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Abstract
Gaussian processes (GPs) are commonly used as a model of stochastic variability in astrophysical time series. In
particular, GPs are frequently employed to account for correlated stellar variability in planetary transit light curves.
The efficient application of GPs to light curves containing thousands to tens of thousands of data points has been
made possible by recent advances in GP methods, including the celerite method. Here we present an extension of
the celerite method to two input dimensions where, typically, the second dimension is small. This method scales
linearly with the total number of data points when the noise in each large dimension is proportional to the same
celerite kernel and only the amplitude of the correlated noise varies in the second dimension. We demonstrate the
application of this method to the problem of measuring precise transitparameters from multiwavelength light
curves and show thatit has the potentialto improve transitparameters measurements by orders of magnitude.
Applications of this method include transit spectroscopy and exomoon detection,as well a broader set of
astronomical problems.
Unified Astronomy Thesaurus concepts: Exoplanets (498); Natural satellites (Extrasolar) (483); Transmission
spectroscopy (2133); Transits (1711); Gaussian Processes regression (1930); Astrostatistics (1882); Bayesian
statistics (1900)

1. Introduction
All exoplanettransit observationsmust contend with the

presence of noise.Light curves can display both uncorrelated,
or white, noise and correlated noise.While white noise often
results from the the statistics of photon counting, and may only
be ameliorated by collecting more photons, correlated noise can
arise from a variety of sources.These can be broadly divided
into two categories: astrophysicalnoise, which results from
physical processes at the source of the observed photons such
as stellar granulation and oscillations (Pereiraet al. 2019;
Barros etal. 2020; Morris et al. 2020; Sulis et al. 2020),and
instrumental noise, which results from imperfections in
detectors,errors in spacecraft pointing, or other processes
taking place atthe location of the observer rather than atthe
source.

Our ability to detect transits and infer their parameters
depends on how well we can model both white and correlated
noise. While white noise is straightforward to model as a
Gaussian distributed random variable,3 correlated noise can be
more challenging to account for. Additionally, as more
powerful telescopes yield more precise observations,photon-
counting noise will decrease while astrophysicalcorrelated
noise (which does notdepend on photon counts) willnot. In
fact, correlated noise will become more dominant as decreasing
white noise amplitudes reveal previously undetectable
variability.

A number of methods have been used to model,filter, or
otherwise accountfor correlated noise in astrophysics,dating
back to work by Rybicki & Press (1992,1995).Among these
techniques are wavelet filtering (Carter et al. 2008) and Kalman
filtering (Kelly et al. 2014). A comprehensive study of various
detrending methods is given in Hippke etal. (2019). These

include various sliding filter methods (such as a sliding mean or
median),sums of sines or cosines (Mazeh & Faigler2010;
Kipping et al. 2013),and others.

Our work focuses on the Gaussian process (GP) method of
modeling correlated noise. In this paper we introduce an
extension to the popular celerite code which can be used to
model correlated noise in two-dimensions.We use this
extension to simulate multiwavelength stellar variability in
transit observations.We show that by accurately modeling
correlation across wavelengths we can improve measurements
of transit parameters by orders of magnitude in some common
limits.

While this paper focuses on multiwavelength transit
observations with a smallnumber of bands,our method also
naturally extendsto transit spectroscopy asthe number of
bands becomes large.In this paper we consider a trapezoidal
transit model that has no wavelength dependence,but a
wavelength-dependent transit model can easily be incorporated.
For transitspectroscopy,the transitdepth and limb-darkening
parameters should be allowed to vary between bands.

We further assume thatthe data have been preprocessed to
remove instrumental systematics.Long-term trends in the
observations may eitherbe removed during preprocessing or
incorporated into the mean of the GP model. If removed during
preprocessing any uncertainties introduced should be carefully
accounted for so that they can be incorporated into the GP. In
the case studies presented in Section 4 we assume a zero mean,
indicating that the observations have been normalized to zero in
each band.We assume there are eitherno long-term trends
presentor that they have been removed in preprocessing
without introducing any meaningful additional uncertainty.

The final assumption we make is that the correlated
componentof the variability is stationary,by which we mean
that the parametersdescribing the correlated noisedo not
change with time. This is a fundamental limitation that is
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3 Which is the limit of a Poisson distribution at high photon count rates.
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inherited from the 1D celerite method. Our method does,
however,allow for a heteroscedastic white noise component.
This means thateach data pointis allowed to have a unique
measured uncertainty thatvaries from point to point in both
time and wavelength.

1.1. A Short Introduction to GPs
While more general definitions of GPs may be formulated, it

is most helpful for our purposes to view GPs as an ordered
collection of random variables along one or more axes often
representing time or space.In the case of an exoplanettransit
the random variables modela series of observations ofthe
star’s flux taken at discrete times. The Gaussian aspect of a GP
describes the relationship between random variables—we
model ¢N observationswith an ¢N -dimensional Gaussian
distribution.The covariance of the multidimensional Gaussian
is described by a kernelfunction, which gives the covariance
between any pair of observationsas a function of their
separation in time or space.The kernelfunction then defines
the covariance matrix.For a kernel ( )k x x,i j , we have

( ) ( )d s= +K k x x, , 1i j i j i j i, ,
2

wheredi j, is the Kronecker delta function andsi is the white
noise component for the ith data point. In addition to the kernel
function, a GP is characterized by its mean function, ( )m t ,
which describes the deterministic component of the process. In
the case of an exoplanettransitwe use a transitmodelas the
mean function.The GP likelihood function, , describes the
likelihood that a set of observations,y, is drawn from the GP. It
is written as
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wherem is a vector where the entries are given by ( )m m= xi i .
A typical and much simplified procedure for measuring

exoplanet transit parametersusing a GP noise model (as
applied in Dawson et al. 2014; Barclay et al. 2015, and
Chakrabarty & Sengupta 2019 among others) can be
summarized as follows.

1. Choose a suitable kernel function to describe the
correlated noise.

2. Choose a transit model to use as the GP mean function.
3. Optionally, maximize the GP likelihood with respectto

the mean and kernel parameters or use another method to
obtain a starting point for initializingMarkov chain Monte
Carlo (MCMC) chains.

4. Use an MC method to sample the posterior (defined by
the GP likelihood and priors for each parameter) in order
to estimate uncertainties for the transit and kernel
parameters.

Choosing a suitable kernel function can be a complicated task.
The choice of kernel might be motivated by prior knowledge of
the characteristics of the data,or might be “learned” from the
data, such spectral mixing kernels (Wilson & Adams 2013). In
Section 2 we discuss and justify our choice of a kernel for
modeling stellar variability which has the added benefitof
being easily expressible in the celerite framework. For a more

complete discussion of model selection in the general case we
refer the reader to chapter 5 of Rasmussen & Williams (2006).

