in the temperate Northern Hemisphere (northeastern North America, Northern Europe, and Northeast
Asia) and a dearth of studies in the tropics and southern latitudes. The map does not include studies with a global or hemi-
spheric extent. The bottom left panel shows the spatial grain and extent of the studies, highlighting clusters of studies using
point measurements from phenological field observations (‘Phenology Networks’) and remote sensing observations at
Landsat (~30 m), MODIS (Moderate Resolution Imaging Spectroradiometer) (250, 500, 1000 m), and AVHRR (Advanced
Very High Resolution Radiometer) imagery aggregated at ~8 km as part of the Normalized Differential Vegetation Index
(NDVI3g) dataset. The bottom right panel shows the temporal grain (sampling interval) and temporal extent (study duration)
of the studies, highlighting clusters of studies at daily, weekly, and monthly sampling intervals.

Trends in Ecology & Evolution
intermediate temporal grains (2–7-day sampling intervals), despite the temporal durations of
studies ranging from weeks to >100 years.

These sampling patterns are driven by the wide availability of coarse-grain satellite imagery and
data products [75], and recent methodological and technical advances that have facilitated
their analysis [76,77]. Similarly, although the rapid digitization and online mobilization of natural
history collections and historical surveys have greatly increased the temporal span of phenolog-
ical studies, the temporal distribution of data points assembled from such sources is often irreg-
ular and biased [78,79]. Furthermore, only a handful of studies incorporate datasets at multiple
spatial and temporal scales or explicitly address issues of scale in their analysis, and a large
Trends in Ecology & Evolution, August 2021, Vol. 36, No. 8 715
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proportion of field studies did not clearly report the spatial aspects (extent and resolution) of the
data used. Compounded by the general caveats and limitations of integrating information col-
lected with different methods and standards, this further hinders our ability to link phenological
knowledge across scales, as different scales of observation may result in fundamentally different
observations of phenological timing.

Addressing the gaps: beyond spectral properties of landscapes and
phenological firsts
A majority (59%) of landscape phenology studies in our review use time series of the spectral
properties of ecosystems (e.g., Normalized Differential Vegetation Index) as a proxy for ecological
processes (see Figure I in Box 1,). Although these spectral properties are simple to calculate, they
often relate only indirectly to the ecological processes of interest. Platforms such as tower-
mounted sensors (e.g., phenocams) and unmanned aerial vehicles (e.g., drones) can provide
alternatives to gather near-surface, intermediate-scale data at fine spatiotemporal resolutions
that can both address the scale gaps between plot-scale observations and regional or global
scale remote sensing, and they can be used to more efficiently link environmental forcings
to changes in ecological processes [60,80,81]. It has also become increasingly feasible to gather
on-the-ground phenological data across larger spatial extents at relatively fine resolutions
through community science efforts such as the USA National Phenology Network and iNaturalist.
Furthermore, the rapid digitization of museum/herbarium collections has facilitated the extraction
of phenological information across great spatiotemporal extents [64], aided by advances in
machine learning and crowdsourcing platforms [24,82,83].

Despite the wide variety of phenological time series examined, start-of-season measures
(e.g., start of spring or start of growing season extrapolated via greenness indices) were by far
the most common measures in our review (Box 1). Comparatively fewer studies examined the
durations or peaks of phenological processes (11%). While it can be easier and more efficient
to detect and record the beginning of a process, phenological ‘firsts’ represent one extreme of
the process andmay be affected by population size and sampling effort [84]. Although biologically
and ecologically meaningful, the timing of the start of a phenological event such as flowering
does not always correlate with the timing of the peak or duration of the process [85], which
may better determine ecologically critical factors such as reproductive success in plants [86].
Finally, measures of phenological extremes (firsts and lasts) and their sensitivity to environmental
forcings can be especially sensitive to the spatiotemporal scale of observation –when we vary the
grain of observation by aggregating phenological metrics, we can see that there is a tendency for
later phenological firsts and earlier phenological lasts to be estimated at smaller spatial and
larger temporal grains due to statistical aggregation (Figure 1). Measures of phenological peaks
tend to be significantly less sensitive to spatiotemporal grain and are as efficient to estimate as
firsts and lasts in some situations, such as remote sensing studies and those incorporating
natural history collections [20,87].

