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ABSTRACT

In this article, we propose an optimal method referred to as SP11t for splitting a dataset into training and
testing sets. SP11t is based on the method of support points (SP), which was initially developed for finding
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the optimal representative points of a continuous distribution. We adapt SP for subsampling from a dataset

using a sequential nearest neighbor algorithm. We also extend SP to deal with categorical variables so that
SP1lit can be applied to both regression and classification problems. The implementation of SP1it on
real datasets shows substantial improvement in the worst-case testing performance for several modeling
methods compared to the commonly used random splitting procedure.

1. Introduction

For developing statistical and machine learning models, it is
common to split the dataset into two parts: training and test-
ing (Stone 1974; Hastie, Tibshirani, and Friedman 2009). The
training part is used for fitting the model, that is, to estimate the
unknown parameters in the model. The model is then evaluated
for its accuracy using the testing dataset. The reason for doing
this is because if we were to use the entire dataset for fitting,
then the model would overfit the data and can lead to poor
predictions in future scenarios. Therefore, holding out a portion
of the dataset and testing the model for its performance before
deploying it in the field can protect against unexpected issues
that can arise due to overfitting.

In this article, we consider only datasets where each row is
independent of other rows, that is, we will exclude cases such as
time series data. The simplest and probably the most common
strategy to split such a dataset is to randomly sample a fraction
of the dataset. For example, 80% of the rows of the dataset can
be randomly chosen for training and the remaining 20% can be
used for testing. The aim of this article is to propose an optimal
strategy to split the dataset.

Snee (1977) seemed to be the first one who has carefully
investigated several data splitting strategies. He proposed
DUPLEX as the best strategy which was originally developed
by Kennard as an improvement to another popular strategy
CADEX (Kennard and Stone 1969). Over the time, many other
methods have been proposed in the literature for data splitting;
see, for example, the survey in Reitermanova (2010) and the
comparative study in Xu and Goodacre (2018). Some of these
methods will be discussed in the next section after proposing a
mathematical formulation of the problem.
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It is also common to hold out a portion of the training set
for validation. The validation set can be used for fine-tuning
the model performance such as for choosing hyper-parameters
or regularization parameters in the model. In fact, the training
set can be divided into multiple sets and the model can be
trained using cross-validation. Our proposed method for opti-
mally splitting the dataset into training and testing can also be
used for these purposes by applying the method repeatedly on
the training set.

The article is organized as follows. In Section 2, we pro-
vide a mathematical formulation of the problem and propose
an optimal splitting method called SP1it based on a tech-
nique for finding optimal representative points of a distribu-
tion known as support points (SP; Mak and Joseph 2018b).
SP are defined only for continuous variables. Therefore, we
extend the SP methodology to deal with categorical variables
in Section 3 so that SP1it can be applied to both regres-
sion and classification problems. We apply SP1it on several
real datasets in Section 4 and compare its performance with
random subsampling. Some concluding remarks are given in
Section 5.

2. Methodology

LetX = (X1,...,X,) bethe p input variables (or features) and Y
the output variable. Let D = {(X;, Y,-)}fi , bethe dataset in hand.
Our aim is to divide D into two disjoint and mutually exclusive
sets: D30 and D', where the training set D" contains Niain
points and testing set D' contains Niest points with Nirain +
Ntest = N.
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2.1. Mathematical Formulation

Suppose the rows of the dataset are independent realizations
from a distribution F(X, Y):

iid
X, Y)~F i=1,...,N. (1)

Let g(X; 0) be the prediction model that we would like to fit to
the data, where 6 is a set of unknown parameters in the model.
The unknown parameters 6 will be estimated by minimizing
a loss function L(Y,g(X;#)). Typical loss functions include
squared or absolute error loss. More generally, the negative of
the log-likelihood can be used as a loss function.

In postulating a prediction model g(X; ), our hope is that
it will be close to the true model E(Y|X) for some value of
0. However, the postulated model could be wrong and there
may not exist a true value for . Thus, it makes sense to try
out different possible models on a training set and check their
performance on the testing set so that we can identify the model
that is closer to the truth.

