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Abstract

We discuss how the language of wave functions (state vectors) and associated non-
commuting Hermitian operators naturally emerges from classical mechanics by apply-
ing the inverse Wigner-Weyl transform to the phase space probability distribution and
observables. In this language, the Schrödinger equation follows from the Liouville equa-
tion, with ħh now a free parameter. Classical stationary distributions can be represented
as sums over stationary states with discrete (quantized) energies, where these states
directly correspond to quantum eigenstates. Interestingly, it is now classical mechanics
which allows for apparent negative probabilities to occupy eigenstates, dual to the nega-
tive probabilities in Wigner’s quasiprobability distribution. These negative probabilities
are shown to disappear when allowing sufficient uncertainty in the classical distribu-
tions. We show that this correspondence is particularly pronounced for canonical Gibbs
ensembles, where classical eigenstates satisfy an integral eigenvalue equation that re-
duces to the Schrödinger equation in a saddle-point approximation controlled by the
inverse temperature. We illustrate this correspondence by showing that some paradig-
matic examples such as tunneling, band structures, Berry phases, Landau levels, level
statistics and quantum eigenstates in chaotic potentials can be reproduced to a surprising
precision from a classical Gibbs ensemble, without any reference to quantum mechanics
and with all parameters (including ħh) on the order of unity.
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1 Introduction

Quantum mechanics and classical mechanics differ not just in the physics they describe, but
also in the mathematical ways they are generally expressed. Following Lagrange and Hamil-
ton, classical mechanics is usually expressed in terms of time-dependent phase space variables,
such as either coordinates and momenta or wave amplitudes and phases, and the dynamics is
determined by Hamilton’s equations of motion. Quantum mechanics in its non-relativistic for-
mulation is generally expressed in the language of operators acting on states, where canonical
variables are replaced by non-commuting operators. The time-dependence is then absorbed in
either the states (Schrödinger representation) or the operators (Heisenberg representation).
The non-commutativity of the operators leads to the fundamental quantum uncertainty rela-
tion set by Planck’s constant ħh. Classical uncertainties arise when considering e.g. an ensemble
of particles, for which the equation of motion for the probability distribution is given by Li-
ouville’s equation. Similar ensembles of quantum particles are described by density matrices
satisfying von Neuman’s equation of motion.

It is possible to formally consider the limit ħh→ 0, where the fundamental quantum uncer-
tainties become small and classical mechanics can be recovered (see e.g. Refs. [1–4]). One
way of observing this emergence is through the Wigner-Weyl phase space language [5–10].
This effectively rewrites the quantum equations of motion in terms of classical phase space
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variables, which we will denote as x and p for concreteness1, and von Neumann’s equation
for the Wigner (quasiprobability) function at ħh→ 0 reduces to Liouville’s equation for a clas-
sical probability distribution.

However, the reverse seems to be much less known: the classical Liouville equation can be
rewritten in the language of state vectors (wave functions), and truncating third- and higher-
order derivatives in the equations of motion leads to the Schrödinger equation. On the level of
equations, the inverse Wigner transform of a probability distribution describing an ensemble
of classical particles leads to a Hermitian quasi-density matrix. The Liouville equation now
naturally returns von Neumann’s equation of motion for this quasi-density matrix, with its
eigenstates satisfying the time-dependent Schrödinger equation. This mapping and the subse-
quent emergence of the Schrödinger equation appears to have been (re)discovered at various
occasions [11–18], where the original derivation seems to be first presented by Blokhintsev,
as reviewed in Ref. [14]. One of the aims of the first part of the current paper is also to give a
pedagogical motivation for the introduction of state vectors and Hermitian operators in quan-
tum mechanics through a detailed overview of the emergent operator-state representation of
classical mechanics.

However, and as should be expected, there are some crucial differences between this repre-
sentation of classical mechanics and quantum mechanics. First, Planck’s constant here appears
as a scale that can be freely chosen and can be taken to be arbitrarily small. The proposed
mapping to a quasi-density matrix and the operator representation is exact at all values of ħh,
but the resulting equations of motion only return the Schrödinger equation provided the initial
classical distribution is sufficiently smooth on the scale of ħh. In this sense, an initial condition
corresponding to a single phase space point, i.e. fixed initial position and momentum, can
not be properly described by the Schrödinger equation for generic Hamiltonians. Second, the
weights arising in the classical formulation of the density matrix, which would correspond
to probabilities in an actual density matrix, can be negative. Negative probabilities similarly
appear in Wigner’s quasiprobability function, and the negative probabilities here can be seen
as dual to the ones in Wigner’s function. As also discussed by Feynman, such negative (con-
ditional) probabilities do not pose a problem as long as the probabilities of verifiable physical
events remain positive [19]. These negative probabilities are in fact necessary if we want to
avoid classical uncertainty relations, as also observed in Ref. [20]. Furthermore, in much the
same way that the negative probabilities in the Wigner function disappear upon some aver-
aging over phase space, we show that negative probabilities in classical mechanics disappear
upon the introduction of sufficient uncertainty on the phase space distribution, in particular
in the energy.

In the second part of the paper we present original results, which to the best of our knowl-
edge did not appear anywhere before, and focus on the operator-state representation of canon-
ical distributions. Remarkably, and this is perhaps the main finding of our paper, eigenstates
of the canonical (classical) Gibbs ensemble are shown to satisfy an integral equation, which
in turn reduces to the stationary Schrödinger equation in the saddle-point approximation con-
trolled by the inverse temperature β . This result has the advantage that the accuracy of the
approximation is set by both ħh and the temperature, where we show that a remarkably ac-
curate correspondence between classical and quantum eigenstates can be obtained even for
relatively large values of ħh. This correspondence is shown to hold even in the presence of
magnetic fields and for both symmetric (boson-like) and anti-symmetric (fermion-like) states.
We illustrate these results with several paradigmatic examples, where we reproduce nearly-
exact quantum wave functions and energy levels from the classical Gibbs ensemble even in the
absence of particularly small parameters.

1To shorten notations we will use a two-dimensional phase space in most of this paper unless explicitly men-
tioned otherwise.
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As an initial illustration, in Fig. 1 we present various classical eigenstates for the canon-
ical Gibbs ensemble for a single-particle system in a two-dimensional double-well potential.
These are visually indistinguishable from the eigenstates obtained by solving the Schrödinger
equation, where we have chosen to present the two lowest-energy states and a single higher-
excited state. The two lowest states correspond to the expected symmetric and antisymmetric
combination of localized states, whereas the other state represents generic excited states.

Figure 1: Illustration comparing classical eigenstates obtained from the Gibbs
distribution (blue surface plots) and quantum eigenstates obtained solving
the stationary Schrödinger equation (black wire mesh) for a two-dimensional
potential. Two lowest-lying states (a) and (b) and a generic excited state (c)
are shown for a two-dimensional potential (gray surface plot) corresponding to
V (x , y) = ν

4 (1− x2)2 + 1
2 mω2 y2 with m=ω= ν= 1, inverse temperature β = 0.1,

and ε= ħh= 0.1. See Section 4 for more details.

This paper is organized as follows. In Section 2, we provide a short recap of relevant
results from the Wigner-Weyl formalism, after which an overview of the operator-state repre-
sentation for classical mechanics is presented in Section 3, discussing the classical Schrödinger
equation, the representation of classical observables as operators, and arguing for the neces-
sity of negative probabilities. Then in the second half of the paper, we focus on the eigenstates
of stationary canonical (Gibbs) distributions. Section 4 illustrates how the eigenvalue equa-
tion can be reduced to the stationary Schrödinger equation through a saddle-point approxi-
mation at high temperatures. Various examples of eigenstates and eigenvalues for the Gibbs
ensemble are shown in Section 5. These include the harmonic oscillator, the quartic potential,
and the double-well and periodic potential, where it is shown how tunneling states can be
obtained, before concluding with some examples of eigenstates for two-dimensional poten-
tials with and without magnetic fields. Equivalently, these two-dimensional systems can be
viewed as representing interacting one-dimensional two-particle ensembles. Having obtained
spectral properties for classical systems, Section 6 extends the Bohigas-Giannoni-Schmit and
Berry-Tabor conjectures for the level statistics of quantum systems to classical systems. Section
7 is reserved for conclusions.

2 Wigner-Weyl formalism

For completeness, we first provide a short overview of the Wigner-Weyl formalism [6, 9, 10].
Readers familiar with this formalism can immediately skip to Sec. 3.

Given a quantum wave function ψ(x , t), the Wigner function is defined as

W (x , p, t) =
dξ

2πħh
ψ∗(x + ξ/2, t)ψ(x − ξ/2, t)exp

i
ħh

pξ . (1)
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More generally, for a density matrix ρ̂(t),

W (x , p, t) =
dξ

2πħh
〈x + ξ/2|ρ̂(t)|x − ξ/2〉exp

i
ħh

pξ (2)

=
dκ

2πħh
〈p+κ/2|ρ̂(t)|p− κ/2〉exp −

i
ħh

xκ . (3)

This function has the important property that it returns the correct marginal distributions for
the canonical variables

〈x |ρ̂(t)|x〉= dp W (x , p, t), 〈p|ρ̂(t)|p〉= d x W (x , p, t). (4)

This clearly suggests that W could be interpreted as a joint probability distribution for x and
p. However, while this function is real and normalized, it is not necessarily positive. Rather,
it belongs to a class of quasiprobability distributions.

The equation of motion for the Wigner function is highly similar to the classical Liouville
equation, namely

∂W
∂ t

= {HW, W}M ≡
2
ħh

HW sin
ħh
2
Λ W, (5)

where HW ≡ HW(x , p) is the Weyl symbol of the quantum Hamiltonian Ĥ, essentially a correctly-
ordered classical Hamiltonian describing the particle2, {·, ·}M is the Moyal bracket, and Λ is
the symplectic operator, or loosely speaking simply the Poisson bracket operator:

Λ≡
←−
∂

∂ x

−→
∂

∂ p
−
←−
∂

∂ p

−→
∂

∂ x
such that AΛB ≡

∂ A
∂ x
∂ B
∂ p
−
∂ A
∂ p
∂ B
∂ x
≡ {A, B}. (6)

In the limit ħh→ 0 the sin-function can be linearized, sin(ħhΛ/2)→ ħhΛ/2, and von Neumann’s
equation (5) reduces to the Liouville equation [6,9,21]

∂W
∂ t

= {HW, W}+O(ħh2), (7)

such that in this limit the function W is conserved on continuous trajectories defined through
the classical equations of motion

d x
d t
= {x , HW}=

∂ HW

∂ p
,

dp
d t
= {p, HW}= −

∂ HW

∂ x
. (8)

In this formulation of quantum mechanics, the key differences with classical mechanics are (i)
the non-positivity of the Wigner function, not allowing a straightforward interpretation of W
as a probability distribution, and (ii) with the exception of harmonic systems, the impossibility
of representing solutions of Eq. (5) through smooth characteristics x(t) and p(t) on which W
is conserved in time. In other words, while the Wigner function itself smoothly changes in
time, this change can not be represented by smooth phase space trajectories of the particle,
necessitating so-called quantum jumps.

3 Operator-State representation of the classical Liouville equation

Before presenting the full derivation, we will present some of the key results of the following
sections. Starting from a classical probability distribution P(x , p), a quasi-density matrix W

2Which is obtained from Eq. (2) if we replace ρ̂ with Ĥ.
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can be defined as

W(x + ξ/2, x − ξ/2) = dp exp −i
pξ
ε

P(x , p), (9)

where we have introduced a dimensionful parameter ε that will play the role of ħh. Switching
to variables (x1, x2) = (x + ξ/2, x − ξ/2), we can write

W(x1, x2) =
α

wαψ
∗
α(x1)ψα(x2), (10)

which holds for any choice of parameter ε, such that both the states and weights have an
implicit dependence on ε. The coefficients wα are real and satisfy αwα = 1 for normalized
states ψα(x).

