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Abstract—1In this paper, we present a planning and control
framework for dynamic, whole-body motions for dynamically
stable shape-accelerating mobile manipulators. This class of
robots are inherently unstable and require careful coordination
between the upper and lower body to maintain balance while
performing manipulation tasks. Solutions to this problem either
use a complex, full-body nonlinear dynamic model of the robot
or a highly simplified model of the robot. Here we explore
the use of centroidal dynamics which has recently become
a popular approach for designing balancing controllers for
humanoid robots. We describe a framework where we first solve
a trajectory optimization problem offline. We define balancing
for a ballbot in terms of the centroidal momentum instead of
other approaches like ZMP or angular velocity that are more
commonly used. The generated motion is tracked using a PD-
PID cascading balancing controller for the body and torque
controller for the arms. We demonstrate that this framework is
capable of generating dynamic motion plans and control inputs
with examples on the CMU ballbot, a single-spherical-wheeled
balancing mobile manipulator.

I. INTRODUCTION

In recent years dynamically-stable (DS) mobile manip-
ulators have become very attractive alternatives to their
statically-stable (SS) counterparts that usually consist of
large, heavy, bases that may or may not be omni-directional.
Typical DS mobile manipulator robots are in the form factor
of a bipedal humanoid robot or of a manipulator mounted on
top of a two-wheel base (e.g., Segway) that balances along
a single axis. Wheeled based manipulators have become a
compelling alternative to bipedal robots due to the potential
for increased efficiency on flat ground. Though balancing
strategies have been explored for wheeled DS robots, only
a few consider manipulation. This paper aims to provide a
solution to this issue with a whole-body optimization based
planning and control framework.

The CMU ballbot mobile manipulator, shown in Fig. 1, is
a unique type of DS robot that balances and locomotes on a
single spherical wheel. It has a pair of 7-DOF arm mounted
on to the body. Ballbot type robots belong to the family
of shape-accelerated underactuated balancing systems [1].
Shape-accelerated balancing systems are a special class of
underactuated systems wherein their shape configurations,
i.e., body and arms’ configuration, can be mapped to the
accelerations of the position variables, i.e., ball position.
Changes in the shape configuration will result in an acceler-
ation in the position variables.

Dynamically stable robots, like the ballbot, are interesting
systems to investigate from a control perspective due to
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Fig. 1: The human-size CMU ballbot in (a) dynamic simu-
lation environment and (b) dynamically balancing in reality.

their instability when balancing on single point of support.
The control problem becomes more challenging if one such
robot is equipped with a multi-DOF manipulator that can
move objects and interact with the environment. For example,
when trying to perform a dexterous manipulation task where
the end-effector position relative to an inertial frame is
important. As the manipulator moves towards the target
position, the body will accelerate, and the position of the base
will move too. Thus, to be able to realize interactions with
its arms and body requires careful coordination between the
upper and lower body to maintain balance while performing
manipulation tasks.

Dynamic based solutions to this problem mostly use
simplified models such as the Linear Inverted Pendulum
(LIP) model that fail to exploit the whole body dynamic
capabilities of the platform in use [2]-[4]. This model
assumes that angular momentum is constant, which is not
valid for motions requiring fast arm swinging. On the other
hand, dynamic motion planning can be done using full body
nonlinear dynamics of the system [5], [6]. This method can
produce smooth trajectories but due to the complexity of the
full-body nonlinear dynamics, these optimizations can take
an excessively long time to run. In this work we represent
the dynamics constraint of ballbot by its centroidal dynamics,
since postural balance can be defined in terms of centroidal
momentum [7]. This method is a balance between the two
extremes and has become a popular approach to plan and
control legged robots [8]-[11]. However, it has been sel-



domly explored for dynamically stable wheeled robots (e.g.,
Segway or ballbot bases) that present different challenges to
legged robots.

II. RELATED WORK

While many ballbots have been built in recent years [12]—
[14] and different balancing control strategies have been
studied, only a few consider manipulation capabilities.
In [15], a ballbot with a single robot arm is controlled
by regulating the position of the center of mass (COM) to
always be on top of the point of support. The robot arm
is used to regulate the COM position and not to perform a
manipulation task. To mitigate this they propose adding a
stabilizer mass to compensate for the effects of the manipu-
lator. In [16] a MPC approach is presented that considers the
full non-linear dynamics of the system and treats balancing
and manipulation in a unified planner. In each MPC iteration,
they linearize the dynamics of the system which limits the
operating range.

