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Abstract—Teams that bring together experts with different
expertise are important for solving complex problems. However,
research shows that teaming up people simply based on their
ability is not enough. Team members need to have clear roles,
and they should mutually endorse and respect their teammates
for the role they assume on the team. In this paper, we define the
MAXMUTUALRESPECT problem, a novel team-formation problem
that asks for a set of experts, each assigned to a distinct role, such
that the total respect that the individuals receive by the rest of the
team members for their assigned role is maximized. We show that
the problem is NP-complete and we consider approximation and
heuristic algorithms. Experiments with real datasets demonstrate
that our problem definitions and algorithms work well in practice
and yield intuitive results.

Index Terms—mutual respect, team formation, graphs

I. INTRODUCTION

Teams that bring together experts with different expertise for

different roles are essential for solving complex problems that

are too hard to be tackled by individuals. However, teaming

up people simply based on their expertise level is not enough.

Articles in research literature [1], [2] and in popular press 1,2

indicate that dynamics between the members of the team are

equally important for the success of the team. In particular,

they support that a successful team requires clearly defined

roles and responsibilities for each team member, and mutual

respect between the team members for their respective roles.

The problem of creating a team of experts while taking into

account the relationships between the team members was first

formulated in [3]. In that work they assume a set of experts,

each associated with a set of skills, organized in a network

capturing their ability to collaborate and communicate. The

goal is to identify a subset of experts that collectively have the

skills for a given task, while they induce a subgraph with low

communication cost. There has been considerable follow-up

work that considers different variants of this problem [4]–[8].

All prior work assumes that the dynamics in the team

are captured by a single undirected graph that represents the

overall compatibility between team members. However, an

equally important aspect in teams is the level of respect each

member enjoys for the specific role assigned to them. Respect

between individuals has distinctive characteristics. First, it

depends on the role. For instance, in the academic domain, an

expert in artificial intelligence may be respected by her peers

1https://www.nytimes.com/guides/business/manage-a-successful-team
2https://www.forbes.com/sites/glennllopis/2012/10/01/

6-ways-successful-teams-are-built-to-last/\#60ab15bf2b55

for her abilities in this field, but she may not be (equally)

respected for her abilities in mobile computing, or databases.

Second, respect is a directed relationship. For example, it is not

reasonable to assume that the degree of respect that a graduate

student has for a senior professor is equally reciprocated.

Existing work on team formation does not account for such

role specialized and asymmetric relationships.

Motivated by these considerations we formulate the novel

MAXMUTUALRESPECT problem that asks for a team of

experts, each associated with a distinct role such that the total

respect that these experts receive by the other team members

with respect to their associated role is maximized. In our

setting, we have a set of roles that need to be filled, and every

role is associated with a distinct directed network over the

set of experts that we refer to as the respect graph. An edge

(u, v) in the respect graph of role r denotes that u respects

and endorses v for the role r. Our goal is to create a team of

experts that assigns an expert to each role, such that the in-

coming edges to the designated experts in the corresponding

respect graphs, by their teammates is maximized. We study

the problem theoretically and experimentally, and we make

the following contributions:

• To the best of our knowledge we are the first to for-

mally define and study the novel team-formation problem

MAXMUTUALRESPECT which aims to find a team of

experts that maximizes the total respect.

• We show that MAXMUTUALRESPECT is NP-complete

and design heuristic algorithms for solving it in practice.

For the variant of the problem where each respect graph

is derived from a ranking of the experts, we design a

polynomial algorithm for finding a team with maximum

respect, if such a team exists, as well as approximation

algorithms that rely on the properties of rankings.

• Our experiments on two real case studies demonstrate

that our problem definitions and algorithms perform well

in practice and yield useful and intuitive results.

II. RELATED WORK

Recent studies raise the importance of team formation in

different settings [9], [10]. To the best of our knowledge, we

are the first to introduce the MAXMUTUALRESPECT problem

that takes into account the endorsement that individuals receive

with respect to specific skills required for accomplishing a

specific task. Our work is related to a lot of existing work in
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team formation, rank aggregation and endorsement deduction.