Classical averages over observables can be represented as Hermitian operators acting on
the wave functions ψα(x), returning the coordinate representation of x and p

x → x , p→−iε∂x , (11)

where operator averages are calculated in the usual way. This operator representation al-
ways holds, irrespective of the choice of ε and without any approximation. Making the time-
dependence explicit, in the limit ε→ 0 (the precise scale determining this limit will be made
clear in the derivation), the equation of motion for W given a Hamiltonian

H(x , p) =
p2

2m
+ V (x) (12)

can be rewritten to show that all weights wα are time-independent and the statesψα(x) satisfy
the Schrödinger equation

iε
∂

∂ t
ψα(x , t) = Ĥψα(x , t) with Ĥ = −

ε2

2m
∂ 2

∂ x2
+ V (x). (13)

Both in quantum and classical mechanics an important role is played by stationary, i.e.
time-independent, distributions corresponding to stationary states. In classical mechanics
such distributions are usually associated with statistical ensembles, with canonical and micro-
canonical ensembles predominant in systems with a conserved number of particles. Applying
the expansion (10) to a stationary distribution W(x1, x2) naturally leads to classical stationary
states. A crucial result of this paper is that the stationary states corresponding to a canonical
Gibbs ensemble at inverse temperature β have a striking resemblance to quantum stationary
states. As shown in Section 4, the exact eigenvalue equation for such canonical eigenstates
can be written as

wαψα(x) =
1
Zx

dξexp −
mξ2

2βε2
− βV (x − ξ/2) ψα(x − ξ), Zx = d x exp [−βV (x)] ,

(14)

which is similarly shown to return the Schrödinger equation when evaluating the integral us-
ing a saddle-point approximation controlled by β , with the eigenvalues returning the expected
Boltzmann weights. Interestingly, this close correspondence between quantum and classical
states remains even in the absence of small parameters (see Sec. 5). This analogy can similarly
be extended to systems in the presence of a magnetic field, where the classical Gibbs distribu-
tion also returns the expected quantum Hamiltonian. We also note that this equation can be
extended to multi-dimensional, multi-particle systems by adding coordinate/particle indices
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to the x and ξ variables. In particular, it applies to systems of identical particles, returning
symmetric and anti-symmetric classical eigenstates.

Of course, one immediate difference between quantum and classical mechanics in this lan-
guage is that the parameter ε playing the role of ħh is arbitrary. There are, however, other key
differences highlighting the complementarity of the quantum and classical formalisms. In par-
ticular, the wα can be interpreted as quasiprobabilities, and it is now classical mechanics that
can lead to negative probabilities of occupying states, defined as eigenfunctions of W(x1, x2).
For the Gibbs ensemble we find that at high temperatures the weights wα are all positive
and coincide with the Boltzmann factors wα ∝ e−βEα , forming a broad distribution. In the
opposite limit of vanishing temperatures β → ∞, where the differences between quantum
and classical states are most pronounced, the distribution of these weights is oscillatory and
broad, with wα∝ (−1)αe−β̃Eα , with β̃∝ 1/β . The distribution is maximally narrow at some
specific temperature β−1 on the order of the ground state energy. It is precisely this negativ-
ity of probabilities that leads to the violation of the uncertainty principle in classical systems
for small temperatures or, more generally, for narrow phase space probability distributions.
Despite these subtleties, this “state language” of formulating classical mechanics is very use-
ful as it provides both practical and conceptual tools for understanding the connections and
differences between quantum stationary states and classical equilibrium distributions; quan-
tum and classical chaos and integrability, entanglement and more. As one example, we show
that the level spacing statistics of the eigenvalues wα return either Wigner-Dyson or Poisso-
nian statistics for chaotic and integrable Hamiltonians respectively. This connection also can
help us to understand in what way some of the postulates of quantum mechanics are simply
reformulations of classical results in the state language.

We also note that this approach is fundamentally different from the Koopman-von Neu-
mann (KvN) formulation of classical mechanics [22,23]. Within the KvN approach, a classical
probability is written as the square of the absolute value of a wave function depending on both
position and momentum. Classical observables are then represented by commuting operators,
and time evolution of the KvN wave function is generated by a Liouvillian. In the approach
outlined here, a classical probability distribution is first Fourier-transformed to W , which can
then be written as a density matrix with wave functions depending only on position. Classical
observables are represented by generally non-commuting operators, and in the limit of suffi-
cient uncertainty on the initial probability distribution the time evolution of the wave functions
is generated by a Hamiltonian.

3.1 Classical Schrödinger equation.

We start this section by showing how the Liouville equation3 for the classical probability dis-
tribution P(x , p, t) [21]

∂ P
∂ t

= −{P, H}= −
∂ H
∂ p
∂ P
∂ x

+
∂ H
∂ x
∂ P
∂ p

, (15)

can be rewritten entirely in the coordinate space. This derivation essentially follows that of
Refs. [14, 24], but because it is not widely known we will repeat it here for completeness.
To simplify the notations, we consider a Hamiltonian describing a classical particle in a one-
dimensional potential

H =
p2

2m
+ V (x), (16)

where m is the mass of the particle and V (x) is the potential in which it moves. The assump-
tion of a one-dimensional/single-particle system will be unimportant in the following, and

3Note the different sign compared with Hamilton’s equations of motion for observables.
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this derivation is readily generalized to more general Hamiltonians H(x , p) that are arbitrary
analytic functions of the phase space variables. Substituting the Hamiltonian (16) into the
Liouville equation we find

∂ P
∂ t

= −
p
m
∂ P
∂ x

+ V (x)
∂ P
∂ p

. (17)

It is convenient, by taking the Fourier transform with respect to momentum, to go from a
representation of P in terms of position and momentum to a representation in terms of a pair
of position coordinates

W(x + ξ/2, x − ξ/2, t) = dp exp −i
pξ
ε

P(x , p, t). (18)

In order for ξ to have the dimension of position, we also introduce a dimensionful parameter ε,
which is kept arbitrary for the time being but will end up playing the role of ħh. The reason for
choosing W to be a function of x+ξ/2 and x−ξ/2 will be apparent shortly. This construction
can be inverted as

P(x , p, t) =
dξ

2πε
exp i

pξ
ε

W(x + ξ/2, x − ξ/2, t). (19)

Note that if W(x1, x2) is replaced by the quantum density matrix ρ(x1, x2) and ε by ħh, P(x , p)
becomes the corresponding Wigner function [6] (see also Sec. 2). We can formally regard
Eq. (18) as the inverse Wigner transform of the classical probability distribution with an arbi-
trarily chosen Planck’s constant.

Taking the Fourier transform of Eq. (17) and using partial integration to evaluate the sec-
ond term on the right hand side results in the following equation of motion for W:

∂

∂ t
W x +

ξ

2
, x −

ξ

2
, t =−

iε
m
∂

∂ x
∂

∂ ξ
W x +

ξ

2
, x −

ξ

2
, t

+
iξ
ε

V (x)W x +
ξ

2
, x −

ξ

2
, t . (20)

This equation can be made explicitly symmetric by switching to new variables
(x1, x2) = (x + ξ/2, x − ξ/2),

iε
∂

∂ t
W(x1, x2, t) =−

ε2

2m
∂ 2

∂ x2
2

−
∂ 2

∂ x2
1

W(x1, x2, t)

− (x1 − x2)V
x1 + x2

2
W(x1, x2, t), (21)

where we also multiplied Eq. (20) by iε. Eq. (21) is exact and holds for any value of ε.
Now we can make a crucial simplification and take ε to be sufficiently small: in this case, we

can see from Eq. (18) that in order for W to be nonzero, we also need to consider ξ= (x1−x2)
sufficiently small compared to ε. Namely, if P(x , p, t) does not significantly change when
varying p over a scale on the order of ε/ξ, the integral over the exponential will average out
to zero, and the only non-zero contributions to W will be for ξ similarly small. We can make
an approximation and set ξV (x) ≈ V (x + ξ/2)− V (x − ξ/2) = V (x1)− V (x2), such that the
equation of motion reduces to

iε
∂

∂ t
W(x1, x2, t)≈ −

ε2

2m
∂ 2

∂ x2
2

+ V (x2) W(x1, x2, t)

− −
ε2

2m
∂ 2

∂ x2
1

+ V (x1) W(x1, x2, t). (22)
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Similar to regular quantum mechanics, Eq. (22) can be simplified through an eigenvalue de-
composition of W(x1, x2, t), interpreting W as an operator with (x1, x2) as indices. Note that
this operator is Hermitian: taking its transpose, i.e. exchanging x1 and x2, corresponds to
taking ξ → −ξ in Eq. (18), which is in turn equivalent to taking the complex conjugate. As
such, this operator is guaranteed to be diagonalizable, with real eigenvalues. Then

W(x1, x2, t) =
α

wαΨ
∗
α(x1, t)Ψα(x2, t), (23)

where the functions Ψα(x , t) are the analogues of the time-dependent wave functions in the
Schrödinger representation and wα are weights/eigenvalues. While the latter can in principle
dependent on time, in the limit where Eq. (22) holds they are time-independent, while the
orthonormal wave functions satisfy the Schrödinger equation

iε
∂

∂ t
Ψα(x , t) = −

ε2

2m
∂ 2

∂ x2
+ V (x) Ψα(x , t). (24)

3.2 Representation of observables through Hermitian operators.

The representation of the probability density as a (quasi-)density matrix immediately leads
to the representation of observables as Hermitian operators acting on states. This mapping
does not depend on any approximations, as we will now explore. For convenience, the time
dependence of all distributions, states, and operators is also made implicit in this section. First
of all, we can choose the eigenstates to be normalized as

d x Ψ∗α(x)Ψβ(x) = δαβ . (25)

From the normalization of the classical probability distribution, we then find that

1= d x dp P(x , p) = d x W(x , x) =
α

wα. (26)

More generally, expressing the classical probability distribution P(x , p) through the function
W , it is straightforward to find that

〈x〉 ≡ d x dp P(x , p) x =
α

wα d x |Ψα(x)|2 x , (27)

〈p〉 ≡ d x dp P(x , p) p =
α

wα d x Ψ∗α(x) −iε
∂

∂ x
Ψα(x) . (28)

From the first expression for x , one can see that W(x , x) = αwα|Ψα(x)|2 plays the role of the
coordinate probability distribution. In fact, this correspondence holds for general observables
that only depend on position, where for any function O(x) one has

〈O(x)〉 ≡ d x dp P(x , p)O(x) = d x W(x , x)O(x). (29)

From Eq. (28) we see that the momentum is represented by the partial derivative

p→ p̂ = −iε∂x , (30)

such that the operators x̂ (represented by multiplication by x) and p̂ satisfy the usual commu-
tation relation

[ x̂ , p̂] = iε. (31)
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It is easy to check that this representation survives if we consider an expectation value of an
arbitrary function O(p). Note that the definition of W in Eq. (18) implied choosing the coordi-
nate representation of wave functions. Alternatively, we could have obtained the momentum
representation

W(p+κ/2, p−κ/2) = d x exp i
xκ
ε

P(x , p, t), (32)

where the momentum representation of operators would give p→ p and x → iε∂p.
One can similarly analyze more complicated observables involving products of x and p.

For example,

〈x p〉 ≡ d x dp P(x , p)x p

=
iε
2

α

wα d x x
∂Ψ∗α(x)

∂ x
Ψα(x)−Ψ∗α(x)

∂Ψα(x)
∂ x

=
α

wα d x Ψ∗α(x) −x iε
∂

∂ x
−

iε
2

Ψα(x), (33)

where we obtained the last equation by integrating by parts. We see that, as perhaps expected,

x p→ x̂ p̂−
iε
2
=

x̂ p̂+ p̂ x̂
2

. (34)

This equation immediately extends to functions of the form pO(x), where

pO(x)→
p̂Ô( x̂) + Ô( x̂)p̂

2
. (35)

It is straightforward to check that more general functions of the form pnO(x) correspond to
so-called symmetrically-ordered operators (see e.g. Refs. [9,25–27]), which can be defined by
the recursion relation

pnO(x)→ Ω̂n( x̂ , p̂) =
1
2

p̂ Ω̂n−1( x̂ , p̂) + Ω̂n−1( x̂ , p̂) p̂ , where Ω̂0( x̂ , p̂) = Ô( x̂). (36)

All symmetrically-ordered operators are explicitly Hermitian, which immediately follows from
the recursion relation above, combined with the fact that x̂ and p̂ are Hermitian. As an im-
portant example, for a time-independent Hamiltonian the energy of a system is conserved and
given by

d x dp P(x , p)H(x , p) =
α

wα d x Ψ∗α(x) −
ε2

2m
∂ 2

∂ x2
+ V (x) Ψα(x), (37)

which is independent of the limit ε→ 0 necessary to obtain the Schrödinger equation.