When searching for a previously undetected transit,the
results of step 3 will suggest the most likely parameters of the
transit. In a Bayesian framework the posterior estimates
obtained from the MCMC analysis can then be used to
estimate the evidence for a transit with respect to a flat mean.

In the case of a monochromatic light curve this procedure is
effective atidentifying transits when the depth or duration of
the transit differs significantly from the amplitude and
characteristic timescales ofthe noise. For instance,a transit
that is much deeper than the noise amplitude is poorly
described by the GP noise modeland thus the likelihood will
be sharply peaked at the location of the correct transit
parameters.Similarly, a transit that occurs on a much shorter
timescale than the characteristic timescale of the variability will
be poorly described by the GP and hence easily detectable via
the likelihood. Figures 5 and 6 below illustrate these instances.

A problem occurs when the transitdepth and duration are
comparable to the noise amplitude and timescale.In this case
the GP covariance alone is able to fitthe transitwithout the
need for a mean model. The result is that the GP likelihood is
not sharply peaked aboutthe location of the correct transit
parameters and the transitis thus difficult or impossible to
detect. Gathering more photons with a larger telescope does not
fix the problem as the correlated noise does not decrease with
higher photon count rates as white noise does.One simply
obtains a better measurementof the correlated noise,but the
transit remains masked by the variability.

One solution to this problem is to gather lightin multiple
wave bands. With a multiband light curve we can leverage the
difference in the spectral dependence of the transit as compared
to the correlated variability to disentangle the transitfrom the
noise, and thus detect shallower transits across a broader range
in duration than is possible with monochromatic observations.
This approach depends upon the assumption that the correlated
noise has the same time dependence for each component of the
power spectrum,but varies in amplitude with wavelength.If,
on the other hand,the correlated noise is achromatic,multiple
wave bands will not improve upon the monochromatic case.
For the remainder of this paper we will assume that there is in
fact a wavelength dependence to the correlated noise which
shares a common time dependence. While in the general case a
time delay may be included in these models, the common time
dependence is a requirementof the fast GP methods derived
here. We exploit the information contained in this time
dependence to demonstrate an improvementon the inference
of transiting planetparameters.We also ignore instrumental/
systematicvariations, and assume that the white noise is
dominated by Poisson photon counting uncertainty.

In Section 2 we describe our wavelength-dependentstellar
variability model. We then review the one-dimensional version
of celerite before describing our extension to two-dimensions
(Section 3). Next, we conduct an Information analysis to derive
approximate, semi-analytic upper bounds on the precision that
can be achieved when inferring transit parametersfrom
multiband light curves with different noise properties,and
comparethe results of our Information analysis to a full
MCMC treatment for select noise parameters (Section 4). In the
discussion (Section 5) we outline additional applications of our
method including exomoon detection and transmission
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spectroscopy.We conclude in Section 6 with a discussion of
the limitations of and potential improvements to our method.

2. Multiwavelength Noise Model
Here we describe our model for noise that is correlated

across both time and wavelength. We start with a description of
the time dependence of the noise.

2.1. Time-correlated Variability Model
Foreman-Mackey et al. (2017) describe how celerite can be

used as a physically motivated model for stellar variability. The
following discussion is closely based on the discussion in that
paper.

We follow Anderson & Jefferies (1990) in modeling stellar
oscillations as the result of stochasticexcitations that are
damped by convection and turbulent viscosity in the star. This
process is described by the differential equation

( ) ( ) ( ) ( ) ( )
w w

+ + = 
d

dt
y t

Q

d

dt
y t y t t1 1 3

0
2

2

2
0

wherew0 is the characteristic frequency of the oscillator,Q is
the quality factor of the oscillator, ( ) t is a stochastic driving
force, and y(t) is the amplitude of the oscillations.If ( ) t is
Gaussian distributed then the solution to Equation (3) is a GP
with the power spectral density

( )
( )

( )w
p

w
w w  w w

=
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4

2
0
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Figure 1 shows this power spectrum for several values of Q.
For our modeling we set =Q 1 2, in which case the power
spectral density simplifies to

( )
( )

( )w
p  w w

=
+

S
S2

1
. 50

0
4

This power spectrum has been used to describe granulation-
driven stellar variability (Kallinger et al. 2014). We employ this
kernel in our work both because stellar granulation is a
significant source of noise on transit timescales and to simplify
our discussion of relevent noise timescales in Section 4.1 which

would be complicated by the presence ofoscillations at the
characteristic frequency.Choosing differentvalues for Q will
not affect the qualitative aspects of our results.

The corresponding kernel function to Equation (5) is

⎛
⎝⎜

⎞
⎠⎟( ) ( )t w

 w t p
= - w t-k S e cos

2 4
, 60 0

2 00

where ∣ ∣t = -t ti j .

2.2. Wavelength Dependence of Variability
We are now interested in constructing a simple model for the

wavelength dependence ofstellar variability based upon our
time-dependentcorrelated variability model. To begin, we
consider a two-component photosphere where each component
has a unique spectrum and covering fraction. The star’s
variability is then a result of variations in the covering fraction
of these components, and the covering fractions vary according
to the stochastic process described in Section 2.1.

We label the two components “hot” and “cold.” Their
spectraare given by ( )lSh and ( )lSc and their covering
fractions are given by xh and = -x x1c h. In the absence of
limb-darkening the flux observed in a band B1 is given by

( ( ) ( )) ( ) ( )ò
p

l l l l= + F
R

d
x S x S d 7B B

2

2 c c h h1 1*

where ( )l B1 is the response curve for the filter and the
integral is taken over all wavelengths, d is the distance from the
observer to the star,and R* is the stellar radius.Substituting

= -x x1h c allows us to rewrite this expression as

( )
( )

( ) ( )

( ( ) ( )) ( ) ( )

ò

ò

p
l l l

p
l l l l

=

- -





F
R

d
S d

R

d
x S S d . 8

B B

B

2

2 h

2

2 c h c

1 1

1

*

*

The first term of Equation (8) is the total flux for a photosphere
completely covered by the hot component, and the second term
is a correction dependent on the contrast between the hot and

Figure 1. Left: power spectrum of the simple harmonic oscillator kernel for several values of the quality factor Q.For <Q 1 2 the system is overdamped.For
>Q 1 2 the system is underdamped and the Gaussian process (GP) shows oscillations at the characteristic frequency. For our simulations we set=Q 1 2 , in

which case the system is critically damped. Right: noise realizations for each power spectrum on the left. Note the decreasing coherency of the oscillations as we move
from high to low values of Q. The decreasing noise amplitudes from top to bottom are a result of the fact that the GPs with larger Q values have more total power at
constant S0.
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cold components.For simplicity, we define

( ) ( ) ( )ò
p

l l l= F
R

d
S d 9BB ,hot

2

2 h1 1*

and

( ( ) ( )) ( ) ( )òa
p

s l l l l= - 
R

d
S S d , 10c B1

2

2 h c 1*

where ( )s = xvarc
2

c . With these definitions we have

( )
s
a= -F F

x
. 11B

c
B ,hot

c
11 1

We can do the same for a second hypothetical band B2, giving
us

( )
s
a= -F F

x
. 12B B

c
,hot

c
22 2

Since the only time-dependentquantity in Equations (11) and
(12) is the covering fraction of the cold component xc, we see
that the flux in each band willvary coherently with the same
power spectral density and the amplitude of the variability will
be set by the contrast between the hot and cold components of
the photosphere in each band.