Below, we review this work and discuss how it relates to ours.

The importance of trust and respect in teams has been

studied in business literature [1], [2]. Their focus is mainly on

explaining why these are primary factors in team formation.

Our work uses these observations to formally define the

problem of creating a team with high respect.

The team-formation problem defined in [3] is the following:

Given a set of experts organized in a network, where each

individual is associated with a set of skills, identify a subset of

experts that together cover the skills required for completing a

task, while at the same time they induce a subgraph with low

communication cost. Different variants of the problem con-

sider different notions of communication cost [4]–[8], team-

design criteria [11]–[17], or task-arrival process [18]. There are

three key differences between our work and that line of work:

First, prior work assumes that the expert network is undirected,

defined by reciprocal relationships between the experts, while

our model assumes directed relationships. Second, we assume

a different network for each different role. Finally, in prior

work team formation is modeled as a coverage problem, where

the goal is to cover the set of skills for the task, while we have

an assignment problem where the goal is to assign an expert

to each role. These three factors make the problem considered

in this work fundamentally different from existing literature.

The variant of the problem where endorsements come in

the form of a ranking bears some similarity with the rank

aggregation problem [19]–[23]. However, in rank aggregation

the goal is to produce a single consensus ranking from the

input rankings. In our case, the goal is not to create a ranking

of the experts but rather to assign them to specific roles based

on the selected team’s consensus.

Finally, there is work on deducing endorsement relations

in social networks [24], [25]. Here, we assume that the

endorsement graphs are given as inputs. Creating these graphs

is out of the scope of this work.

III. PRELIMINARIES

We are given a set of experts V , and a set of roles S. Every

role i ∈ S is associated with a directed graph Gi = (V,Ei)
over the set of experts. A directed edge (u, v) ∈ Ei denotes

that u respects and endorses v for the role i. We refer to Gi

as the respect graph for role i. Our goal is to create a team

of experts F ⊆ V such that each role is assigned an expert,

and the assigned expert enjoys the respect of as many of the

other members in the team as possible for this role.

To formalize this idea, we define a role assignment as a

function f : S → V , where expert f(i) is assigned to role

i ∈ S. Let F = f(S) denote the selected team of experts.

We assume that the function f is injective, that is, each team

member can only be used for a single role, and therefore

|F | = |S|. The respect Ri(f) that expert f(i) receives with

respect to her role from the selected team is defined as

Ri(f) = |{(u, f(i)) ∈ Ei : u ∈ F, u �= f(i)}|, that is, the

number of incoming edges in graph Gi from the other team

members. The total respect score of the team is defined as the

sum of the respect values over all roles: R(f) =
∑

i∈S Ri(f).
We can now define the MAXMUTUALRESPECT problem.

Problem 1 (MAXMUTUALRESPECT): Given a set of roles

S and the corresponding respect graphs Gi = (V,Ei), i ∈ S,

find an assignment f : S → V , such that R(f) is maximized.

We can prove the following theorem for the complexity of

our problem. The proof of the theorem will be provided in an

extended version of this manuscript.

Theorem 1: The MAXMUTUALRESPECT problem is NP-

complete.

We also consider an interesting special case of the MAX-

MUTUALRESPECT problem where each respect graph Gi is

derived from a full ranking of the experts in V . In this case

the input is a set of k rankings P1, ..., Pk, where k = |S| and

each ranking corresponds to a role, defined as permutations

of the nodes in V . The value Pi[v] is the position of node v
in the ranking of role i. Lower value of Pi[v] denotes higher

rank. Given a ranking, we assume that an expert respects all

experts above her in the ranking, and is respected by all experts

below her in the ranking. In the corresponding graph Gi this

implies that we place an edge (u, v) for all pairs of nodes

such that Pi[u] > Pi[v]. We refer to this problem variant as

MAXRANKINGRESPECT.

