
Side Channel Resistance at a Cost: A Comparison
of ARX-based Authenticated Encryption

Flora Coleman, Behnaz Rezvani, Sachin Sachin, William Diehl
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA

{flora-coleman, behnaz, sachin255701, wdiehl}@vt.edu

Abstract—Lightweight cryptography offers viable security so-
lutions for resource constrained Internet of Things (IoT) devices.
However, IoT devices have implementation vulnerabilities such
as side channel attacks (SCA), where observation of physical
phenomena associated with device operations can reveal sensitive
internal contents. The U.S. National Institute of Standards and
Technology has called for lightweight cryptographic solutions to
process authenticated encryption with associated data (AEAD),
and is evaluating candidates for suitability in a Lightweight
Cryptography (LWC) Standardization Process. Two Round 2
candidate variants, COMET-CHAM and SCHWAEMM, use
Addition-Rotation-XOR (ARX) primitives. However, ARX ci-
phers are known to be costly to protect against certain SCA.
In this work we implement side channel protected versions of
COMET-CHAM and SCHWAEMM using register transfer level
design. Identical protection schemes consisting of a threshold
implementation (TI)-protected Kogge-Stone adder are adopted.
Resistance to power side channel analysis is verified on an Artix-7
FPGA target device. Implementations comply with the Hardware
API for Lightweight Cryptography, and use a custom-designed
extension of the Development Package for the Hardware API
for Lightweight Cryptography which enables test and evaluation
of side channel resistant designs. We compare side channel
protection costs of the two candidates against each other, against
their unprotected counterparts, and against previous side channel
protected AEAD implementations. COMET-CHAM is shown to
consume less area and power, while SCHWAEMM has higher
throughput and throughput to area ratio, and is more energy
efficient. On average, the costs of protecting these ciphers
against SCA are 32% more in area and 38% more in power,
compared to the average protection costs for a large selection
of previously-evaluated ciphers of similar implementation. Our
results highlight the costs involved in implementing side channel
protected ARX-ciphers, and help to inform NIST LWC late round
and final portfolio selections.

Index Terms—lightweight cryptography, NIST, authenticated
encryption, side-channel, FPGA, ARX

I. INTRODUCTION

With the continued growth of the Internet of Things (IoT),
more attention is being directed towards ensuring the security
of IoT devices. One way is through the use of lightweight cryp-
tography, which has the potential to offer security at a lower
cost than current cryptographic standards. This is valuable
for the IoT because many devices do not have the necessary
resources to support current standards. To engender suitable
lightweight cryptography solutions, the National Institute of

This work is partially funded by the U.S. Department of Commerce (NIST)
Award 70NANB18H219 for Lightweight Cryptography in Hardware and
Embedded Systems and the National Science Foundation under Grant Number
1303297.

Standards and Technology (NIST) is holding the Lightweight
Cryptography (LWC) Standardization Process from 2018 to
2021 [1]. NIST is evaluating algorithms for authenticated
encryption with associated data (AEAD), which provide mes-
sage confidentiality, integrity and authenticity in one algorithm
[2]. To evaluate submissions, NIST suggested looking at a
number of metrics, including performance, consumption of
resources, and resistance to side channel attacks, including in
reconfigurable hardware platforms such as FPGAs.

Cryptographic algorithms can be resistant to mathematical
attacks yet still vulnerable to side channel attacks (SCA) due
to the physical characteristics of implementations. SCA ana-
lyze these characteristics to expose sensitive information. For
example, in Differential Power Analysis (DPA) [3], statistical
analysis of power consumption data is used to reveal sensitive
information about the target algorithm. One countermeasure
used to guard against power analysis SCA is the threshold
implementation (TI) method [4]. An advantage of TI is that
it leverages the benefits of secret sharing [5] while also
maintaining security in CMOS device implementations which
are subject to data-dependent glitches. Although TI provides
important protection against SCA, there are costs incurred
with applying the method, including increased consumption
of resources (e.g., FPGA look-up tables (LUTs)) and power
consumption.

In this paper, we examine two AEAD cipher candidates
which have advanced to Round 2 of the NIST LWC Stan-
dardization Project: COMET-CHAM [6] and SCHWAEMM
[7]. COMET and SCHWAEMM are the only two remaining
NIST-candidate families which use Addition-Rotation-XOR
(ARX) primitives as their source of non-linearity. This pro-
vides an interesting basis for comparison, especially when
considering how these algorithms can be protected against
SCA. To better understand the cost associated with protecting
these algorithms, we create several register transfer level
(RTL) implementations of each candidate. We first build
unprotected implementations (UnPr) of each candidate using
basic-iterative, i.e. round-based, architecture, where modulo
addition used in the ARX primitive is implemented with the
FPGA fabric adder. As an incremental step towards the pro-
tected versions, we provide implementations which integrate a
registered Kogge-Stone adder (KSA) in lieu of the fabric adder.
These implementations were then modified to be protected (Pr)
against SCA by using a 1st-order DPA-resistant, 3-share, TI
KSA [8] scheme. Boolean masking is used to separate input

