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This paper considers the stability of an unsteady, two-phase flow with heat and mass transfer. The model
problem is motivated by loss of coolant accidents in nuclear power plants. For the example problem, two
flow geometries are considered: inverted annular flow boiling and an annular mist flow. The model is
comprised of coupled Mathieu equations so that stability can be determined using a Floquet analysis.
The flow is found to be mathematically unstable to all perturbative wavenumbers, but for practical pur-
poses there are regions of stability. Using the solution’s growth behavior and doubling-time, the notion
of practical stability, which is termed herein as "engineering stability,” is quantified and a method is
provided for application to other engineering stability problems.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

This paper proposes a technique to determine the engineer-
ing stability for unsteady, or oscillatory flows. Oscillating flows
present unique effects on turbulent intensities (Sleath, 1987) and
diffusion (Watson, 1983), which have application to both the man-
made and natural world. Flow oscillations and their impacts are
of interest for oceanic studies (Lowe et al., 2005), power genera-
tion (Bestion, 2004), and chemical processes (Harvey et al., 2001).

Time varying, and in particular, oscillating flows are often un-
stable, but with small growth rates as compared to some time pe-
riod of interest (Razavi et al., 2016; Kelly, 1965). Their mathemati-
cal stability can be determined using Floquet theory, which is one
method for solving linear ordinary differential equations whose co-
efficients and/or boundary conditions are periodic (Coddington and
Levinson, 1955). For example, Benjamin and Ursell (1954) studied
the stability of the free surface of an inviscid fluid in a circular
cylinder undergoing periodic vertical motion, such that the system
is parametrically forced due to a time-varying acceleration of grav-
ity. From Benjamin and Ursell (1954), a stability analysis at the free
surface leads to a Mathieu equation, so that there are regions of
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instability to perturbations whose resonance frequencies are har-
monics of the parametric forcing frequency. In these regions of in-
stability, the free surface exhibits standing waves that oscillate at
the resonant frequency, with amplitudes that will grow until non-
linear effects become significant (Drazin and Reid, 2004). This sys-
tem is often referred to as “Faraday waves” (Faraday, 1837) and
has been the subject of many analytic, numerical, and experimen-
tal studies.

There have been generalizations by, for example, Kumar (1996),
who allowed for viscous effects, and Kumar and Tucker-
man (1994), who considered the stability of an interface between
two fluids undergoing vertical oscillations. Such parametric ex-
citations occur in other systems, for example, vibrated, wetting
liquid drops supported by a solid plate (Maksymov and Potot-
sky, 2019), floating drops with deformable domains (Pucci, 2015),
and multi-frequency parametric forcing in smallest chemical reac-
tions (Zhou et al.,, 2020).

In particular, Kelly (1965) investigated the stability of an un-
steady Kelvin-Helmholtz flow with surface tension. The effect of
viscous stresses not included, Kelly found that the interface be-
tween two inviscid fluids became unstable due to periodic pertur-
bations. More recently, Razavi et al. (2016) studied the stability of
a system modeled by coupled Hill's equations using Floquet the-
ory. They identified regions of stability, even though perturbations in
these regions had positive growth rates. Floquet theory defines sta-
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bility in terms of eigenvalues, A;, which provide the growth rates
of the perturbations, such that if |A;|, (i = 1,2,...,n), are all less
than one, then the system is mathematically stable. In the system
studied by Razavi et al. (2016), the largest |A;| was close to one, but
greater than one, so the perturbations would grow, but slowly. The
idea that |A;| > 1 may be considered stable for engineering pur-
poses, is the focus of this paper.

Here, we pursue this idea further, and quantify it using a model
unsteady flow problem motivated by a loss of coolant accident
(LOCA). To this end, we define “engineering stability.” Engineering
stability is determined by the amount of growth of perturbations
during the operational period, whereas mathematical stability is
determined by non-positive growth rates. Instead of focusing on
whether |A;| < 1, engineering stability is concerned with the rate
of perturbation growth over a time period that is of physical rel-
evance, and what the consequences of that amount of growth are
on the physical system. For a particular physical system, one can
determine the tolerance for perturbation growth during the time
that the system is operational. Then the question of engineering
stability becomes: how large can the eigenvalues be such that the
perturbation growth is bounded by the desired tolerance?

