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Abstract. The design of software countermeasures against active and
passive adversaries is a challenging problem that has been addressed by
many authors in recent years. The proposed solutions adopt a theoretical
foundation (such as a leakage model) but often do not offer concrete ref-
erence implementations to validate the foundation. Contributing to the
experimental dimension of this body of work, we propose a customized
processor called SKIVA that supports experiments with the design of
countermeasures against a broad range of implementation attacks. Based
on bitslice programming and recent advances in the literature, SKIVA
offers a flexible and modular combination of countermeasures against
power-based and timing-based side-channel leakage and fault injection.
Multiple configurations of side-channel protection and fault protection
enable the programmer to select the desired number of shares and the
desired redundancy level for each slice. Recurring and security-sensitive
operations are supported in hardware through custom instruction-set
extensions. The new instructions support bitslicing, secret-share genera-
tion, redundant logic computation, and fault detection. We demonstrate
and analyze multiple versions of AES from a side-channel analysis and
a fault-injection perspective, in addition to providing a detailed perfor-
mance evaluation of the protected designs. To our knowledge, this is the
first validated end-to-end implementation of a modular bitslice-oriented
countermeasure.

Keywords: Side-channel leakage · Fault injection · Bitslice
programming

1 Introduction

Side-channel analysis and fault attacks have plagued cryptographic software on
embedded processors for many years. The threat of power-based and timing-based
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side-channel leakage is well understood and countermeasures such as masking and
constant-time programming figure prominently in the cryptographer’s toolbox [5,
43]. In parallel, the research community has gained more insight into the fault
behavior of hardware and software, thus greatly increasing the potency of fault
attacks [46,52]. The impact of fault attacks is minimized with fault detection and
temporal or spatial redundancy of the software execution [3,33].

Although there exists an extensive array of specific, dedicated countermea-
sures, there is surprisingly few work available [44,48,49] offering protection
against both side-channel analysis and fault injection. This is especially true
for software. The programmer is left selecting candidate solutions, figuring out
if and how they can safely be assembled. This is not an easy task because coun-
termeasures may interact in non-trivial (and unsafe) manners.

Recent related work on side-channel countermeasures has proposed partial
implementations of behavior called gadgets. The integration of these gadgets
into an overall secure implementation is a challenge that has triggered multiple
revisions of the attacker model. For example, Ishai et al. [27], Beläıd et al. [8],
Battistello et al. [6], Barthe et al. [5] and Cassiers et al. [14] present the masked
implementation of a multiplication operation, each protected against attackers
of a different level of sophistication. Given this broad variation in proposals,
we believe there is a need for their practical evaluation in a common setting.
It is not our intention to compare these proposals as in [21]. Instead, we high-
light the role of custom instruction-set extensions as a tool for countermeasure
implementation.
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Fig. 1. In a standard representation, processor registers are allocated per data word.
In a bitsliced representation, processor registers are allocated per bit-weight of a block
of data words. In an aggregated bitslice representation, multiple bitslices are allocated
per data bit. Aggregated bitslices can be shares of a masked design, redundant data of
a fault-protected design, or a combination of those.

In this paper, we introduce SKIVA, a processor that enables a modular
approach to countermeasure design, giving programmers the flexibility to pro-
tect their ciphers against timing-based side-channel analysis, power-based side-
channel analysis and/or fault injection at various levels of security. We leverage
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existing techniques in higher-order masking, in spatial and in temporal redun-
dancy. Modularity is achieved through bitslicing, each countermeasure being
expressed as a transformation from a bitsliced design into another bitsliced
design. The capabilities of SKIVA are demonstrated on the Advanced Encryp-
tion Standard, but the proposed techniques can be applied to other ciphers as
well.

Countermeasure Design Through Bitslice Aggregation. SKIVA exploits the
redundancy that is provided by a bitsliced execution model. The n-bit datapath
of the processor is seen as n 1-bit processors operating in parallel. The symmetry
of bitslices in a processor word is the basis for the modular protection schemes
enabled by SKIVA. Figure 1 demonstrates three different organizations of a reg-
ister file in a processor. We obtain the bitslice representation through a matrix
transposition of the input data so that one processor register contains all bits of
a given weight. The key idea of bitslice aggregation is to allocate multiple slices
to the representation of each data-bit. We will demonstrate how bitslice aggre-
gation enables higher-order masking (to protect against power side-channels),
data redundancy (to protect against data faults), and temporal redundancy (to
protect against control faults).

Contributions. SKIVA is a processor with built-in support for modular counter-
measures against side-channel analysis and fault analysis. We open-source our
codes to make it possible for the community to evaluate our implementation 1.
We make the following contributions.

1. We propose a flexible and modular methodology for designing countermea-
sures. It enables the combination of higher-order masking with spatial fault-
redundancy and with temporal fault-redundancy. The number of shares and
fault-redundancy levels is statically determined by the programmer (single,
double, quadruple shares and single, double, quadruple fault-redundancy).

2. We describe hardware support for the proposed methodology in SKIVA, a
processor with instruction set extensions specialized for bitsliced transposi-
tion, bitsliced masked operation, bitsliced fault detection, redundant bitsliced
expansion, and Boolean operations on complementary data.

3. We analyze the performance and code size of the Advanced Encryption Stan-
dard on SKIVA, under multiple levels of side-channel and fault-resistance.

4. We evaluate the side-channel leakage characteristics of SKIVA implemented as
a soft-core processor on a SAKURA-G FPGA board. We perform theoretical
as well as empirical analysis of fault detection coverage.

Outline. In Sect. 2, we review the related work, covering the design of bitsliced
software and countermeasures based on such software. In Sect. 3, we introduce
several modular countermeasure schemes. Starting with bitslicing, we describe
a systematic treatment of higher-order masking, intra-instruction redundancy,
and temporal redundancy. In Sect. 4, we dive into the implementation aspects
1 Cfr. https://github.com/Secure-Embedded-Systems/Skiva.

https://github.com/Secure-Embedded-Systems/Skiva
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and propose a custom instruction-set extension to support various aspects of
the bitslice-oriented countermeasures. In Sect. 5, we present the measurement
results of our prototype, including performance, side-channel leakage evaluation,
and fault detection/correction coverage. In Sect. 6, we conclude the paper.

2 Preliminaries

Bitslicing is an implementation technique to produce high-throughput, constant-
time software implementations of cryptographic primitives [10,29]. A cipher is
expressed as a Boolean circuit. The circuit is compiled into a straight-line pro-
gram by leveling the circuit and translating each Boolean operation to a corre-
sponding bitwise CPU instruction. Since the CPU manipulates registers of 32
bits, running the resulting program amounts to running 32 parallel instances of
the original Boolean circuit.