193

2020 30th International Conference on Field-Programmable Logic and Applications (FPL)

978-1-7281-9902-3/20/$31.00 ©2020 IEEE
DOI 10.1109/FPL50879.2020.00040

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 03,2021 at 19:11:11 UTC from IEEE Xplore. Restrictions apply.

data, such as public or secret key data, into three secret shares.
A direct comparison of performance and costs in nearly cycle-
equivalent unprotected and protected architectures is achieved
using the incremental UnPr KSA implementations as a basis
for comparison. We compare these ciphers against one another
and we also compare results to previous work. This helps
address a question not satisfactorily covered in the previous
NIST SHA-3 competition, namely, assessment of the relative
side channel protection costs of ARX ciphers [9].

To facilitate fair comparison, all implementations follow the
guidelines defined by the Hardware Application Programming
Interface (API) for Lightweight Cryptography (LWC API)
[10] and use utility modules provided in the Development
Package (DP HWAPI LWC) [11]. To support the protected
implementations of COMET-CHAM and SCHWAEMM, we
implement the LWC API standards for SCA-protected im-
plementations by a custom extension of the DP HWAPI
LWC. The updated DP HWAPI LWC supports the generation
of multi-shared test vectors, input/output, and processing of
shared implementations.

The main contributions of this paper include:
1) The first side channel resistant FPGA implementations

of NIST LWC Round 2 ARX-based candidates COMET-
CHAM and SCHWAEMM.

2) An extension to the Development Package for the Hard-
ware API for Lightweight Cryptography to facilitate
testing and verification of multi-share SCA-resistant
implementations for all NIST LWC candidates.

3) A direct comparison of these two NIST LWC candidates
in terms of resource and performance costs; and an
indirect comparison between ARX and non-ARX based
authenticated ciphers.

II. BACKGROUND & PREVIOUS WORK

There have been several FPGA implementations of NIST
LWC Round 2 Candidates. RTL implementations of SpoC,
GIFT-COFB, COMET-AES and Ascon are provided in [12].
These implementations were evaluated across several FPGAs
including the Artix-7, Spartan-6 and Cyclone-V. In [13],
authors evaluated a LOTUS implementation on the Virtex-6
FPGA, and a hardware evaluation of ESTATE was presented in
[14]. Additionally, an ASIC-based evaluation of LWC Candi-
dates ACE and WAGE was conducted in [15]. These hardware
implementations provide valuable points of comparison for
LWC candidates, but do not investigate costs associated with
side channel protection. The NIST report on Round 1 results
[16] does not focus heavily on hardware implementations and
SCA resistance, suggesting that this will play a larger role
in later round selections. Additionally, many previous HW
implementations do not employ a standard protocol such as
the LWC API, which makes direct comparisons difficult.

Threshold implementations (TI) provide provably secure
protection against DPA, including protections against glitch
propagation pertinent to CMOS device implementations [4].
When a glitch occurs in hardware, the power consumption as-
sociated with the glitch is comparatively large. Data-dependent

differential power consumption can even be used to deduce
internal values, as in [17]. In order to provide security, TI relies
upon the three properties of non-completeness, correctness,
and uniformity [4]. Non-completeness ensures that at least one
share is omitted from each function calculation. Correctness
is achieved when the summation of the output shares provides
an accurate result. Uniformity guarantees that the input proba-
bility distribution of a function matches its output probability
distribution. Finally, it is important to note that the minimum
number of shares needed to uphold these properties for a given
function is one more than the degree of the function, e.g., three
shares are required to protect a second-degree primitive [4].

Costs of protecting cryptographic algorithms against SCA
have been investigated in the past. Several have used TI as
their method for providing protection. In [18], the authors
produced a protected version of the NIST LWC Round 2
Candidate Ascon [19] using TI. They similarly compared the
trade offs of protected versus unprotected implementations.
A threshold implementation of the block cipher SPARX was
presented in [20]. The permutation SPARKLE, which is used
in SCHWAEMM, is based off of a variation of SPARX [7].
A large group of AEAD algorithms was evaluated in [21],
providing metrics on the cost associated with TI-based SCA
protection for multiple ciphers. Although there have been
several works examining threshold implementations, none of
these previous works compare the costs of multiple ARX
ciphers, or compare a subgroup of ARX ciphers against a
larger group of non-ARX ciphers.

ARX-based ciphers are known to offer fast performance in
software when compared to Substitution-Permutation Network
(SPN)-based ciphers [22]. Several works have investigated
software implementations of ARX-based ciphers, including a
performance evaluation of both SPARX and CHAM in [23].
However, good performance of ARX-ciphers in hardware is
not certain [9], [24]. In this research, we choose to evaluate
RTL implementations of COMET-CHAM and SCHWAEMM
on an Artix-7 FPGA to gain a better understanding of the costs
associated with ARX-ciphers on hardware, and the impact of
using side channel resistant methodologies.