The unknown parameters 6 can be estimated from the train-
ing set as follows:

Nirain

Z L(Yitrain,g(x‘lgrain; 0)), (2)

which is a valid estimator provided that

(Xirain yirainy B i =1,..., Nirain- 3)

How should we split the dataset to obtain training and testing
sets? We propose that the dataset should be split in such a way
that the testing set gives an unbiased and efficient evaluation of
the model’s performance fitted using the training set.

To quantify the model’s performance, define the generaliza-
tion error as in Hastie, Tibshirani, and Friedman (2009, chap. 7)

by
£ = Ex y{L(Y,g(X;0))| D"}, (4)

where the expectation is taken with respect to a realization
(X, Y) from F. Note that we do not include the randomness in
6 induced by D' for computing the expectation.

We can estimate £ if we have a sample of observations from
F that is independent of the training set. We can use the testing
set for this purpose. Thus, an estimate of £ can be obtained as

Ntest R
Z L(Yitest,g(xgest;o))’ (5)
i=1

which works if

XL YY) ~F, i=1,...,Nex. (©)

A simple way to ensure condition (6) is to randomly sample
Niest points from D. Then, Equation (5) can be viewed as the
Monte Carlo (MC) estimate of £. The question we are trying to
answer s, if there is a better way to sample from D so that we can
get a more efficient estimate of £. The answer to this question is
affirmative. We can use quasi-Monte Carlo (QMC) methods to
improve the estimation of £. It is well known that the error of
MC estimates decreases at the rate O(1/+/Niest), whereas when

sampling from uniform distributions, the QMC error rate can
be shown to be almost O(1/Nest) (Niederreiter 1992). This is a
substantial improvement in the error rate. However, most QMC
methods focus on uniform distributions (Owen 2013). Recently,
Mak and Joseph (2018b) developed a method known as SP
to obtain a QMC sample from general distributions. Although
their theoretical results guarantee a convergence rate faster than
MC by only a log Niest factor, much faster convergence rates
are observed in practical implementations. This leads us to the
proposed method SP1it (stands for SP-based split). We will
discuss the method of SP and SPlit in detail after reviewing the
existing data splitting methods in the next section.

2.2. Review of Data Splitting Methods

Interestingly, the original motivation behind CADEX (Kennard
and Stone 1969) and DUPLEX (Snee 1977) was to create two
sets with similar statistical properties, which agrees with the
distributional condition mentioned in Equation (6). However,
these algorithms cannot achieve this objective. For example,

consider a two-dimensional data generated using (Xy;, X2;) i
N(0,%) fori = 1,...,N, where 0 = (0,0)" and Xj = Skl
We will omit the response here because these algorithms do not
use it. Let N=1000 and Niest = 100. The CADEX and DUPLEX
testing sets obtained using the R package prospectr (Stevens
and Ramirez-Lopez 2020) are shown in the left and middle
top panels of Figure 1. We can see that both CADEX and
DUPLEX testing points are too spread out and therefore, their
distributions do not match with the distribution of the data. This
can be seen more clearly in the marginal distributions shown
in the bottom panels. For comparison, the testing set generated
using the proposed SP1it method is shown in the top-right
panel. We can see that its distribution matches quite well with
the distribution of the full data, as desired.

The sample set partitioning based on joint X-Y distances
(SPXY) algorithm (Galvéo et al. 2005) is a modification of the
CADEX algorithm which incorporates the distances computed
from the response values. Although incorporating Y was in
the right direction of Equation (6), the algorithm suffers from
the same issues of CADEX and DUPLEX algorithms. Bowden,
Maier, and Dandy (2002) proposed a data splitting method
which uses global optimization techniques to match the mean
and standard deviations of the testing set and the full data. This
isagain in the right direction of Equation (6), however, matching
the first two moments does not ensure distributional matching.
May, Maier, and Dandy (2010) proposed further improvement
to the foregoing methodology using clustering-based stratified
sampling. Although this provides an improvement, it is well
known that clustering distorts the original distribution (Zador
1982) and hence cannot satisfy Equation (6). In summary,
none of existing data splitting methods except the random
subsampling can ensure the distributional condition given in
either Equation (6) or Equation (3).