Bitslicing Versus Wordslicing. In a block cipher, the state variables are k-bit
wide. The bitsliced version of the cipher will store these k bits in a transposed
manner, such that register i will contain the i-th bit of the state. This approach
has been used for DES [10] as well as for AES [41]. However, one can also adopt
wordslicing, which stores groups of b bits out of a k-bit state per register. A
wordsliced design requires k/b registers, as opposed to k registers for a bitsliced
design. Wordsliced design has been demonstrated for AES [29,31]. The choice
between bitslicing and wordslicing has a significant impact on the efficiency
of the resulting design. The resulting code also changes significantly with the
slicing strategy. The bitsliced implementation of AES has to juggle with 128
machine words while being restricted to straightforward logical instructions. The
wordsliced implementation of AES fits within eight registers, at the expense
of complex permutations within individual words. On an embedded RISC-like
CPU, our experiments have shown that the bitsliced implementation yields a
higher throughput than the wordsliced one (Sect. 5.1). Conversely, on a high-
end SIMD CPU, earlier work has shown that wordslicing is key to reach speed
records in software encryption [29]. The lack of SIMD instructions and the lesser
register pressure for RISC CPUs thus favors bitsliced implementations, hence
our focus on bitslicing in the present work.

Countermeasures for Bitsliced Designs. Many hardware-oriented countermea-
sures can be applied as transformations on the Boolean programs of bitsliced
designs. An early effort to address power-based side-channel leakage is the dupli-
cation method [17]. More recently, several masking-oriented techniques have been
proposed [5,13,23,28]. Bitslicing is also a systematic countermeasure against
timing attacks. By construction, a Boolean program runs in constant (or repeat-
able) time. Conditionals in a Boolean program are implemented through data-
multiplexing: both results are sequentially computed and the relevant output
is obtained by demultiplexing these intermediary results based on the condi-
tional. Finally, the massively parallel nature of a bitsliced implementation can
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be exploited to provide intra-instruction redundancy (encrypting the same data
in redundant slices) as well as various forms of temporal redundancy (processing
data at distinct rounds in distinct, randomly-chosen slices) [32,37]. In a bitsliced
setting, these techniques translate into end-to-end protection, protecting a cipher
from the moment the plaintext is introduced to the moment the ciphertext is
produced.

Fig. 2. Bitslice aggregations on a 32 bit register, depending on (D,Rs).

3 Modular Design of Countermeasures

In this section, we present the four protection mechanisms that can be com-
bined in a modular manner, including (a) bitslicing to protect against timing
attacks; (b) higher-order masking to protect against power side-channel leakage;
(c) intra-instruction redundancy to protect against data faults and (d) temporal
redundancy to protect against control faults. We demonstrate our protection on
the AES cipher running on SKIVA. However, the techniques are equally applica-
ble to other bitsliced ciphers. However, the panel of techniques is not restricted to
this cipher nor this processor: they naturally generalize – in a systematic manner
– to any cipher admitting a bitsliced implementation, for processors of arbitrary
bitwidth as well as design (RISC as well as CISC, SIMD or not). We leave it to
future work to evaluate their effectiveness on a broader range of cryptographic
primitives and hardware platforms.

Our implementation of AES is fully bitsliced: the 128-bit input of the cipher
is represented with 128 variables. Since each variable stores 32 bits on SKIVA,
a single run of our primitive computes 32 parallel instances of AES. The protec-
tion mechanisms presented in the following assume the availability of a bitsliced
design while themselves producing a bitsliced design (of lesser parallelism) in



226 P. Kiaei et al.

return. The modularity of our approach lies in this simple observation: as long
as there is enough parallelism to compute at least one run of the algorithm, we
can chain these program transformations.

Figure 2 shows the bitslice organization for masked and intra-instruction-
redundant design. We support masking with 1, 2, and 4 shares leading to respec-
tively unmasked, 1st-order, and 3rd-order masked implementations. By conven-
tion, we use the letter D to denote the number of shares (D ∈ {1, 2, 4}) of a
given implementation. Within a machine word, the D shares encoding the ith

bit are grouped together, as illustrated by the contiguously colored bits b
j∈[1,D]
i

in Fig. 2.
We also support spatial redundancy by duplicating a single slice into two or

four slices. By convention, we use the letter Rs to denote the spatial redundancy
(Rs ∈ {1, 2, 4}) of a given implementation. Within a machine word, the Rs

duplicates of the ith bit are interspersed every 32/Rs bits, as illustrated by
the alternation of colored words bji∈[1,RS ] in Fig. 2. The following subsections
elaborate on doing computations using this redundant bitslice allocation scheme.

3.1 Higher-Order Masked Computation

Recent masking schemes, including those for bitsliced designs [5,6,8,14,18], have
relied on the definition of gadgets, elementary masked logic operations that can
be securely composed together. A complete cipher is then expressed as a combi-
nation of gadgets that are wired together. The most important gadgets include
the multiplication gadget (as the canonical non-linear operation) and the mask
refresh gadget. We will demonstrate our design based on the secure duplicated
multiplication gadget by Dhooghe and Nikova [18]. For a 4-share implementa-
tion, we base our cross-product calculations on the parallel masked multiplication
algorithm defined by Barthe et al. [5, Algorithm 3]. For 2-share masking, we use
the following multiplication gadget [21]. If x and y are two-share inputs and
r is a two-share random vector, then the two-share output is obtained by the
following expression.

z = (((x.y ⊕ r) ⊕ x.rot(y, 1)) ⊕ rot(r, 1))

Optimizing this masked design by reducing the amount of randomness [4,9]
is orthogonal to the present work. The objective of SKIVA is to define a common
platform to evaluate such proposals.

3.2 Data-Redundant Computation

We protect our implementation against data faults using intra-instruction redun-
dancy (IIR) [15,32,37]. We support either a direct redundant implementation, in
which the duplicated slices contain the same value, or a complementary redun-
dant implementation, in which the duplicated slices are complemented pairwise.
For example, with Rs = 4, we can have four exact copies (direct redundancy) or
two exact copies and two complementary copies (complementary redundancy).
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In practice, we will favor complementary redundancy over direct redundancy.
First, it is less likely for complemented bits to flip to consistent values due to
single fault injection. For instance, timing faults during state transition [53] or
memory accesses [2] follow a random word corruption or a stuck-at-0 model.
Second, complementary slices ensure a constant Hamming weight for a slice
throughout the computation of a cipher. Our results show that complementary
redundancy results in reduced power leakage when compared to direct redun-
dancy [11].