Previous SCA protection for ARX ciphers has been pri-
marily investigated in software due to the fast speed of
ARX structures in software [25], [26]. In general, there are
two techniques for applying a masking scheme against SCA
on ARX ciphers: 1) Using Boolean and arithmetic masking
together [25], [26], and 2) using Boolean logic for arithmetic
operations [27]. The fundamental challenge in the first method
is the need for a secure conversion from the Boolean to
arithmetic masking and vice versa. Furthermore, since these
conversion methods are primarily designed and optimized for
software platforms, they may not perform as efficiently in
hardware [27], [28]. This problem is alleviated in the second
technique, where we directly apply a masking method on the
Boolean shares. Inspired by this, we focus on the protected
hardware implementations of the ARX-based ciphers using
purely Boolean masking in this paper.

194

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 03,2021 at 19:11:11 UTC from IEEE Xplore. Restrictions apply.

III. METHODOLOGY

A. Register Transfer Level Implementations

The COMET family of submissions to the NIST LWC Stan-
dardization Process employs the COMET mode of operation
[6] and a variety of possible block ciphers. The COMET
mode of operation combines aspects of the Beetle [29] mode
of operation and the CTR [30] mode of operation. COMET
requires a 128-bit key and a 128-bit nonce to process data
blocks and tag of size 128 bits. COMET has two ARX-
based members: COMET-CHAM and COMET-SPECK. The
SPECK block cipher is designed for optimal performance in
software, while SIMON is a hardware-optimized block cipher
[31]. However, CHAM is a new lightweight block cipher that
has comparable results to SPECK in software, but smaller area
than SIMON in hardware [32]. Therefore, we focus on the
COMET-CHAM submission. The COMET state is made up of
the concatenation of two parts: 128-bit Y-state and 128-bit Z-
state. The contents of Y-state and Z-state are considered as the
input state and key state of CHAM, respectively. The COMET
implementation is shown in Figure 1. CHAM-128/128 uses
4 branches to process the 128-bit state, with each branch
consisting of one 32-bit word of the state. CHAM consists
of 80 rounds, and each ARX-round uses one of the 8 unique
round keys generated using the 128-bit input key. The key
schedule of CHAM is based on the stateless-on-the-fly, thus
the key state is not updated during the 80 rounds. 80 total
clock cycles per permutation call (one per round) are required
using basic-iterative architecture.

CHAM128

key
32

Pad

Kreg

Y

= =

bdo

msg auth1

Zreg

φ

ctrl

bdi
32

Dreg

N

Yreg

Z

Chop CT

Computed tag

AD/PT

Expected tag

32

ϱ

Fig. 1. COMET-CHAM Implementation compliant with the LWC API. All
bus widths are 128 bits unless otherwise indicated.

SCHWAEMM256-128 is an authenticated cipher which em-
ploys the SPARKLE384 permutation [7]. The cipher requires a
256-bit nonce and a 128-bit key to process 256-bit data blocks.
The ciphertext produced is the same size as the input plaintext,
and the output tag has a size of 128 bits. SCHWAEMM uses a
mode of operation which is a modification of Beetle, detailed

in [29]. Several features of SCHWAEMM include a constant
injected for domain separation, the combined feedback, and
the rate whitening which modifies the state before the start of
the SPARKLE permutation. Six instances of the ARX box
Alzette are used (6 total branches) in SPARKLE384, each
taking as input two of the 12 consecutive words of the state
[7]. Each step of the permutation completes the 4 ARX rounds
of Alzette before the application of the linear layer. Depending
on the current operation, either 7 or 11 steps will be completed
before the permutation terminates. This implementation allo-
cates one clock cycle per ARX round, taking either 30 or
46 clock cycles to complete the permutation, including two
additional clock cycles to store the input and output states.
The implementation is depicted in Figure 2.

Fig. 2. SCHWAEMM Implementation compliant with the LWC API. All bus
widths are 384 bits unless otherwise indicated.

B. SCA Protection Scheme
To make these RTL implementations side channel resistant,

we first integrate an unprotected 32-bit Kogge-Stone adder
(KSA) [8] into the ARX primitives. We chose the KSA since
it supports the overlay of a Boolean masking scheme, and is
previously demonstrated with good performance in hardware
and software [27], [33]. Specifically, a registered version of
a 32-bit KSA was used to ensure that the same number of
clock cycles would be used for the ARX primitive in the UnPr
(KSA) implementation and the Pr implementation. Next, the 3-
TI KSA scheme explored in [27] was applied. Figure 3 depicts
the 32-bit registered KSA, and shows its six levels of registers.

Fig. 3. 32-bit Kogge-Stone Adder with six layers of registers. Bus widths are
1 bit unless otherwise indicated. “m” denotes input for refreshing randomness.