3.3 Negative probabilities for classical systems. The uncertainty principle.

Much of the previous section exactly reproduced the language of quantum mechanics entirely
within a classical formalism. The only approximation we made was in the equation of motion
determining the dynamics, setting

(x1 − x2)V
x1 + x2

2
≈ V (x1)− V (x2), (38)
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when acting on W(x1, x2), as required to obtain Eq. (22) from the exact equation (21). This
approximation is justified if the distribution P(x , p) is sufficiently smooth on the scale set by
ε such that W(x1, x2, t) is only non-zero when |x1 − x2| = |ξ| is small enough. Note that for
harmonic potentials there are no approximations involved and Eq. (22) is exact for any choice
of ε since then (x1 − x2)V ((x1 + x2)/2) = V (x1)− V (x2).

There seems to be an apparent contradiction with Heisenberg’s uncertainty relation
δxδp ≥ ε/2. In quantum mechanics this uncertainty relation is a direct consequence of the
commutation relation (31). However, this commutation relation also holds classically, and
even more, it holds for any choice of ε. Yet, the initial distribution P(x , p) can be chosen to be
arbitrarily narrow and violate the uncertainty relation. To resolve this apparent paradox, it’s
necessary to conclude that W cannot be an exact density matrix: for a general distribution the
weights wα entering Eq. (23), playing the role of probabilities, will not all be positive. This
allows us to interpret these weights as quasiprobabilities in the same way the non-positive
quantum Wigner function W (x , p, t) is interpreted as a quasiprobability in phase space, since
the weights are real and sum to unity, αwα = 1. We thus arrive at the interesting conclusion
that, in the operator-state representation, it is now classical mechanics that leads to appar-
ent negative probabilities. If we choose ε larger than ħh, such that real quantum effects are
neglected, but still small enough such that Eq. (21) holds, we can effectively realize density
matrices with negative (quasi-)probabilities, which could lead to phenomena not possible in
ordinary quantum mechanics.

As an immediate corollary, only classical distributions which satisfy the uncertainty relation
δxδp ≥ ε/2 can have all non-negative weights wα. This can be exemplified from a Gaussian
phase space distribution

P(x , p) =
1

2πσxσp
exp −

x2

2σ2
x
−

p2

2σ2
p

, (39)

where the qualitative character of the eigenvalues will depend crucially on σxσp. First con-
sider the distribution saturating this bound,

P(x , p) =
1
πε

exp −
x2

2σ2
x
−

p2

2σ2
p

, σxσp =
ε

2
, (40)

where W(x1, x2) can be easily obtained and shown to factorize as

W(x1, x2) =ψ
∗(x1)ψ(x2), ψ(x) =

1
(2πε2)1/4

exp −
x2

4σ2
x

. (41)

The quasi-density matrix has a single non-zero eigenvalue and the corresponding
eigenstate is the ground state of a harmonic oscillator with frequency
ω= ε/(2mσ2

x) = (2σ
2
p)/(mε) = σp/(mσx).

Now consider the case where σxσp > ε/2. The Wigner function for the Gibbs ensemble of
a harmonic oscillator is exactly given by a Gaussian, which we can invert to show that in this
case the quasi-density matrix following from Eq. (39) is given by (as shown in Appendix C.2)

W(x1, x2) =
1
Z

n≥0

exp[−nβqεω]ψ
∗
n(x1)ψn(x2), Z = 1

1− exp(−βqεω)
, (42)

corresponding to the Gibbs distribution of a harmonic oscillator with frequency ω at inverse
temperature4 βq; ψn(x) is the n-th quantum eigenstate of this oscillator. The values of ω and

4We use Tq, βq to denote the temperature and its inverse of a quantum system to avoid confusion with T, β ,
which we use later for the classical Gibbs ensemble.
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βq follow from the uncertainties as

mω=
σp

σx
, σxσp =

ε

2
coth

εωβq

2
. (43)

Since σxσp > ε/2, the second equation has a real and positive solution for βq, such that all
weights wn = exp[−nβqεω]/Z are strictly positive and have a clear interpretation as proba-
bilities.

The final case we can consider is for σxσp < ε/2, i.e. when the distribution P(x , p)
does not satisfy the uncertainty relation. This can be obtained by shifting βq in Eq. (43) to
βq = β̃q + iπ/(εω), such that

mω=
σp

σx
, σxσp =

ε

2
tanh

εωβ̃q

2
, (44)

where we have used coth(x + iπ/2) = tanh(x). Given a Gaussian with σxσp < ε/2, these
equations now have a real and positive solution for β̃q. Introducing the same shift of βq in
Eq. (42), we conclude that the eigenstates of the quasi-density matrix violating the uncertainty
relation remain those of a harmonic oscillator with frequency ω, but the weights will now
become oscillatory and (see also Appendix C.2)

W(x1, x2) =
1
Z

n≥0

(−1)n exp[−nβ̃qεω]ψ
∗
n(x1)ψn(x2), Z = 1

1+ exp(−β̃qεω)
, (45)

since exp[−nβqεω] = exp[−nβ̃qεω]exp[−inπ] = (−1)n exp[−nβ̃qεω]. Negative probabili-
ties arise the moment the uncertainty relation is violated. Clearly, a narrow distribution P(x , p)
with σxσp ε/2 will correspond to a small β̃q and result in a very broad oscillatory distribu-
tion of the weights wn∝ (−1)n exp[−nβ̃qεω].

As an interesting observation, we note that a partition function of the form
Z = 1/(1− exp(−βqεω)) naturally arises in the description of free bosons, whereas that of a
free fermion is given by (1+ exp(−β̃qεω)). For the harmonic oscillator the eigenstate index n
can be interpreted as an occupation number, leading to an average energy of εω(〈n〉+ 1/2),
and it can easily be checked that

〈n〉σxσp>ε/2 =
1

exp(βqεω)− 1
, 〈n〉σxσp<ε/2 = −

1

exp(β̃qεω) + 1
, (46)

returning the Bose-Einstein and (minus the) Fermi-Dirac distributions respectively. While the
bosonic Bose-Einstein distribution for oscillators with σxσp > ε/2 is not unexpected, the
analogy between free fermions and the quantum oscillator at a complex temperature, in turn
equivalent to a Gaussian classical probability distribution with σxσp < ε/2, is rather intrigu-
ing. At the moment we are not sure if this is a simple coincidence or if there is a deeper
underlying reason.

4 Canonical distributions

Both in quantum and classical mechanics a special role is played by stationary states/ stationary
probability distributions. In quantum mechanics these states are defined as eigenstates of
the Hamiltonian. While all possible stationary probability distributions are not classified in
classical systems, an important class of such distributions is those corresponding to equilibrium
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statistical ensembles. For single-particle systems the two most common ensembles are given
by the canonical (fixed temperature) and microcanonical (fixed energy) distribution. As we
will see the classical-quantum correspondence is most pronounced for canonical ensembles,
such that we will focus on these in the following. Results for the microcanonical ensemble are
presented in Appendix B.

For the Hamiltonian given by Eq. (16) the canonical, or Gibbs or Maxwell-Boltzmann,
probability distribution is given by

P(x , p) =
1
Z

exp −β
p2

2m
+ V (x) , (47)

in which the normalization constant or partition function is given by

Z = d x dp exp −β
p2

2m
+ V (x) =

2πm
β

d x exp [−βV (x)] . (48)

It straightforward to compute the function W(x + ξ/2, x − ξ/2) for this distribution by
explicitly taking the Fourier transform according to Eq. (9) as

W(x + ξ/2, x − ξ/2) =
1
Zx

exp −
mξ2

2βε2
− βV (x) , Zx = d x exp [−βV (x)] . (49)

Since this is a stationary state by construction, W(x1, x2) should approximately commute with
the Hamiltonian provided the assumptions of Section 3.1 hold, such that its eigenstates should
aproximate the eigenstates of the quantum Hamiltonian. In the next Section we will show
explicit examples of stationary eigenstates for particular potentials obtained in this way.

We can advance analytically by deriving the equation for the stationary eigenstates ψn(x)
and quasi-probabilities wn. Writing out the eigenvalue equation and changing the integration
variable x2 to ξ= x1 − x2, we find the following exact integral equation:

wnψn(x) =
1
Zx

dξexp −
mξ2

2βε2
− βV (x − ξ/2) ψn(x − ξ). (50)

4.1 Saddle point derivation of the stationary Schrödinger equation.

As in the WKB method, it is convenient to define a complex action Sn(x) as
ψn(x) = exp[iSn(x)/ε]. The above integral equation now reads

wn exp
i
ε

Sn(x) =
1
Zx

dξexp −
mξ2

2βε2
− βV (x − ξ/2) +

i
ε

Sn(x − ξ) . (51)

This equation can be simplified in the limit of small ε, leading to essentially the same analysis
as in Sec. 3.1. It is perhaps more interesting to note that the inverse temperature β can
serve as an alternative different saddle point parameter, since in the limit β → 0 the first
prefactor in the exponential diverges. Note that ε and β do not enter the integral equation
through a fixed combination, so the expansions in ε and β do not coincide, distinguishing the
proposed approach from quasi-classical methods. This difference will become apparent in the
next section, where we derive the leading inverse-temperature corrections to the eigenvalue
equation.

Performing the Taylor expansion of the integrand in ξ up to the second order and integrat-
ing over ξ, which is equivalent to the saddle point approximation, we find

wn =
1
Zx

2πβε2

m
exp −β

Sn(x)
2

2m
+ V (x)−

iε
2m

Sn (x) +O(β2) . (52)
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Since the left-hand side of this equation is x-independent we must have

Sn(x)
2

2m
+ V (x)−

iε
2m

Sn (x) = constant= En, (53)

where we have labelled the constant En. As is well known from the WKB analysis [28], this
equation is equivalent to the stationary Schrödinger equation for the wave function with eigen-
value En,

−
ε2

2m
d2ψn(x)

d x2
+ V (x)ψn(x) = Enψn(x). (54)

We also immediately see that the quasi-probabilities are, up to a prefactor, simply the Boltz-
mann weights of the discrete energies En

wn =
e−βEn

Z
, Z =

n

e−βEn =
m

2πβε2
Zx =

1
2πε

Z . (55)

There is a clear connection between the classical canonical distribution and quantum sta-
tionary states. If we take ε = ħh and analyze the eigenstates of W , here the Fourier transform
of the Gibbs distribution, the correct “quantum” stationary states are recovered. As we will
show in Section 5, these include stationary states in a non-linear potential, tunneling states
and random states in chaotic two-dimensional systems. Because the saddle point approxima-
tion is justified by the smallness of β and not ε = ħh, the accuracy of classical eigenstates is
independent from the accuracy of the WKB approximation, and as we will demonstrate one
can very accurately recover both the ground and excited states. Moreover, as we numerically
observe for smooth potentials, the difference between quantum and classical eigenstates re-
mains surprisingly small even if β is on the order of one and only few states are effectively
populated. We also note that within the saddle point approximation all probabilities wn are
strictly positive – a small enough β such that the saddle point approximation holds implies a
smooth enough phase space distribution such that all necessary uncertainty relations hold.

4.2 Inverse temperature expansion of the classical Gibbs Hamiltonian.

While the saddle-point derivation in the previous section is relatively straightforward and re-
markably accurate, it remains important to obtain corrections determining the differences
between quantum and classical eigenstates away from the limit β → 0. The saddle-point
approach is less convenient for finding finite β corrections, where it is more convenient to
develop a formal approach based on the operator expansion. This can also serve to highlight
the difference between the expansion in β and semiclassical approaches expanding in ε or ħh.

To do so, it is convenient to rewrite Eq. (50) as

wnψn(x) =
ε

2πZ
dχ exp −

χ2

2
− βV x −

εχ

2
β

m
exp −εχ

β

m
d

d x
ψn(x), (56)

where we changed the integration variable ξ→ χε β/m to make the expansion in β more
transparent. We also represented ψn(x − ξ) = exp[−ξdx]ψn(x). We can formally define the
effective classical Gibbs Hamiltonian as

ĤGibbs = −
1
β

log
dχ

2π
exp −

χ2

2
− βV x −

εχ

2
β

m
exp −εχ

β

m
d

d x

= −
1
β

log



exp −βV x −
εχ

2
β

m
exp −εχ

β

m
d

d x



 , (57)
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where the overline represents Gaussian averaging with respect to χ over the normal distri-
bution with zero mean and unit variance. The eigenstates of this Gibbs Hamiltonian are the
exact eigenstates of W . This representation again makes clear that the expansion in ε and the
expansion in β necessarily differ, since β enters as both the prefactor in front of the potential
and as a scaling factor for the integration variable χ.