Fig. 3. Time-redundant computation of a bitsliced AES.

3.3 Time-Redundant Computation

Data-redundant computation does not protect against control faults such as
instruction skip. We, therefore, use a different strategy: we protect our implemen-
tation against control faults using temporal redundancy (TR) across rounds [37].
We pipeline the execution of 2 consecutive rounds in 2 aggregated slices. By
convention, we use the letter Rt to distinguish implementations with temporal
redundancy (Rt = 2) from implementations without (Rt = 1). For Rt = 2, half
of the slices compute round i while the other half compute round i− 1. Figure 3
illustrates the principle of time-redundant bitslicing as applied to AES computa-
tion. The operation starts the pipeline by filling half of the slices with the output



228 P. Kiaei et al.

of the first round of AES, and the other half with the output of the initial key
whitening. At the end of round i+ 1, we have re-computed the output of round
i (at a later time): we can, therefore, compare the two results and detect control
faults based on the different results they may have produced. In contrast to typ-
ical temporal-redundancy countermeasures such as instruction duplication [40],
this technique does not increase code size: the same instructions compute both
rounds at the same time. Only the last AES round, which is different from regular
rounds, must be computed twice in a non-pipelined fashion.

Whereas pipelining protects the inner round function, faults remain possible
on the control path of the loop itself. We protect against these threats through
standard loop hardening techniques, namely redundant loop counters – packing
multiple copies of a counter in a single machine word – and duplication of the
loop control structure [25] – producing multiple copies of conditional jumps so
as to lower the odds of all of them being skipped through an injected fault.

4 SKIVA Implementation

In this section, we present the SKIVA hardware, a custom instruction-set exten-
sion (ISE) tailored to support efficient and safe implementation of these schemes.

4.1 Custom Instruction-Set Extensions in SKIVA

We added new instructions to SKIVA to support computing on aggregated bit-
slices in three different areas. First, they help with the conversion from nor-
mal representation to bitsliced form and back. Second, they handle subword-
operations for the computation of non-linear operations on two or four shares
(D ∈ {2, 4}). Third, they handle subword-operations for spatially redundant
computations and fault checking (Rs ∈ {2, 4}). The new instructions are summa-
rized in Table 1 and will be described in detail in further subsections. Appendix 6
provides their functional specification. These new instructions are orthogonal;
they can be used in a mix-and-match fashion to obtain the desired level of
sharing and redundancy. We integrated the new instructions on the SPARC V8
instruction set of the open-source LEON3 processor and software toolchain [45].

Hardware Integration. Figure 4 illustrates the integration of the custom data-
path into the seven-stage RISC pipeline. The instructions follow a two-input,
one-output or two-input, two-output format, encoded as two source registers,
a destination register, and an immediate field (INS rs1, rs2, rd, imm). The
upper 32-bit output of the custom instruction is transferred to the Y-register, a
register which is used for SPARC V8 instructions with 64-bit output, such as
the regular data multiplication. Instructions with longer than 32-bit outputs can
be integrated into instruction sets without this special register by duplicating
the instruction for calculating the lower half of the output and the upper half
of it separately (similar to MUL and SMMUL in ARM and Thumb instruction
set). The integration of custom-hardware deep into the pipeline necessitates the
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Table 1. Proposed ISE. These instructions are added to the standard SPARC-V
instruction set, occupying unused opcodes. Symbols in the instruction format - rs1,
rs2, rd are registers. imm is an immediate operand. The “Type” column shows what
opcode group was used for each instruction. Appendix 6 lists the functional specifica-
tion for each instruction.

Semantics Instruction format Immediate Type

Normal → Bitslice TR2 rs1, rs2, rd logic

Bitslice → Normal INVTR2 rs1, rs2, rd ld/st

Slice Rotation SUBROT rs, imm, rd D logic

Redundancy Generation RED rs, imm, rd Rs logic

Redundancy Checking FTCHK rs, imm, rd Rs logic

Redundant AND (Rs = 2) ANDC16 rs1, rs2, rd logic

Redundant XOR (Rs = 2) XORC16 rs1, rs2, rd logic

Redundant XNOR (Rs = 2) XNORC16 rs1, rs2, rd ld/st

Redundant AND (Rs = 4) ANDC8 rs1, rs2, rd logic

Redundant XOR (Rs = 4) XORC8 rs1, rs2, rd logic

Redundant XNOR (Rs = 4) XNORC8 rs1, rs2, rd ld/st

Fig. 4. Integrated in the regular 7-stage pipeline as a new execution stage.

use of simple and fast datapath hardware. However, these instructions benefit
from the same performance advantages as regular instructions, including a typ-
ical throughput of one instruction per cycle and minimal stall effect thanks to
forwarding [38].

The new instructions are mapped into unused opcodes of the SPARC V8
instruction set [50]. Since we did not replace any existing SPARC instruction,
SKIVA is backward binary-compatible with existing LEON applications. The
new instructions add minimal overhead to the design. In terms of 180nm stan-
dard cell ASIC technology, we added 1250 gate-equivalent to the design, which
amounts to 3% of the area of the integer unit of SKIVA.

Software Integration. We integrated the new instructions into the software
toolchain of SKIVA by extending the assembler. The new mnemonics were then
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integrated into the application in C through inline assembly coding. Because the
custom instruction format is compatible with that of existing, standard SPARC
V8 instructions, they benefit from off-the-shelf compiler optimizations.

Related Work. Earlier efforts of hardware-specific side-channel countermeasures
based on custom instructions include mask generation [51] and hiding [42].
CRISP explores the use of custom instructions for bitslicing in a processor
design [22]. CRISP defines three new instructions, based on two programmable
lookup tables. These instructions deal with bitslicing, but they do not offer
redundancy nor support for countermeasures. With the advent of open plat-
forms such as RISC-V, instruction set extensions are now a viable mechanism for
platform customization. XCrypto [34] defined instruction extensions for RISC-
V while Galois has proposed a formally validated one [30]. XCrypto supports
special registers for cryptographic algorithms as well as custom instructions to
improve the performance of such applications. XCrypto is designed for efficient
cryptographic workload processing with support for random number generation
and dedicated arithmetic. The SKIVA custom instructions are instead designed
as flexible countermeasures. The SKIVA programmer decides on the level of
security and then applies SKIVA instructions commensurate with the selected
level.