The 3-TI KSA scheme requires replacing all AND gates
within the Kogge-Stone adder with 3-share TI AND gates, and

195

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 03,2021 at 19:11:11 UTC from IEEE Xplore. Restrictions apply.

pdi_sipo_valid

pdi_data_a

pdi_sipo_ready

sd
i_

d
at

a

sd
i_

va
li

d

sd
i_

re
ad

y
W

SW

bdi_ready

CryptoCore

bdi_a CCW

bdi_valid

bdi_valid_bytes

4

key_a

key_ready
key_valid

msg_auth

msg_auth_valid

msg_auth_ready

bdo_a

bdo_ready

bdo_valid

d
o_

va
li

d

d
o_

re
ad

y

d
o_

d
at

a

LWC

CCSW

Pre
Processor

Post
Processor

CCW

W

bdo_valid_bytes
4

pdi_data_b
W

pdi_data_c
Wpdi_sipo

sdi_sipo_valid

sdi_data_a

sdi_sipo_ready

SW
sdi_data_b

SW
sdi_data_c

SW
sdi_sipo

p
d

i_
d

at
a

p
d

i_
va

li
d

p
d

i_
re

ad
y

do_piso_valid

do_data_a

do_piso_ready

W
do_data_b

W
do_data_c

W do_piso

key_c CCSW

key_b CCSW

bdi_b CCW

bdi_c CCW bdo_c CCW

bdo_b CCW

LWC_TB

do_fifodo.txt = =

✓/⨯

pdi_fifo

W

sharedPDI.txt

W

W

W 3*W

sdi_fifo sharedSDI.txt

genShared.py pdi.txt

genShared.py sdi.txt cryptotvgen.py

cryptotvgen.py

Fig. 4. Overview of the Extension to the Development Package for the Hardware API for Lightweight Cryptography (DP HWAPI LWC). Blue indicates
modified modules, green indicates new additions, and gray indicates unchanged components.

registering the output at each stage of the adder. We introduce
refreshing randomness to meet the uniformity property of TI
implementations. This randomness is generated by an external
pseudo random number generator (PRNG) based on the Triv-
ium stream cipher [4]. The remainder of our implementations
are protected by separating data into three Boolean masked
shares. To prevent possible data leakage, our modified version
of the DP HWAPI LWC ensures that these shares are not
combined together anywhere within the LWC module (see
Figure 4).

C. Extension of DP HWAPI LWC

The Development Package for the LWC API [11], fielded
in 2019, supports easy implementations of AEAD and hash
designs compliant with the LWC API [10]. Although sharing
protocols for side channel resistant implementations were
defined in the LWC API, they were not implemented in
the development package. To support SCA-resistant imple-
mentations of COMET-CHAM and SCHWAEMM, we extend
the DP HWAPI LWC to introduce an SCA-protected DP
HWAPI LWC, as depicted in Figure 4. This modification
will additionally facilitate LWC API-compliant SCA-resistant
implementations of any NIST LWC candidate.

The baseline DP HWAPI LWC includes a PreProcessor,
CryptoCore and PostProcessor. The PreProcessor and Post-
Processor handle the processing of test vector inputs to and
outputs from CryptoCore. Designers place their implementa-
tions within the CryptoCore module. The DP HWAPI LWC
additionally includes a test bench (LWC TB) and cryptotvgen,
a Python module which generates test bench compatible test
vectors. To implement the SCA-protected DP HWAPI LWC,
we modify the PreProcessor and PostProcessor to simultane-
ously act on 3 shares using the previously defined control
signals, and expand the input and output data signals bdi

and bdo to and from the CryptoCore. We also include serial-
in parallel-out (SIPO) modules to capture share-separated data
arriving at the LWC, and a parallel-in serial-out (PISO) module
to reserialize processed data departing from the LWC. Further,
we provide additional test vector generation utilities, coded in
Python, which reformat test vectors generated by cryptotvgen
for use in the protected DP HWAPI LWC. The reformatted
test vectors share-separate public and key data using initial
randomness provided in Python.

Figure 4 shows our additions and modifications to the DP
HWAPI LWC. Modified portions are color-coded blue; new
additions are green, and unchanged portions are grey.

IV. RESULTS

To confirm that the protected implementations of COMET-
CHAM and SCHWAEMM were resistant to side channel anal-
ysis, t-tests were completed using the Flexible Open-source
workBench fOr Side-channel analysis (FOBOS) [34]. Our
instance of FOBOS uses the Digilent Nexys A7 as a control
board, the NewAE CW305 Artix-7 FPGA (xc7a100tftg256-
3) target board to instantiate designs under test (DUT), and
collects power traces using the Picoscope 5000 Oscilloscope.
Leakage analysis is performed using the Test Vector Leakage
Assessment (TVLA) method detailed in [35]. Figures 5 and
6 show the results of t-tests on the UnPr and Pr versions of
COMET-CHAM and SCHWAEMM respectively. With 2000
power traces collected at 1 MHz DUT frequency, the tests
show leakage across the time domain (x-axis), indicated by
t-values that exceed a threshold of |4.5| (shown with blue
lines). T-values for the protected t-tests are contained within
the threshold, indicating that the protected implementations
have less propensity to data-dependent leakage which could
be exploited through SCA attacks.