Addressing the gaps: putting scaling rules to work
Mathematical scaling relationships (or rules) allow us to form null expectations about how spatial
and temporal resolution influence conclusions drawn from particular scales of measurement. If
scaling rules can be constructed to explain the relationship between a particular phenological
metric and the landscape in which it is being evaluated, we can expect and explain mismatches
between data measured at different scales (e.g., field surveys and remote sensing). Scaling rules
can allow researchers to use small-scale data with fully nested data structure to go beyond
scale-specific measures to predict relationships between phenological time series and scale at
scales that are not measured empirically, as is often done in macroecological studies [88]. Data
716 Trends in Ecology & Evolution, August 2021, Vol. 36, No. 8
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collected from larger scales can then be used to validate scaling relationships. Simulation studies,
especially those that are directly informed by empirical data, are a powerful way to construct
and investigate scaling relationships and to investigate phenological metrics’ sensitivities to
exogenous factors [49,70,89,90].

Ecosystems are expected to contain different scaling relationships with respect to every landscape
phenology metric being estimated or measured. Beyond the inherent scale dependence of the
metrics themselves, exogenous forcings such as climate change are expected to change the
timing of phenological events. Climate change will also alter the phenological scaling relationships
themselves (through a process called ‘nonstationarity’) in ways that have not yet been
investigated. This constitutes a fundamental challenge in applying model outcomes to unstudied
or future systems [69,91]. Multiscale investigations of landscape metrics, the construction of
scaling relationships for individual phenological metrics, and the application of those relationships
(or scaling laws) for prediction in unmeasured scales are therefore critical in synthesizing expected
changes to phenological metrics across scales and levels of statistical aggregation [61,70,92].

In the simplest case, scaling rules provide rigorous tests of the robustness of measurements to
scale effects. If scale effects are not negligible, then several strategies can be effective. In the
case of upscaling (where dependent variables are collected at a finer grain than the scale of
desired inference), empirical scaling relationships provide a direct basis for adjusting estimates
of the dependent variable to those expected for the appropriate spatial grain. In this case, scaling
rules can alleviate bias due to scale effects, but biases and loss of information may persist unless
small-scale samples are representative and appropriate aggregation methods are used [57,93].
Adjustments based on estimated scaling relationships are also useful in the case of downscaling
(where the dependent variable is collected at coarser spatial or taxonomic grain than desired),
and several techniques can also be used to come up with estimates at finer spatial or taxonomic
scales, includingmixturemodels [94], constructed analogs [95], andmachine learning [96]. Often,
such adjustments can take the form of simple mathematical corrections or altered priors. These
techniques have seen less frequent use in landscape phenology research, but they are promising
avenues for enhancing coarse-grained observations in heterogeneous environments.

Establishing explicit scaling rules can require scale-explicit multivariate data collected across
multiple scales [68,80]. Such data is not always available and can be costly to collect. However,
studies are increasingly taking advantage of new data collection methods such as ground-based
cameras (‘phenocams’) [81], citizen science efforts [30], and drones [60], enabling data collection
at fine spatial and temporal grains across large spatial extents. In addition to facilitating the
establishment of scaling rules, such methods, when applicable, enable researchers to tailor the
spatial and temporal properties of sampling to the ecological question rather fitting the question
to the available data.

Even when multivariate data are not fully available across the scales of intended inference, it is still
possible to account for certain aspects of scale dependence and increase the accuracy and
validity of phenological extrapolation. For instance, as we demonstrate in Figure 1, the effects
of statistical aggregation on phenological metrics can be relatively easily defined within a spatio-
temporal extent by varying the grain of observation, using either real or simulated data. Likewise,
as high-resolution geoclimatic data have become increasingly available, it is possible to estimate
how environmental heterogeneity across a spatiotemporal extent may affect phenological aggre-
gation or prediction across grains by varying the degree of heterogeneity across space and
time, especially when species’ or ecosystems’ phenological responses to environmental cues
are known. Furthermore, the uncertainty caused by spatiotemporal gaps can directly inform
Trends in Ecology & Evolution, August 2021, Vol. 36, No. 8 717
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Outstanding questions
What are the relative effects of climate
change on landscape phenology in
temperate regions, where climatic
variability is low across space but high
across (seasonal) time, versus in tropical
regions, where climatic variability can be
high across space but low across time?

How does phenological sensitivity to
climate vary across a species’s range?

Do phenological shifts at the local
community scale translate to consistent
directional shifts across the entire range
of a species and vice versa?

How do density of species and diversity
of taxa present affect phenological
inference across scales?

How has the duration of phenological
events such as flowering responded
to climate change across species’
ranges?

At what spatiotemporal scales can
the constituents of mutualisms and
trophic interactions track each other’s
phenological changes?