Expanding the exponent to the leading order in β we find

ĤGibbs = −
1
β

log 1− βV (x) + ξ2
βε2

2m
d2

d x2
+O(β2) =

p̂2

2m
+ V (x) +O(β), (58)

which is exactly the result of the saddle-point analysis. Evaluation of the next order corrections
is tedious but straightforward, where we only quote the final result5:

ĤGibbs =
p̂2

2m
+ V (x)−

βε2

8m
V (x)

+
β2ε2

24m
1

4m
p̂2V (x) + 2p̂V (x)p̂+ V (x)p̂2 + V (x)2 +O(β3). (59)

This expression again highlights how the finite-temperature expansion in β is not a semiclassi-
cal expansion in ε: while both return the same zeroth-order Hamiltonian, the first two orders
of correction in β are clearly of the same order in ε. It can be checked that this correction is
trivial for the harmonic oscillator, where the linear correction represents an overall energy shift
and the quadratic correction is proportional to the Hamiltonian. This multiplicative correction
can in turn be absorbed by redefining the “quantum temperature” βq in agreement with the
earlier results (see e.g. Eq. (43)). If the potential contains both harmonic and unharmonic
parts one can, e.g., rescale βq in order to keep the harmonic part independent of the classical
temperature. This procedure could result in nontrivial renormalization group-type flows of
the Gibbs Hamiltonian and βq with β .

4.3 Canonical ensemble in the presense of a vector potential.

We now extend the previous discussion to a more general class of classical Hamiltonians, where
a particle is coupled to an electromagnetic vector potential. Namely, let us now consider the
following classical Hamiltonian6:

H =
1

2m
(p− qA(x))2 + V (x), (60)

where A(x) is the vector potential and q the charge of the particle. Taking the Fourier trans-
form of the corresponding Gibbs distribution, we find the following expression generalizing
Eq. (49):

W(x + ξ/2, x − ξ/2) =
1
Zx

exp −
mξ2

2βε2
− i
ξ

ε
qA(x)− βV (x) , (61)

which leads to the following eigenvalue equation (cf. Eq. (50)):

wnψn(x) =
1
Zx

dξexp −
mξ2

2βε2
− i
ξ

ε
qA(x − ξ/2)− βV (x − ξ/2) ψn(x − ξ). (62)

Repeating, for example, the same analysis as in Eq. (56) up to leading order in β , we recover
the correct quantum Hamiltonian of a particle in the presence of a vector potential:

ĤGibbs =
1

2m
(p̂− qA(x))2 + V (x) +O(β2). (63)

5We thank A. Dymarsky for helping us with this derivation.
6For simplicity, the derivation focuses on a one-dimensional system, but holds for systems with arbitrary dimen-

sion.
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We see that in the high-temperature limit the eigenstates of the classical Gibbs distribution
again return the correct eigenstates of the quantum Hamiltonian. As such, many quantum
phenomena including the existence of a nontrivial Berry phase or Aharonov-Bohm-type in-
terference of stationary eigenstates outside a magnetic solenoid are encoded in the classical
Gibbs distributon. In Section 5.5 we will illustrate this statement with specific examples.

5 Examples of canonical stationary states

In this section we will analyze eigenstates of the canonical distribution in several characteristic
single-particle systems with increasing complexity, and compare these with the corresponding
quantum mechanical states. In particular, we will analyze a harmonic oscillator, a quartic
potential, a double-well and periodic potential, and finally a two-dimensional non-linear po-
tential with and without magnetic field.

5.1 Harmonic oscillator.

We will start from the harmonic oscillator, where all the eigenstates can be found analytically.
The potential energy is then V (x) = 1

2 mω2 x2 such that the Boltzmann’s distribution reads

P(x , p) =
1
Z

exp −
βmω2 x2

2
−
βp2

2m
. (64)

This is precisely the Gaussian distribution we analyzed earlier (see Eq. (39)) with
σx = 1/ βmω2 and σp = m/β such that σp/σx = mω and σxσp = 1/(βω). From
Eq. (43) we see that this distribution maps to the equilibrium canonical ensemble,

W(x1, x2) =
n

wnψn(x1)ψn(x2), (65)

whereψn(x) are the eigenstates of the quantum harmonic oscillator with the same parameters
and ħh→ ε, defined in terms of Hermite polynomials Hn(x),

ψn(x) =
1

πξ2
0

1/4

1

2nn!
Hn(x/ξ0)exp −

x2

2ξ2
0

with ξ2
0 =

ε

mω
, (66)

and for T = 1/β ≥ εω/2

wn =
1
Z

exp[−βqωn], βq =
2
εω

arctanh
βωε

2
, (67)

whereas for T < εω/2

wn =
(−1)n

Z
exp[−β̃qωn], β̃q =

2
εω

arccoth
βωε

2
. (68)

As expected, for T εω/2 we have βq ≈ β and in the opposite limit T εω/2 we have
β̃q ≈ 4/(βε2ω2).

We see that for the harmonic potential the stationary eigenstates ψn(x) coincide at any
temperature β with the eigenstates of a quantum harmonic oscillator if we set ħh → ε. This
result also follows from the fact that the canonical distribution is stationary by construction
and Eq. (21) reduces to the commutator with the Hamiltonian with ε= ħh without any approx-
imation, such that W necessarily commutes with the Hamiltonian and they share a common
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Figure 2: Comparison of the classical eigenstates obtained from the Gibbs dis-
tribution and quantum eigenstates obtained solving the stationary Schrödinger
equation for the quartic potential V (x) = νx4/4. States are shown at various
β = 0.1,0.5, 1. Other parameters: m= 1,ε= ħh= 1,ν= 1.

eigenbasis. In this sense there is a precise correspondence between the classical Gibbs en-
semble and the quantum Gibbs distribution for T ≥ εω/2 if we identify the quantum inverse
temperature with βq according to the relations above. Interestingly, for T < εω/2 we still
have the exact correspondence between the classical and quantum probability distributions
but the quantum weights wn are no longer positive, with an additional oscillatory dependence
on top of the exponential decay.

5.2 Quartic potential.

Now we move to the slightly more complicated case of a particle of mass m in a nonlinear
quartic potential V (x) = 1

4νx4. The exact quantum ground state energy for this model can be
found numerically as

Egs ≈ 0.421
ε4/3ν1/3

m2/3
. (69)

This energy also provides a characteristic quantum energy scale for the system. We will now
compare some eigenstates obtained from the classical Boltzmann’s distribution with the quan-
tum eigenstates at different values of β . For concreteness we will fix all the parameters ε,ν, m
to be unity.

In Fig. 2 we show examples of several wave functions describing the ground state, the
first excited state, and the fifth excited state of the particle in the quartic potential. All plots
illustrate a comparison between the exact quantum wave functions obtained by numerically
solving the Schrödinger equation (full black lines) and the classical eigenstates obtained by
diagonalizing W(x1, x2) corresponding to the Gibbs distribution at three different values of
β = 0.1, 0.5, 1. In both the quantum and classical case we use standard diagonalization
routines for symmetric matrices, taking identical spatial discretization steps which we choose
sufficiently small such that we reproduce accurate continuous results. We checked that in all
analyzed cases the diagonalization of the quantum Hamiltonian Ĥ and of the matrix W(x1, x2)
takes similar amounts of time.

While at β = 1 there are clear visible differences between the classical and quantum states,
the agreement between them is still strikingly good given that there is no single small param-
eter in the problem. The “high-temperature” classical eigenstates at β = 0.1 are visually
indistinguishable from the quantum eigenstates. In Table 1 we list the energies of the classical
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eigenstates, computed as usually as the expectation values of the Hamiltonian,

En = 〈ψn|Ĥ|ψn〉= d xψ∗n(x) −
ε2

2m
d2

d x2
+ V (x) ψn(x). (70)

The second column gives the (numerically) exact quantum-mechanical spectrum and the three
following columns describe the energy spectrum following from the eigenstates of the classi-
cal Gibbs eigenstates computed at three different temperatures. As with the wave functions,
the last column corresponding to β = 0.1 gives nearly exact results with about 0.01% accu-
racy. The lower temperature spectrum has a larger discrepancy with the quantum spectrum
but is still pretty accurate. It is remarkable that for β = 1 even the tenth eigenstate, with
energy about 15 times larger than the classical temperature and with a tiny occupation, is still
reproduced reasonably well.

Table 1: Comparisons of energies of the first 10 eigenstates corresponding to a
particle in a quartic potential. The first column corresponds to the exact quantum
energies. The next three columns are the energies of the classical eigenstates ob-
tained from the Gibbs distribution at three different temperatures. The parameters
are the same as in Fig. 2.

State # Quantum Gibbs β = 1 Gibbs β = 0.5 Gibbs β = 0.1

1 0.420805 0.429898 0.423806 0.420976
2 1.5079 1.50845 1.50986 1.50814
3 2.95879 3.18835 2.95619 2.95889
4 4.62121 5.01404 4.62432 4.62122
5 6.45348 6.22582 6.48496 6.4534
6 8.42841 8.29998 8.5441 8.42822
7 10.5278 10.5521 10.898 10.5275
8 12.7382 13.4236 14.1554 12.7378
9 15.0496 15.113 15.2664 15.0491
10 17.4538 17.2797 15.9425 17.4531

In the left panel of Fig. 3 we show the distribution of quasi-probabilities wn for the first
twenty classical eigenstates corresponding to the four different temperatures of the Gibbs en-
semble. We emphasize that these probabilities, together with the corresponding eigenstates
ψn(x), exactly represent the classical Gibbs ensemble. At inverse temperature β = 0.1 the
distribution of quasi-probabilities almost exactly matches the quantum Gibbs distribution at
the same temperature, as illustrated in the right panel of Fig. 3. While qualitatively the simi-
larities with the quantum ensemble extend all the way to β = 1, one can clearly observe the
emergence of negative weights with increasing β . From this plot it is clear that it is possible
to generate classical probability distributions dominated by the ground state and yet still have
very good agreement with the corresponding quantum ground state. In other words, despite
the absence of any intrinsic quantization, classical Gibbs ensembles have excellent discrete
representations where a small number of eigenstates can be occupied. As the temperature is
further lowered and the classical distribution becomes too narrow, such that it is no longer
possible to satisfy the uncertainty principle, the discrete representation becomes broad again,
with many states occupied and weights wn becoming strongly oscillatory (see the data for
β = 5 in Fig. 3). This behavior of the quasi-probabilities is qualitatively very similar to that
of the Gaussian phase space distribution discussed in previous section and the microcanonical
distribution discussed in Appendix B.
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Figure 3: Distribution of quasiprobabilities wn for the classical Gibbs ensemble
for the quartic potential at four different temperatures. The left plot shows the
eigenvalues of W(x1, x2) at four values of β , where negative probabilities arise at
larger β . The right plot shows log(|wn|)/β as function of En = 〈ψn|Ĥ|ψn〉 for the
two smaller values of β . The parameters are the same as in Fig. 2.