In this paper, we show that the value for Ap.x is determined
such that the tolerance for perturbation growth is a factor of
two, and the time for the perturbation to double in size (i.e. the
doubling-time) is within the operational period of the system. If it
is, then we consider the system to be unstable from an engineering
perspective, In particular, a system of equations with time-varying,
periodic coefficients, whose solution is v;, can be represented at a
later time (t + nT), for example by Nayfeh and Mook (2008) as

v;(t + nT) = Alv(t), (1.1)

where t is time, n is the number of oscillation periods, and T is
the oscillation period. Herein, we consider the system to have en-
gineering stability if all values of A; are such that v;(7) < 2v;(0),
where 7 is the time period over which the system is operational.

A growth factor of e, rather than two, and its corresponding e-
folding time, is another common choice. For example, an e-folding
time is used in oceanography, biology, and cosmology to under-
stand the propagation of instabilities with time (Stone, 1972; Rum-
feldt et al., 2008; Pitari et al.,, 2016). While e-folding time has been
used to measure perturbation growth for other applications, this
is the first time, to the best of the authors’ knowledge, that such
parameters have been used as a stability criterion. We note that
a factor of two is the more conservative choice than a factor of
e, and has relevance for the system considered (see discussion in
Section 4). The physical example used herein includes heat and
mass transfer, viscous effects at the interface, and a time-varying
flow velocity. This applied method for stability provides an addi-
tional, simple metric with which to analyze a complex, two-phase
system.

2. Example problem

The model problem is motivated by applications to nuclear
power plants in which there is oscillatory flooding of a heated
tube. Perturbations that have large enough growth rates could
worsen nuclear power accidents, more specifically during a LOCA.
We define the flow in Section 2.1, establish the initial and bound-
ary conditions, and determine the coupled Mathieu equations that
will be used for the stability analyses in Section 2.2.

2.1. Flow description
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Fig. 2. Approximating IAFB geometry during an upstroke as an annulus with liquid
at the center and gas on the walls (Beck, 2019).

oscillatory flooding of a heated tube, Oh et al. (1986) found that
the void fraction, or fraction of the flow channel volume that is
occupied by gas, and hence the flow regimes, oscillate between In-
verted Annular Flow Boiling (IAFB) and Annular Mist Flow (AMF),
as illustrated in Fig. 1. Here, the IAFB geometry is depicted dur-
ing an upstroke. Slugs and droplets of liquid are sheared from the
incoming jet by fast moving vapor downstream. In contrast, dur-
ing a downstroke, AMF is present with dispersed flow film boiling
(DFFB) occurring further downstream. Together, Fig. 1 shows the
downstream effects of different flow regimes present in an oscil-
lating flow.

During an upstroke, the high velocity liquid jet cannot come in
direct contact with the heated wall due to high temperature va-
porization there, and resembles IAFB. The IAFB geometry can be
approximated as an annulus with liquid in the center and gas on
the walls, shown in Fig. 2. By contrast, for low flooding rates or
during a downstroke, AMF occurs, with gas in the center and liquid
along the walls. The AMF geometry is simply the inverse of Fig. 2.
Since both flow geometries are required to characterize oscilla-
tory flow, stability analyses are performed on both the IAFB and
AMF geometries in the following sections. However, for brevity, the

IAFB geometry will be used as an example for the majority of the
nrowvided eanatinne Identical acciimntinne and annraximatinne are
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assumed incompressible due to its low velocity, which for this ex-
ample has a Mach number < 0.3. Specific to this problem, nuclei
production is not a dominant mechanism for interfacial instabili-
ties. Since the bulk liquid is significantly subcooled (between 22
to 55 K), when vapor bubbles are generated on the heated surface
for the AMF geometry, they will instantaneously collapse as they
depart. Additionally, for the IAFB geometry, since the gas phase,
rather than the liquid, is in direct contact with the heated surface,
there will be no nucleation for this flow type. Therefore, for the
two flow geometries, nuclei production is not considered a domi-
nant mechanism for instability.

Additionally, since the gas and liquid layers are so thin along
the wall (see Fig. 2) variations in r will be insignificant, so % ~0

in the film. From Fig. 2, q,, is the wall heat flux, R;, is the dimen-
sional, radial distance from the center of the annulus to the wall,
R} is the dimensional, radial distance from the center of the annu-
lus to the edge of the liquid core, n* is the dimensional height of
the interfacial wave, and U (t) represents the oscillating velocity of
the liquid and gas phases.