Our research group has previously demonstrated several
dynamic physical human-robot interaction capabilities with
our person-size ballbot equipped with a pair of 2-DOF
arms [3], [17]-[19]. Recently, the 2-DOF arms in the CMU
ballbot were upgraded with a pair of far more capable 7-DOF
arms and multi-DOF hands [20]. Our proposed strategies in
the past considered the balancing and manipulation tasks
separately. The dynamics effects of the arm motion were
compensated for by a robust balancing controller with COM
compensation [18]. We modeled the ballbot with arms as
a decoupled, planar, wheeled inverted pendulum, with a
massless arm with weights at its end. This was a valid
simplification with the previous 2-DOF arms. However, for
the 7-DOF arms this approach limits the range of possible
tasks.

A. Momentum based controllers

Until recently, most balance control methods have at-
tempted to maintain balance by controlling only the linear
motion of the robot. An interesting departure from this
are momentum-based-balance controllers [21]. These ap-
proaches control both the linear and angular components of
the spatial momentum to perform whole-body motions.

In [21] a whole-body momentum based controller for
humanoid robots on non-level ground is presented. The con-
troller regulates the linear and angular momentum by solving
an optimization problem to find whole body motion. It gives
higher priority to linear momentum over angular momentum.
We also give a higher priority to linear momentum when both
cannot be simultaneously attained.

In [22] a WBC for a torque controlled humanoid robot
balancing on top of a two-wheel balancing platform is pre-
sented. The controller is formulated as a quadratic optimiza-
tion problem (QP) to generate joint torques that satisfy the
whole-body dynamics constraint. The quadratic cost function
minimizes the error between the desired and actual linear and
angular momentum for the system. However, the issue of
how to set the desired angular momentum for more complex

motions such as performing locomotion and manipulation
simultaneously was not fully explored.

This issue can be tackled using offline trajectory optimiza-
tion to generate complex whole-body motions. This paper
takes inspiration from [8], [23] which combine the simple
centroidal dynamics with a full kinematic model to gener-
ate robots’ whole-body motions through offline non-linear
trajectory optimization. However, we differentiate in that
we simplify the optimization problem by not including the
complementary constraint for contact implicit optimization.
For the ballbot we assume a single rolling point of contact
between the ball and the ground.

III. DYNAMIC MODEL

A. System Description

The CMU ballbot is a human-size robot that balances
on a ball. It has a pair of 7-DOF torque-controllable arms
mounted onto the body. The ball is actuated using a four-
motor inverse mouse-ball drive mechanism (IMBD). A pair
of actuated opposing rollers drive the ball in each of the two
orthogonal motion directions on the floor. Omnidirectional
motion is achieved by moving the ball in any direction using
this mechanism. The IMBD mechanism is attached to the
body using a large thin-section bearing, which allows yaw
rotation of the body (i.e., rotation about its vertical axis).
Another DC servomotor actuates this yaw degree of freedom.
Unlimited yaw rotation of the body is enabled by a slip ring
assembly. The model makes the following assumptions: (i)
there is no slip between the ball and the floor; and (ii) the
ball height relative to the floor remains constant, i.e., the ball
is always in contact with the floor.

B. Modelling

The configuration of the robot is described by 1+ ng,
DOF, where ny is the number of DOF of the mobile base
and ng, is the number of DOF of the ** manipulator
attached. The motion of the ballbot base is described by
a = [ps, 9|7 € R™, ps = [ps, p,]T € R? is the 2D
position of the ball in the horizontal plane with respect to
the inertial frame {I}, ¢ = ¢z, ¢y, ¢-]T € R is a vector
of XYZ Euler angles representing the body orientation.