In order to further quantify the behavior of the weights/eigenvalues/quasi-probabilities,
we consider

Sα =
1

1−α
log

n

wαn . (71)

For positive eigenvalues, this corresponds to the Rényi entropy, which is bounded from below
by zero and Sα = 0 only for a factorizable distribution with a single nonzero wn = 1. When
allowing for negative wn, this lower bound and the interpretation as entropy vanishes, but
it is still instructive to consider how Sα changes as β is varied. In order to avoid negative
arguments for the logarithm, we consider α integer and even. S2 can be analytically obtained
as

S2 = − logTr W2 = − log d x1 d x2 W(x1, x2)W(x2, x1)

= − log2πε d x dp P(x , p)2 = − log





πβε2

m

d x e−2βV (x)

d x e−βV (x) 2



 . (72)

The partition function integrals can be explicitly evaluated for the harmonic oscillator to return
S2 = − log(βεω/2) and for the quartic potential to return

S2 = − log
πε2

m
β3/4(2ν)1/4

4 Γ (5/4)
, Γ (5/4) = 0.9064 . . . , (73)

such that S2 is positive for β−1 0.485ε
4/3ν1/3

m2/3 , close to the ground-state energy of Eq. (69).
For sufficiently small β the saddle-point approximation holds, such that all weights are

positive and S2 > S4 > S6. Further increasing β , these entropies equal zero around (but
not exactly at, see inset) the same value of β ≈ 2.06 m2/3/(ε4/3ν1/3). Near this point, the
distribution is close to factorizable, with a dominant eigenvalue w0 ≈ 0.990 and second and
third largest eigenvalues 0.108 and−0.081. Further increasing β , all Sα become negative with
inverted ordering S2 < S4 < S6, indicating the expected presence of negative eigenvalues. The
same behavior would be observed for the harmonic oscillator, where S2 becomes negative
at β−1 = εω/2, where the distribution is exactly factorizable and the uncertainty relation

19

https://scipost.org
https://scipost.org/SciPostPhys.10.1.014


Select SciPost Phys. 10, 014 (2021)

10−2 10−1 100 101

β

−4

−2

0

2

4
S
α

α = 2

α = 4

α = 6

Figure 4: Entropies Sα for increasing β for the quartic potential. Parameters are
the same as in Fig. 2, such that S2 = 0 at β ≈ 2.06.

is satisfied. More generally, given a fixed classical distribution it should also be possible to
choose ε in such a way that the discrete representation is optimized, minimizing the number
of non-negligible weights, and it would be interesting to identify such a choice that returns
the actual Planck’s constant as ε= ħh.

5.3 Double-well potential and periodic potential.

Next we consider a particle of mass m in a somewhat more complicated double-well potential,

V (x) =
ν

4
(x2 − 1)2. (74)

As before, we will choose m = 1 for the numerical analysis, although we now consider a
smaller value of ε = ħh = 0.1 as for larger values of ε, e.g. ε = 1, the potential is too weak
to support tunneling states 7. In Fig. 5 we show the classical and quantum wave functions
corresponding to the lowest symmetric and antisymmetric tunneling states (top) and to the
second pair of symmetric and anti-symmetric tunneling states (bottom) at various values of β .
Already for β = 1, the classical and the quantum states are visually indistinguishable.

To quantify the accuracy of the agreement between the quantum and classical tunneling
states in Fig. 6, we plot the relative error in the tunneling gap between both pairs of tunneling
states as a function of β . This relative error is defined as

∆QM −∆β

∆QM
≡ 1−

Eβ(n+ 1)− Eβ(n)

EQM(n+ 1)− EQM(n)
, (75)

where the eigenstate index n = 1 corresponds to the two lowest tunneling states and n = 3
describes the second pair of states. The index β implies that the corresponding energies are
obtained from the classical Gibbs distribution at the inverse temperature β , where we calcu-
late classical energies as the expectation value of the Hamiltonian Ĥ w.r.t. the eigenstates of
W , and the index QM corresponds to the numerically calculated quantum eigenstates of the
Hamiltonian. The mistake clearly increases with β and scales as β2, but even at β = 1 the rela-
tive error is still less than 0.5%, which is surprisingly accurate given that the tunneling splitting

7By introducing a dimensionless length in units of = (ε2/mν)1/6 and a dimensionless energy in units of
∆ = ε4/3ν1/3/m2/3 one can reduce the number of independent parameters in the quantum problem to one:
σ = a/ . In the classical Gibbs ensemble there is an extra dimensionless parameter set by the temperature:
β∆.
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Figure 5: Comparison of the classical and quantum lowest energy tunneling
states (top) and the next two tunneling states (bottom) for the double well
potential V (x) = ν(x2 − 1)2/4. The inverse temperature is β = 1, 5,10. Other
parameters: m= 1,ε= ħh= 0.1,ν= 1.

itself is a very small fraction of the actual eigenenergies. The inset shows the relative error at
β = 1 if we include higher-order corrections in β , comparing the eigenvalues of ĤGibbs (includ-
ing corrections up to first- and second-order in β), with the energies obtained by calculating
the expectation value of the similarly corrected ĤGibbs w.r.t. the eigenstates of W . It is clear
that the inclusion of higher-order terms reduces the relative error by orders of magnitude. This
highlights the difference between the current approach and semiclassical approaches – as also
follows from the fact that both corrections are of the same order in ε: even though tunneling
states are inherently non-classical and level splittings are hard to obtain using semiclassical
approaches, these are already accurately reproduced from the zeroth-order approximation to
ĤGibbs using the eigenstates of W . Higher-order corrections in β then only serve to increase
the numerical accuracy but are not necessary to obtain a qualitative correspondence.

If we would interpret this in the language of quantum mechanics, such an accurate repre-
sentation implies that the lowest symmetric and antisymmetric tunneling states are entangled.
In the Fock basis of localized left- and right orbitals, these states read

|ψ±〉 ≈
1
2
(|0〉L|1〉R ± |0〉R|1〉L) , (76)

where |0〉L,R and |1〉L,R are the vacuum (no-particle) and the one-particle states corresponding
to the left and right orbitals respectively. Both states are obviously maximally entangled. It
is remarkable that such states are built into the classical Gibbs ensemble, and it can then be
expected that entangled states with multiple particles can be equally accurately reproduced
from the classical Gibbs ensemble.

The number of minima in the potential can be systematically increased to consider, e.g., a
periodic lattice. Taking a potential of the form

V (x) = V0(1− cos(x)) + Vconf(x), Vconf(x) = Vc
x

40π

10
, (77)
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Figure 6: Relative difference of the classical energy level splitting in a double
well potential with respect to the quantum level splitting for the Gibbs tempera-
ture with varying β . The blue circles correspond to the two lowest tunneling states
and the red squares correspond to the second pair of tunneling states. In both lines
the relative difference scales approximately as β2 (gray lines). The inset shows the
relative difference at β = 1 for the level splittings in Ĥ (0) and ĤGibbs including first
(1) and second-order (2) corrections in β as compared with those obtained from W .
The parameters are the same as in Fig. 5.

with V0,c constants, and where the last term represents an overall confining term helping to
avoid dealing with boundary conditions and consider x ∈ [−40π, 40π]. In order to enhance
dispersion, where tunneling again plays a crucial role, we choose a slightly smaller mass
m = 0.5 while keeping ε = ħh = 1 and β = 0.1. In Fig. 7 we show the energy dispersions
of the lowest band for eigenstates of both the quantum Hamiltonian and the classical Gibbs
ensemble. The two lines are again visually indistinguishable, with errors on the order of 10−5.

0 5 10 15 20
n

0.62

0.63

0.64

0.65

E
n

Ĥ

W

Figure 7: Quantum and classical dispersion relations for a particle in a periodic
potential (77). The two lines representing the quantum and classical spectra are
visually indistinguishable. The parameters are V0 = 1, Vc = 2, m = 0.5, ε = ħh = 1,
and β = 0.1
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5.4 Two-dimensional coupled oscillator.

We now move to two-dimensional systems with a four-dimensional phase space, which we will
take as (x , px , y, py). For Hamiltonian evolution with

H(x , px , y, py) =
p2

x

2m
+

p2
y

2m
+ V (x , y), (78)

the previously obtained canonical distribution (49) at inverse temperature β readily extends
to

W(x +ξx/2, y +ξy/2; x −ξx/2, y −ξy/2) =
1

Zx y
exp −

m
2βε2

(ξ2
x + ξ

2
y)− βV (x , y) , (79)

with Zx y = d x d y exp[−βV (x , y)] and where we can now define (x1, x2) = (x+ξx/2, x−ξx/2)
and (y1, y2) = (y + ξy/2, y − ξy/2).
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Figure 8: Comparison of the classical eigenstates obtained from the Gibbs dis-
tribution and quantum eigenstates obtained solving the stationary Schrödinger
equation for a two-dimensional potential. Inverse temperature β = 1, potential
corresponding to Eq. (80) with m=ω= 1, δ = 0.1, ν= 20 and ε= ħh= 0.1.

As an example, we can consider an asymmetric coupled two-dimensional oscillator

V (x , y) =
1
2

m(ω+δ)2 x2 +
1
2

m(ω−δ)2 y2 +
ν

4
x2 y2, (80)

where the asymmetry is tuned by δ and the coupling by ν. In Fig. 8, we again compare the
eigenstates of W(x1, y1; x2, y2) with those of the quantum mechanical Hamiltonian, where
we again choose β = 1 for m = 1 and ε = ħh = 0.1. The same qualitative behaviour as
for one-dimensional systems can be observed, not just at low-lying states, but also at higher
excited chaotic states. We compare the ground state (n = 0), the fifth excited state (n = 5)
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and the 140th excited state (n = 140), where the latter is representative for general higher-
energy states. The correspondence between the two is again excellent. Note that, while the
effect of the coupling term on the ground and low-lying states might be small, it is crucial
in the higher-energy states such as n = 140. The region where the wave function is non-
zero corresponds to the classically-allowed region for a particle with a given energy, and the
interaction is evidenced by the deformation of the edges of this region, where an ellipse would
be obtained for two non-interacting oscillators with ν= 0.

Interestingly, the same Hamiltonian (78) can be interpreted as describing a system of two
particles in one dimension, where the non-linearity represents an interaction term. If the
potential is symmetric under permutations of x and y (i.e. δ = 0), this Hamiltonian describes
two identical particles. From symmetry considerations, we can then classify all eigenstates
according to their exchange symmetry, and we observe that the classical Gibbs distribution
reproduces both. In particular, in the limit δ = 0 the n = 0 state shown in Fig. 8 is even
under the exchange x ↔ y and hence bosonic, while the n = 5 is odd and thus fermionic.
While we focus on stationary states, it is clear that if the exchange symmetry is preserved
under dynamics then the even and odd states cannot mix and evolve independently from each
other, as in quantum mechanics. This implies that in the state language representation classical
dynamics can also be expressed through independent evolution of bosonic and fermionic wave
functions.

5.5 Magnetic fields.

We now consider two-dimensional systems with an additional magnetic field, following Sec-
tion 4.3. Similar to the harmonic oscillator, an analytic solution is possible for a uniform field
B perpendicular to the plane in the absence of any potential term V (x , y). Quantum mechani-
cally, this situation gives rise to the famous quantized Landau levels, En = ħhω(n+1/2), n ∈ ,
with ω= qB/mc the so-called cyclotron frequency.

In this first set-up, the saddle-point approximation is exact, and we can recover the Lan-
dau states directly from the classical Boltzmann distribution. Considering a vector potential
A= (−B y, 0, 0), the Boltzmann distribution is given by

P(x , px , y, py) =
1
Z

exp −
β

2m
px +

qB y
c

2

exp −
β

2m
p2

y , (81)

and the resulting quasi-density matrix can be analytically obtained from Gaussian integration
as

W(x1, y1; x2, y2) =
1
Z

exp −
m(x2 − x1)2

2ε2β
exp −

m(y2 − y1)2

2ε2β

× exp −i
qB
εc
(y2 + y1)(x2 − x1) . (82)

The vector potential clearly results in a quasi-density matrix that is no longer real. As shown in
Appendix E, Eq. (82) can be explicitly diagonalized by combining the Fourier transform with
an identity by Weiner, resulting in

W(x1, y1; x2, y2) =
∞

n=0

wn dkψ∗n,k(x1, y1)ψn,k(x2, y2), (83)

where the eigenstates are labelled by the continuous momenum along the x-direction k and a
discrete index n. These states are given by the Landau states

ψn,k(x , y) =
1

2π
ψn y −

ε

mω
k eikx , (84)
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where ψn(x) are the eigenstates of the harmonic oscillator (66) with natural frequency given
by the cyclotron frequency ω. The eigenvalues only depend on n and are found as

wn =
1
Z

1− βεω/2
1+ βεω/2

n πβεω

(1+ βεω/2)2
. (85)

In the high-temperature limit βεω 1 the weights wn are all positive, returning the quantum
Gibbs ensemble:

wn ≈
1
Z

exp[−βεω(n+ 1/2)]. (86)

As the temperature decreases (but remains larger than εω/2) the weights remain equidistant.
As with the harmonic oscillator, it is possible to formally define a quantum temperature βq

according to Eq. (67), which immediately follows from arctanh(x) = 1
2 log 1+x

1−x . At β−1 = εω/2
the quantum temperature reaches zero, corresponding to the occupancy of a single (highly
degenerate) Landau level. Further increasing β again results in oscillatory behavior in the
eigenvalues wn, with the effective temperature β̃q given by Eq. (68).