The complexity of MAXRANKINGRESPECT remains un-

resolved. In Section IV we show that there is a polynomial

algorithm for finding the assignment with maximum possible

respect score R(f) = k(k − 1), if such an assignment exists.

This is the case where for each role, the expert assigned to

that role has higher rank than all team members for that role.

IV. ALGORITHMS

In this section, we describe our algorithms for the MAXMU-

TUALRESPECT and the MAXRANKINGRESPECT problems.

A. Algorithms for MAXMUTUALRESPECT

For the MAXMUTUALRESPECT problem we consider a

greedy algorithm, which assigns a score to every role-expert

pair, and at each step it selects the assignment with the highest

updated score value. We refer to the algorithm as Greedy.

The algorithm initially computes for each role-expert pair

(i, v) the score value:

s(i, v) = deg−Gi
(v) +

1

k − 1

∑

j∈S:j �=i

deg+Gj
(v), (1)

where deg−Gi
(v) and deg+Gi

(v) denote the in-degree and out-

degree of expert v in the respect graph Gi, respectively. High

in-degree in graph Gi means that node v is highly respected

for role i, while high average out-degree for the remaining

roles means that node v has on average high respect for the

other experts in the other roles.

First, Greedy selects the role-expert assignment pair with

the highest score. It then proceeds iteratively, where, given

the partial assignment F the algorithm computes a new value

for each unassigned role-expert pair (i, v) as follows:
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sF (i, v) = deg−Gi[F∪{v}](v) + |{(v, f(j)) ∈ Ej : f(j) �= ∅}|
+

1

k − |F | − 1

∑

j:f(j)=∅,j �=i

deg+Gj [V \F ](v),

(2)

where f(j) = ∅ denotes an unassigned role, and G[F ] denotes

the induced subgraph of the set F ⊆ V . Intuitively, a pair

(i, v) receives high score if node v has a lot of incoming

edges (respect) from the assigned nodes in F for role i, it has

a lot of outgoing edges (respect) to the nodes of the assigned

roles, and has high average respect for the unassigned nodes

in the unassigned roles. The terms in the above values are

normalized to be in the same scale, and we use dictionaries

to efficiently update them in each iteration. This iterative

selection step continues until all roles have been assigned

an expert.The running time of Greedy is O(k2n). Note that

Greedy makes local decisions by considering exhaustively

all the available valid assignments and selecting the locally

optimal one. However, as we see in Section V this may lead

the algorithm to get stuck in local optima. To overcome this

limitation we propose a randomized variant of Greedy that we

denote as RandGreedy.

RandGreedy follows the same score computations as

Greedy, but instead of selecting the (i, v) pair that maximizes

the score, it first selects a role i ∈ S : f(i) = ∅ uniformly

at random, and then selects the assignment pair (i, v) that

maximizes the score. We repeat the algorithm � times and we

report the assignment with the highest score. The running time

of RandGreedy is O(�kn).

B. Algorithms for MAXRANKINGRESPECT

For the MAXRANKINGRESPECT problem, we first present

the MaxScore algorithm that finds an assignment with maxi-

mum possible respect score R(f) = k(k−1), if such a solution

exists. The outline of the algorithm is shown in Algorithm 1.

The algorithm maintains a dictionary F that stores which

experts have been assigned to which roles, and a set D that

maintains experts that are ineligible for assignment. MaxScore

proceeds iteratively and repeats the following steps in each

iteration. It picks uniformly at random an unassigned role

r ∈ S : f(r) = ∅, and traverses the full ranking of r in a

top-down order. For each encountered expert v we have the

following cases: (i) If v has never been encountered before

it assigns it to role r, f(r) = v and continues with another

unassigned role; (ii) If v ∈ F and it is assigned to some

other role �, it cancels this assignment, setting f(�) = ∅, and

adds v to D thus rendering the expert ineligible for any future

assignment. It then continues traversing the ranking Pr of role

r; (iii) If v ∈ D it ignores v and continues traversing the

ranking Pr. The algorithm terminates when either of the two

following conditions is satisfied: (i) Assignment F contains

k experts, one for each role; (ii) All rankings are traversed

without finding an assignment F and the algorithm returns

the empty set. The running time of MaxScore is O(kn).