Before proceeding further, we would like to mention about
another possible approach to solve the problem. One could
think about splitting the dataset in such a way that the training
set gives the best possible estimation of the model under a given
loss function. For example, it is well known that the best estimate
of a linear regression model with linear effects of the predictors
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Figure 1. Comparison of CADEX and DUPLEX testing sets with SP11t testing set. Hundred testing points (red circles) are chosen from 1000 data points (black crosses). In
the lower panels, the marginal densities of the testing sets are plotted over the histogram of the full data.

under the least-square criterion can be obtained by choosing
the extreme values of the data from the predictor-space (Wang,
Yang, and Stufken 2019). Although such a choice can minimize
the variance of the parameter estimates, the model may not
perform well in the testing set if the original dataset is not
generated from such a linear model. In our opinion, the testing
set should provide a set of samples for an unbiased evaluation of
the model performance and detect possible model deviations.
For example, if we detect that quadratic terms are needed in
the linear regression model, then having a training dataset with
only extreme values of the predictors is not going to be useful.
Therefore, the splitting method should be independent of the
modeling choice and the loss function. Random subsampling
achieves this aim and we will show that SP will achieve it even
better!

Although SP have been used in the past for subsampling from
big data (Mak and Joseph 2018a), it was done for the purpose of
saving storage space and time for fitting computationally expen-
sive models due to limited resources. On the other hand, data
reduction is not the objective in our problem. After assessing
the model’s performance using the testing set, the model will
be re-estimated using the full data before deploying it for future
predictions.

2.3. Support Points

Let Z = (X, Y) be a vector of continuous variables. Then, the
energy distance between the distribution F(Z) and the empirical
distribution of a set of points zy, . . . , z,, is defined as (Székely and

Rizzo 2013)
2 n 1 n n
ED==3 Ellzi—Zlo—— Y} llzi—zll.~ElIZ—=Z|],
i=1 i=1 j=1

@)

where Z,Z' ~ F, || - ||, is the Euclidean distance, and the expec-
tations are taken with respect to F. Note that for the Euclidean
distance to make sense, all the variables are standardized to have
zero mean and unit variance. The energy distance will be small
if the empirical distribution of z, . . . , z, is close to F. Therefore,
Mak and Joseph (2018b) defined the SP of F as the minimizer of
the energy distance:

. 2y
{z7}_, € Argmin ED = Argmin :; ZI:]EHZ,- —Z||,
i=

Z1,.sZp Z1seZy

il | ®)

i=1 j=1

They can be viewed as the representative points of the distribu-
tion F, which is the best set of n points to represent F accord-
ing to the energy distance criterion. Mak and Joseph (2018b)
showed that SP converge in distribution to F and therefore, they
can be viewed as a QMC sample from F. This property makes SP
different from other representative points of a distribution such
as MSE-rep points (Fang and Wang 1994) or principal points
(Flury 1990) which do not possess distributional convergence
(Zador 1982).

In our problem, we do not have F. Instead we only have a
dataset D, which is a set of independent realizations from F.
Therefore, to compute the SP, we can replace the expectation in
Equation (8) with a Monte Carlo average computed over D:

P n N
— 22 Il = Zjlh

{z]}7, € Argmin
Z1, 5Ly

i=1 j=1
1 n n
—;;2||zi—zj||z : ©9)
1= ]:
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This simple extension to real data settings is another advantage
of SP, which cannot be done for other representative points
such as minimum energy design (Joseph et al. 2015) and Stein
points (Chen et al. 2018) even though they possess distributional
convergence.