Numerically, the correspondence between the quantum eigenstates and the classical eigen-
states remains accurate in the presence of a vector potential even if the system is no longer
exactly solvable. This is illustrated in Fig. 9, where we consider a vector potential

A(x , y) =
Φ

2π(x2 + y2 +δ2)
(−y, x , 0) , (87)

corresponding to a radially decaying magnetic field pointing in the z-direction with an addi-
tional confining potential

V (x , y) = mω2(x2 + y2 − 1)2. (88)

Selected eigenstates of the quasi-density matrix W are given in Fig. 9, and compared with the
eigenstates of the quantum Hamiltonian (63) (without β correction). We consider the ground
state (n= 0) and an excited state (n= 18). Since the eigenstates will generally be complex, we
compare both the amplitude and the phase of the eigenstates. The correspondence between
both is again clear. We observe that the classical approach is able to reproduce the nontrivial
complex (Berry) phase of the quantum eigenstates, which we checked survives even in the
Aharonov-Bohm geometry.

6 Bohigas-Giannoni-Schmit conjecture for classical systems

One of the important breakthroughs in our understanding of quantum chaos came through
the Bohigas-Giannoni-Schmit (BGS) conjecture [29], postulating that in chaotic Hamiltonians
the eigenvalue spectrum obeys random matrix statistics. This conjecture essentially extends
an earlier conjecture by M. Berry [30], who proposed that stationary states in chaotic billiards
can be well approximated by random linear combinations of plane waves. This can be con-
trasted with “generic” integrable, i.e. non-chaotic, systems, where the eigenvalue spectrum
is expected to exhibit Poissonian statistics following the Berry-Tabor conjecture [31]. Level
statistics have since become one of the predominant diagnostics of quantum chaos. Still, there
is a longstanding and still not fully resolved problem of reconciling this notion of quantum
chaos with that of classical chaos, defined through Lyapunov exponents of individual trajecto-
ries [32–39]. Interestingly, and as we discuss here, these conjectures apply to classical systems
as well.

As an illustration, we will take the classic example of a Sinai-like billiard, with the potential
shown in Fig. 10. This potential is constructed from a series of smoothened step functions

St(x) = 4(tanh(10x)− 1),
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Figure 9: Comparison of absolute value |ψn| and phase ∠ψn of classical eigen-
states obtained from the Gibbs distribution (top row) and quantum eigenstates
obtained solving the stationary Schrödinger equation (bottom row) for a two-
dimensional potential in the presence of a magnetic field. Inverse temperature
β = 0.5, potential corresponding to Eqs. (87) and (88) with m = ω = 1, δ = 2,
Φ = π, and ε = ħh = 0.1. Transparency for the phase is set by the absolute value in
order to avoid numerical noise where the absolute value is small.

and we will consider one specific profile given by

V (x , y) = St (St(−y + 0.3) + St(x − r2) + St(r2
1 − x2 − y2) + St(−x + 0.3)

+ St(y − tan(2π/5)x) + St(y − r2)) − 4+
((x − r2/2)2 + (y − r2/2)2)2

16
. (89)

The last term represents an overall weak confining potential to avoid dealing with non-analytic
boundary conditions. The specific choice of the parameters in the potential is unimportant for
the subsequent analysis and is only given for completeness.

We analyze a particle of a unit mass in this potential, setting ε = 0.2 and β = 0.3. Such
a relatively small value of ε is necessary to have enough confined energy levels to be able to
extract meaningful statistics. Furthermore, we change the inner radius of this potential r1 in-
crementally between rmin

1 = 1.5 and rmax
1 = 1.78 in steps of 0.02 and similarly vary r2 between

r2 = r1+1.5 and r2 = r1+1.78 with the same step size, leading to 15×15= 225 realizations
of this potential. For each realization we analyze the spectrum of the Gibbs distribution W
and choose 900 eigenvalues wn between n= 100 and n= 1000, with n= 0 corresponding to
the highest weight state (ground state). For this low value of β the eigenvalues are positive,
so we can define an eigenspectrum through the logarithm λn = − log(wn), corresponding to
the quantum eigenenergy in the limit β → 0. We verified that one can directly analyze the
weights wn without affecting the results.

To check whether the spectrum satisfies the BGS conjecture, i.e. exhibits random matrix
statistics described by a Gaussian Orthogonal Ensemble (GOE), we take the measure proposed
in Ref. [40] (see also Ref. [41]) analyzing the distribution of the ratio between consequent
eigenvalue spacings:

rn =
λn+1 −λn

λn+2 −λn+1
=

log(wn/wn+1)
log(wn+1/wn+2)

. (90)

For the GOE distribution the probability of this ratio is well described by the analytic expres-
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sion [40]:

P(r)≈
27
8

r + r2

(1+ r + r2)5/2
+

0.233378
(1+ r)2

r +
1
r

−1

−
2π− 4
4−π

r +
1
r

−2

, (91)

whereas a Poissonian distribution results in

P(r) =
1

(1+ r)2
. (92)
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Figure 10: Distribution of the ratio of consecutive level spacings. Left: The
chaotic two-dimensional potential representing a series of smoothened step func-
tions in an additional weak confining potential. Right: Histogram of the ratio of the
consequent difference of the (logs of) eigenvalues (see Eq. (90)) of the canonical
distribution W for a particle in this potential. The black dashed line is the analytic
approximation to the GOE distribution taken from Ref. [40] and the red dashed line
is the expected result for Poissonian statistics (92). Inset details the distribution of
r̃n =min(rn, 1/rn).

In the right panel of Fig. 10 we plot the numerically computed histogram of ratios rn for the
particle in the potential (89) and for comparison show the approximate analytic expression for
the distribution expected for the GOE ensemble and the Poissonian results. The inset illustrates
the distribution of another commonly used measure of level statistics: P(r̃) = 2P(r)θ (1− r),
where r̃n = min(rn, 1/rn) [40]. In both cases the correspondence with the GOE is nearly
perfect, fully supporting the BGS conjecture for classical eigenstates in chaotic potentials.

Finally, note that Poissonian level statistics can also be expected to appear in classically
integrable systems, validating the Berry-Tabor conjecture. E.g. for a classical two-dimensional
harmonic oscillator with mismatched frequencies, the classical spectrum exactly corresponds
to that of the quantum Hamiltonian, which is known to exhibit Poissonian level statistics. In
Fig. 11, we numerically verify this for an elliptic confining potential,

V (x , y) = St (x/r1)
2 + (y/r2)

2 − 1 . (93)

We again choose ε = 0.2 and β = 0.3. For the sampling of eigenvalues, we vary r1 from 1.22
to 1.50 and r2 from 0.91 to 1.19 in steps of 0.02, leading to 225 realizations of this potential.
These values are generic, and chosen so as to avoid any spurious degeneracies. Performing a
similar sampling as for Fig. 10, the level statistics are clearly Poissonian and indicate a non-
ergodic potential.

This finding is in a way remarkable. It illustrates how the classical Gibbs distribution, a
stationary state, already knows whether the system is chaotic or not – in line with the quantum
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Figure 11: Distribution of the ratio of consecutive level spacings. Left: The sym-
metric potential representing a smoothened elliptic confining potential (93). Right:
Histogram of the ratio of the consequent difference of the (logs of) eigenvalues (see
Eq. (90)) of the canonical distribution W for a particle in this potential. See also 10.

definition of chaos. This analysis does not require us to analyze any dynamical response, com-
pute Lyapunov exponents, or solve any equations of motion to understand whether the system
is chaotic or not. Moreover, we do not even need to use the fact that x and p are canonically
conjugate variables. This statement suggests the existence of a much closer relation between
thermodynamics and dynamics even at the level of purely classical mechanics.

Finally let us comment that if, instead of analyzing the statistics of wn, we would calculate
the statistics of exact classical mean energies En = 〈ψn|Ĥ|ψn〉 defined through the classical
eigenstates |ψn〉, we would not recover the RMT statistics. While for this particular system En
and − log(wn)/β are in a very good correspondence in the entire analyzed range of n, there
are small random fluctuations in the energy spectrum calculated using the expectation values
that suffice to destroy the level repulsion between En.

7 Conclusions and Outlook

We highlighted how key concepts in classical mechanics can be reformulated in the language
of Hermitian operators and states more familiar from quantum mechanics. This language nat-
urally follows from applying the inverse Wigner-Weyl transform to the classical probability
distribution P(x , p), mapping it to a function W(x1, x2) =W∗(x2, x1) playing the role of the
density matrix in the language of quantum mechanics. This function can in turn be diago-
nalized, with its eigenfunctions ψn(x) playing a role similar to quantum wave functions. The
commutation relation between canonical operators x̂ and p̂ naturally emerges from this map-
ping to a quasi-density matrix, even though such commutators are generally associated with
the classical Poisson bracket determining the dynamics of the phase-space variables. We then
showed that the correspondence with quantum mechanics is particularly striking if P(x , p) is
described by the classical Gibbs ensemble. Then the corresponding classical eigenstates ex-
actly match quantum eigenstates in the limit of high temperature. Surprisingly, at least in
many situations, this correspondence remains highly accurate even if all the parameters re-
main of the order of unity. In particular, we were able to accurately describe both ground and
excited wave functions in a nonlinear quartic potential, a double-well potential containing tun-
neling states, a band structure in a periodic one-dimensional potential, and both low-energy
states and highly excited states in a two-dimensional nonlinear (chaotic) potential and a two-
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dimensional potential with magnetic field. The correspondence was analytically shown to be
exact at all temperatures for the harmonic oscillator and for Landau levels.

Not only do these classical eigenstates generally correspond to quantum states at high
temperatures, the eigenvalues of the quasi-density matrix, commonly interpreted as the prob-
abilities to occupy the eigenstates, return the expected quantum Gibbs/Boltzmann factors. As
the temperature is lowered, or more generally as the classical distribution becomes narrower,
the classical weights of eigenstates start to acquire negative values and can now be interpreted
only as quasi-probabilities. This is exactly dual to the Wigner function, where the phase space
distribution following from a quantum density matrix can take non-positive values. Interest-
ingly, there is always a minimum temperature set by the quantum uncertainty relation where
the representation of W(x1, x2) and hence P(x , p) through the eigenstates becomes ‘maxi-
mally discrete’, i.e. contains the fewest number of non-negligible components. This can be
quantified through various measures, where we here consider an extension of Rényi entropies
to negative weights. For example, given an oscillator at a temperature T = εω/2 (ε is a free
parameter in classical mechanics, playing the role of ħh) only a single (ground) state is occu-
pied. At both higher and lower temperatures an increasing number of states are occupied.
Interestingly, the classical partition function of oscillators with T > εω/2 maps to the quan-
tum partition function of bosons with energy scale εω, while the classical partition function
of oscillators with T < εω/2 maps exactly to the partition function of free fermions with the
same energy scale εω. Whether this is a simple coincidence or if there is a deeper underlying
reason remains to be understood.

In this work we focused only on unbounded potentials and hence did not emphasize the
role of boundary conditions: obviously both classical and quantum probabilities have to van-
ish deep in the energetically-forbidden region. It is clear that understanding other, e.g. peri-
odic, boundary conditions should prove to be very interesting. For example, if we consider a
particle in a central potential the classical Gibbs probability distribution has to be a periodic
function of the angular variable. This implies that the classical states can be both periodic
and anti-periodic functions of the angle, with a striking similarity of these two possibilities
to integer and half-integer spin. We left analyzing such possibilities to a future work. Sim-
ilarly, the extension to multiple classical particles and the resulting particle statistics should
also be highly interesting. In the presented mapping the number of particles play no role,
so at least at high temperatures the many-particle stationary states should satisfy the correct
Schrödinger equation. Many more questions such as adiabatic continuation, the manifestation
of the discreteness of stationary states, the relaxation of interacting systems to equilibrium, lin-
ear response theory,... were left out of the present work, offering various directions for future
research. One of the cornerstones of our current understanding of quantum thermalization is
given by the eigenstate thermalization hypothesis [35], relating matrix elements of quantum
states to thermal distributions, and the connection between quantum states and classical dis-
tributions could also be revisited in this context. Classically, stationary distributions distinct
from the thermal and microcanonical ones are guaranteed to exist as time-averaged KAM tra-
jectories [42–44], and it would similarly be interesting to check the correspondence between
the eigenstates following from this classical distribution and the quantum Hamiltonian. From
our discussion it should be clear that there is a close connection between the classical Liou-
ville equation and the quantum Schrödinger equation, so it is inevitable that various quantum
dynamical phenomena are encoded in the operator-state representation of classical systems.