Algorithm 1 The MaxScore algorithm.

Input: Set S of k roles, rankings {P1, ..., Pk} with n experts.

Output: Assignment F .

1: F ← {};D ← {};C ← {1, . . . , 1}
2: while |F | < k and ∃i ∈ S : C[i] �= n do
3: r ← pick an unassigned role s.t. C[r] �= n
4: for j ∈ {C[r], . . . , n} do
5: C[r]← j
6: v ← the j-th expert in Pr

7: if v ∈ F : F [�] = v then
8: F [�]← ∅
9: D ← D ∪ {v}

10: else if v /∈ D then
11: F [r]← v
12: break
13: end if
14: end for
15: end while
16:

17: return F

Lemma 1: Algorithm MaxScore returns a non-empty assign-

ment f if and only if there exists an assignment with maximum

score k(k − 1).

Due to space limitations the proof of Lemma 1 will be

provided in an extended version of this paper.

The MaxScore algorithm will return the assignment with

maximum score if such exists, but returns no solution other-

wise. It remains an open question if there exists a polynomial-

time algorithm that can find the optimal assignment. We

consider an approximation algorithm for this case.

Furthermore, we propose the TopCandidates algorithm

which works as follows. The algorithm considers the roles in

a random order. For each role r it assigns the expert highest

in the ranking Pr that has not already been assigned. We

repeat the algorithm � times and report the assignment with

the highest score. The running time complexity is O(�kn).

Lemma 2: Algorithm TopCandidates is a 1
2 -approximation

algorithm for the MAXRANKINGRESPECT problem.

a) Proof [Sketch]:: When the algorithm considers the i-
th role in the worst case it will create i− 1 respect violations.

Therefore, the total number of respect violations of the pro-

duced assignment f is at most k(k − 1)/2, and the respect

score R(f) ≥ k(k− 1)− k(k− 1)/2 = k(k− 1)/2. Since the

optimal assignment has score at most k(k−1) the assignment

f is a 1
2 -approximation solution. �

We also propose the AllCandidates algorithm, an extension

of TopCandidates that exhaustively makes each possible role-

expert pair (i, v) ∈ S×V as a first assignment. After the first

assignment, it proceeds in the same manner as TopCandidates

each time selecting to assign to a role the highest ranked

node that has not been assigned. From all the candidate

assignments it returns the one assignment with the highest

respect score. Since the assignment of TopCandidates is one
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Team 1 Team 2 Team 3 Team 4 Team 5 Team 6
# Experts 68.9k 31.7k 95.9k 37.5k 56.7k 90.8k
# Roles 4 4 8 4 4 8

Avg. End./Role 728.7k 44.2k 659.5k 373.7k 586.4k 527.4k
Avg. End./Expert 42.25 55.85 55 39.82 41.33 46.46
Max End./Expert 2.6k 775 2.6k 920 1.88k 1.9k

# Overlap. Experts 13k 15.1k 37.3k 10.2k 4.6k 11.6k

TABLE I: A summary of the Citations dataset statistics; # Experts: Number of experts; # Roles: Number of roles to be fulfilled;

Avg. End./Role: Average in-degree of the respect graphs; Avg. End./Expert: Average in-degree of all experts; Max End./Expert:

Maximum in-degree of all experts; # Overlap. Experts: Number of experts encountered in all the respect graphs.

of the assignments considered by AllCandidates , it follows

that AllCandidates is also a 1
2 -approximation algorithm for

the problem. The running time complexity is O(�k2n2).

V. EXPERIMENTS

This section explores the practicality of our algorithms.