4.2 Hardware Support for Aggregated Bitslice Operations

In the following, we describe each group of custom instructions and their usage.
Appendix 6 gives a formal specification of each instruction.

Fig. 5. Transposition and its inverse
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Instructions for Bitslicing. We introduce two instructions to transpose data into
their bitsliced representation (Fig. 5a). The first instruction, TR2 rs1, rs2,
rd, performs an interleaving of the bits of two source registers into two output
registers. This interleaving can be thought of as a 2-bit transposition, as it places
bits within the same column of register rs1 and rs2 in adjacent positions of
the output registers rd and y. The second instruction, INVTR2 rs1, rs2, rd,
performs the inverse operation. Bitslice transposition for an arbitrary number
of bits is achieved through repeated application of TR2. Figure 5b shows an
8-bit transposition achieved using twelve applications of TR2. In general, for a
2n-bit transition, n.2n−1 applications of TR2 are needed. To create aggregated
bitslices (Rs > 1 or D > 1), we pre-process the source registers (in non-bitsliced
form) by duplicating them first and then transposing them to bitsliced form.
The side-channel protection and fault-detection of SKIVA are not active during
bitslice conversion, but we check their consistency after transposition and before
encryption.

Instructions for Higher-Order Masking. SKIVA supports two-share and four-
share implementations of bitsliced algorithms, which provide first-order and
third-order masked side-channel resistance. The shares are located in adjacent
bits of a processor register. We use Boolean masking so that the XOR of all
shares yields the unmasked value. Linear operations on an ensemble of shares
are computed as the linear operation on each individual share. Linear operations
are done using bitwise operations on the two-share and four-share representation.
Computing a secure multiplication over multiple shares requires the computa-
tion of the partial share-products. For example, the secure multiplication of the
two-share slices (a1, a0) with the two-share slices (b1, b0) requires the partial
products a1.b1, a1.b0, a0.b1, and a0.b0. To align the slices for the cross-products,
we implement a slice rotation instruction SUBROT rs, imm, rd. This instruc-
tion transforms the two-share slices (a1, a0) into (a0, a1). The same instruction
SUBROT can also handle a four-share design, which transforms (a3, a2, a1, a0) into
(a2, a1, a0, a3).

Instructions for Fault Redundancy Checking. SKIVA supports fault redundancy
countermeasures using instructions for the generation and checking of fault-
redundant slices. The redundant bits with respect to fault injection are stored
in adjacent bytes of a halfword. Figure 6(a) shows the example of a halfword
operation to generate redundant data, while Fig. 6(b) shows the example of a
halfword operation to verify redundant data.

The RED rs1, imm, rd instruction generates redundant data. The redun-
dant copy is stored in the upper halfword (Rs = 2) or in the three upper bytes
(Rs = 4). The redundant portion can be either a direct or else a complement of
the original data. There are six variants of RED rs1, imm, rd. Two of them sup-
port dual redundancy (Rs = 2), they duplicate the lower and upper halfword,
in direct or complementary form. Four additional variants support quadruple
redundancy (Rs = 4), and they quadruple the lower two bytes or the upper two
bytes, each in direct or complementary form.
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Fig. 6. (a) Example of RED on half-word (top, left). (b) Example of FTCHK on half-word
(top, right). (c) Example of ANDC8 (bottom, left). (d) Example of XORC16 (bottom,
right).

The FTCHK rs1, imm, rd instruction verifies the consistency of the redun-
dant data. This instruction generates a fault-flag in the redundant form (over Rs

bits, Appendix 6), which can be used to drive a fault condition test. Figure 6(b)
illustrates the case of a dual-redundancy check on complementary redundant
data. The fault-check is evaluated in a redundant manner so that the fault-check
itself can detect fault injection on its own check. The expected faultless result
of the instruction example in Fig. 6(b) is 0x00000000. There are four variants
of this instruction, for either dual (Rs = 2) or quadruple redundancy (Rs = 4),
and direct or complementary redundancy.

Instructions for Fault-Redundant Computations. Computations on direct-
redundant bitslices can be done using standard bitwise operations. For
complementary-redundant bitslices, the bitwise operations have to be adjusted to
complement-operations. The complement-redundant data format can be intro-
duced at the halfword boundary (Rs = 2) or the byte boundary (Rs = 4).
We opted to provide support for bitwise AND, XOR, and XNOR on these
complement-redundant data formats. Figure 6(c-d) illustrates the case of ANDC8
and XORC16.

Putting it All Together. We demonstrate how the proposed instructions can
be combined by building an implementation for a recently proposed gadget that
offers protection against combined attacks (side-channel attacks and faults) using
the non-interference and non-accumulation (NINA) property [18]. Figure 7 shows
a two-share NINA multiplication. Appendix C lists a four-share NINA multipli-
cation. The multiplication takes four steps. First, we check the fault flags and
conditionally clear an input. This diverts attacks where an adversary uses faults
to influence side-channel leakage. Second, the parallel multiplication algorithm
evaluates the product [5]. Third, the output is refreshed using parallel mask
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Fig. 7. Two-share NINA multiplication gadget using SKIVA instructions

refreshing (required for the four-share multiplication [5]). Finally, the fault flags
are updated to reflect the computation status of the result. In terms of NINA
property, these gadgets are (D,Rs)-SNINA. The proposed gadget in Fig. 7 is
of the fault-detecting type and does not protect against statistical ineffective
fault attacks (SIFA). To overcome this vulnerability, we need fault-correction
instead of detection. Fault-correction based on majority voting fits well into
SKIVA scheme where Rs = 4 by extending the FTCHK instruction to check the
redundant copies of the input and put the most agreeable copy on the output.
Majority voting needs at least 2k + 1 copies to resolve k faults; therefore, when
Rs = 4, it can resolve one fault.

In practice, the custom instruction-set extensions of SKIVA have to be judi-
ciously applied to prevent accidental side-channel leakage. One area of attention is
the allocation of masked variables in registers. For non-bitsliced designs, acciden-
tal unmasking has been demonstrated when a mask m overwrites a masked vari-
ablem⊕v [1,36] For bitsliced designs, the risk is lower because each share resides at
a different bit-index. Still, bitslices may interfere with each other in unexpected
manners [19]. In SKIVA, the SUBROT instruction shifts shares over bit-positions
using a dedicated data-path. After the result of SUBROT is consumed, that register
is cleared to eliminate lingering shares. In addition, we control register allocation
for secure gadgets manually. For example, we ensure that SUBROT never overwrites
its own input. We also maintain a strict separation between registers used for the
masked algorithm (i.e. AES), and registers used for mask generation and mask
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distribution. This ensures that registers containing masked data cannot be over-
written by registers directly related to random masks.