Finally let us point out that the ideas presented here can go beyond classical mechanics.
Given a classical probability distribution in position space, it is always possible to introduce
momentum as an auxiliary degree of freedom, as is often done in e.g. annealing problems.
The construction shown here can be seen as a way to map such a continuous to a discrete
probability distribution, in the same way that stationary quantum mechanics presents a dis-
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crete representation of the Gibbs distribution. Similarly, given a continuous distribution of
two (or any even number of) variables, in this way one can always represent this probability
distribution as a discrete sum of eigenstates depending on a single variable. This construc-
tion can be viewed as an effective dimensional reduction of the original distribution. One can
possibly continue this procedure of dimensional reduction in a system with more variables,
reducing their number by a factor of two at each step. The parameter ε (or equivalently ħh)
can then be chosen for convenience, e.g. minimizing the number of discrete components in
such representations.
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A Dynamics & General Stationary States

Follwing Section 3.1, the equation of motion for W can be written as

iε
∂

∂ t
W = L[W], L= − ε

2

2m
∂ 2

∂ x2
2

−
∂ 2

∂ x2
1

− (x1 − x2)V
x1 + x2

2
. (94)

Introducing a discrete basis of eigenoperators of L, the coupled differential equations of clas-
sical mechanics will here lead to a solution of W described by dephasing eigenoperators of the
superoperator L, familiar from quantum mechanics.

Denoting the complete set of orthonormal eigenoperators of L as Oα(x1, x2) with eigen-
values λα, the classical dynamics is given by

W(x1, x2, t) =
α

e−
i
ελα t (Oα|W)Oα(x1, x2), (95)

where the expansion coefficients of W are given by

(Oα|W) = d x1 d x2 O∗α(x1, x2)W(x1, x2, t = 0), Oα|Oβ = δαβ . (96)

By making use of the fact that L is antisymmetric under exchange of x1↔ x2, it follows that
nonzero-eigenvalue eigenoperators of L arise in pairs, where an eigenoperator Oα(x1, x2)
with nonzero eigenvalue λα leads to another eigenoperator Oα(x2, x1) with eigenvalue −λα.
This statement can easily be checked in a known limit: assuming the phase space distribu-
tion is smooth enough at all times such that we can approximate L[W] = [W , Ĥ], or that
the potential is close to harmonic, the eigenoperators of L are simply products of eigenstates
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of the Hamiltonian. Labeling the eigenstates of Ĥ as ψn(x) with eigenvalue En, the corre-
sponding eigenoperators of L are given by Onm(x1, x2) = ψm(x1)ψn(x2) with eigenvalues
λnm = En−Em. These clearly arise in pairs, since λmn = Em−En = −λnm for the eigenoperator
ψm(x2)ψn(x1). Stationary states, which can also be obtained from the long-time average of
W(x1, x2, t), here correspond to the zero-eigenvalue eigenoperators of L and reduce to the
diagonal states ψn(x1)ψn(x2) in this limit.

Stationary distributions are necessarily eigenoperators of L with eigenvalue zero. It is
possible to expand W in an arbitrary basis as

W(x1, x2) =
αβ

Wαβψ
∗
α(x1)ψβ(x2), (97)

where {ψα(x)} are some complete set of orthonormal wave functions, which could be e.g.
eigenstates of a quantum Hamiltonian Ĥ. Plugging this expansion into Eq. (21), multiplying
both parts of this equation byψγ(x1)ψ∗δ(x2) and integrating over x1 and x2, we find the exact
equation for the matrix elements of the stationary W

αβ

Lαβ
γδ

Wαβ = 0, (98)

where L is the superoperator with entries

Lαβ
γδ
= d x1 d x2ψγ(x1)ψ

∗
δ(x2) −

ε2

2m
∂ 2

∂ x2
2

−
∂ 2

∂ x2
1

− ξV (x) ψ∗α(x1)ψβ(x2). (99)

In the limit of sufficiently small ε this equation clearly reduces to the matrix form of the sta-
tionary von Neumann’s equation

[H,W]γδ = 0, Hαβ = 〈ψα|Ĥ|ψβ〉 ≡ d xψ∗α(x)Ĥψβ(x). (100)

In general, solutions of Eq. (98) are highly degenerate and the number of solutions gener-
ally corresponds to the number of eigenstates of the Hamiltonian, reflecting how each state
results in a stationary distribution. However, different stationary distributions W(x1, x2) are
not expected to commute and different stationary contributions will generally have different
eigenstates, such that the set of stationary eigenstates is not uniquely defined.

B Microcanonical ensemble

In one-dimensional systems, assuming that there are no spatially disconnected regions in phase
space, any stationary distribution can be represented as a statistical mixture of microcanonical
distributions [45]:

P(x , p) = dEρ(E) Pmc(x , p; E), (101)

where ρ(E) is the energy distribution function. The microcanonical distributions are charac-
terized by an equal probability of occupying phase space points on the constant energy surface
as

Pmc(x , p; E) =
1
Z
δ E −

p2

2m
− V (x) , Z = d x dpδ E −

p2

2m
− V (x) . (102)
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Since Pmc(x , p; E) is a function of the Hamiltonian of the system H(x , p) it automatically sat-
isfies {H, P} = 0, such that it is necessarily stationary. Such microcanonical distributions nat-
urally arise when considering long-time averages of classical trajectories [45].

In the following, we will analytically present results for systems with a linear potential
and a quadratic potential (harmonic oscillator). In these cases the operator L exactly reduces
to the commutator with the Hamiltonian for an arbitrary ε. Therefore all zero-eigenvalue
eigenoperators of L necessarily commute with the Hamiltonian, sharing the same eigenstates,
which does not hold for more general potentials. Still, it is instructive to consider these simple
examples to understand the behavior of the eigenvalues.

Linear potential.

For a linear potential V (x) = αx , the eigenstates of the quantum Hamiltonian can be expressed
as Airy functions. As shown in Appendix C, the resulting quasi-density matrix can be obtained
by combining two identities for the Airy functions, such that the transform of Eq. (102) for
V (x) = αx can be explicitly written in its diagonal form as

Wmc(x1, x2; E) =
2πε

Z
22/3

α2λ3
d Ẽ Ai

22/3

αλ
(E − Ẽ) Ai

x1 − Ẽ/α
λ

Ai
x2 − Ẽ/α
λ

, (103)

where we have introduced the customary length scale λ3 = ε2/(2mα) and the Airy func-
tions are the eigenstates of the Hamiltonian with linear potential8. For an eigenstate of the
Hamiltonian with energy Ẽ, the corresponding eigenvalue of the quasi-density matrix of the
microcanonical ensemble with energy E is given by

w Ẽ =
22/3

λα
Ai

22/3

λα
(E − Ẽ) with

22/3

λα
d Ẽ Ai

22/3

λα
(E − Ẽ) = 1. (104)

Whereas it might be expected that a classical distribution with fixed energy E only contains
contributions from quantum states with a similar energy Ẽ, quite the opposite happens: for
a microcanonical state with classical energy E its quasi-density matrix contains contributions
from almost all eigenstates of the Hamiltonian with quantum energies Ẽ, where the eigenvalue
is determined by the Airy function of E − Ẽ. For states with Ẽ E, the eigenvalue will be
exponentially suppressed, whereas for states with Ẽ E the eigenvalues are highly oscillatory
and only decaying as (Ẽ − E)−1/4. Clearly, a large fraction of the latter eigenstates also have a
negative eigenvalue, and the same oscillatory behaviour as for the Gaussian distribution (45)
can be observed.

This distinction vanishes if we allow for sufficient uncertainty on the classical energy. As-
suming a Gaussian uncertainty on the energy centered on E = 0 in Eq. (101) as

ρ(E) =
1

2πσ
exp −

E2

2σ2
, (105)

the eigenstates of the corresponding W will remain unchanged (they do not explicitly depend
on E), whereas the eigenvalues are now given by

w Ẽ =
22/3

λα
dEρ(E)Ai

22/3

λα
(E − Ẽ) , (106)

8Note that Z is ill-defined since we did not impose boundary conditions for x → −∞ and the eigenstates are
not normalizable. This can be solved by imposing boundary conditions and would also take care of the factor
2πε/Z in the normalization.
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Figure 12: The eigenvalues of a microcanonical distribution with Gaussian un-
certainty on the classical energy reproduces the original distribution for suffi-
cient width. Left: linear potential, full line is averaged w Ẽ , dashed line is ρ(Ẽ) as
a Gaussian with width σ centered on Eavg = E = 0 and αλ = 1. Right: harmonic
potential, full line is averaged wn, dashed line is ρ((n + 1/2)εω)εω, with εω = 1
and the Gaussian with width σ centered on E = Eavg = 4. In both figures the inset
details the eigenvalues without any uncertainty, where a connecting line is added to
the right (discrete) eigenvalues to guide the eye.

i.e. the Airy transform of the probability distribution of the microcanonical energy. The re-
sulting eigenvalues are presented in the left panel of Fig. 12 for a Gaussian distribution with
different widths. For small σ the resulting distribution still resembles the Airy function, albeit
with a quicker decay, but for larger σ αλ all oscillations cancel out and we numerically
obtain w Ẽ = ρ(Ẽ): all negative eigenvalues have effectively been averaged out to zero and the
quantum and classical states agree.

Harmonic oscillator.

The same derivation can be repeated for the harmonic oscillator with V (x) = 1
2 mω2 x2, where

the eigenstates of the Hamiltonian are expressed in terms of Hermite polynomials Hn as

ψn(x) =
1

πξ2
0

1/4

1

2nn!
Hn(x/ξ0)exp −

x2

2ξ2
0

, ξ2
0 =

ε

mω
, (107)

satisfying the eigenvalue equation with a discrete eigenspectrum labeled by an index
n= 0,1, 2, . . .

−
ε2

2m
d2

d x2
+

1
2

mω2 x2 ψn(x) = εω n+
1
2
ψn(x). (108)

Using known properties of the Hermite and Laguerre polynomials, we show in Appendix C.2
that for the harmonic oscillator the transform of the microcanonical ensemble can be expanded
as

Wmc(x1, x2; E) =
∞

n=0

2(−1)n Ln
4E
εω

exp −
2E
εω

ψn(x1)ψn(x2), (109)

in which Ln are the Laguerre polynomials. The eigenstates are again the eigenstates of the
quantum Hamiltonian, now labeled with a discrete index n, where the corresponding eigen-
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value for the microcanonical ensemble with energy E is given by

wn(E) = 2(−1)n Ln
4E
εω

exp −
2E
εω

. (110)

These exhibit the same qualitative behaviour as for the linear potential: given a microcanon-
ical distribution with energy E, the eigenvalue distribution is peaked at the eigenstate of the
Hamiltonian with the same energy. All other eigenvalues have strong positive and negative
contributions, either exponentially decaying away from the peak at small n and correspond-
ingly En = εω(n+1/2)< E or oscillating at En > E. Adding some uncertainty on the energy of
the microcanonical state, all oscillations cancel out, and we end up with an eigenvalue distribu-
tion centered around the corresponding eigenstate, as illustrated in the right panel of Fig. 12.
The distribution of eigenvalues is now the Laguerre transform of the energy distribution, and
we numerically observe that for sufficiently large uncertainty

dEρ(E)wn(E)→ εωρ [εω(n+ 1/2)] . (111)

Note that the eigenvalues wn(E) are highly similar to the Wigner function in the position-
momentum space corresponding to a single n-th level of a quantum harmonic oscillator, as
also argued in Appendix C.2.

General potentials.