At first sight, the optimization in Equation (9) appears to be
a very hard problem. The objective function is nonlinear and
nonconvex. Moreover, the number of variables in the optimiza-
tion is n(p + 1), which can be extremely high even for small
datasets. However, the objective function has a nice feature; it is
a difference of two convex functions. By exploiting this feature,
Mak and Joseph (2018b) developed an efficient algorithm based
on difference-of-convex programming techniques, which can be
used for quickly finding the SP. Although a global optimum is
not guaranteed, an approximate solution can be obtained in a
reasonable amount of time. Their algorithm is implemented in
the R package support (Mak 2019). Although it is possible
to create representative points using other goodness-of-fit test
statistics (Hickernell 1999) and kernel functions (Chen, Welling,
and Smola 2010) instead of the energy distance criterion, they
do not seem to possess the computational advantage and robust-
ness of SP.

2.4. SPlit

We can use the SP obtained from Equation (9) as the testing
set with # = Niest and the remaining data can be used as
the training set. Alternatively, we can use SP to obtain the
training set with # = Nirain and then use the remaining data
as the testing set. However, the computational complexity of the
algorithm used for generating SP is O(n*(p + 1)). Since Niest
is usually smaller than Nipin, it will be faster to generate the
testing set using SP than the training set. In general, we let n =
min{Niest, Nirain} = min{Ny, N(1 — y)}, where y = Nest/N is
the splitting ratio.

As discussed earlier, the testing set generated using SP is
expected to work better than a random sample from D. How-
ever, there is one drawback. Support points need not be a sub-
sample of the original dataset. This is because the optimization
in Equation (9) is done on a continuous space and therefore,
the optimal solution need not be part of D. To get a subsample,
we actually need to solve the following discrete optimization
problem:

*\n .
{z;}i—; € Argmin
Z1se.Zyn €D

2 n N
— 2 Il =7l

i=1 j=1

! En Eﬂ [l Il
_ 2 — 7|
n? Py

i=1 j=1

(10)

Our initial attempts to solve this problem using state-of-the-art
integer programming techniques showed that they are accurate,
but too slow in finding the optimal solution. Computational
speed is crucial for our method to succeed because otherwise
it will not be attractive against the computationally cheap alter-
native of random subsampling. Therefore, here we propose an
approximate but efficient algorithm to subsample from D.

Algorithm 1 SP11it: Splitting a dataset D with splitting ratio y
[R package: SP1it]

1: Input D € RN*?P+D and y = Niegt/N
2: Standardize the columns of D

3: n < min{Ny,N(1 — y)}

4: Compute {z}}} ; using (9)

5: D < {}

6: forie {1,...,n}do

7: i € argmin,f{|ju — z}||; : u € D}
8: Dy < D; U {u}

9: D < D\ {1}

10: end for

11: Dz <~ D

—
[Se]

: return D, D,

We will first find the SP in a continuous space as in Equa-
tion (9), which is very fast. We will then choose the closest
points in D to {z]}}! ; according to the Euclidean distance. This
can be done efficiently even for big datasets using KD-Tree
based nearest neighbor algorithms. However, a naive nearest
neighbor assignment can lead to duplicates and therefore, the
remaining data points can become more than N — n. Moreover,
separating the points can increase the second term in Equation
(10) and thus potentially improve the energy distance criterion.
This can be achieved by doing the nearest neighbor assignment
sequentially. Our method is summarized in Algorithm 1 and is
implemented in the R package SP1it. A critical step in this
algorithm is to update the KD-Tree efliciently when a point is
removed from the dataset. We use nanoflann, a C++ header-
only library (Blanco and Rai 2014), which allows for lazy dele-
tion of a data point from the KD-Tree without having to rebuild
the KD-Tree every time a point is removed from the dataset.

2.5. Visualization

Consider a simple example for visualization purposes. Suppose
iid
we generate N = 100 points as follows: X; ~ N(0,1) and

Y;|X; i N(X?,1) fori = 1,...,N. Both X and Y values are
standardized to have zero mean and unit variance. Figure 2
shows the optimal testing set obtained using SP1it and a
random testing set obtained using random subsampling without
replacement. We can see that the points in the SP1it testing
set are well spread out throughout the region and provide a
much better point set to evaluate the model performance than
the random testing set.