The 7-DOF of the left and right arms are represented by
arp € R™ and ag € R™. These notations are shown in
Fig. 2. For the CMU ballbot we define the set of generalized
coordinates
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The system has in total n = 19 DOFs (n, = 5,n, = 7).
Grasp-planning is outside the scope of this work and does
not consider the DOF of the hand fingers. Instead, we only
consider the left and right arm end-effector pose prg, €
SE(3) and pgg,r € SE(3), respectively. We also define
r € R3 the robot’s COM position with respect to {I}.
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Fig. 2: Schematic of the CMU ballbot generalized coordinate
representation. {1}, {S}, {B} are the inertial frame, the ball
(sphere) frame and the body frame. pgg.r and pgg, 1, are
right and left end-effector pose with respect to {7}

Considering the generalized coordinates defined in (1) the
Euler-Lagrange Equation of Motion are as follow:

M(q)d + C(q, @)+ G(q) =ST+J A (2

where, M(q) € R"*™ is the mass matrix, C(q,q) € R"*"
is the matrix composed of the sum of Coriolis and centrifugal
forces, G(q) € R" is the gravity force vector, A, is the
ground reaction force, J. is the corresponding Jacobian. 7 =
[£s, o, TL ), 7'3: r)T € R™ is the vector of generalized
forces and torque inputs. The torque exerted by the IMBD
at the center of the ball is related to a linear force at the
point of contact between the ball and the ground by
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where 7, is the radius of the ball and the 7,7/ are
the torques exerted by the IMBD in the X and Y axis
respectively. 74_ is the torque input to control the body yaw.
The joint torque of the manipulators are described by the
vectors 7,1, € R"z and 7, r € R"=r. The system has
a total of n, = 17 control inputs. The actuation selection
S € R™*("r) separates the n. = n — ny controlled joints
from the ny = 2 unactuated body lean angle joints ¢, and
¢y. Since the number of degrees of freedom of the robot
is larger than the number of independent control inputs, the
system is underactuated.

C. Centroidal Dynamics

In this section, we provide a brief recap of centroidal
dynamics, the dynamics of a robot system at its COM [7].
The centroidal momentum vector h € R%*! composed of
the linear momentum 1 € R3*! and angular momentum
k € R3*! is linearly related to the generalized joint velocities
vector g by

hia.d) = |§] = Alwa @

where A € R*™ is the centroidal momentum matrix
(CMM). Taking the time derivative of (4) results in the
second order centroidal dynamics

h(q,q) = A(Q)§ + A(q, 4)4. (5)

The rate of centroidal linear and angular momentum
h(q,q) = [k, 17, computed from the robot’s joint angles and
velocities, equals the total wrench generated by the external
contacts and the gravitational forces:

k:mf:ZFj+mg (6)
J
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where m is the total mass of the robot, g € R? is the
gravitational acceleration, c; € R? is the position of the ;"
contact point, F; € R? and 7; € R? are the force and torque
at the j*" contact point, respectively. Since, CMM has been
shown to be useful when generating dynamic motions of
multiple limbs to maintain balance [7], we define balancing
in terms of the linear and angular momentum. For balancing
maintenance it is desired that k and 1 be zero and for r to
be above the point of support. This will form the basis of

the optimization problem presented in section IV.

IV. PLANNING AND CONTROL
A. Trajectory Optimization

To compute the feasible motion plan that includes the
centroidal momentum trajectory and joint trajectories, we
formulate a nonlinear optimization problem (NLP) that uses
the centroidal dynamics and a full kinematic model [8]. We
implement a direct collocation method [24] to transcribe the
continuous-time dynamics in (4) and (5) to their discrete
form. We sample all time-varying quantities at N knot points.
The nonlinear constraint optimization problem minimizes the
cost function

N
min k] — pLp [k 2
alk],a[k] a(k], kz_o (’pEE’ [ = Prpilklg,,
r[k],f‘[kl,i‘[k], Fy[k],m[k] ©
h[k],h[k]

+ |eoEE,i[k'”2

QoEE,i
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where |[g, is the abbreviation for the quadratic cost 27 Q.
The square bracket [k] means the sampled value at the k*"
knot point. The cost function (8) tries to minimize the sum
of different tasks that the robot is required to perform. The
semidefinite positive matrices Qgrg,; and Q,pr; weight
the task of tracking a desired end-effector position and
orientation for ¢ = L, R corresponding to the left and
right end-effectors. The orientation error is computed using
quaternion difference. The task of tracking a desired base
position is weighted by the matrix (5. The balancing task is



defined by the error tracking term between the COM position
to be on top of the point of support and the term penalizing
the centroidal momentum rate. The momentum penalizing
term is weighted higher by @)}, than the COM tracking term
by Qcom- The regulation term penalizing joint acceleration
in the cost function is included to provide numerical stability
and is weighted by Q4.