5 Results

This section evaluates the performance and side-channel security of AES on
SKIVA. The implementation under test is in bitsliced format and uses the secure
multiplication gadgets introduced in Sect. 4.2. Next, we analyze the fault cover-
age of applications on SKIVA under the assumed fault model.

We used the Usuba [35] compiler to generate the 18 different implementations
of AES (all combinations of D ∈ {1, 2, 4}, Rs ∈ {1, 2, 4} and Rt ∈ {1, 2}). Usuba
takes as input a high-level dataflow description of a cipher, which it bitslices and
optimizes before generating C code. We added a new backend to Usuba to make
it use our protection schemes and custom instructions in the C codes it produces.
We also patched Leon Bare-C Cross Compilation System’s (BCC) assembler to
support SKIVA’s custom instructions in order to be able to compile the C codes
produced by Usuba.

5.1 Performance Evaluation

Our experimental evaluation has been carried on a prototype of SKIVA deployed
on the main FPGA (Cyclone IV EP4CE115) of an Altera DE2-115 board. The
processor is clocked at 50 MHz and has access to 128 kB of RAM. Our perfor-
mance results are obtained by running the desired programs on bare metal. We
assume that we have access to a TRNG that frequently fills a register with a
fresh 32-bit random string. We use a software pseudo-random number generator
(32-bit xorshift) to emulate a TRNG refreshed at a rate of our choosing. We
checked that our experiments did not overflow the period of the RNG.

Several implementations of AES are available on our 32-bit, SPARC-
derivative processor, with varying degrees of performance. The constant-time,
byte-sliced implementation (using only 8 variables to represent 128 bits of data)
of BearSSL [39] performs at 48 C/B. Our bitsliced implementation (using 128
variables to represent 128 bits of data) performs favorably at 44 C/B while
weighing 8060B: despite a significant register pressure (128 live variables for 32
machine registers), the rotations of MixColumn and the ShiftRows operations
are compiled away. This bitsliced implementation serves as our baseline in the
following.

Throughput (AES). We report on the impact of our hardware and software
design on the performance of our bitsliced implementation of AES (Sect. 3). To
do so, we evaluate the performance of our 18 variants of AES, for each value
of (D ∈ {1, 2, 4}, Rs ∈ {1, 2, 4}, Rt ∈ {1, 2}). To remove the influence of the
TRNG’s throughput from the performance evaluation, we assume that its refill
frequency is strictly higher than the rate at which our implementation consumes
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Table 2. Exhaustive evaluation of the AES design space

Rt = 1
D

1 2 4

Rs

1 44 C/B 176 C/B 579 C/B

2 89 C/B 413 C/B 1298 C/B

4 169 C/B 819 C/B 2593 C/B

(a) Reciprocal throughput (Rt = 1)

Rt = 2
D

1 2 4

Rs

1 131 C/B 465 C/B 1433 C/B

2 269 C/B 1065 C/B 3170 C/B

4 529 C/B 2122 C/B 6327 C/B

(b)Reciprocal throughput (Rt = 2)

random bits. In practice, a refill rate of 10 cycles for 32 bits is enough to meet
this requirement.

We report our performance results in Table 2. For D and Rt fixed, the
throughput decreases linearly with Rs. At fixed D, the variant (D,Rs =
1, Rt = 2) (temporal redundancy by a factor 2) exhibits similar performances as
(D,Rs = 2, Rt = 1) (spatial redundancy by a factor 2). However, both implemen-
tation are not equivalent from a security standpoint. The former offers weaker
security guarantees than the latter. Similarly, at fixed D and Rs, we may be
tempted to run twice the implementation (D,Rs, Rt = 1) rather than running
once the implementation (D,Rs, Rt = 2): once again, the security of the former
is reduced compared to the latter since temporal redundancy (Rt = 2) couples
the computation of 2 rounds within each instruction, whereas pure instruction
redundancy (Rt = 1) does not.

Code Size (AES). We measure the impact of our hardware and software design
on code size, using our bitsliced implementation of AES as a baseline. Our hard-
ware design provides us with native support for spatial, complementary redun-
dancy (ANDC, XORC, and XNORC). Performing these operations through software
emulation would result in a ×1.3 (for D = 2) to ×1.4 (for D = 4) increase in code
size. One must nonetheless bear in mind that the security provided by emulation
is not equivalent to the one provided by native support. The temporal redun-
dancy (Rt = 2) mechanism comes at the expense of a small increase (less than
×1.06) in code size, due to the loop hardening protections as well as the checks
validating results across successive rounds. The higher-order masking comes at
a reasonable expense in code size: going from 1 to 2 shares increases code size by
×1.5 whereas going from 1 to 4 shares corresponds to a ×1.6 increase. A fully
protected implementation (D = 4, Rs = 4, Rt = 2) thus weighs 13148 bytes.

5.2 Side-Channel Analysis

We conduct an experiment to demonstrate how the proposed custom instructions
can help decrease the power leakage. We implement SKIVA on the main FPGA
of SAKURA-G board running at 9.8 MHz and powered at 5 V by an external
power generator. We use a LeCroy WaveRunner 610Zi oscilloscope, sampling
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Fig. 8. 1st and 2nd order t-tests of 1st order masked implementation. Left column:
40K fixed vs. 40K random traces with PRNG off. Right column: 500K fixed vs. 500K
random traces with PRNG on.

250 M samples/sec. To limit the noise level, we use a low-pass filter with a cutoff
frequency of 81 MHz on the power probe.

Correlation Power Analysis. To evaluate our design, we conduct 1st order corre-
lation power analysis (CPA) [12] on power consumption traces of the SubBytes
stage of the first round of AES. We use the Hamming weight of the SubBytes
output as the power model. To speed up our attack, we use a sampling rate of
50 M samples/sec. In this test case, we attack a single bitslice out of 32 parallel
bitslices; the unused bitslices perform constant encryption of an all-zero plain-
text with an all-zero key. Our CPA attack analyzes 50K traces and confirms
that 1st order CPA on the unmasked scheme can reveal half of the key with 12K
traces while it reveals all the secret key bytes with 24K traces. When masking
is enabled, no key byte is revealed under any configuration at the maximum
number of traces we considered (50K).

Test Vector Leakage Assessment. To test the correctness of our secure imple-
mentations with the proposed instructions, we use the TVLA methodology [7,20]
and conduct the 1st and 2nd order t-tests on our 1st order masked implementa-
tion and the 1st to 4th order t-tests on our 3rd order masked encryption in two
settings with and without the custom instructions. We set the trigger on one
S-box in the fourth round of AES based per TVLA methodology [7].