Most statistical and machine learning models have some
hyper parameters or regularization parameters, which are com-
monly estimated from the training set by holding out a vali-
dation set, say of size Ny,jiq. One simple approach to create an
optimal validation set is to apply the SP1it algorithm on the
training set. However, it may happen that such a set is close to
the points in the testing set, which is not good as it may lead to
a biased testing performance. We want the validation points to
stay away from the testing points so that the testing performance
is not influenced by the model estimation/validation step. This
can be achieved as follows. Let {z,, ..., Zn,,} be the testing set
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Figure 2. The circles are the testing set obtained using random (left) and SP11it (right) subsampling.
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Figure 3. The squares are the validation set obtained using random (left) and SP11t (right) subsampling from the training set. The testing set is shown as circles.

and {zn,.,+1, - - - » Zn} the validation set, where # = Niest +Nyalid-
Then, the optimal validation points can be obtained as

2 n N
— [lzi — Zjl|2
nN

x\n .
{z; }l-thest 11 € Argmin

ZNiest+1>+2n €D i=1 j=1
1 n n
- llzi — zjll2 ¢, (11)
2 7
ns < ;
i=1 j=1

where the optimization takes place only over the validation
points with the testing points fixed at {z7, ..., zy,__}. Because of
the second term in the energy distance criterion, the validation
points will move away from the testing points.

Figure 3 shows 20 points selected out of the 80 training points
using Equation (11). A random subsample is also shown in the
same figure for comparison. Clearly, the optimal validation set
created using our method is a much better representative set
of the original dataset and therefore, it can do a much better
job in tuning the hyper-parameter or regularization parameter

than using a random validation set. In fact, we can sequentially
divide the training set into K sets by repeated application of this
method and use them for K-fold cross-validation. Because of the
importance of this problem, we will leave this topic for future
research.

2.6. Simulations

Since SP create a dependent set, one may wonder if the testing
set and training set are related and if the dependence will create a
bias in the estimation of the generalization error in Equation (5).
We will perform some simulations to check this. Consider again
the data-generating model discussed in the previous section

Yi=X; +e, (12)
iid iid )
where ¢, ~ N(0,1) and X; ~ N(0,1), fori = 1,...,N. Let

N=1000. Suppose we fit the following rth degree polynomial
model to the data:

Yi = g(Xi50) + €,
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where g(X;0) = Bo+6:X+6,X%+- - -+6,X" and ¢; id N(0,02).
The unknown parameters @ = (6,01, . . .,0,)’ can be estimated
from the training set using least squares. The generalization
error can then be computed as follows:

€ = Exy [{Y - g(x:))D"™"
= Exy [{Y —g(X; é)}z] (by independence)
= Ex (EYlX [{Y —g(X; é)}le])
= Ex (1 - g6 0F) +1

We can divide a given dataset into training and testing sets
using various data splitting methods and estimate the gener-
alization error using Equation (5). Thus, we can compute the
estimation error of a data splitting method as &—&. For compar-
ison, we use SPIlit, random subsampling, CADEX, and DUPLEX.
This procedure is repeated 100 times by generating testing sets
with splitting ratios of 10% and 50%. Owing to the deterministic
nature, CADEX and DUPLEX produce the same testing set
each time. On the other hand, some variability is observed in
the testing sets produced by SPlit, which is mainly due to the
random initialization and convergence to local optima of the SP’
algorithm. Figure 4 shows the estimation errors over different
values of r.

We can see that the bias in the estimation of generalization
error using SPlit is small compared to the other data splitting
methods. This confirms the validity of the proposed method.

3. Categorical Variables

Energy distance in Equation (7) is defined only for contin-
uous variables because its definition involves Euclidean dis-
tances and therefore, SP can only be found for datasets with
continuous variables. However, a dataset can have categorical
predictors and/or responses. Therefore, it is important to extend

the SP methodology to deal with categorical variables in order
to implement SP1it.