The covariance between two bands can now be computed:

( ) ( )
( ) ( )

s a a
 a a

=

=

-F F x x
x x

cov , cov ,
corr , . 13

B B c
2

c 1 c 2

1 2 c c

1 2

Now we let xc be a function of time, xc(t), and assert that it is
drawn from a one-dimensionalGP evaluated attimes ti for
i=1, K, N (i.e., a correlated time series) with a kernel which
can be described with the celerite formalism.Then the full
covariance matrix for the time and wavelength dimensions is
given by the block matrix

⎡

⎣
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is a diagonal matrix containing the white noise components for
each band at time i; ( ( ) ( ))=T x t x tcorr ,i j i j, c c is the time
covariance matrix for the processdescribed in Section 2.1
normalized by the variance of xc; and R is the covariance matrix
across bands,defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

a  a a

 a a a
=R . 161

2
1 2

2 1 2
2

For M bands B B B, ,... M1 2 with amplitudes given by
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where ( )a a a a= , ,..., M
T

1 2 . The covariance matrix can now
be written

( )=  +S ÄK T R, 18

where Σ is the block matrix
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and where ⊗ denotes the Kronecker product.The Kronecker
productis defined for two matrices A and B with dimensions
N×M and ´P Q, respectively,as the ´NP MQ block
matrix
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An important consideration for constructing new GP
covariance matrices is thata valid covariance matrix mustbe
positive-definite for allinputs (Rasmussen & Williams 2006).
For a detailed discussion of the postive-definiteness of the 1D
celerite kernel we refer the reader to Appendix A of Foreman-
Mackey et al. (2017). Assuming that the covariance matrix T is
positive-definite, the positive-definiteness of the full covariance
= Ä + SK T R can be ascertainedby considering the

eigenvalues of the Kronecker product plus diagonal covariance
matrix, which are uniformly positive if and only if the matrix is
positive-definite.For now we state the conclusion thatK is
positive-definite if R is positive-definite,or if R is positive-
semidefinite and Σ has all nonnegativeentries along its
diagonal. A proof is given in Appendix E. In the case that R is
the outer productaa T, R is positive-semidefinite and positive-
definiteness is thus ensured as long as a nonzero white noise
component is given for each data point.

In practice, providing too small a white noise component
when R is positive-semidefinitemay result in numerical
instabilities.For this reason we recommend that care be taken
when applying this method to extremely high-precision data.
For arbitrary definitions of R positive-definiteness should be
ensured on a case-by-case basis.In general it is sufficient to
show that R is positive-definite, or that R is positive-
semidefinite with a nonzero white noise amplitude provided
for each data point.

When the number of bands,M, is small, this covariance
matrix can be used to modelmultiband observations.We can
also allow M to become arbitrarily large, in which case the
resultantcovariance matrix can be used to model spectral
observations.Here each entry in a would representthe
amplitude of the correlated variability in one wavelength bin
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of the spectrum. The linear scaling of our method with respect
to both the time and wavelength dimension makes it feasible to
model high spectral resolution time series this way. We include
additionaldiscussion on the subjectof modeling transmission
spectra in Section 5.

To validate this model of multiwavelength stellar variability,
we compare with observed solar variability in Figure 2.This
figure shows a time series from the SOHO VIRGO three-
channel Sun photometer (SPM; Frohlich et al. 1995). The SPM
monitors the Sun’s variability in three visible light wave bands
at one minute cadence,and each of these bands exhibits a
power spectrum which has the same shape, but with amplitude
which increases from red (862 nm) to blue (402 nm) as shown
in Sulis et al. (2020). Alongside the SOHO SPM data we show
a GP drawn from our two-dimensionalcelerite algorithm in
which the amplitudes in each band have been scaled to match
the SOHO SPM multiband data. The qualitative agreement
between the observed and simulated data is remarkable,and
indicates thatour model contains the necessary properties to
capture high-precision multiwavelength stellar variability.

The algorithm used to simulate multiwavelength stellar
variability and to compute the likelihood model is described in
Section 3.2. Our implementation of the multiband GP, which is
based on the celerite GP method,achieves ( ) NMJ2 scaling
where N is the size of T corresponding to the length ofthe
vector xc and M is the number of bands and corresponds to the
size of the vectora . Appendix A introduces a more general
form of the two-dimensional GP which scales as( ) NJ M2 3 for
arbitrary covariance in the second dimension.The remaining
component of the likelihood function is the mean model, which
for this paper we take to be a transit model,described next.

Similarly, Loper et al. (2020) recently derived a multivariate
generalization ofcelerite with linear scaling for a class of
covariance functions called latent exponentially generated
(LEG) kernels.These LEG kernelfunctions are presented for
multivariate outputs instead of multivariate inputs as described
here, but it should be possible to express the kernels described
here as membersof the LEG family. However, for our
restricted application, the computational cost and scaling of our
method is better, since LEG GPs will scale as( ) NJ M2 3 in the
notation above.

2.3. Transit Model
To simplify and sharpen our simulated light curves, we use a

trapezoidal transit model (Carter et al.2008); this is the mean
model whose parameterswe wish to infer. For all our
simulationsthe out-of-transit flux is normalized to unity in
order to reduce the number of parameters to be inferred, though
we note that this would represent an additional free parameter
when modeling realobservations.A schematic of this transit
model is shown in Figure 3. For the purposes of this paper, we
ignore limb-darkening (which can have a wavelength depend-
ence), and we ignore the slight curvature which occurs during
ingressand egress.We also assume that the radius of the
transiting planetis constantwith respectto wavelength.This
requirementcan be relaxed to accommodatetransmission
spectroscopy,which we discuss in Section 5.

The model is described by the function ( )qm t,trap with
( )q d d= R t, , ,p 0 in where Rp is the planet’s radius in units of

the star’s radius, t0 is the time at center of transit, δ is the transit
duration, anddin is the ingress/egress duration. Note that we set
the normalization of this modelto one under the assumption
that the out-of-transit data will be sufficiently lengthy to
constrain the unocculted stellar flux.

With the noise and mean models specified, we next describe
our simulated data.