We note that since the flows are incompressible and irrota-
tional, viscous-potential flow theory (Funada and Joseph, 2001) is
used, which assumes that the viscosity is only significant at the in-
terface between the two fluids. Therefore, viscous forces do enter
the analysis through the normal stress balance at the interface be-
tween the liquid and gas. This approximation is reasonable in wave
motions where the viscous resistance to these waves is not negligi-
ble, or when the gas phase shear stress is sufficiently small. While
gas phase turbulence and the consequential liquid entrainment
that occurs would be present in a real flow, to keep the analysis
linear, these effects are neglected herein. The following analysis is
provided in full detail in Beck (2019) and Mohanta et al. (2016).
However, for the work by Mohanta et al. (2016), the flow is steady,
as opposed to the unsteady flows presented here.

In the following equations, ()* denotes dimensional quantities
and terms without an asterisk are non-dimensional. Additionally,
because the method of normal modes will be used, terms with a
() refer to the base (or unperturbed) state of the oscillatory flow
for either the liquid or gas phase, and w refers to the oscillation
frequency of the base flow. The flow will be considered in terms
of an undisturbed base flow and a small perturbation to the base
flow. The base states of the liquid (I) and gas (g) are oscillating,
with velocity potentials (‘f’fo ), where i = (I, g) as

#jo = Ufpsin(wt™). (21)

The velocity of each phase U}, is defined as

Uz, =

= . 2.2
i,0 p'*Al* ( )

In (2.1) and (2.2), w* is the base flow oscillation frequency, U} is
the base flow velocity, o} is the density, Af is the flow area, i} is
the average mass flow rate, and t* is time. Since the base flow is
irrotational, velocity potentials are found by solving Laplace’s equa-
tion in the liquid and gas so that

V*Zzp;fo =0. (2.3)
With the axisymmetric flow assumption, the Laplacian operator is
_e 19 9
Tore oredre - 3z’

The Bernoulli equation is used to determine the pressures in both
the liquid and gas phases. For irrotational flows, the unsteady

v+ (2.4)
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(2.6)

.0 0
3? + E(V*‘f’;o) -(V'g0) + pg; +8&'z" = H(t"),
where Hj(f) and H;(t) represent time-dependent coefficients that
are determined using the velocity potentials and the Young-
Laplace equation (Panton, 2013). The Young-Laplace equation re-
lates the pressures of both phases, the surface tension (o*), and

surface curvature of the undisturbed liquid at the interface (k) as

Pfo — Pgo = 0"Kg. (2.7)

Egs. (2.1) - (2.7) represent the base states for flows in both ge-
ometries, [AFB and AMF. The scales used to non-dimensionalize
variables for the IAFB geometry are

2R*
[length, velocity, time, pressure] = [2Rj‘, 200 U—*; pgug%,].
&
(2.8)

The quantity 2Ry is selected as the length scale for the IAFB geom-
etry because it simplifies the non-dimensionalization of the inter-
face. The resulting non-dimensional lengths, time, and pressure for
the IAFB geometry are

(29)

" " t*U* S
[Z!r*t'p]=|:z*‘ r*’ g*ﬂ’ *p*Z:I'
2R 2Ry 2R ,ogUg’O

The AMF geometry uses the same non-dimensionalizations except
for the length scale, which is chosen as 2R*, the radius of the gas
phase.

The ratios of base flow velocity, density, and dynamic viscosity
are

Ur (t)
1,0
" i 2.10a
v Uﬁ,o(t) ( )
Pg
==, (2.10b)
Y P;
Mg
=2 (2.10c)
(=
In this problem, four dimension-
less parameters arise: gas Reynolds

(Reg), gas Weber (Wey), Froude (Fr), and Strouhal (St) numbers
that are defined as

U* 2R}
Reg = g‘z* L (211a)
g
*U*ZZR*
Wey = 3;70‘ (2.11b)
U*Z
g0
Fr=— 2 (211c)
and
w*2R*
St=——". (211d)
Ug,o

To evaluate the stability of the system, perturbations are ap-

plied to the total velocity, pressure, and velocity potentials as
ﬁi = Ul"o + U, (2'12)

Pi=Po+pi (2.13)
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Table 1
Boundary conditions for both flow geometries.

Atr=0 Atr=ry
a kil
IAFB Uplro=¥lo<oc =0
AMF  Ugplioo= Pl <0 %2-0

2.2. Boundary conditions and governing equations

A total of five conditions are needed to evaluate the two-fluid,
coupled system in two-dimensions. Conditions include one no-flow
boundary condition at the wall (r = ry,), one finite solution condi-
tion along the centerline (r=0), and three interfacial conditions
derived from conservation of mass, momentum, and energy. The
three interfacial conditions will be defined in this section.