196

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 03,2021 at 19:11:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. COMET-CHAM t-test results run at 1MHz. (a) COMET-CHAM UnPr.
(b) COMET-CHAM Pr.

Our implementations are optimized for best throughput-
to-area (TPA) ratio using the Minerva automated tool for
hardware optimization [36]. Results from this work (TW) are
shown in Table I. Please note that the area of the PRNG is not
considered in these results. Results of other selected instances
of corresponding unprotected and protected cipher hardware
implementations are included for comparison.

Fig. 6. SCHWAEMM t-test results run at 1MHz. (a) SCHWAEMM UnPr.
(b) SCHWAEMM Pr.

A. Direct Comparison

Of the two ARX-based candidates, SCHWAEMM Pr con-
sumed the most area at 12,531 LUTs, which is 4.4×
larger than SCHWAEMM UnPr (KSA) and 5.4× larger than
SCHWAEMM UnPr. By contrast, the area of COMET-CHAM
Pr is 8,760 LUTs, which is 3.7× that of COMET-CHAM
UnPr (KSA), and 4.0× larger than COMET-CHAM UnPr.
The increased area of the protected 3-share TI implementation,
resistant to 1st-order DPA, results from an approximate tripling
of linear transformations (e.g., rotations) and associated dat-
apath (e.g., registers, multiplexers, and XOR operations), and
a quadratic increase in non-linear components (e.g., AND op-
erations) associated with the Kogge-Stone Adder performing
the 32-bit modulo addition. An additional increase of area
results from our extension to the DP HWAPI LWC, as it

includes additional buffers to split data into shares on input to
the PreProcessor and recombine shares upon output from the
PostProcessor.

However, SCHWAEMM offers higher throughput than
COMET-CHAM. While the combinational logic critical paths
of COMET-CHAM and SCHWAEMM are similar (e.g. the
maximum frequency is 205 MHz for COMET-CHAM and 207
MHz for SCHWAEMM Pr), SCHWAEMM processes 256-bit
message blocks whereas COMET-CHAM processes 128-bit
blocks. Further, assuming basic-iterative architectures, CHAM
UnPr requires 80 clock cycles to process one block of state
while SCHWAEMM UnPr needs only 44 clock cycles. In
the KSA-based implementations UnPr (KSA) and Pr, 6 clock
cycles per addition are required versus only 1 cycle per FPGA
fabric addition in UnPr. Therefore, the number of required
clock cycles becomes 480 for CHAM UnPr (KSA) and Pr,
and 264 for SCHWAEMM UnPr (KSA) and Pr. This leads to
a SCHWAEMM Pr throughput (TP) of 231.4 Mbps, which is
11% less than SCHWAEMM UnPr (KSA), and a COMET-
CHAM TP of 44.2 Mbps, which is 22% less than COMET-
CHAM UnPr (KSA). The TP reductions from UnPr (KSA) to
Pr result from additional routing delay due to area growth in
the FPGA implementation; there is negligible increase in the
critical path.

In terms of throughput-to-area ratio (TPA), SCHWAEMM
Pr is the greatest of the protected implementations at 0.019
Mbps/LUT, which is a 4.8× reduction from SCHWAEMM
UnPr (KSA), while the TPA ratio of COMET-CHAM is 0.005
Mbps/LUT, which is likewise a 4.8× reduction from COMET-
CHAM UnPr (KSA).

We also consider differences in power consumption and
energy efficiency (energy-per-bit or E/bit) of COMET-CHAM
and SCHWAEMM. Power is measured on FOBOS at the
Artix-7 Vcc input across a 1 Ohm resistor for test vec-
tors consisting of two authenticated encryption and decryp-
tion operations. Table II shows mean power and E/bit re-
sults at 40 MHz, and power gradient (mW/MHz) identi-
fied by the linear interpolation of measurements at multiple
frequencies (10, 25, and 40 MHz). E/bit is computed as
MeanPwr(mW)40MHz/TP (Mbps)40MHz . SCHWAEMM
Pr is the most energy efficient at 1.21 nJ/bit, while COMET-
CHAM consumes 5.44 nJ/bit at 40 MHz. As a large percentage
of Artix-7 power is static, the power gradient (increase of mW
per increase of 1 MHz) improves the metric for comparison
of dynamic power consumption. COMET-CHAM Pr has the
lower gradient 0.4823 mW/MHz, which is 4.8× greater than
COMET-CHAM UnPr (KSA), while SCHWAEMM Pr has
a gradient of 0.7293 mW/MHz, which is 4.6× greater than
SCHWAEMM UnPr (KSA). We note that the gradients for
COMET-CHAM UnPr (KSA) and SCHWAEMM UnPr (KSA)
are 30% and 46% less than their respective UnPr gradients;
this shows that 32-bit modulo additions performed by the
fabric adder in a single clock cycle pull more current than
the equivalent modulo addition divided over 6 clock cycles
using the Kogge-Stone adder.