Specifically, (i) we evaluate the performance of our algorithms

on real-world datasets, (ii) we provide a runtime analysis.

For all randomized algorithms and experiments we set the

parameter � (the maximum number of iterations) to 50. For

all our experiments we use a single process implementation

of the algorithms on a 64-bit MacBook Pro with an Intel Core

i7 CPU at 2.6GHz and 16GB RAM. We make the code, the

datasets and the chosen parameters available online 3.

A. Results for MAXMUTUALRESPECT

For the MAXMUTUALRESPECT problem we will experi-

ment with the algorithms Greedy and RandGreedy presented

in Section IV. For the latter, we also report the average and

standard deviation score it achieves (denoted as AvgRand-

Greedy in the plots). We also compare against a baseline

Ranking that sorts the experts in each role according to their

score s(v, i), and then runs TopCandidates , selecting the top

candidates in each position. This corresponds to a greedy

algorithm that computes the scores once, and then assigns the

candidates with the highest score. We perform � different runs

(different order in role selection), and report the solution with

the maximum score. The running time complexity of Ranking

is O(kn log n+�kn). Finally, in our experiments Max denotes

the maximum possible respect score that can be achieved even

though a solution with such score might not exists.

1) Citation networks: We study the MAXMUTUALRE-

SPECT problem on real data generated from academic citation

networks. In this setting, the experts are scientists, and the

roles correspond to scientific fields. The respect graph is

formed by citations: author v respects author u in scientific

field i, if author u has a paper in field i, and author v has a

publication that cites that paper.

More precisely, we consider the following scientific fields

in Computer Science: Artificial Intelligence (AI), Neural Net-

works (NN), Natural Language Processing (NLP), Robotics,

Data Mining (DM), Algorithms, Data Bases (DB), Theory,

Signal Processing (SP), Computer Networking (CN), Informa-

tion Retrieval (IR), Wireless Networks and Mobile Comput-

ing (Wireless), Software Engineering (SE), High-Performance

3https://github.com/smnikolakaki/teammutualrespect

(a) Citations dataset (b) NBA dataset

Fig. 1: Respect Score (R) of the algorithms for the MAX-

MUTUALRESPECT problem (left) and the MAXRANKINGRE-

SPECT problem (right).

Computing (HPC), Distributed and Parallel Computing (DPC),

Operating Systems (OS). Using a publicly available resource4

we find the top-tier conferences for each field. We then use the

DBLP dataset5 to extract the set of publications and authors

that belong to these top-tier conferences, and create the citation

networks for the different fields. To reduce noise we removed

all self-loops from the graphs, and iteratively pruned authors

with less than 5 incoming and outgoing citations.

We consider six possible teams: (1) Team 1 is an AI &

Applications team with scientists from AI, NN, NLP, and

Robotics; (2) Team 2 is a Data & Algorithms team with

scientists from DM, Algorithms, DB, and Theory; (3) Team 3

has scientists from the fields of Teams 1 and 2; (4) Team 4 is

a Systems team with scientists from SE, HPC, DPC, and OS;

(5) Team 5 is a Networks team with scientists from SP, CN,

IR, and Wireless; (6) Team 6 has scientists from the fields of

Teams 5 and 6. Table I exhibits some statistics on the datasets.

Figure 1a shows the performance of the Greedy, Rand-

Greedy, Ranking and AvgRandGreedy algorithms for the dif-

ferent teams. The results show that RandGreedy outperforms

Greedy, while Ranking performs poorly on all tasks. In the

cases of Team 1 and Team 2, RandGreedy is able to find

teams of maximum score. Interestingly, the performance of

AvgRandGreedy is closer to the one of Greedy, and for Team

2 it performs slightly better. This indicates that, in this dataset,

Greedy is more easily trapped in local optima. Furthermore,

we see that as the number of candidate experts grows (Teams

3 and 6) the performance differences between Greedy and

RandGreedy are more pronounced. This is because Greedy

4https://dl.acm.org/ccs/ccs flat.cfm
5https://aminer.org/citation
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AI NN NLP Robotics DM Algorithms DB Theory
Top J.Lafferty G.Hinton E.Hovy V.Kumar C.Aggarwal A.Goldberg R.Agrawal M.Szegedy