The two conditions at r = 0 and r = r, are functions of the flow
geometry and are listed in Table 1. The dimensional perturbed in-
terface equation for the IAFB geometry is

F*(r, 25, t*) = 1* — R} — * (2", 1), (2.15)

and for the AMF geometry, the dimensional perturbed interface is

F*(r, 2%, t") = 1" — R} — " (2", "), (2.16)

where n* represents the location of the liquid-gas interface, r* a
radial position, and R} and R} the dimensional radii of the lig-
uid and gas phases, respectively. The relationship for the non-
dimensional interface between the two fluids for the IAFB and
AMF geometries is the same. The simplified, non-dimensional
Eq. (2.17) for the free surface is the reason for choosing the scales
provided in (2.8) and (2.9):

F(r,z,t) =1 — % —-n(zt). (217)

The method of normal modes is applied to the velocity poten-
tials at the interface location, of the form

[czw, 2.6). ¢s(r 2.6), (2. r)] - [cfS,(n £), e (1, 0), ﬁ(t)]e”‘z.
(2.18)

Performing mass, momentum, and energy balances at the two-
phase interface between the liquid and gas yields the final gov-
erning equations in terms of the unknowns A(t), C(t), 7(t), and
their derivatives, where A and C are two unknowns originating
from the independent eigenfunctions of (2.3). The mass, momen-
tum, and energy balances at the linearized interface, r = % respec-
tively are

%c;? A(t)alk+c(t)k{ +Il(§)k}+

aoi1-sinse -0 [{1- ¥} =0, 9)
Ri 2(ﬂz+as)}+n(t){4 e} @2

and,
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where [; is a modified Bessel function of the first kind.

The system of Egs. (2.19)-(2.21) will lead to a singular matrix.
To avoid this, we manipulate (2.19) and (2.21) by solving for d—’idirﬁ
in (2.19), substituting into (2.21), and then taking the derivative

with respect to time, yielding

dc(t) dA()  di®) [, .,
“ar Mg gt g {AS(")[ ]*

ik[1 — sin(St - £)][1— 1/;]} - ﬁ(t){ik(1 — ¥)[cos(St - t)]St}.
(2.22)

Here, Eq. (2.22) is a modified form of conservation of energy that
leads to a diagonalizable system of equations to be analyzed using
Floquet theory.

Only the final governing equations for the IAFB geometry are
provided here. We choose to use Egs. (2.19), (2.20), and (2.22);
however, if (2.20), (2.21), and (2.22) were used instead, the results
would be the same. For a complete derivation of the governing
equations for both flow geometries, see Beck (2019). These equa-
tions are used to determine the fundamental set of solutions re-
quired for the method of normal modes to analyze the stability.

For (2.19)-(2.22), coefficients a;, where i = (0,1,2,3) are given as

ag=1Io I?]((’;;W))Kn( ) (2.23a)
-i8)- B )
a = 10(§) +12(§), (2.23¢)
o[ (2 [42)

where K; is a modified Bessel function of the second kind.

3. Determination of mathematical stability for an unsteady
flow

3.1. Numerical analysis

Since the coefficients of the ordinary differential equations are
periodic functions of time, Floquet theory can be used to solve the
governing equations with oscillating velocities. The three equations
for the three unknowns are conservation of mass (2.19), momen-
tum (2.20), and modified conservation of energy (2.22), which are
assembled as

& A(t)
Q)| L0 | Q| c® |, (31)
dii(t) fi
i ()
where Q, (t) and Q5 (t) are both 3x3 matrices, and Q;(t) = Q;(t +
T), (i = 1, 2), are time-dependant, periodic coefficients.
To solve this system of equations, (3.1) is rewritten as
s A(t)
€O | — Q) 'Q(t) | Ct) (3.2)
i) fi(t)

dt
Our choice of the modified conservation of energy Eq. (2.22) guar-
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Table 2
Parameters for stability analyses.

o Tw (K)  Reg We,

IAFB 0.9 600 4000 24
AMF 099 404 20,200 76

The eigenvalues of the solution vector, F, determine the stabil-
ity of the system (Nayfeh and Mook, 2008). The eigenvalues are
established by solving

fin—M 0 0
0 faz =22 0 =0.
0 0 f3— A3

Because of the periodicity of the coefficients, the solution vec-
tor, F(t), at any time t =nT, (n=0,1,...), will be proportional to
(F(T))". Thus, one can show that if the three moduli of eigenvalues
[IA1], |A2], |A3|] are all less than one, then the system is considered
stable. The following method is used to evaluate the stability of the
system of equations:

(3.3)

(i) A range of wavenumbers (k) and Strouhal numbers (St) is cho-
sen to evaluate the temporal stability and swept in two loops.
Values of St, ranging from 103 to 10~2, are selected based on
experiments by Beck (2019), which have oscillation frequencies
varying from two to 10 s.