How can we better apply artificial
intelligence to integrate phenological
predictions. Along these lines, Pearse et al. [87] demonstrated that the timing of phenological
firsts can be accurately estimated from sparsely and irregularly collected data by drawing infor-
mation from the sampled distribution of observations as opposed to just the first observation.
Thus, accounting for even a subset of scaling effects can increase the accuracy of phenological
inference across scales and allow us to formulate null expectations about what is driving variation
in phenology.

Concluding remarks and future perspectives
Landscape phenology is poised to revolutionize our understanding of the interplay between
environmental heterogeneity and seasonal ecological processes. Historically, this type of
research has been constrained by a limited set of observational tools that collect data at a
small number of discrete spatiotemporal scales, leading to large gaps in our understanding of
this complex set of phenomena. New observational and analytical methods make it increasingly
possible to tailor the grain and extent of observations to the ecological question at hand and
examine how phenological landscapes vary across a wide continuum of spatial and temporal
scales. We draw attention to critical scale gaps in the literature that can be bridged through the
construction of individual metric–level scaling laws and met by developing technologies that are
increasingly capable of generating fully nested, high-resolution visual data and artificial intelligence
that can analyze such imagery. The application of such methods and technologies to phenological
studies is still limited but nonetheless demonstrates great promise. Along these lines, it is important
to continue to support and expand large-scale field surveys and community-driven efforts to
monitor on-the-ground phenology, preferably targeting existing scale gaps. As the number of
observations and observation types increases and as researchers attempt to synthesize
phenology studies into generalizable understanding across scales and geographies, it is critical
to recognize and report the scale dependence of phenology time series and the measures we
extract from them. Such efforts also facilitate the integration of existing methods and datasets,
Box 2. Recommendations for future work

(i) Standardize terminology: Researchers should be explicit about the phenological time series that was tracked and
report all the phenological metrics extracted. For example, instead of reporting that a phenocam project tracked
‘greenness,’ the report could specifically mention the Normalized Differential Vegetation Index (NDVI) as the time
series tracked, with start of season, peak greenness, and end of season as themetrics extracted. A standardized
ontology of phenological terms and concepts is available [97].

(ii) Make sampling units spatially explicit: Researchers should report the spatial units, sampling interval, and spatiotem-
poral grain and extent of the study.

(iii) Increase geographic specificity: Field studies should record and report the Global Positioning System (GPS) coor-
dinates of all individuals that were tracked when possible and report the boundaries of study areas over which
measurements were aggregated.

(iv) Where appropriate to the hypothesis, select metrics that are more independent of spatial and temporal scaling
effects than others, such as measures of the middle or the peak of a process: Analyses that use these are more
likely to generalize across scales.

(v) Incorporate multiscale data when possible: The rise of new platforms for collecting phenology data over the past
decade, including digitized museum collections [64], citizen-scientist networks [86], ground-based cameras [98],
drones [71], and higher-resolution satellite sensors [72], present unique opportunities to bridge gaps in spatiotem-
poral scales. These platforms allow researchers to measure the spatial variation and scale dependence of phenol-
ogy at scales relevant to individual organisms, a key advance for understanding how ecological interactions scale
from individuals to populations and communities.

(vi) Summarize scale dependence in phenology as empirical scaling rules and use their mathematical forms to address
unmeasured gaps and extrapolate to unmeasured scales: This could be achieved by making use of a fully nested
data structure, an approach common in macroecology [99,100]. The resources and technologies required for this
are not yet widely accessible, with some exceptions such as multiscale observations of greenness in dominant
canopy tree species or systems where the maximum spatiotemporal extent is relatively narrow.

(vii) Target unmeasured spatial and temporal scales for studies of phenological metrics: These intermediate-scale
results can be used to validate predictions from scaling laws developed from fully nested data at smaller scales.
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which remain largely heterogeneous in their application and presentation. Although the majority of
the studies we reviewed were focused on terrestrial plants, the issues and concepts we illustrate
have generality for other kinds of organisms, even thosewithmore complex and dynamic ecologies
(e.g., highly vagile organisms that may lack data at fine temporal grains and large spatial extents).
Neglecting the important issues associated with scale dependence can cause extrapolation errors
with large consequences for our understanding of how organisms respond to environmental
change. It is therefore critical that we understand how to best capture biologically and ecologically
meaningful data for ecosystems and species, including which resolutions and extents of data are
relevant and how to integrate multiple data sources without introducing statistical bias associated
with scale. Future studies may be able to use scaling rules to derive new insights into the causes
and consequences of shifting phenological landscapes as well as broader questions about the
spatial and temporal organization of ecological communities (see Outstanding questions). To this
end, we present recommendations for maximizing the potential and applicability of future work in
landscape phenology (Box 2).
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