2.4. Simulations
We simulate a suite of multiband light curves and construct a

parallel set of monochromatic light curves by summing the flux

Figure 2. Left: SOHO three-channel Sun photometer time series of the Sun. Right: a three-band light curve simulated from a GP with a kernel consisting of three
Kronecker-product terms (see Equation (59)), each term having the covariance described by Equation (17). The GP hyperparameters were obtained by optimizing the
GP likelihood with respect to the data in the left panel.

Figure 3. Schematic of the trapezoidal transit model. The center of transit t0 is
the midpoint of the transit.
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between the bands ofour multiband light curves.Figure 4
shows schematically how we produce a monochromatic light
curve from the simulated multiband lightcurve.We compute
the Information matrix (see Section 2.5) and run MCMC
analysis on each lightcurve using our multiband GP model.
The Information matrix tells us the theoreticallower limit for
the uncertainty of each parameter,while the MCMC analysis
gives us an estimate of the uncertainty on the parameters.

We split our simulations into three noise regimes based on
the ratio between the characteristic variability timescale,and
the ingress/egressand total duration of the transit. The
characteristic variability timescale is given by pw-2 0

1 where
w0 is the characteristic frequency of the variability appearing in
Equation (4).We define the three regimes as follows:

1. regime I: d>f1 0
2. regime II:d d< <f1in 0
3. regime III: d<f1 0 in

where ( )w p=f 20 0 is the characteristicfrequency of the
variability. Figure 5 contains representative lightcurves from
each regime,chosen where the white and correlated noise
amplitudes are comparable.In regime I the transit signal is
distinguishable from the noise by its duration—all of the power
in the correlated variability is on longer timescales than the
transit duration. In regime II the characteristic timescale of the
noise is smaller than the transitduration,but longer than the
ingress/egress timescale.The transitstill stands outfrom the
noise because the transition into and outof transit is sharper
than is characteristic for the simple harmonic oscillator (SHO)
variability. In regime III the variability timescale is shorter than
all of the relevant transit durations. We can see from Figures 1
and 6 that the SHO power spectrum allocates equal power to all
oscillations on timescales longer than the characteristic time-
scale.The transit durations are thus swamped by correlated
noise.As a result in the monochromatic case itis difficult to
differentiate between the transitsignaland noise,both by eye
and with the GP. Fortunately the multiband GP is able to make
use of additional information in the correlation between bands
to disentangle the transit signal from the variability.

Among all of our simulations we hold constantthe total
noise, ā s+2 2 where ā 2 is the weighted varianceof the
correlated noise over allbands ands 2 is the variance of the
white noise summed overall bands.We then vary the ratio
between the noise amplitudes in order to analyze the
simulations as a function of  ̄a s . For the multiband
simulations,ā is the weighted mean of the amplitudes of
variability in the individual bands,given bya i. For all of our

simulations,unlessotherwise specified,we use a two-band
model witha a= 22 1 to represent the multiband case.

We hold the transit duration and ingress/egressduration
constantso that the value ofw0 changes to determine which
noise regime we fall under.

Into all of our simulations we injecta transitsignalwith a
fractional depth of 1% of the star’s flux. We use a transit
duration of 12 hr in the middle of a 10 day baseline.The
ingress/egress duration is set to 1.2 hr.

2.5. Information Matrix Analysis
The Information matrix encodes the amountof information

about a signal that can be determined from observations taken
in the presence of noise with a given covariance.For a model
made up of a mean functionmq with Nθ parametersq q q q, ,... N1 2
obscured by noise drawn from a multivariate Gaussian with
covariance K,the Information matrix is the ´q qN N matrix
with entries given by

⎛
⎝⎜
⎞
⎠⎟

⎛
⎝
⎜
⎞
⎠
⎟[ ] ( )m m

q q
=q

-
d

d
K

d

d
. 21i j

i j
,

T
1

The covariancebetween parametersof the mean are then
approximated by

[ ] ( ) ( )q q»q
- cov , . 22i j i j

1
,

This approximation represents a lower limiton the covariance
that can be estimated in practice via methods such as MCMC
simulation. It is valid in the limit that the posterior probability is a
multidimensionalGaussiandistribution near the maximum
likelihood solution.This corresponds to the limitin which a
signal may be approximatedas linear with respectto its
parameters,known as the linear signal approximation (LSA).
Vallisneri(2008) shows thatin order for the LSA to apply we
must be in the high signal-to-noise ratio (S/N)limit. Accord-
ingly, the following analysis should be taken to apply only to a
transitwith a depth much largerthan both the correlated and
white noise components of the noise.While the approximation
may continue to be accurate for smallersignal-to-noise,a full
quantification of the uncertainty in the low-S/N limit should rely
on sampling the posterior directly via MCMC analysis.

We compute the Information matrix for the transit
parameters assuming thatthe hyperparameters of the GP are
known exactly. In practice the GP hyperparameters willbe
unknown, and should be fit simultaneously with the transit
parameters. Our results thus represent a scenario in which there
are sufficient out-of-transit observationsto determine the
covariance of the noise to arbitrary precision.

We adopt a semi-analyticapproach to computing the
Information matrix by using exact derivatives of the trapezoidal
transit model and using celerite to compute products ofthe
inverted covariance matrix with the transitmodel’s derivatives.
This approach is necessary because the covariance matrix for our
GP model cannot be inverted analytically except in special cases.

2.6. Analytical Estimates for Parameter Uncertainties
The Information matrix approach can yield analytic results

for the depth uncertainty in the limit that limb-darkening is
ignored,the ingress/egress duration is short,d » 0in , and all
other parametersare assumed to have no uncertainty. In

Figure 4. Two bands from a multiband simulation combined to simulate a
monochromatic light curve with the same noise realization. Note that the white
noise amplitude is smaller in the monochromatic lightcurve than for either
individual band, while the amplitude of the correlated noise is the photon-
weighted mean of the amplitude in the two bands.Here the blue band has a
correlated noise amplitude twice that of the red band.
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particular we make the approximation thatthe out-of-transit
flux is measured to high precision from extensive monitoring.
In this limit the transit model has a derivative of

{ ( )
m¶

¶
=

- -

- -R
0 out of transit

1 in transit , 23
p

trap
2

where Rp
2 is the depth of the transit. If we assume thatthe

transit duration matches exactly a single observation cadence
then the covariance matrix may be written in the two-band case
as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

s a  a a

 a a s a
=

+

+
K , 241

2
1
2

1 2

1 2 2
2

2
2

wheres1,2 are the white noise components on the timescale of
the transitanda1,2 are the correlated noise amplitudes on the
timescale of the transit in the two bands.