(ii) An initial condition vector is specified, [xg], which includes the
initial values for A(t), C(t), and #j(t), respectively, at t = 0.

(iii) The system of equations is integrated from 0 to 52% where (i)
is the vector that contains the range of St values. The range for
the period of integration is chosen to ensure that one full os-
cillation period is evaluated, where T = s%% Each coefficient is
checked to confirm that the largest full period is used.

(iv) The relative and absolute tolerances to perform the integrations
are set to 10~7. Smaller tolerances were tested with no signifi-
cant effect on the results.

(v) For every combination of k and St, the eigenvalues are calcu-
lated.

Based on the eigenvalues, stability is determined using

lma,(:max(l)nl, [Aa], |13|)<1-

If (3.4) is satisfied, then the base flow is mathematically stable.
(vi) If (3.4) is not satisfied, then we consider the possibility of en-
gineering stability (see Section 4).

(3.4)

3.2. Parametric study

The combined effects of void fraction («), temperature of the
heated wall (Tw), Reg, and Weg; on the stability of both flow
geometries are discussed here. For individual parameter effects,
see Beck (2019). Table 2 shows the parameters used to determine
the mathematical stability provided in Figs. 3 and 4. The conditions
listed in Table 2 are based on experimental data from Beck (2019),
with approximate values:

(i) Ug =15 m/s,
(ii) U; between 0.0254 to 0.1524 m/s,
(iii) oscillation period between two and 10 s,
(iv) system pressure between 138 to 414 kPa,
(v) liquid temperature between 22 to 55 K subcooled,
(vi) and a vapor temperature above saturation.

Figs. 3 and 4 show maximum eigenvalues for the IAFB and AMF
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Fig. 3. Maximum eigenvalues for the IAFB geometry resulting from (3.4).
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Fig. 4. Maximum eigenvalues for the AMF geometry resulting from (3.4).

without color, represented with white, include eigenvalues that are
larger than the maximum color-bar value.

In Fig. 3, the IAFB geometry with combined effects of Reg,
Weg, St, and heat transfer effects, has a minimum eigenvalue A =
1.0000001, which is greater than one. Additionally, Fig. 4 shows
the AMF geometry with the same combined effects and has a min-
imum eigenvalue A =1.175. While dimensionless parameters Reg
and We; have little effect on the stable regions, the addition of
heat transfer significantly reduces the stability of the system. In a
full parametric study by Beck (2019), it was determined that the
addition of heat transfer at the interface primarily reduces the sta-
bility of the system.

Heat transfer promotes instabilities, as reported in the lit-
erature, specifically for the AMF configuration (Nayak and
Chakraborty, 1984; Beck, 2019). For the AMF geometry, the thin
liquid film between the heated wall and the gas will be close
to, or near, its saturation temperature. In this state, the liquid re-
quires minimal additional heat to initiate vaporization there, and
this leads to an instability. This result is similar to what is ob-
served by Nayak and Chakraborty (1984), where the addition of
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Fig. 5. Different An.x solutions as functions of number of oscillations. The green
vertical line at n = 75 oscillations denotes the duration of oscillations for the ex-
ample problem.

flow increases the amount of liquid carryover compared to con-
stant flow. The amount of liquid carryover, or entrained liquid in
the carrier gas phase, can be used to physically quantify the ef-
fects of the interfacial instability, for when the interface becomes
unstable, liquid break-up will occur.

Since both flows (IAFB and AMF) are mathematically unstable
(A > 1) in the range of Strouhal number and wavenumbers of in-
terest, this suggests that the flows are unstable given realistic con-
ditions in an experiment or nuclear reactor undergoing flow boil-
ing. However, we make the case that these flows can be described
as “engineering stable,” for eigenvalues that are A =1 + €, where
€ « 1.

In Section 4, we describe how flow oscillations observed during
a finite time period can be used to predict solution growth during
that time. The example problem will be used to define an engi-
neering stability criterion for this flow and demonstrate how engi-
neering stability may be determined for other flows.

4. Determining engineering stability

Engineering stability is unique for each application, since the
limits for Apax are problem-specific. To determine engineering sta-
bility, perturbation growth rate and doubling-time are evaluated.
Together, this information will be used to characterize the engi-
neering stability criterion for the example problem.