197

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 03,2021 at 19:11:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
IMPLEMENTATION RESULTS

Cipher Impl FPGA Freq Area Area TP TP TPA TPA Ref(MHz) (LUT/GE) (Ratio) (Mbps) (Ratio) (Mbps/Area) (Ratio)

COMET-CHAM
UnPr

Artix-7
201.0 2214 0.92 282.73 4.99 0.128 5.41

TWUnPr (KSA) 255.0 2399 1.00 56.67 1.00 0.024 1.00
Pr 205.0 8760 3.65 44.18 0.78 0.005 0.21

SCHWAEMM
UnPr

Artix-7
169.0 2321 0.82 920.51 3.56 0.397 4.33

TWUnPr (KSA) 189.0 2824 1.00 258.74 1.00 0.092 1.00
Pr 207.0 12531 4.44 231.41 0.89 0.019 0.20

Ascon UnPr - - 7950 1.00 5524 1.00 0.694 1.00 [18]Pr - 30420 3.82 3774 0.68 0.124 0.18

Ascon UnPr Spartan-6 195.5 2048 1.00 255.4 1.00 0.125 1.00 [21]Pr 103.1 6364 3.11 134.6 0.53 0.021 0.17

Acorn UnPr Spartan-6 226.6 549 1.00 906.2 1.00 1.651 1.00 [21]Pr 142.7 2732 4.98 570.6 0.63 0.209 0.13

JAMBU-AES UnPr Spartan-6 163.1 1073 1.00 50.9 1.00 0.048 1.00 [21]Pr 122.4 2869 2.67 38.2 0.75 0.013 0.28

AES-GCM UnPr Spartan-6 176.0 1947 1.00 103.4 1.00 0.053 1.00 [21]Pr 116.8 4828 2.48 68.57 0.66 0.014 0.27

TABLE II
POWER AND ENERGY MEASURED ON ARTIX-7 FPGA

Cipher Impl
Mean Pwr E/bit Gradient Gradient

(mW) (nJ/Bit) (mW/ Ratio
@40 @40 MHz)
MHz MHz

COMET-CHAM
UnPr 31.8 0.56 0.1417 1.42

UnPr (KSA) 30.6 3.47 0.0997 1.00
Pr 46.9 5.44 0.4823 4.84

SCHWAEMM
UnPr 39.2 0.18 0.2910 1.85

UnPr (KSA) 32.6 0.59 0.1573 1.00
Pr 54.0 1.21 0.7293 4.64

B. Indirect Comparison

An exhaustive comparison with all previously published re-
sults is beyond the scope of this research. Selected results from
previous works (e.g. [18], [21]), which performed comparisons
of DPA-protected and unprotected cipher implementations, are
included in Table I. An interesting comparison, however, is our
subgroup of NIST LWC ARX-based cipher implementations
versus the group of 11 ciphers (10 CAESAR candidates plus
AES-GCM) reported in [21]. Though none of the external
selection of ciphers included in Table I are ARX-based, the
protected implementations of the ciphers use the TI method to
provide 1st-order resistance to DPA and the FPGA implemen-
tations use the CAESAR Hardware API [37], which is similar
to the LWC API. This provides a close basis for comparison.
Implementations in [21] had an average area 3.1× larger
than their unprotected counterparts, while COMET-CHAM Pr
and SCHWAEMM Pr are an average of 4.1× larger than
their respective UnPr (KSA) implementations. Although the
referenced study did not provide power gradients, power con-
sumption for Spartan-6 FPGA protected implementations at 10
MHz increased by an average factor of 3.4× over unprotected
implementations, while power gradients of protected ARX
ciphers in this research increased by 4.7× compared to their
UnPr (KSA) counterparts. Finally, TPA ratios of protected
ciphers in [21] decreased by 5.6× compared to unprotected

implementations, while the ARX subgroup decreased by only
4.8×. Thus we find that ARX hardware implementations have
a higher area and power side channel protection cost than
the “average” authenticated cipher, while there is no statistical
reduction in TPA ratios.

V. CONCLUSIONS

In this research we performed a detailed comparison of side
channel protected FPGA implementations of the two authen-
ticated encryption candidate families in the NIST Lightweight
Cryptography (LWC) Standardization Process which use
Addition-Rotation-XOR (ARX) primitives: COMET-CHAM
and SCHWAEMM. To implement and functionally verify
implementations, and confirm side channel resistance of pro-
tected implementations, we extended an existing hardware
development package to enable multi-share implementations
compatible with the LWC Application Programming Interface.
In a comparison of implementations with basic-iterative archi-
tecture and 1st-order DPA resistance, the protected COMET-
CHAM is shown to use fewer FPGA resources, and consume
less power than SCHWAEMM, while protected SCHWAEMM
has a higher throughput-to-area (TPA) ratio, and is more
energy efficient. Additionally, we considered the costs of
side channel protection of this subgroup of ARX-based au-
thenticated ciphers compared to a larger group of similarly-
implemented ciphers from a previous study. We found that
this subgroup of ARX ciphers is more costly to protect against
SCA in terms of area and power consumption than the average
cipher in the larger study, however, the protected ARX authen-
ticated ciphers are generally not worse in terms of throughput
or TPA ratio than the average authenticated cipher. Future
work could include affirmation of these findings through a
larger-scale study of protected authenticated ciphers enabled
by our extension to the hardware development package.