The optimization constraints include the centroidal dynam-
ics defined in (4) and (5) discretized at each knot point

mﬂﬂzszFAH%ﬂng 9)
MH:Z]qm—rmdem+nw} (10)
h[k] = A(a[k])q[k] (11)

Note that in our case there is only one contact point c; be-
tween the ball and the ground. To enforce continuity between
the discrete system state knot points q[k], q[k], [k], h[k],
and h[k] we formulate equality constraints such that the
change in state between two knot points is equal to the
integral of the system dynamics. We approximate the integral
using Euler integration. For numerical stability, this is im-
plemented using backward-Euler integration. The collocation
constraints are

alk] — qlk — 1] = q[k]dt (12)
alk] — q[k — 1] = q[k]dt (13)
h[k] — h[k — 1] = hk]dt (14)

where dt is the sample time between knot points. We
approximate the COM position using a piecewise quadratic
polynomial. Its time integration constraints are

P[k] + ¢k — 1]

k] —rlk—1] = 5

k] — ik — 1] = ¥[k]dt

dt (15)
(16)
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To ensure the full kinematics of the robot are obeyed we
implement the kinematic constraint that relates the robot joint
configuration and COM position

r[k] = com (q[k]) (17)
where com(q) computes the corresponding COM position
to a given robot joint configuration q. Joint position, ve-
locity, and acceleration limits are also enforced through the
inequality constraints

an < qlk] < qus (18)
a < qlk] < qus (19)
i < 4lk] < Guop- (20

Equality boundary constraints are also included to enforce
initial and final robot states. We set the initial constraints for
the joint states

and q[0]=qo. (21

q[0] =dqo, q[0] = qo,

The final value of the centroidal momentum and centroidal
momentum rate are constrained to be zero, so to ensure the
robot is balancing at the end of the motion by

h[N] =0 and h[N]=0. (22)

B. Control

The robot’s body motion plan, i.e., §y(t), g (t), generated
by the trajectory optimization is tracked by a PD-PID cascad-
ing balancing controller. The inner PID loop maintains the
ballbot balancing upright. It does so by tracking a desired
lean angle by actuating the ball. The outer loop tracks the
ball position on the floor and feeds lean-angle setpoints to
the inner loop controller. By tracking the body lean angle
we can indirectly track the ball position in the ground.
The arms motion plan, i.e., &;(t),d;(t), are tracked by a
decentralized torque-impedance based feedback controller
with feedforward gravity and torque sensing compensation,
as shown in Eq. 23.

Tdes = KPaea + KDQe.a + g(av a) - T, (23)
where Kp_, Kp_ are positive definite diagonal gain matri-
ces, g(a, &) is the gravity compensation term based on the
dynamic model of the arm, e, = Qges — and é, = Qges — &
are the joint position and velocity errors.

V. RESULTS

The proposed whole body planning and control framework
was tested to perform different tasks in a dynamic simulation
environment of the CMU ballbot and in the real hardware.
Experiment results are shown in the supplemental video'.
The optimization problem described is implemented using
CasADi [25] and Ipopt [26]. The dynamics equations were
efficiently obtained using Pinocchio [27]. For all the tasks
performed we first solve the trajectory optimization problem
offline with a long time horizon N > 40 and dt = 0.1 s
to obtain a reference trajectory to follow. The controller to
track the reference plan runs at 500 Hz.