Fig. 5 depicts three different eigenvalues with predicted pertur-
bation growth in time, using (1.1). It shows that when A" < 1.001,
the perturbation amplitude does not double before the time of in-
terest, shown as 75 oscillations in the figure. The time of interest
is chosen as 75 oscillations, or 150 s with a two second oscillation
period, because flow oscillations during a LOCA are most promi-
nent within this time-frame (Beck, 2019; Beck et al., 2016, 2018;
Bestion, 2004; Cheung et al., 2014). In contrast, for those eigenval-
ues greater than 1.001, the perturbation growth tends to increase
by orders of magnitude within the first 10 oscillations.

The solution’s doubling-time can provide an additional metric
for defining engineering stability. The doubling-time refers to the
time it takes for a solution to double in magnitude, or

T In(2)

= (Gl ) @)
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Fig. 6. Doubling-time depicted for each Amax solution.

0.1
0.09 1.0009
0.08 1.0008
0.07 1.0007
0.06 1.0006
» 0.05 «E 1.0005
0.04 1.0004
0.03 1.0003
0.02 1.0002
0.01 1.0001
0

0 0.01 0.02 0.03 0.04 0.05
Wavenumber, k (m'1)

Fig. 7. Extended maximum eigenvalues for the IAFB geometry based on engineering
stability criteria, Amax < 1.001.

Perturbation growth for this example is allowed as long as the
perturbation amplitude does not approach the radius, R, which
can either be defined as R = (Rw —R;) for the IAFB geometry or
R = (Rw — Rg) for the AMF geometry. To use t;, as a representative
timescale for solution growth, we can write this criterion in terms
of the wavelength, Ly, and the radius R, such that

0.2Lf
2R
If (4.2) is satisfied, then the doubling-time can be used as a rep-
resentative timescale for the example problem’s solution growth.
As an example, the IAFB geometry’s oscillation velocity and fre-
quency determine L; to be 50.8 mm. Together, the wavelength
with R = 1.9 mm, satisfies (4.2) since 0.85 < 1.

A large doubling-time, compared to the operational time, sug-
gests that the perturbation amplitude will not significantly in-
crease within the operational time of interest, which for this exam-
ple is 150 s. Fig. 6 shows that for Amax < 1.001, the doubling-time
of the solution is sufficiently small compared to the operational
time. Both Figs. 5 and 6 suggest that the system with eigenvalues
< 1.001 can be considered “stable” for engineering purposes in this
example. For this application, we can extend the stability criterion
from Amax < 1 t0 Amax < 1.001.

Fig. 7 shows engineering stability for the IAFB geometry, whose

1. (4.2)
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engineering sense. Therefore, with engineering stability, it is shown
that the IAFB geometry can be considered stable for particular St
and experimental conditions, whereas the AMF geometry is unsta-
ble for the same conditions with Rez, and Weg, and heat transfer
effects. Since the AMF geometry is not continuously present during
a LOCA, the flow system is capable of reaching stable conditions.

5. Summary and conclusions

In this paper, mathematical and engineering stability are com-
pared using an unsteady two-phase flow with heat and mass
transfer. Determining the engineering stability is particularly use-
ful when the given problem is mathematically unstable, but with
“slow enough” growth rates, as in the presented example. For this
problem, engineering stability is used to extend the limits on sta-
bility for practical purposes. Although the application and analyses
presented here are specific to this flow, the method for determin-
ing engineering stability can be extended to other types of prob-
lems. To do so, the following should be considered:

(i) an operational time period for which the system is running,
(ii) a tolerance for perturbation growth, and
(iii) values of Amax over ranges of physical parameters of inter-
est, for which the doubling-times are less than the operational
times.

After evaluating the growth rates and doubling-times, a cut-off
for Amax can be established, beyond which the perturbation will
increase above the allowed tolerance within the operational time
period and be considered unstable in an engineering sense.

For the example problem described in the text, the following
conclusions were made after determining the engineering stability
criterion particular to this problem.

(i) For the AMF geometry, the addition of heat and mass transfer
significantly decreased the stability of the system.
(ii) Using a problem-specific time-scale for solution growth, Apax <
1 can be extended to Amax < 1.001.
(iii) For the IAFB geometry, engineering stability extended the range
of meaningful solutions for applied stability.

While both the tolerance for perturbation growth and the opera-
tional time period will be unique for each problem, computing the
engineering stability can extend the range of meaningful solutions
for a better physical understanding of the flow.
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