For this covariance matrix,the Information matrix gives an
uncertainty on the depth of the transit,sRp

2, of

⎛
⎝
⎜

⎞
⎠
⎟
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( ) ( )
( )

( )
s

s s
= +

+ +

+

a
s

a
s

a a
s s

-

-

+

1 1 1

1
. 25

R ,poly
2

1
2

2
2

1
2 2

p
2

1

1

2

2

1 2
2

1
2

2
2

Note that the prefactor equalsthe noise in the limit of no
correlated noise component( )a a= = 01 2 .

In the monochromatic case we can compute the uncertainty
assuming thatthe noise is Poisson,in which case the mean
amplitude of correlated noise is given by

⎛
⎝
⎜

⎞
⎠
⎟ ¯ ( )s

s s
a= + +

-1 1 , 26
R ,mono
2

1
2

2
2

1
2

p
2

where we have assumed the noise to be Poisson and̄a is
defined to be the weighted mean amplitude of the correlated
noise in both bands,given by

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟¯ ( )a

s s
a
s

a
s

= + +

-
1 1 . 27
1
2

2
2

1
1

1
2

2

2
2

The relations for the polychromatic and monochromatic
casesare plotted in Figure 7 in the case a a= 22 1 and
s s s= =1 2 in which the sum of the white noise and correlated
noise is held fixed. Compare with Figure 12 to see the
similarity of this analytic approximation with the Information
matrix results for the full trapezoidal model.

We can generalize these expressions forthe depth uncer-
tainty in the monochromatic and two-band case to an arbitrary
numberof bands when the white noise is identicalfor each
band (i.e.,s s=i for M bands indexed by i).In this case the

Figure 5. Representative light curves for the three noise regimes. The left panels show the two bands separately and the right panels show the monochromatic light
curve resulting from the summation of the two bands.Top: in regime I the variability timescale is much longer than the transit duration.Middle: in regime II the
variability timescale is between the transitduration and ingress/egress duration.Bottom: in regime II the variability timescale is shorter than the ingress/egress
duration.Figure 6 shows power spectra corresponding to each of these regimes (but not to the light curves pictured here).

Figure 6. Power spectraldensities for the three regimes.The shaded region
spans from the inverse transit duration on the left to the inverse ingress/egress
duration on the right. Note that the densities plotted here are only meant to be
illustrative,and do not correspond to the power spectra of the light curves in
Figure 5.
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uncertainties are given by

( ) ( )
( )å

å å

s

s

s a

s a s a
=

+

+ -

-
=

-
=

-
=

M

1

1
, 28

R M i

M
i

i

M
i i

M
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, ,poly
2

2

2
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2

2
1

2 1
1

2
p
2

for the M-band case,and

⎛
⎝
⎜

⎞
⎠
⎟ ( )å

s

s s
a= +

=
M M
1 1 . 29

R M

i

M

i
, ,mono

2

2
1

2
p
2

for the corresponding monochromatic case. Similar expressions
may likely be found for the other transit parameters as well as
for non-uniform noise in M bands, which we leave to
future work.

While the uncertainties predicted by these equations differ
from those found by a fullInformation matrix analysis of the
trapezoidal transit, we find that they correctly predict the
relationship between the monochromatic and multiband
uncertaintiesin the limits a s and a s not only for
the depth, but for the other parameters of the trapezoidal transit
as well.

This is illustrated by Figure 12 which shows the Information
uncertainties for each parameter of the trapezoidal transit model
in the presence of correlated noise.We use a two-band noise
model witha a= *22 1. When the white noise dominates over
the correlated noise ( )s a1,2 , the Information uncertainties
for the model with correlated noise are identical to those for a
white noise-only model with the same white noise component,
as we expect given that the correlated noise componentis
insignificant in this limit. We can use Equation (28) to predict
the Information matrix for the two-band model in the limit that
the correlated noise component dominates over the white noise
component ( s a1,2). Taking this limit Equation (28)

becomes

( )
( )



å

å å

s

s

a

a a
=

-
s a

=

= =
M

lim . 30
R M i

M
i

i

M
i i

M
i

, ,poly
2

2
1

2

1
2

1

2
p

1,2

2

Settinga = 11 anda = 22 , we finds s = 10R M, ,polyp
2 which

explains the scaling of the Information uncertainty at large α/σ
in Figure 12.

We also examine the Information uncertainties as a function
of number of bands. We consider a photon spectrum for which
the variability increasesfrom a value of amin to amax. We
assume thatthe photon spectrum variability is split into M
bands with an equalphoton countrate in each band to give
equivalent Poisson noise acrossall bands. In addition, we
assume that α varies linearly with the photon count rate across
all bands, so that the ith band has a correlated noise amplitude
of ( ) ( )a a a a= + - -i M1 2i min max min . For example,in
the case of two bands witha a = 5max min , we havea a= 22 1,
as in Figure 7.Figure 8 shows the uncertainty for the planet–
star radius ratio as a function of the ratio between the minimum
and maximum variability,a amax min, for several values of M.
The minimum achievable uncertainty as M approaches infinity
and a amax min, which can be arrived at by taking the
appropriate limits of Equation (28) and transforming the sums
into integrals as M approachesinfinity. In these limits the
minimum achievable uncertainty is twice thatfor the white
noise-only case,which is represented by the dashed line in
Figure 8.

The same calculation may be performed for alternative
spectra.For a blackbody spectrum we arrive ata limit of 2.2
times the white noise-only case when the number of bands and
the contrast ratio is large. For arbitrary spectra the integrals can
be computed numerically to yield the minimum achievable
uncertainties for realistic stellar spectra and spot models.

The Information matrix and analytic approachesdescribe
approximations to the parameter uncertainties. We next
summarize ourMCMC analysis to check and validate these
approximations.

Figure 7. Analytic approximation for the fractionaluncertainty on depth for
two bands vs. the ratio of the correlated noise to white noise in first band,a s1 ,
in the limit of a constant amplitude of the sum of correlated and white noise (so
that the white noise declines as the correlated noise increases). The ratio of the
correlated noise in the two bands is two, i.e.,a a= 22 1. Plotted are the single-
band case (blue dashed), two-band case (orange solid), and the white noise in
each band, σ, times 1 2 and 5 (dotted). The fractional precision is
normalized to the casea = 01 .

Figure 8. Information uncertainty curves for the planet–star radius ratio as a
function of contrast ratio for a spectrum that increases linearly with photon flux
from amin to amax. We plot the Information uncertainty for different values of
M, the number of bands into which the spectrum is binned for modeling. The
dashed line is the minimum uncertainty achievableas the contrast ratio
becomes infinite which,for the two-band case,is equalto 2σ where σ is the
Information uncertainty in the absence of correlated noise.
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2.7. MCMC Analysis
We use the exoplanet package (Foreman-Mackey etal.