Team1 L.Zettlemoyer D.Koller C.Manning A.Ng - - - -

Team2 - - - - A.Tomkins D.Sivakumar R.Kumar S. Muthukrishnan

Team3 R.Mooney M.Jordan A.McCallum D.Fox I.Dhillon W.Wang Q.Yang Y. Freund

SE HPC DPC OS SP CN IR Wireless
Top G.Rothermel I.Foster L.Ni M.Kaashoek G.Giannakis D.Towsley C.Buckley J.Polastre

Team4 R.Gupta P.Balaji A.Vishnu D.Panda - - - -

Team5 - - - - Z.Han S.Zhong B.Li W.Trappe

Team6 M.Li J.Wu X.Li B.Li Z.Yang Y.Liu Z.Li Y.Wang

TABLE II: Teams produced by RandGreedy on different subsets of scientific fields. Top denotes the scientists with the highest

number of citations in the corresponding field. A dash in a column denotes that this role was not requested for the team.

gets trapped in local optima, while RandGreedy is able to

avoid them through random selections.

We demonstrate the quality of our results in Table II

where we present the experts selected by RandGreedy for the

different teams. For calibration, we also present the scientists

with the highest number of citations in each field (Rows 2

and 7 denoted as Top). We observe that in all experiments

the produced teams contain acclaimed researchers who cite

and acknowledge the contributions of their peers in different

fields. However, none of the teams contains the most cited

author in any of the fields. Also, the assigned scientists for

Team 3 differ from those assigned in Teams 1 & 2 even though

the set of roles required by Team 3 is a superset of those in

Teams 1 & 2. Furthermore, in Team 2, the algorithm selects A.

Tomkins for DM, D. Sivakumar for Algorithms, R. Kumar for

DB, and S. Muthukrishnan for Theory. The first three authors

have worked a lot in these fields and they have heavily cited

each other, while S. Muthukrishnan is a well-known theorist

who has also publications in DB and DM venues.

B. Results for MAXRANKINGRESPECT

In this section, we evaluate the algorithms for the

MAXRANKINGRESPECT problem.

1) NBA Statistics: We evaluate the algorithms MAXRANK-

INGRESPECT using the NBA dataset6. The dataset contains in-

dividual basketball player statistics for different NBA seasons.

We use data for the seasons 2010 - 2017, and the following

subset of 11 performance metrics that we consider important in

assembling a basketball team: STL, AST, FT, BLK, FG, TRB,

2P, 3P, DBPM, OBPM, VORP. We refer the reader to 7 for

the description of these attributes. These performance metrics

correspond to roles in our setting. We prune the set of players

so as to keep the ones that have played in at least one third of

the games of the season, and have played at least 15 minutes

per game. In the resulting data we have the following number

of players in each year; 2010: 278 players; 2011: 289 players;

2012: 286 players; 2013: 291 players; 2014: 294 players; 2015:

319 players; 2016: 299 players; 2017: 310 players. We create

the ranking for each performance metric by sorting the players

in decreasing order of the metric value.

Figure 1b shows the performance of AllCandidates and Top-

Candidates . Note that for all seasons a solution with maximum

6https://www.kaggle.com/drgilermo/nba-players-stats
7https://www.basketball-reference.com/about/glossary.html

(a) Citations dataset (b) NBA dataset

Fig. 2: Runtime performance of the algorithms for the MAX-

MUTUALRESPECT problem (left) and the MAXRANKINGRE-

SPECT problem (right).

respect score exists and was found by MaxScore . We observe

that AllCandidates which always finding a maximum respect

score solution, performs slightly better than TopCandidates .