REFERENCES

[1] National Institute for Standards and Technology, “Submission
Requirements and Evaluation Criteria for the Lightweight Cryptography

198

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 03,2021 at 19:11:11 UTC from IEEE Xplore. Restrictions apply.

Standardization Process,” Tech. Rep., Aug. 2018. [Online]. Available:
https://csrc.nist.gov/projects/lightweight-cryptography

[2] P. Rogaway, “Authenticated-Encryption with Associated-Data,” in Pro-
ceedings of the 9th ACM Conference on Computer and Communications
Security, ser. CCS ’02. New York, NY, USA: Association for
Computing Machinery, 2002, p. 98–107.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Advances in Cryptology — CRYPTO’ 99. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 388–397.

[4] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementa-
tions Against Side-Channel Attacks and Glitches,” in Information and
Communications Security, P. Ning, S. Qing, and N. Li, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 529–545.

[5] L. T. Brandão, N. Mouha, and A. Vassilev, “Threshold
schemes for cryptographic primitives: challenges and opportunities
in standardization and validation of threshold cryptography,”
National Institute of Standards and Technology, Gaithersburg,
MD, Tech. Rep. NIST IR 8214, Mar. 2019. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8214.pdf

[6] S. Gueron, A. Jha, and M. Nandi. (2019, Nov.) COMET:
COunter Mode Encryption with authentication Tag. [Online].
Available: https://csrc.nist.gov/Projects/lightweight-cryptography/round-
2-candidates

[7] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl,
L. Perrin, A. Udovenko, V. Velichkov, and Q. Wang. (2019,
Sep.) Schwaemm and Esch: Lightweight Authenticated Encryption
and Hashing using the Sparkle Permutation Family. [Online].
Available: https://csrc.nist.gov/Projects/lightweight-cryptography/round-
2-candidates

[8] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient So-
lution of a General Class of Recurrence Equations,” IEEE Transactions
on Computers, vol. C-22, no. 8, pp. 786–793, Aug. 1973.

[9] S. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul,
and L. E. Bassham, “Third-Round Report of the SHA-3 Cryptographic
Hash Algorithm Competition,” 2012.

[10] J.-P. Kaps, W. Diehl, M. Tempelmeier, E. Homsirikamol, and K. Gaj.
(2019, Oct.) Hardware API for Lightweight Cryptography. [Online].
Available: https://cryptography.gmu.edu/athena/index.php?id=LWC

[11] M. Tempelmeier, F. Farahmand, E. Homsirikamol, W. Diehl,
J.-P. Kaps, and K. Gaj, “Implementer’s Guide to Hardware
Implementations Compliant with the Hardware API for
Lightweight Cryptography,” Nov. 2019. [Online]. Available:
https://cryptography.gmu.edu/athena/index.php?id=LWC

[12] B. Rezvani, F. Coleman, S. Sachin, and W. Diehl, “Hardware Implemen-
tations of NIST Lightweight Cryptographic Candidates: A First Look,”
Cryptology ePrint Archive, Report 2019/824, pp. 1–26, Feb. 2020.

[13] A. Chakraborti, N. Datta, A. Jha, C. M. Lopez,
M. Nandi, and Y. Sasaki, “LOTUS and LOCUS AEAD:
Hardware Benchmarking and Security,” Nov. 2019. [Online].
Available: https://csrc.nist.gov/Events/2019/lightweight-cryptography-
workshop-2019

[14] ——, “ESTATE: Hardware Benchmarking and Security Analysis,” Nov.
2019. [Online]. Available: https://csrc.nist.gov/Events/2019/lightweight-
cryptography-workshop-2019

[15] M. D. Aagaard, M. Sattarov, and N. Zidaric, “Hardware
Design and Analysis of the ACE and WAGE Ciphers,”
arXiv:1909.12338 [cs], Jan. 2020, arXiv: 1909.12338. [Online].
Available: http://arxiv.org/abs/1909.12338

[16] M. S. Turan, K. A. McKay, C. Çalık, D. Chang, and L. Bassham,
“Status report on the first round of the NIST lightweight cryptography
standardization process,” National Institute of Standards and Technology,
Gaithersburg, MD, Tech. Rep. NIST IR 8268, Oct. 2019. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8268.pdf

[17] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully Attacking
Masked AES Hardware Implementations,” in Cryptographic Hardware
and Embedded Systems – CHES 2005, J. R. Rao and B. Sunar, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 157–171.