2019) which interfaces with PyMC3 to conductour MCMC
simulations. Each simulation is initialized with the true
parameters.During MCMC we hold the GP hyperparameters
constant as we did for the Information matrix analysis, and vary
only the parameters of the trapezoidaltransit model. We use
PyMC3ʼs implementation of No U-Turn sampling (NUTS;
Hoffman & Gelman 2014),which requires the derivatives of
the log likelihood to carry outthe Hamiltonian markov chain
integration.The NUTS sampleris initialized by tuning each
simulation for 2000 steps.Subsequently,the simulation is run
another2000 steps to sample the posterior.This procedure
results in about 103 effective samples for each parameter of the
model for each simulation as the autocorrelation length of the
chains is extremely short(one of the advantages of using the
NUTS sampler).

The final ingredientneeded for our Information matrix and
MCMC simulations involves our novel two-dimensional
version of celerite,which we describe next.

3. Implementation of the Multiwavelength Variability
Model

We implement our multiwavelength variability model as an
extension of the celerite GP method to two dimensions.The
celerite algorithm (Foreman-Mackey et al.2017) is a method
for computing GPs in one dimension thatscales as ( ) NJ2

where N is the number of data points being modeled and J is
the number of terms used to representthe covariance matrix.
While one-dimensionalGPs are suitable for a wide range of
applications,there are many problems forwhich we need to
model covariance between data points in two or more
dimensions.Here we describe a method for computing a two-
dimensional GP when the covariance in the second dimension
can be written as the outer product of a vector with itself. This
covariance matrix is relevant to the common task of modeling
time-variable spectra, as in our multiband transit model
application.Our method is scalable,with computationaltime
increasing linearly with the number of data points. In this
section we introduce the method and revisit the celerite
algorithm for Cholesky decomposition of the covariance matrix
as it applies to a two-dimensional data set. In Appendices B, C,
and D we discuss the algorithms for computing the likelihood,
predicting or extrapolating from the GP,and sampling from
the GP.

For problems where the covariance cannot be modeled as an
outer productwe offer a more generalextension ofcelerite
where the covariance matrix for the second dimension can be
arbitrary. We discuss our implementation of the arbitrary
covariance method in Appendix A.

3.1. The One-dimensional celerite Method
Until the past few decades, the adoption of GP methods was

limited by computational expense.As a reminder, the log-
likelihood function for a GP model for a series of N flux
measurements, ( )=y y y y, ,... N1 2 , so that the total number of

data points ¢=N N, taken at times ( )=t t t t, ,... N1 2 is given by

( ) ( )

( ) ( ) ( )

m m

p

= - - -

- -

- y yK

K
N

ln 1
2
1
2

ln det
2

ln 2 31

T 1

where ( ( ) ( ) ( ))m m m m= t t t, ,... N1 2 and K is the covariance
matrix of the GP. This equation involves the inverse and
determinant of the N×N matrix K. In general, computing the
inverse and determinantof an N×N matrix requires( ) N3

operations. Thus computing the likelihood for a GP by directly
inverting K becomes prohibitively expensive for data sets
larger than about104 observations (Deisentroth & Ng 2015).
This is especially true for applications thatrequire repeated
calls to the likelihood function as is the case for minimization
and MCMC.

Because ofthis, much work has been done to reduce the
complexity of GP computations.This can be accomplished
primarily in two nonexclusive ways. The first is by employing
inexact methods in which the full GP covariance matrix is
approximatedby a matrix for which the relevant matrix
operations (primarily inversion and computation of the
determinant)can be computed more efficiently than ( ) N3

(Rasmussen & Williams 2006). Members of this class of
methods include the HODLR factorization method of Ambi-
kasaran et al. (2015) which achieves( ) n nlog2 scaling as well
as various sparse GP methods (Csató & Opper 2002; Snelson &
Ghahramani 2006; Almosallam et al.2016).

The second is by restricting the user to covariance matrices
of a specific form. These methods are often known as structure-
exploiting methods since they take advantage of the properties
of specially structure matrices (e.g., low-rank matrices,
Toeplitz matrices,Kronecker-productmatrices)to speed up
Gaussian process operations (Zhang et al. 2005; Nickson et al.
2015; Wilson & Nickisch 2015).

The celerite algorithm is a fast, one-dimensional GP method
which exploits the properties ofsemiseparable plus diagonal
matrices to accelerateGP computations,achieving ( ) NJ2

scaling where J is the number of celerite terms that make up
the kernel function and N is the numberof data points.For
commonly used kernelmodels the numberof terms will be
very small compared to N.

celerite works by representing the GP covariance matrix as
the sum of a diagonalmatrix and J semi-separable matrices.
The Cholesky factorization of J semi-separable matrices plus a
diagonalmatrix can be computed in ( ) NJ2 rather than the

( ) N 33 required for an ordinary matrix.Once the Cholesky
factors are in hand, the inverse and determinantof the
covariancematrix can be computed in ( ) NJ and ( ) N
respectively.Here we briefly describe the celerite algorithm,
referring the reader to Foreman-Mackey et al. (2017) for a more
detailed exposition of the method.

Consider a one-dimensionalGaussian process evaluated at
the coordinates

( ) ( )=x t t 32N1
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The celerite kernel is given by

( ) [( )

( ) ] ( )

( )

( )

å s d= + +

+ -

b
t

t

=

- +

-

k t t a ib e

a ib e

, 1
2

33

n m n nm
j

J

j j
c id

j j
c id

2

1

j j nm

j j nm

where ( )b = a a b b c c d d... , ... , ... , ...J J J J1 1 1 1 , s n
2 is the variance

of the Gaussian-distributed white noise,and ∣ ∣t = -t tnm n m

with Î ¼n m N, 1 , , . This kernel defines a celerite model
with J terms.

For a kernel function of this form, the covariance matrix is a
symmetric,semiseparable matrix with semiseparability rank
=P J2 . A matrix of this type can be written in terms of two

generator matrices U and V, both of size( )´N P , along with a
diagonal matrix A:

( ) ( ) ( )= + +K A UV VUtril triu , 34T T

where tril is the lower-triangular operator which, when applied
to a square matrix, preserves the entries below the diagonal and
replaces all entries on and above the diagonal with zeros.The
triu operator does the same for the upper-triangular entries in
the matrix.In the case of our covariance matrix,the generator
matrices are specified by

( ) ( )
( ) ( )

( )
( ) ( )

= +

= -

=

=

-
- -

- -

-

U a e d t b e d t

U a e d t b e d t

V e d t

V e d t

cos sin ,
sin cos ,

cos ,
sin , 35

n j j
c t

j n j
c t

j n

n j j
c t

j n j
c t

j n

m j
c t

j m

m j
c t

j m

,2 1

,2

,2 1

,2

j n j n

j n j n

j m

j m

and A is given by

( )ås= +
=

A a . 36n n n
j

J

j,
2

1

We will soon see thatthe Cholesky decomposition forthis
covariance matrix can be computed in ( ) NJ2 operations,
allowing for the fast evaluation of the GP likelihood function.