A. Hardware: Single End-Effector Position Tracking

In the hardware we tested reaching a desired position
for the right end-effector that is outside the arm’s reach
without moving the base, as shown in Fig. 3. For this
task we penalize the end-effector position error Qgg,, =
diag([100, 100, 100]). All other weights matrices Q; are set
to the identity. The motion plan was generated offline in
26 seconds. Without explicitly defining a task for the base
motion, the framework synthesizes a combined motion for
the arm and base such that while maintaining balance the
robot reaches its end-effector target position marked by the
blue ball. The ball is only use for visual reference, it is not
being tracked online.

'https://youtu.be/HCQ k1x228Y



(c) t=5sec

(a) t = 0sec (b) t = 3sec

Fig. 3: Screenshots of tracking a desired end-effector pose
(blue ball for reference only) with high weight cost on left
arm joint acceleration.

B. Simulation: Double End-Effector Position Tracking

In this experiment we control the desired position and
orientation for both end-effectors as shown in Fig. 4. We
set high weights on the position Qggr = QErr-r
diag([100, 100, 1000]) and orientation Qorr, 1 = QoEE.R =
diag([50, 50,50]) error tracking terms. In Fig. 5 the end-
effector position tracking error are shown. The linear and
angular momentum trajectories are non-zero initially to real-
ize the desired motion but quickly return to zero to stabilize
the robot, as shown in Fig. 6. We set @), = 0 to give the
optimization the freedom to find a motion to coordinate the
base and arm motion to track the desired end-effector pose.
As desired the controller can successfully track the planned
motion that using the body lean to compensate for the COM
movement due to the arm motion. The offline plan was
generated in 44 seconds. This behavior is very similar to
that of humans when lifting heavy objects.

(c) t=6sec

(a) t=0sec (b) t=3sec

Fig. 4: Snapshots of tracking desired position and orientation
for both end-effectors. Note the use of the arms instead of
the body lean to move towards the target location.

C. Simulation: Base Position Tracking

There may be scenarios where we are not interested in
the end-effector pose and are only interested in the base
tracking a desired position. This can be accomplished by
setting Qggr; = 0 and setting a large value for @, =
diag([100, 100]). We test this by commanding the robot to
a position P4 = [1, 1]7 m, as shown in Fig. 7. Without
setting a high weight to penalize the arm joint accelerations
the trajectory optimization found an optimum motion in 25
seconds that primarily uses lean angle motion as shown in

Right End Effcetor, Py, Left End Effector, Prr,
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Fig. 5: Right and left end-effector cartesian position with
respect to inertial frame.
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Fig. 6: Linear and angular momentum evolution while track-
ing a desired position for both end-effectors

Fig. 8. This is desirable and expected since inducing a small
lean angle alone produces enough momentum to realize the
motion. Swinging the arms will produce undesirable large
momentum changes.

VI. CONCLUSION AND FUTURE WORK
A. Conclusion

In this paper, we present a whole-body optimal planning
and control framework for dynamically stable mobile robots
with multiple arms. We leverage the combination of simple
centroidal dynamics and a full kinematics model over using
a full dynamic model. In this framework, we first solve a
trajectory optimization problem offline. We define balancing
for a ballbot in terms of the centroidal momentum instead of
other approaches like ZMP or angular velocity that are more
commonly used. We then track the offline generated motion
plan using a combination of arm and body controllers for the
ballbot research platform. We demonstrate the effectiveness
of this algorithm performing several different locomotion
and arms motion tasks that require simultaneous control of
the ball, body, and arms in simulation and in the hardware.
This framework has been shown in a ballbot manipulator,
but we believe it can be easily extended to other similar
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Fig. 7: Ball position and velocity trajectories for the task of
tracking a desired ball position

(a) t=0sec

(b) t=3sec (c) t=6sec

Fig. 8: Snapshots of tracking desired base position. Despite
arm joint acceleration not being penalized they are not used
to generate forward momentum.

systems such as humanoids with wheeled feet and two-
wheeled balancing manipulators.

B. Future Work

Currently the controller has no ability to replan in the
case of large external disturbances or environment changes.
Also, fast and dynamic motions required a significant amount
of feedback compensation to realize the generated motions
in the CMU ballbot hardware. We will look to reformulate
the optimization problem into a QP so that it can be solved
online. Speeding up the optimization will allow to generate
motion plans and control inputs online in an MPC fashion
to be able to react fast and handle model and environment
uncertainty.
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