Before continuing to canonical potentials, we briefly discuss how these previous results extend
to more general potentials. Starting from a microcanonical ensemble with fixed energy E and
potential V (x), it is straightforward to find the function Wmc(x1, x2) corresponding to the
microcanonical distribution as

Wmc(x + ξ/2, x − ξ/2; E) =
2
Z
θ (E − V (x))

vE(x)
cos

pE(x)ξ
ε

, (112)

where pE(x) = 2m(E − V (x)) is the classical momentum of the particle, vE(x) = pE(x)/m
is the classical velocity, and θ (E−V (x)) is a step function that guarantees that Wmc(x1, x2) is
nonzero only if the center-of-mass coordinate x = (x1 + x2)/2 belongs to the allowed region.
While this is a stationary state for general potentials, this operator is no longer expected to
commute with the Hamiltonian, such that its eigenstates do not exactly correspond to the
quantum eigenstates.

Rather than exactly diagonalizing this operator, we can obtain a connection with the WKB
approximation by assuming we are far away from the edges of the classically-allowed region,
where E V (x) and consider the behaviour for small ξ = x1 − x2 (the region of W that is
probed by local operators), and approximate

pE(x)ξ= pE
x1 + x2

2
(x1 − x2)≈ SE(x1)− SE(x2), SE(x) =

x

0

d x pE(x ), (113)

in which we have introduced the classical action SE(x), where the lower limit for the integra-
tion can be chosen arbitrarily, and take pE(x) ≈ pE(x1)pE(x2) to write, in the classically-
allowed region and for small ξ,

W(x1, x2)≈
2m

pE(x1)pE(x2)
cos [SE(x1)/ε− SE(x2)/ε]/Z (114)

=
1
2
φ+(x1)φ+(x2) +

1
2
φ−(x1)φ−(x2),
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where we have introduced orthonormalized states

φ+(x) =
2 m

Z
θ [E − V (x)]

cos [SE(x)/ε]

pE(x)
, φ−(x) =

2 m

Z
θ [E − V (x)]

sin [SE(x)/ε]

pE(x)
.

(115)
As an interesting observation, we note that the Bohr-Sommerfeld quantization of the action,

E>V (x)
d x pE(x) =

E>V (x)
d x 2m(E − V (x)) = n+

1
2
επ, (116)

is here equivalent to demanding that the approximation in (114) does not diverge when x1 and
x2 are at opposite edges of the classically-allowed regions where both pE(x1) and pE(x2) go to
zero. The two-dimensional case is introduced in Appendix D. For a more detailed discussion of
the connection between the microcanonical distribution and general WKB states we refer the
reader to Ref. [46], where the classical and semi-classical limit of Wigner’s function is explored
for both chaotic and integrable systems.

C Explicit derivation for linear and quadratic potentials

C.1 Linear potential.

Inspired by the Wigner function for the Airy function (see e.g. [46–50]), the explicit eigenstates
of the microcanonical ensemble can be found by combining the two identities

∞

−∞
dξAi(x + ξ/2)Ai(x − ξ/2)eikξ = 22/3Ai 22/3(x + k2) , (117)

∞

−∞
d t Ai(t + x)Ai(t + y) = δ(x − y). (118)

The second identity expresses the orthogonality of translated Airy functions, whereas the first
was originally obtained in Ref. [47] and was later realized to be part of a larger class of ‘pro-
jection identities’ [48]. Introducing units through λ3 = ε2/(2mα), these can be rewritten
as

∞

−∞

dξ
λ

Ai
x + ξ/2
λ

Ai
x − ξ/2
λ

exp i
pξ
ε

= 22/3Ai
22/3

λ
(x +

p2

2mα
) . (119)

The microcanonical distribution for a linear potential can now be written as

δ E −αx −
p2

2m
=

22/3

αλ
δ

22/3

αλ
E −

22/3

λ
(x +

p2

2mα
)

=
24/3

α2λ2
d Ẽ Ai

22/3

αλ
E − Ẽ Ai

22/3

λ
x −

Ẽ
α
+

p2

2mα

=
22/3

α2λ3
d Ẽ Ai

22/3

αλ
E − Ẽ

×
∞

−∞
dξAi

x − Ẽ/α+ ξ/2
λ

Ai
x − Ẽ/α− ξ/2

λ
exp i

pξ
ε

, (120)

such that

W(x1, x2) = 2πε
22/3

α2λ3
d Ẽ Ai

22/3

λα
(E − Ẽ) Ai

x1 − Ẽ/α
λ

Ai
x2 − Ẽ/α
λ

. (121)
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C.2 Harmonic Oscillator.

The eigenvalues and eigenstates of the microcanonical ensemble for the harmonic oscillator
can also be analytically obtained, where the eigenstates necessarily correspond to those of the
quantum Hamiltonian. These are given by

ψn(x) =
1

πξ2
0

1/4

1

2nn!
Hn(x/ξ0)exp −

x2

2ξ2
0

, ξ2
0 =

ħh
mω

, (122)

and the Wigner function of these states is given by (see e.g. Ref. [51])

Pn(x , p) =
dξ

2πε
exp i

pξ
ε
ψn(x + ξ/2)ψn(x − ξ/2)

=
(−1)n

επ
exp −

2
εω

p2

2m
+

1
2

mω2 x2 Ln
4
εω

p2

2m
+

1
2

mω2 x2 , (123)

with Ln the Laguerre polynomials. These satisfy the orthonormality relation

δ (x − y) = e−(x+y)/2
∞

n=0

Ln(x)Ln(y), (124)

which can be used to express

δ E −
p2

2m
−

1
2

mω2 x2 =
4
εω

exp −
2E
εω

exp −
2
εω

p2

2m
+

1
2

mω2 x2

×
∞

n=0

Ln
4E
εω

Ln
4
εω

p2

2m
+

1
2

mω2 x2 . (125)

Using the known transform of the oscillator states (123) then leads to

δ E −
p2

2m
−

1
2

mω2 x2 =
∞

n=0

(−1)n
4π
ω

Ln
4E
εω

exp −
2E
εω

Pn(x , p), (126)

and we have that for the harmonic oscillator the transform of the microcanonical ensemble
can be expanded as (up to a normalization factor Z = 2π/ω)

Wmc(x1, x2) =
∞

n=0

(−1)n
4π
ω

Ln
4E
εω

exp −
2E
εω

ψn(x1)ψn(x2). (127)

The eigenvalues are highly similar to the Wigner function, which can be understood by noting
that

wn = d x1 d x2 W(x1, x2)ψ
∗
n(x1)ψn(x2)

= 2πε d x dpδ E −
p2

2m
−

1
2

mω2 x2 Pn(x , p), (128)

and Pn(x , p) is a function of p2

2m +
1
2 mω2 x2, immediately leading to the correct expression for

the eigenvalues.
The relation (43) can similarly be obtained by making use of the known transform of the

harmonic oscillator states (123), now using the generating function of the Laguerre polyno-
mials [52] as given by

∞

n=0

tn Ln(y) =
1

1− t
e−t y/(1−t), |t|< 1. (129)
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Starting from the expression for the normalized Gibbs ensemble with inverse temperature β

W(x1, x2) =
1
Z

∞

n=0

e−nβεωψn(x1)ψn(x2), Z =
∞

n=0

e−nβεω =
1

1− e−βεω
, (130)

its transform is given by

P(x , p) =
∞

n=0

e−nβεω

Z
(−1)n

επ
exp −

2
εω

p2

2m
+

1
2

mω2 x2 Ln
4
εω

p2

2m
+

1
2

mω2 x2 ,

(131)

where the summation can be explicitly evaluated from the generating function (129) by taking
t = −e−βεω as

P(x , p) =
1
επZ

1
1+ e−βεω

exp −
2
εω

p2

2m
+

1
2

mω2 x2

× exp
4
εω

e−βεω

1+ e−βεω
p2

2m
+

1
2

mω2 x2

=
1
επZ

1
1+ e−βεω

exp −
p2

mεω
tanh

βεω

2
−

mωx2

ε
tanh

βεω

2
, (132)

returning a Gaussian distribution with

σ2
x =

ε

2mω
coth

βεω

2
, σ2

p =
mεω

2
coth

βεω

2
, (133)

or, equivalently,

σxσp =
ε

2
coth

βεω

2
,

σp

σx
= mω. (134)

The prefactor in P(x , p) can be simplified to read

1
επZ

1
1+ e−βεω

=
1
επ

1− e−βεω

1+ e−βεω
=

1
επ

tanh
βεω

2
=

1
2πσxσp

, (135)

such that the final distribution can be written as a normalized Gaussian distribution with
widths set by Eq. (134) as

P(x , p) =
1

2πσxσp
exp −

x2

2σ2
x
−

p2

2σ2
p

. (136)

Note that this derivation did not depend on β being real, only on |e−βεω|< 1 in order for the
generating function to hold. Now setting β = β̃+ iπ

εω with β̃ positive, we obtain the expressions
from the main text where

σxσp =
ε

2
tanh

β̃εω

2
,

σp

σx
= mω, (137)

and

W(x1, x2) =
1
Z

∞

n=0

(−1)ne−nβ̃εωψn(x1)ψn(x2), Z = 1

1+ e−β̃εω
. (138)
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D Microcanonical ensembles in two-dimensional systems

We can now consider two-dimensional systems, where the WKB approximation no longer holds
and the connection with classical stationary distributions is usually made through chaos and
non-ergodicity. The 2D microcanonical distribution is given by

P(x , px , y, py) =
1

4πmS
δ E −

p2
x

2m
−

p2
y

2m
− V (x , y) , (139)

with S the surface area of the classically-allowed region E > V (x , y). Writing r = (x , y) and
ξ= (ξx ,ξy), the corresponding quasi-density matrix follows as

W(r + ξ/2, r − ξ/2) =
1

4πmS
dp exp −i

p · ξ
ε

δ E −
p2

2m
− V (r)

=
1

4πmS

2π

0

dφ
∞

0

dp p exp −i
p|ξ| cosφ

ε
δ E −

p2

2m
− V (r)

=
1

2πS
dφ dp exp −i

p|ξ| cosφ
ε

δ[p− p(r)]θ [E − V (r)] ,

(140)

where we have switched to polar coordinates p = (p cosφ, p sinφ) in the second line and
defined p(r) = 2m(E − V (r)). Continuing,

W(r + ξ/2, r − ξ/2) =
1

2πS
θ [E − V (r)] dφ exp −i

p(r)|ξ| cosφ
ε

=
1
S
θ [E − V (r)] J0

p(r)|ξ|
ε

, (141)

with J0 a Bessel function of the first kind. Note that this expression was also obtained in M.
Berry’s original paper [30], introducing what is now known as Berry’s conjecture (see also
Ref. [46]).

E Landau levels

Following Section 5.5, we consider the quasi-density matrix

W(x1, y1; x2, y2) =
1
Z

exp −
m(x2 − x1)2

2ε2β
exp −

m(y2 − y1)2

2ε2β

× exp −i
qB
εc
(y2 + y1)(x2 − x1) . (142)

To simplify the following derivation, we will neglect the factor 1/Z . The initial Hamiltonian
is translationally invariant along the x-direction, such that the quasi-density only explicitly
depends on (x2− x1) (and not x2+ x1) and we can Fourier transform the quasi-density matrix
along x1 and x2 to first simplify the problem.

W̃(k1, y1; k2, y2) = d x1 d x2 eik1 x1eik2 x2 W(x1, y1; x2, y2)

= exp −
q2B2β

16mc2
(y2 + y1 − 2εy0) exp −

m(y2 − y1)2

2ε2β
, (143)
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where we defined y0 = εck2/(qB). This can be further simplified by introducing the cyclotron
frequency ω= qB/(mc). We can now define shifted coordinates ui =

mω
ε (yi − y0) to write

W̃(k1, y1; k2, y2) = 2πδ(k1 + k2)exp −
βεω

2
(u2 + u1)2

4
exp −

2
βεω

(u2 − u1)2

4
. (144)

This can be diagonalized by using the following identity from Ref. [53],

1

π(1− a2)
exp −

1− a
1+ a

(x + y)2

4
exp −

1+ a
1− a

(x − y)2

4
=
∞

n=0

anψn(x)ψn(y), (145)

with

ψn(x) =
1
π1/4

1

2nn!
Hn(x)e

−x2
. (146)

Plugging in

a =
1− βεω/2
1+ βεω/2

(147)

then returns

W̃(k1, y1; k2, y2) = 2πδ(k1 + k2)
πβεω

(1+ βεω/2)2

∞

n=0

1− βεω/2
1+ βεω/2

n

ψn(u1)ψn(u2). (148)

Performing an inverse Fourier transform then returns the expression from the main text (82).
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