The kernel function implemented by celerite is versatile in
that by choosing appropriate coefficients itcan be made to
approximate a wide range of other kernelfunctions.Further-
more, Loper et al. (2020) demonstrated thatcelerite kernels
provide a complete basis for one-dimensionalstationary
covariancefunctions, meaning that these methods can, in
principle, be used to approximate any stationary kernel, though
there mightbe issues with numericalprecision and computa-
tional cost when a large number of terms are required for
accuracy. This versatility is demonstratedqualitatively in
Figure 9 which shows approximationsof several popular
kernels achieved by carefully choosing{ }aj , { }bj , { }cj and{ }dj .
Since each ofthese kernels may be approximated wellby a
celerite kernel, the products and sums of these component
kernels are also celerite kernels, meaning that complex kernels
can still be approximated within the celerite kernel formalism.

The Cholesky factorization ofthe covariance matrix K is
given by

( )=K LDL 37T

where L is the lower-triangular Cholesky factorand D is a
diagonal matrix. Foreman-Mackey etal. (2017) begin their
derivation of the Cholesky factorization algorithm with the
ansatz that L can be represented in terms of U and a new (at this

Figure 9. Approximation to various commonly used GP kernels.(a) Simple kernels with an exact celerite representation: cosine,or exponential times cosine.(b)
Approximation of (a) referred to as “exponential-squared” to distinguish it from sine-squared kernels,indicated in (c).(d) Matern kernels.
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point unknown) matrix W with the same dimensions as U,as

( ) ( )= +L I UWtril . 38T

Then W and D can be found via the recursion relations

⎡
⎣
⎢

⎤
⎦
⎥ ( )

 å å

å

= +

= -

= -

- - - - -

= =
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W
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n j k n j k n n n j n k
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n k n j k

, , 1, , 1, 1 1, 1,

, ,
1 1

, , , ,

,
,

,
1

, , ,

whereS j k1, , is a matrix of zeros and P is both the rank of the
semiseparable covariance matrix and the number of columns in
U and V, here equal toJ2 . In the original celerite paper it was
found that,in order to avoid numericalstability issues caused
by the exponential factors in Equation (35), it was necessary to
redefine the generatormatricesU and V and to define an
additionalmatrix f of the same dimensions as U and V.The
generators become

˜ ( ) ( )
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The unknown matrix W becomes
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And the new matrix f is defined

( )( )f f= =-
- - -e . 42n j n j

c t t
,2 1 ,2

j n n 1

The algorithm for decomposing the covariance matrix becomes
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This completes our recap of the one-dimensional version of
celerite; next we describe our novel two-dimensional version.

3.2. Computing the Two-dimensional GP
We now consider the Cholesky decompositionof the

covariance matrix for a two-dimensional GP when the
covariance in the second dimension can be written as the outer
product of a vector with itself. This form of the covariance
applies when the correlated componentof the noise has the
same shape along the firstlarge dimension (of size N) and
varies proportionally in amplitude along the second small
dimension (of size M),as is the case for the multiwavelength
stellar variability problem discussed above.

This covariance matrix is given by Equation (18), repro-
duced here:

( )=  +S ÄK T R, 46

which has size ¢ ´ ¢= ´N N NM NM. Here Σ is a diagonal
matrix containing the white noise components foreach data
point, which may be heteroscedastic, T is the covariance matrix
in the first dimension,which must be defined by a celerite
kernel, and R is the covariance matrix for the second dimension
which must be an outer product of the form

( )aa=R , 47T

where ( )a a a a= , ,..., M1 2
T is a vector of length M.

Writing K in terms of the celerite generator matrices from
Equation (34):

[ ( ) ( )]
( )

( ) ( ) ( )

=  +S + + Ä
=  +S Ä

+ Ä + Ä

K A UV VU R
A R

UV R VU R

tril triu
diag

tril triu , 48

0
T T

0
T T

where A0 is the diagonalcomponentof T obtained by setting
s = 0n for all Î ¼n N1, , in Equation (36).Substituting the
outer productaa T for R inside the upper and lower triangular
operators we have

( )
( )
( ) ( )

aa
aa

=  +S Ä

+ Ä
+ Ä

K A R

UV

VU

diag
tril
triu . 49

0
T T

T T

Applying the formula for mixed Kronecker and matrix
products,

( ) ( ) ( ) ( ) ( )Ä = Ä ÄAB CD A C B D , 50

we can rewrite the covariance matrix as

( )
(( ) ( ) )
(( ) ( ) ) ( )

a a
a a

=  +S Ä

+ Ä Ä
+ Ä Ä

K A R

U V

V U

diag
tril
triu . 51

0
T

T

We now see thatthe two-dimensionalcovariance matrix has
exactly the same semi-separable structure as the one-dimen-
sional covariance matrix with new definitions of the generator
matrices in terms of their Kronecker products witha :

( )

( )
a
a

¢ =  +S Ä
¢ = Ä
¢ = Ä

A A R
U U
V V

diag

52

0

The componentsof the refactored generator matrices,
corresponding to Equation (40),are now given by
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˜ ( ) ( )

( )

( )

( )

( )

a

a

a

a

¢ = +

¢ = -

¢ =

¢ =

- + -

- +

- + -

- +

U a d t b d t

U a d t b d t

V d t

V d t

cos sin

sin cos

cos

sin , 53

M n p j p j j n j j n

M n p j p j j n j j n

M m p j p j m

M m p j p j m

1 ,2 1

1 ,2

1 ,2 1

1 ,2

andf¢ is given by
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, 54M n p
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with Î ¼n m N, 1, , , Î ¼p M1, , , and the colon indicating
that the elementis identical for every entry of that row. For
these definitions of the generator matrices the recursive
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Cholesky decomposition algorithm becomes
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where again P is the number of columns in¢U and ¢V .
The recursive algorithm defined above requiresone pass

through each of the ¢=N NM rows of ˜ ¢U and ˜¢V . At each step
we compute a double sum over the P columns of these
matrices. The resultant scaling is thus( ) NMP2 . For the outer-
product definition of R we have =P J2 and the method scales
as ( ) NMJ2 (see Appendix B for benchmarks).

As shown in Appendix A, we can come up with similar
definitions of ˜ ¢U , ˜¢V , and f¢ for arbitrarily defined R which
yield =P JM2 , allowing us to compute the Cholesky
decomposition in ( ) NJ M2 3 . Algorithms for computing the
likelihood function, computing predictionsor extrapolations
from the GP, and sampling the GP are given in Appendices B,
C, and D respectively for both outer-productand arbitrary
definitions of R.