[18] H. Gross, E. Wenger, C. Dobraunig, and C. Ehrenhöfer, “Ascon hardware
implementations and side-channel evaluation,” Microprocessors and
Microsystems, vol. 52, pp. 470–479, Jul. 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0141933116302721

[19] C. Dobraunig, M. Eichlseder, F. Mendel, and
M. Schläffer, “Ascon,” V1.2, Nov. 2019. [Online]. Avail-

able: https://csrc.nist.gov/Projects/Lightweight-Cryptography/ Round-
2-Candidates

[20] S. M. Ramesh and H. AlKhzaimi, “Side Channel Analysis of SPARX-
64/128: Cryptanalysis and Countermeasures,” in Progress in Cryptology
– AFRICACRYPT 2019, J. Buchmann, A. Nitaj, and T. Rachidi, Eds.
Cham: Springer International Publishing, Jun. 2019, pp. 352–369.

[21] W. Diehl, A. Abdulgadir, F. Farahmand, J.-P. Kaps, and K. Gaj, “Com-
parison of Cost of Protection Against Differential Power Analysis of
Selected Authenticated Ciphers,” in 2018 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, Apr. 2018,
pp. 147–152.

[22] N. Mouha and B. Preneel, “A Proof that the ARX Cipher Salsa20
is Secure against Differential Cryptanalysis,” IACR Cryptology ePrint
Archive, pp. 1–18, 2013.

[23] B. Seok and C. Lee, “Fast implementations of ARX-
based lightweight block ciphers (SPARX, CHAM) on 32-bit
processor,” International Journal of Distributed Sensor Networks,
vol. 15, no. 9, p. 10, Sep. 2019. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1550147719874180

[24] N. Mouha, “ARX-based Cryptography,” Jun. 2011. [Online]. Available:
https://www.cosic.esat.kuleuven.be/ecrypt/courses/albena11/slides/nicky
mouha arx-slides.pdf

[25] L. Goubin, “A Sound Method for Switching between Boolean and Arith-
metic Masking,” in Cryptographic Hardware and Embedded Systems
— CHES 2001, Ç. K. Koç, D. Naccache, and C. Paar, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 3–15.

[26] B. Debraize, “Efficient and provably secure methods for switching
from arithmetic to boolean masking,” in Cryptographic Hardware and
Embedded Systems – CHES 2012, E. Prouff and P. Schaumont, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 107–121.

[27] T. Schneider, A. Moradi, and T. Güneysu, “Arithmetic Addition over
Boolean Masking,” in Applied Cryptography and Network Security,
T. Malkin, V. Kolesnikov, A. B. Lewko, and M. Polychronakis, Eds.
Cham: Springer International Publishing, 2015, pp. 559–578.

[28] J. D. Golic, “Techniques for random masking in hardware,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 2,
pp. 291–300, 2007.

[29] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda, “Beetle Family
of Lightweight and Secure Authenticated Encryption Ciphers,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2018, no. 2, pp. 1–24, 2018.

[30] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation - Methods and Techniques,” Dec. 2001. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38a.pdf

[31] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, “The SIMON and SPECK Families of Lightweight
Block Ciphers,” Cryptology ePrint Archive, Report 2013/404, 2013,
https://eprint.iacr.org/2013/404.

[32] B. Koo, D. Roh, H. Kim, Y. Jung, D.-G. Lee, and D. Kwon, “CHAM:
A Family of Lightweight Block Ciphers for Resource-Constrained
Devices,” in Information Security and Cryptology – ICISC 2017, H. Kim
and D.-C. Kim, Eds. Cham: Springer International Publishing, 2018,
pp. 3–25.

[33] J.-S. Coron, J. Großschädl, M. Tibouchi, and P. K. Vadnala, “Conversion
from Arithmetic to Boolean Masking with Logarithmic Complexity,” in
Fast Software Encryption, G. Leander, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 130–149.

[34] A. Abdulgadir, W. Diehl, and J.-P. Kaps, Flexible, Opensource work-
Bench fOr Side-channel analysis (FOBOS), User Guide, v2.0 ed.,
Cryptographic Engineering Research Group, Dec 2019.

[35] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, P. Rohatgi, and S. Saab, “Test Vector
Leakage Assessment (TVLA) methodology in practice,” vol. 1001,
Gaithersburg, MD, Nov. 2013, pp. 1–13.

[36] F. Farahmand, A. Ferozpuri, W. Diehl, and K. Gaj,
“Minerva,” Dec. 2017. [Online]. Available: https://cryptography.gmu.
edu/athena/index.php?id=Minerva

[37] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla,
J. Kaps, and K. Gaj, “CAESAR Hardware API,” Cryptology ePrint
Archive, Report 2016/626, 2016, http://eprint.iacr.org/2016/626.pdf.

199

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 03,2021 at 19:11:11 UTC from IEEE Xplore. Restrictions apply.