For simplicity of notations, let us consider the case of only
a single categorical variable, which could be a predictor or a
response. It is easy to extend our methodology to multiple
categorical variables, which will be explained later. Let m be
the number of levels of the categorical variable and N; be the
corresponding number of points in the dataset at the ith level,
i=1,...,m

The most naive approach to deal with a categorical variable
is to simply ignore it and find the # SP from a dataset containing
N points using only the continuous variables as in Equation (9).
For illustration, consider the same example used in Section 2.4,

iid
except that we generate the data as follows. Let Xj; ~ N(0,1)

and XXy N(X2,1) fori = 1,...,N with N = 100,
They are scaled to have zero mean and unit variance. Consider
a nominal categorical response variable with three levels: Red,
Green, and Blue. The points are classified as Red with probability
d(—6X; — X, — 5) and Blue with probability & (6X; — X, — 5),
where ®(-) is the standard normal distribution function. The
remaining points are classified as Green. The data are shown in
Figure 5.

Suppose our aim is to generate a testing set of 20 points. The
result of applying the naive method is shown in the left panel of
Figure 5. In this dataset, there are N; = 21 Red, N, = 59 Green,
and N3 = 20 Blue. A testing set gives a good representation of
the categorical variable if

0 .
“~~ forall i=1,...,m,
n N

(13)

where #; is the number of testing samples for the ith level. Thus,
we should have approximately four Red, 12 Green, and four Blue
in the testing set. However, the naive method gives only two Red
and three Blue, which is quite disproportionate to the number of
Red and Blue in the dataset. This is expected because the naive
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Figure 5. The circles are the testing set obtained using naive method (left), stratified proportional method (center), and the proposed coding-based method (right). The

three categorical levels are shown as red triangles, green pluses, and blue crosses.

method does not use the information in the categorical response
for splitting.

Another possible approach that can ensure the proportional
sampling in Equation (13) is to first choose n; ~ N;/Nn and
then find #; SP from the dataset containing only the ith level
of the categorical variable while ignoring the remaining part of
the dataset. The results of this stratified proportional method is
shown in the middle panel of Figure 5. We can see that some
points are too close and almost overlapping. Thus, although
the stratified proportional sampling approach ensures perfect
balancing of categorical levels, the SP in the continuous space
may not be representative.

A yet another approach to deal with categorical variables is
to first convert them into numerical variables and then use the
methodology that we developed earlier for continuous variables.
The first step is to represent the m levels of the categorical vari-
able using m — 1 dummy variables assuming that the model has
a parameter to represent the mean of the data. There are many
choices for creating the dummy variables such as treatment
coding, Helmert coding, sum coding, orthogonal polynomial
coding, etc. (Faraway 2015, chap.14). Here we use Helmert
coding as we have observed better numerical stability with it in
the SP” algorithm.

Consider the example again. Using Helmert coding, the Red,
Green, and Blue levels are represented using two dummy vari-
ables d; = (—1,1,0) and d, = (—1,—1,2). Now the SPlit
algorithm can be applied after standardizing the four columns
of the augmented dataset. The result is shown in the last panel of
Figure 5. We can see that the categorical levels are well-balanced
and the points are well-spread out in the continuous space. Thus,
this coding approach seems to work very well. Moreover, it
can be easily adapted for ordinal categorical variables through
scoring (Wu and Hamada 2011, p. 647). Furthermore, it can be
used for multiple categorical variables by coding each variable
separately. Thus, this approach appears to be very general and
simple to implement and therefore, we will adopt it in the SPlit
algorithm to handle categorical variables.

4, Examples

In this section, we will compare SP1it with random sub-
sampling on real datasets for both regression and classification
problems.

Concrete compressive strength

0.7
205 Method
t 1
L * Random
2 B srii
o

0.4

0.3

LASSO Random forest

Figure 6. Distribution of RMSE over 500 random and SP11it subsampling splits
for the concrete compressive strength dataset.