For our experiments, we conduct the univariate non-specific fixed-vs.-random
t-test in which a set of random inputs and a set of fixed inputs are interspersed in
a random order and sent to the device. The fixed plaintext is selected such that
the output of the SubBytes stage in the 4th round of AES is zero. Furthermore,
for higher-order t-tests, we post-process the traces to calculate the t-scores of the
target order [47]. Figure 8 and Fig. 9 show the results of the t-test on our masked
implementations. The right column in Fig. 8 (resp. Fig. 9) indicates that our first
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Fig. 9. 1st to 4th order t-tests of 3rd order masked implementation. Left column: 35K
fixed vs. 35K random traces with PRNG off. Right column: 500K fixed vs. 500K random
traces with PRNG on.

(resp. third) order masked scheme shows no leakage of first (resp. first, second,
or third) order on 500K fixed vs. 500K random traces while showing second
(resp. fourth) order leakage as expected. The left columns show how turning the
PRNG off causes the implementations to have leakage of all orders.

This experiment shows that the secure implementations are sound for analysis
up to 500K traces. We do not conclude that the security claim underpinning the
gadgets is valid; while an experimental observation can validate a security claim,
the experiment cannot be used as its proof of correctness.

Power Leakage of Direct and Complementary Redundancy. To compare the effect
of the direct and complementary redundancy schemes on side-channel leakage,
we run the following test. We make two different versions of our AES C code:
(1) 16 parallel aggregated bitslices of the direct (D = 2, Rs = 1, Rt = 1) scheme
as the input to the first S-box in the fourth round of AES; and (2) 8 parallel
aggregated bitslices of the complementary (D = 2, Rs = 2, Rt = 1) scheme as
the input to the first S-box in the fourth round of AES. We then measure 5K
traces for fixed input and 5K traces for random input and apply a second-order
t-test on the measured traces. To speed up our measurements, the traces were
collected at 50MS/s. As expected, Figs. 10c and 10d show second-order leakage
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Fig. 10. Effect of type of redundancy on the power side-channel leakage.

for both schemes. However, the direct redundancy results in much higher t-values
indicating a higher probability of leakage than complementary redundancy. We
also confirmed that a first-order t-test on both implementations shows no leakage
for a non-specific test of 25K fixed vs. 25K random traces even when sampled at
a higher rate of 100MS/s (Figs. 10a and 10b). Appendix 6 includes additional
observations.

5.3 Security Analysis of Data Faults

In the following, we analyze the fault sensitivity of our protected implementa-
tions. Our data protection scheme relies on spatial redundancy (Rs ∈ {2, 4}).
Faults that cannot be detected are those that affect redundant copies within a
single register in a consistent manner, which implies either identical values in
case of direct redundancy or negated values in case of complemented redundancy.
Note that this analysis is independent of whether sharing (D) is used or not.
From the standpoint of redundancy, each share is independently protected: for
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example, if two shares of the same data are subjected to a bit flip, our redun-
dancy mechanism will report an error, even though the underlying data remains
unchanged (x1 ⊕ x2 = x1 ⊕ x2).

There are different ways to achieve undetected faults, i.e. generate a consis-
tent value: one may skip an instruction whose destination register already holds
a consistent value; one may replace an instruction with another (e.g., substitute
an ANDC by an XORC); or directly perform a data fault.

If P is the probability for a data fault to result in a consistent value, then
the detection rate is 1 − P . Such a probability depends on the injection tech-
nique, its parameters, the target architecture, as well as the physical properties
of the device. In the following, we develop a theoretical analysis based on the
assumption that data faults follow a stuck-at 0 or stuck-at 1 model, or uniformly
distributed random byte, half-word, and word model. We then complement this
analysis by an empirical evaluation of the impact of instruction skip.

Theoretical Analysis of Spatial Redundancy. In this analysis, we use the fault
coverage (FC) metric [24] FC = 1 − Fundetected/Ftotal where Ftotal is the total
number of faults covered by the fault model and Fundetected is the number of
faults that affect the execution while escaping detection by the countermeasure.

By construction, data fault effects such as single bit set, single reset, single bit
flip, byte or half-word zeroing, faulty random byte or faulty random half-word
are all detected (FC = 100%). Word zeroing or stuck-at 1 on complementary
redundant data are also all detected (FC = 100%) but direct redundancy will
never detect it (FC = 0%).

If the attacker injects random data faults following a uniform distribution,
it means that there are Ftotal = 232 fault injection possibilities. For Rs = 2 and
independently of the redundancy (direct or complementary), 216 of those values
are consistent, including the expected output. Hence Fundetected = 216 − 1 and
FC = 99.99%. For Rs = 4, there are Fundetected = 28 − 1 faults that are left
undetected, thus FC = 99.99%.

For illustrative purposes, we now consider a slightly stronger attacker who
may flip p randomly chosen data bits. In practice, such analysis ought to be
tailored to account for the specific distribution of faults of a given injection
technique on a given platform. Under this attacker model, there are Ftotal =

(
32
p

)

fault injection possibilities leading to a p-bit flip (with p an even number). For
Rs = 2, there are Fundetected =

(
16
p
2

)
faults corresponding to a p-bit flip that are

left undetected. The lower-bound for FC is reached for p = 2 and p = 30, where
FC = 96.77%. For Rs = 4, there are Fundetected =

(
8
p
4

)
faults corresponding to a

p-bit flip that are left undetected. The lower-bound for FC is reached for p = 4
and p = 28, where FC = 99.97%. A p-bit set or reset fault model leads to a
100% detection rate if complementary redundancy is used. If direct redundancy
is used, then this amounts to the p-bit flip model. Either way the detection rate
is very high.
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Experimental Evaluation of Temporal Redundancy. We have simulated the
impact of faults on our implementation of AES. We focus our attention exclu-
sively on control faults (instruction skips) since our above analytical model
already predicts the outcome of data faults. To this end, we use a fault injec-
tion simulator based on gdb running through the JTAG interface of the FPGA
board. We execute our implementation up to a chosen breakpoint, after which
we instruct the processor to jump to a given address, hence simulating the effect
of an instruction skip. In particular, we have exhaustively targeted every instruc-
tion of the first and last round as well as the AES_secure routine (for Rt = 2)
and its counterpart for Rt = 1. Since rounds 2 to 9 use the same code as the first
round, the absence of vulnerabilities against instruction skips within the latter
means that the former is secure against instruction skip as well. This exposes a
total of 1248 injection points for Rt = 2 and 1093 injection points for Rt = 1.
For each such injection point, we perform an instruction skip from 512 random
combinations of key and plaintext for Rt = 2 and 352 random combinations for
Rt = 1.