Table III shows indicatively the results of the three al-

gorithms for the seasons 2010 and 2016. Interestingly, the

TopCandidates algorithm, which does not achieve the max-

imum score, selects many players such as Lebron James, R.

Westbook, or Stephen Curry, that are at the top, or close to

the top of their corresponding ranking. These players are also

at the top of other role rankings as well, and thus do not have

sufficient respect for the player that finally occupy this role (a

common phenomenon with star players in team sports).

C. Runtime analysis

We now investigate the runtime efficiency of all our algo-

rithms. We report the running times of the algorithms on the

datasets Citations and NBA for the MAXMUTUALRESPECT

and the MAXRANKINGRESPECT problems, respectively. All

times are averaged over 5 runs and are reported in seconds.

The results for MAXMUTUALRESPECT using the Citations
dataset are shown in Figure 2a. We compare the runtime per-

formances of Greedy, RandGreedy and Ranking . We observe

that the algorithms Greedy and Ranking are very efficient.

In fact, their execution times are less than a minute which

renders them very scalable. RandGreedy appears to be slower

than the other two algorithms. We noticed that for one iteration

of RandGreedy (� = 1) its corresponding asymptotic runtime

complexity becomes O(kn) and its running time becomes

comparable to that of Greedy. Note, however, that even though

for smaller values of � RandGreedy is faster, its performance

is also more likely to drop.
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Season 2010

MaxScore AllCandidates TopCandidates
STL R.Rondo R.Rondo R.Rondo

AST S.Nash S.Nash S.Nash

FT C.Anthony C.Anthony D.Nowitzki

BLK A.Bogut S.Battier A.Bogut

FG K.Bryant K.Bryant K.Durant

TRB Z.Randolph Z.Randolph D.Howard

2P A.Stoudemire D.Lee A.Stoudemire

3P A.Brooks A.Brooks A.Brooks

DBPM M.Camby T.Ratliff M.Camby

OBPM M.Ginobili M.Ginobili D.Wade

VORP J.Smith J.Kidd L.James

Season 2016

MaxScore AllCandidates TopCandidates
R.Rubio R.Rubio R.Westbrook

R.Rondo R.Rondo R.Rondo

D.DeRozan D.Gallinari J.Harden

H.Whiteside R.Gobert H.Whiteside

C.J.McCollum E.Fournier K.Durant

A.Drummond K.Love A.Drummond

K.A. Towns B.Griffin L.James

D.Lillard J.R.Smith K.Thompson

A.Bogut A.Bogut A.Bogut

C.Paul M.Conley S.Curry

K.Lowry N.Jokic K.Lowry

TABLE III: Teams of basketball players for the seasons 2010 (left) and 2016 (right). Column 1 represents the team roles. Each

of the columns 2-7 represent a different team found by the corresponding algorithm.

The results for MAXRANKINGRESPECT using the NBA
dataset are shown in Figure 2b. In Figure 2b we compare

the performances of MaxScore , AllCandidates and TopCandi-

dates . Note that we only report the running time of AllCan-

didates which does not exceed 20 seconds, but we omit the

running times of MaxScore and TopCandidates because these

are less than a millisecond. Here, we see that the asymptotic

running time complexities agree with the algorithms’ perfor-

mances; MaxScore and TopCandidates are highly efficient

while AllCandidates is the slowest of the three algorithms.

VI. CONCLUSION

We introduced the novel problem of creating teams of

experts associated with distinct roles such that the total respect

that these experts receive by the other team members with

respect to their associated role is maximized. We showed

that the problem is NP-hard to solve and designed heuristic

algorithms for solving it in practice. For the variant of the

problem where respect graphs are derived from rankings, we

design a polynomial algorithm for finding a team with maxi-

mum respect, if such a team exists, as well as approximation

algorithms that rely on the properties of the rankings. Our

experiments with real-world datasets demonstrate the utility of

our algorithms in practice. For future work, we are interested

in studying the weighted version of our problem.
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