Table 1. Description of datasets considered for regression.

Dataset Size Predictors Response
Abalone 4177 x 9 7 Continuous 1 Continuous
categorical (3
levels)
Airfoil self-noise 1503 x 6 5 Continuous Continuous
Meat spectroscopy 215 x 101 100 Continuous Continuous
Philadelphia 115 x5 2 Continuous 2 Continuous

birthweights categorical (2

levels each)

4.1. Regression

Consider the concrete compressive strength dataset from Yeh
(1998) which can be obtained from the UCI Machine Learning
Repository (Dua and Graff 2017). This dataset has eight con-
tinuous predictors pertaining to the concrete’s ingredients and
age. The response is the concrete’s compressive strength. We will
make an 80-20 split of this dataset which has 1,030 rows. Thus
Nirain = 824 and Nt = 206. The split is done using both
SPlit and random subsampling. All the nine variables are
normalized to mean 0 and standard deviation 1 before splitting.
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Figure 7. Distribution of RMSE over 500 random and SP1it subsampling splits for the datasets described in Table 1.

A good splitting procedure should work well for all possible
modeling choices. Therefore, to check the robustness against
different modeling choices, we choose a linear regression model
with linear main effects estimated using LASSO (Tibshirani
1996) and a nonlinear-nonparametric regression model esti-
mated using random forest (Breiman 2001). Both the models
are fitted on the training set using the default settings of the R
packages glmnet (Friedman, Hastie, and Tibshirani 2010) and
randomForest (Liaw and Wiener 2002). Then we compute
the root-mean-squared prediction error (RMSE) on the testing
set to evaluate the models’ prediction performance. We repeat
this procedure 500 times, where the same split is used for fitting
both the LASSO and random forest.

The testing RMSE values for the 500 simulations are shown
in Figure 6. We can see that on the average the testing RMSE
is lower for SP1it compared to random subsampling. This
improvement is much larger for random forest compared
to LASSO. We also note significant improvement in the
worst-case performance of SP1it over random subsampling.
Furthermore, the variability in the testing RMSE is much
smaller for SP1it compared to random subsampling and
therefore, a more consistent conclusion can be drawn using
SPlit. Thus, the simulation clearly shows that SPlit
produces testing and training set that are much better for model

fitting and evaluation. Computation of SP1it for this dataset
took on an average 1.6 seconds on a computer with 6-core
2.6 GHz Intel processor, which is a negligibly small price that
we need to pay for the improved performance over random
subsampling.

We repeated the simulation with several other datasets,
namely Abalone (Nash et al. 1994), Airfoil self-noise (Brooks,
Pope, and Marcolini 1989), Meat spectroscopy (Thodberg
1993), and Philadelphia birthweights (Elo, Rodriguez, and Lee
2001). Abalone and Airfoil self-noise datasets can be obtained
from the UCI machine learning repository (Dua and Graff
2017), while Meat spectorscopy and Philadelphia birthweights
can be obtained from the faraway (Faraway 2015) package
in R. The details of these datasets are summarized in Table 1.
Figure 7 shows the testing RMSE values for both LASSO and
random forest. We see similar trends as before on all the datasets;
SP1lit gives a better testing performance on the average than
random subsampling and a substantial improvement in the
worst-case testing performance.

4.2. Classification

For checking the performance of SP1lit on classification
problems, consider the famous Iris dataset (Fisher 1936). The
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Figure 8. Visualizing a SP11it subsampling testing set (circles) for the Iris dataset.
Iris dataset has four continuous predictors (sepal length, sepal Iris
width, petal length, and petal width) and a categorical response ;
with three levels representing the three types of Iris flowers
(setosa, versicolor, and virginica). There are 150 rows in total
. . . . 30 ;
with 50 rows for each flower type. Following the discussion
in Section 3, the flower type is converted into two continuous i ;
dummy variables using Helmert coding. Thus, the resulting ' Method
dataset has six continuous columns. For modeling we will Ezo - Random
use multinomial logistic regression and random forest. The & ) Fropartional
classification performance will be assessed using the residual | & = | % SPit
deviance (D) defined as
I i 10
JYij
D::2ZZyij-ln(;), (14)
i=1 j=1 Y
where I is the number of rows, J the number of classes, Vi €

{0,1} is 1 if row i corresponds to class j and 0 otherwise, and p;;
is the probability that row i belongs to class j as predicted by the
model. Note that 0log 0 is taken as 0 by definition.