The results are summarized in Table 3. Injecting a fault had one of five effects.
A fault may yield an incorrect ciphertext with (1) or without (2) being detected.
A fault may yield a correct ciphertext, with (3) or without (4) being detected.
Finally, a fault may cause the program or the board to crash (5). According to
our attacker model, only outcome (2) witnesses a vulnerability. In every other
outcome, the fault either does not produce a faulty ciphertext or is detected
within two rounds. For Rt = 2, we verify that every instruction skip was either
detected (outcome 1 or 3) or had no effect on the output of the corresponding
round (outcome 4) or lead to a crash (outcome 5). Comparatively, with Rt = 1,
nearly 95% of the instruction skips lead to an undetected fault impacting the
ciphertext. In 0.19% of the cases, the fault actually impacts the fault-detection
mechanism itself, thus triggering a false positive.

Table 3. Experimental results of simulated instruction skips

With impact Without impact

Detected (1) Not detected (2) Detected (3) Not detected (4) Crash (5) # of faults

Rt = 1 0.19% 92.34% 0.00% 4.31% 3.15% 12840

Rt = 2 78.19% 0.00% 5.22% 12.18% 4.40% 21160

6 Conclusion

We have presented SKIVA, a general-purpose 32-bit processor supporting high-
throughput, secure block ciphers on embedded devices. Our objective in extend-
ing the SPARC instruction set was to provide cryptographers with a manageable
programming model for implementing secure ciphers on a general-purpose CPU.
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On the software side, we advocate an approach centered around bitslicing, where
cryptographic primitives are treated as combinational circuits. By design, bit-
slicing protects an implementation against timing-based side-channel attacks.
However, it also provides a sound basis for modular protections against fault
and/or power-based side-channel attacks, thus paving the way for a pay-as-you-
go security approach. In essence, SKIVA can be understood as a Turing machine
for efficiently and securely executing combinational circuits in software.

These design choices translate into protection mechanisms that can natu-
rally and systematically be integrated together. To protect against faults, we
have shown that intra-instruction redundancy enables purely analytic security
analysis, guaranteeing significant coverage, while we experimentally showed that
temporal redundancy protects against instruction skips. To protect against side-
channel, we crucially rely on the physical isolation of slices, thus significantly
reducing the risk of involuntary interference due to architectural details invisible
to the programmer.

We have demonstrated the benefits of our approach with a bitsliced imple-
mentation of AES with 1, 2, and 4 shares, a temporal redundancy of 1 and
2, as well as a spatial redundancy of 1, 2, and 4. In terms of code size, we
have shown that all security levels can be implemented in less than 13148B. In
terms of performance, we have seen that it scales well with protection levels,
dividing the throughput by 161 with all protections enabled at their maximum
(D = 4, Rs = 4, Rt = 2).

Acknowledgements. This project was supported in part by NSF Grant 1617203,
NSF Grant 1931639, NIST Grant 70NANB17H280, the Émergence(s) program of the
City of Paris and the EDITE doctoral school.

Custom instructions details

TR2 instruction

TR2 rs1, rs2, rd

regrd[31:0] := CONCAT( ...
regrs1[15],regrs2[15],regrs1[14],regrs2[14], ...
regrs1[13],regrs2[13],regrs1[12],regrs2[12], ...
regrs1[11],regrs2[11],regrs1[10],regrs2[10], ...
regrs1[9],regrs2[9],regrs1[8],regrs2[8], ...
regrs1[7],regrs2[7],regrs1[6],regrs2[6], ...
regrs1[5],regrs2[5],regrs1[4],regrs2[4], ...
regrs1[3],regrs2[3],regrs1[2],regrs2[2], ...
regrs1[1],regrs2[1],regrs1[0],regrs2[0])

y[31:0] := CONCAT( ...
regrs1[31],regrs2[31],regrs1[30],regrs2[30], ...
regrs1[29],regrs2[29],regrs1[28],regrs2[28], ...
regrs1[27],regrs2[27],regrs1[26],regrs2[26], ...
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regrs1[25],regrs2[25],regrs1[24],regrs2[24], ...
regrs1[23],regrs2[23],regrs1[22],regrs2[22], ...
regrs1[21],regrs2[21],regrs1[20],regrs2[20], ...
regrs1[19],regrs2[19],regrs1[18],regrs2[18], ...
regrs1[17],regrs2[17],regrs1[16],regrs2[16])

INVTR2 instruction

INVTR2 rs1, rs2, rd

regrd[31:0] := CONCAT( ...
regrs1[30],regrs1[28],regrs1[26],regrs1[24], ...
regrs1[22],regrs1[20],regrs1[18],regrs1[16], ...
regrs1[14],regrs1[12],regrs1[10],regrs1[8], ...
regrs1[6],regrs1[4],regrs1[2],regrs1[0], ...
regrs2[30],regrs2[28],regrs2[26],regrs2[24], ...
regrs2[22],regrs2[20],regrs2[18],regrs2[16], ...
regrs2[14],regrs2[12],regrs2[10],regrs2[8], ...
regrs2[6],regrs2[4],regrs2[2],regrs2[0])

y[31:0] := CONCAT( ...
regrs1[31],regrs1[29],regrs1[27],regrs1[25], ...
regrs1[23],regrs1[21],regrs1[19],regrs1[17], ...
regrs1[15],regrs1[13],regrs1[11],regrs1[9], ...
regrs1[7],regrs1[5],regrs1[3],regrs1[1], ...
regrs2[31],regrs2[29],regrs2[27],regrs2[25], ...
regrs2[23],regrs2[21],regrs2[19],regrs2[17], ...
regrs2[15],regrs2[13],regrs2[11],regrs2[9], ...
regrs2[7],regrs2[5],regrs2[3],regrs2[1])

SUBROT instruction

SUBROT rs, imm, rd

IF imm[2:0] = 010
FOR i:=0:15

j := 2*i
regrd[j+1:j] := regrs[j:j+1]

ENDFOR
ELIF imm[2:0] = 100

FOR i:=0:7
j := 4*i
regrd[j+3:j] := CONCAT(regrs[j+2:j],regrs[j+3])