Figure 8 shows a testing set selected by SP1it. We can see
that they are well-balanced among the three classes and the
points are well-spread out in the space of the four continuous
predictors. We fit multinomial logistic regression and random
forest on the training set and then the residual deviance is
computed on the testing set. This is then repeated 500 times.
Figure 9 shows the deviance results for SP1it, random, and
stratified proportional random subsampling. We can see that
again SP1it gives significantly better average and worst-case
performance compared to both random and stratified propor-
tional random subsampling.

Multinomial logit Random forest

Figure 9. Distribution of residual deviance (D) over 500 random, stratified propor-
tional random, and SP11t subsampling splits for the Iris dataset.

The foregoing study is repeated for four other datasets:
banknote authentication, breast cancer (diagnostic, Wisconsin)
(Street, Wolberg, and Mangasarian 1993), cardiotocography
(Ayres-de Campos et al. 2000), and glass identification (Evett
and Spiehler 1989), all of which can be obtained from the UCI
machine learning repository (Dua and Graft 2017). The details
of these datasets are summarized in Table 2 and the results
on the residual deviance are shown in Figure 10. It is possible
to encounter co while calculating deviance; for the purpose
of plotting, oo is replaced with the maximum finite deviance
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Figure 10. Distribution of residual deviance (D) over 500 random, stratified proportional random, and SP11t subsampling splits for the datasets described in Table 2.

Table 2. Description of datasets considered for classification.

Dataset Size Predictors Response

Banknote 1372 x 5 4 continuous Categorical (2 levels)
authentication

Breast cancer 569 x 31 30 continuous Categorical (2 levels)
(diagnostic,
Wisconsin)

Cardiotocography 2126 x 22 20 continuous 1 Categorical (3 levels)

categorical (3
levels)

Glass identification 214 x 10 9 continuous Categorical (6 levels)

obtained from the remainder of the 500 simulations. We can
see that SP1it gives a better performance than both random
and stratified proportional random subsampling in all the cases.
The improvement realized varies over the datasets and modeling
methods, but SP1it has a clear advantage over both random
and stratified proportional random subsampling.

5. Conclusions

Random subsampling is probably the most widely used method
for splitting a dataset for testing and training. In this arti-
cle, we have proposed a new method called SP1it for opti-
mally splitting the dataset. It is done by first finding SP of the

dataset and then using an efficient nearest neighbor algorithm
to choose the subsamples. They are then used as the testing
set and the remaining as the training set. The SP give the
best possible representation of the dataset (according to the
energy distance criterion) and therefore, SP1it is expected
to produce a testing set that is best for evaluating the per-
formance of a model fitted on the training set. The ability of
SP to match the distribution of the full data is one of its big
advantage over the other deterministic data splitting methods
such as CADEX and DUPLEX. We have also extended the
method of SP to deal with categorical variables. Thus, SP1it
can be applied to both regression and classification problems.
We have also briefly discussed on how a sequential application
of the SP can be used to generate validation and cross-validation
sets, but further development on this topic is left for future
research.

We have applied SP1it on several datasets for both regres-
sion and classification using different choices of modeling meth-
ods and found that SP1it improves the average testing per-
formance in almost all the cases with substantial improvement
in the worst-case predictions. The variability in the testing
performance metric using SP11it is found to be much smaller
than that of random subsampling, which shows that the results
and the findings of a statistical study would be much more
reproducible if we were to use SP1it.
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