ENDFOR
FI
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RED instruction

RED rs, imm, rd

IF imm[2:0] = 010
regrd[15:0] := regrs[15:0]
regrd[31:16] := regrs[15:0]
y[15:0] := regrs[31:16]
y[31:16] := regrs[31:16]

ELIF imm[2:0] = 011
regrd[15:0] := regrs[15:0]
regrd[31:16] := (NOT regrs[15:0])
y[15:0] := rregrss[31:16]
y[31:16] := (NOT regrs[31:16])

ELIF imm[2:0] = 100
regrd[7:0] := regrs[7:0]
regrd[15:8] := regrs[7:0]
regrd[23:16] := regrs[7:0]
regrd[31:24] := regrs[7:0]
y[7:0] := regrs[15:8]
y[15:8] := regrs[15:8]
y[23:16] := regrs[15:8]
y[31:24] := regrs[15:8]

ELIF imm[2:0] = 101
regrd[7:0] := regrs[7:0]
regrd[15:8] := (NOT regrs[7:0])
regrd[23:16] := regrs[7:0]
regrd[31:24] := (NOT regrs[7:0])
y[7:0] := rs[15:8]
y[15:8] := (NOT regrs[15:8])
y[23:16] := rs[15:8]
y[31:24] := (NOT regrs[15:8])

ELIF imm[2:0] = 110
regrd[7:0] := regrs[23:16]
regrd[15:8] := regrs[23:16]
regrd[23:16] := regrs[23:16]
regrd[31:24] := regrs[23:16]
y[7:0] := regrs[31:24]
y[15:8] := regrs[31:24]
y[23:16] := regrs[31:24]
y[31:24] := regrs[31:24]

ELIF imm[2:0] = 111
regrd[7:0] := regrs[23:16]
regrd[15:8] := (NOT regrs[23:16])
regrd[23:16] := regrs[23:16]
regrd[31:24] := (NOT regrs[23:16])
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y[7:0] := regrs[31:24]
y[15:8] := (NOT regrs[31:24])
y[23:16] := regrs[31:24]
y[31:24] := (NOT regrs[31:24])

FI

ANDC16 instruction

ANDC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] AND regrs2[15:0])
regrd[31:16] := (regrs1[31:16] OR regrs2[31:16])

XORC16 instruction

XORC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] XOR regrs2[15:0])
regrd[31:16] := (regrs1[31:16] XNOR regrs2[31:16])

XNORC16 instruction

XNORC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] XNOR regrs2[15:0])
regrd[31:16] := (regrs1[31:16] XOR regrs2[31:16])

ANDC8 instruction

ANDC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] AND regrs2[7:0])
regrd[15:8] := (regrs1[15:8] OR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] AND regrs2[23:16])
regrd[31:24] := (regrs1[31:24] OR regrs2[31:24])
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XORC8 instruction

XORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XOR regrs2[7:0])
regrd[15:8] := (regrs1[15:8] XNOR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] XOR regrs2[23:16])
regrd[31:24] := (regrs1[31:24] XNOR regrs2[31:24])

XNORC8 instruction

XNORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XNOR regrs2[7:0])
regrd[15:8] := (regrs1[15:8] XOR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] XNOR regrs2[23:16])
regrd[31:24] := (regrs1[31:24] XOR regrs2[31:24])

FTCHK instruction

FTCHK rs, imm, rd

IF imm[2:0] = 010
FOR i:=0:15

regrd[i] := (regrs[i+16] XOR regrs[i])
regrd[i+16] := (regrs[i+16] XOR regrs[i])

ENDFOR
ELIF imm[2:0] = 011

FOR i:=0:15
regrd[i] := (regrs[i+16] XNOR regrs[i])
regrd[i+16] := (regrs[i+16] XNOR regrs[i])

ENDFOR
ELIF imm[2:0] = 100

FOR i:=0:7
regrd[i] := ((regrs[i+8] XOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
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(regrs[i+24] XOR regrs[i]))
ENDFOR

ELIF imm[2:0] = 101
FOR i:=0:7

regrd[i] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

ENDFOR
FI

Efficient C emulation of the custom instructions

The following C code shows how to emulate selected custom instructions.

#define ANDC8(r,a,b) r = (((a) | (b)) & 0xFF00FF00) | \

(((a) & (b)) & 0x00FF00FF)

#define XORC8(r,a,b) r = (a) ^ (b) ^ 0xFF00FF00

#define XNORC8(r,a,b) r = (a) ^ (b) ^ 0x00FF00FF

#define ANDC16(r,a,b) r = (((a) | (b)) & 0xFFFF0000) | \

(((a) & (b)) & 0x000FFFF)

#define XORC16(r,a,b) r = (a) ^ (b) ^ 0xFFFF0000

#define XNORC16(r,a,b) r = (a) ^ (b) ^ 0x0000FFFF

Sample multiplication gadgets
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Fig. 11. Secure multiplication using SUBROT and FTCHK
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Side-channel analysis results

Table 4. Detailed report of 1st order CPA results on unmasked SubBytes of 1st round
AES

# of traces # of key bytes revealed

3K 1

4K 3

9K 5

10K 6

11K 7

12K 8 (half key)

14K 10

18K 11

19K 12

21K 13

22K 14

23K 15

24K 16 (full key)

Effect of Different Redundancy Schemes on Power Leakage

Figure 12 shows the evolution of t-values for the 2nd order t-test with respect to
the number of traces for both redundancy schemes. We observe that the direct
redundancy shows leakage with as few as about 200 traces, while the comple-
mentary redundancy shows leakage only after around 2500 traces. We conclude
that complementary redundancy is better than its direct counterpart in hiding
secret data from the power leakage. We believe that this result is consistent with
earlier work that investigated the impact of complementary representation on
software [16,26].
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Fig. 12. Evolution of t values for 2nd order t-test on 1st order masked implementation
with direct and complementary redundancy.
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3. Barry, T., Couroussé, D., Robisson, B.: Compilation of a countermeasure against
instruction-skip fault attacks. In: Proceedings of the Third Workshop on Cryptog-
raphy and Security in Computing Systems, CS2@HiPEAC, Prague, Czech Repub-
lic, 20 January 2016, pp. 1–6 (2016). https://doi.org/10.1145/2858930.2858931

4. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, 24–28 October 2016, pp. 116–129 (2016).
https://doi.org/10.1145/2976749.2978427

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
Y.: Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 19

6. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 2

7. G. Becker, et al.: Test vector leakage assessment (TVLA) methodology in practice
(2013)

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1109/FDTC.2011.9
https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-662-53140-2_2


250 P. Kiaei et al.
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