For this two-dimensional GP the set of observations used to
compute the GP likelihood is also two-dimensional.Actual
computation of the likelihood, however, requires that the input
be reduced to one dimension.The Kronecker structure of the
covariance matrix determinesthe form of the vector of
observations.For input defined on a grid of size ´t r where
t representsthe dimension along which the covarianceis
described by a celerite kernel and r represents the second
small dimension, we have a two-dimensional matrix of
observations:

( ) ( )=Y y r t, . 56i j i j,

We define the observation vector to be
( ) ( )=y Yvec , 57

where ( )Yvec is the concatenation of the rows of Y.In other
words,

( ) ( )=y Y Y Y, ,... . 58N:,1 :,2 :,

With the description of our computationalmethods com-
pleted,we now turn to the results of transit simulations.

4. Results
We have carried outan analysis of simulated transitlight

curves with a wide range of noise amplitudes,timescales,and
ratios of correlated to white noise,which we summarize the
results of here. We start with a discussion of the results from a
case study of seven examples with different ratios of correlated
to white noise (Section 4.1), and then expand the discussion to
a wider range of simulations for which we compare the
Information matrix, analytic, and MCMC error analyses
(Section 4.2).

4.1. Case Studies
To start with, Figure 10 shows seven examplesof our

simulationsfor two bands with correlated noise amplitudes

which differ by a ratio of two. These were made with moderate
S/N and with  w d =1000 , which corresponds to a character-
istic timescale of the correlated noise which is shorter than the
transit duration and the ingress/egress timescales (regime III).
In this case we held the white noise in the two bands to be
identical in amplitude (corresponding to an identicalphoton
count rate in both bands), and we compared a joint analysis of
the two bands (we referto this as “polychromatic”) with an
analysis of a single band consisting ofthe sum of the same
simulated light curves from the two bands (this analysis we
refer to as “monochromatic”).Across these simulationswe
have varied the ratio of the totalcorrelated noise to the white
noise, α/σ, over seven values, {0.02, 0.55, 1, 2, 4, 20, 143}, to
examine the precision of the two-band analysis compared with
a monochromatic analysis.

For the first two simulations,α=0.02σ and α=0.55σ,the
variance of the correlated noise is smaller than that of the white
noise. At this low ratio of α/σ we find that the measurement of
the transit depth and timing parameters is about the same in the
two-band case as in the monochromaticcase (top panel,
Figure 10).In the third panel where the white and correlated
noise amplitudes are equal,we see a slight improvement in the
measurementof the transit time and depth.In the remaining
panels (bottom four panels of 10), we find an increasing degree of
improvementin all the measured parametersas α increases
relative to σ. As we approach the smallwhite noise limit the
improvement in all parameters between the single-band and two-
band analyses is dramatic, with the transit depth improving by a
factor of 18 at α=20σ and by a factor of 118 at α=143σ. The
transit time measurementimproves by a factorof 21 and 65
respectively for these simulations. This improvement results from
the ability to distinguish correlated noise variations from the
transit signal when two bands are utilized, thanks to the different
amplitudes of the correlated noise in the two bands; the correlated
noise variations are measured to high precision in this case due to
the small photon noise.Even so, the precision of the transit
parameters is worse than it would be if there were no correlated
noise by a factor of10. This is an astrophysical limitation, and
yet it still demonstrates a dramatic improvement in the analysis
which splits the the photonsinto two bands versusa single
summed band.

The intermediatevalues of α/σ={1,2, 4} shown in
Figure 10 have a behavior which is intermediate between the
high white noise and low white noise limits that we discuss
above:a monotonic improvementin all of the measurements
with the increase in α/σ.

The general trends of these simulations hold over a broader
range of parameters. To examine a larger number of cases, we
summarize the uncertainties of the monochromatic cases and
polychromatic cases based on the measurementprecision as a
function of the noise parameters, which amounts to measuring
the breadth of the posterior distributions inferred for each
parameter(left-hand panels ofFigure 10). We also compare
these to the uncertainty estimates using the Information matrix
approach and the analytic estimates given in Sections 2.5 and
2.6, which we discuss next.

4.2. Noise Comparison
We have carried out a much broader parameterstudy,

varying the ratio of α/σ over a wide range of values for three
values of the timescale:  w d =0.1, 100 , and 100.We compare
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the Information matrix analysis againstthe MCMC anlysis in
the monochromatic case with the two-band case,also with
a a= 22 1, in Figure 11. The MCMC uncertainty estimates

agree closely with the Information uncertainty curves for
almost all of our simulations, as demonstrated by Figure 11 for
moderate S/N.

Figure 10. Left: posteriors for three transit parameters estimated by MCMC analysis on the two-band (colored) and single-band (gray) data. Posteriors are smoothed
using Gaussian kernel density estimation for w d =1000 (corresponding to the final panel of Figure 11). From left to right: the center of transit t0, transit duration δ,
and radius ratioR Rp * . For α/σ=20 and α/σ=143 the posterior distributions for the two-band case are too sharply peaked to be visible. Right: representative light
curves for each value of the noise amplitude ratio α/σ zoomed in on the transit signal (the input light curves have a duration of 10 days).
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In regime I,  w d =0.10 , in which the characteristic variability
timescale is longer than the transit duration, the uncertainties on
the transit parametersare nearly identical between the
monochromatic and multiband simulations up to  a s » 10,
where the multiband uncertaintiesbegin to diverge slightly
from the monochromatic uncertainties.Since the transit signal

is distinguishable from the noise on the basis of its duration
alone,the amountof additional information contained in the
inter-band correlation is insignificant and both models perform
similarly well.

We now skip to regime III, with  w d =1000 (the same as the
case studies in the previous subsection), in which the
characteristic variability timescale is smallerthan the transit
duration. Because the SHO powerspectrum allocatesequal
power to all oscillations on timescales longer than w1 0, the
transit signal is not distinguishable from the variability on the
basis of its duration. In this case the inter-band correlation
contains the additional information necessary to correctly infer
transit parameters.Both models perform similarly when the
correlated noise amplitude issmall compared to the white
noise, but when the correlated noise amplitude α begins to
dominate overthe white noise σ the monochromatic model
does a poor job of inferring parameters (as evidenced by the
large uncertainties) while the multiband model infers more and
more precise values as the white noise decreases relative to the
correlated noise.

The results for regime II, here represented by w d =100 , fall
intermediately between regimes Iand III. In regime II, the
characteristictimescaleof the variability falls between the
transit duration and the ingress/egresstimescale so that
measurementsof the transit duration must contend with
correlated noise on the same timescale, whereas measurements
of the ingress and egress are affected primarily by white noise
rather than correlated noise. Since the transit time is
constrained by the ingress and egress times rather than by the
transit duration, measurements of t0 are also primarily affected
by white noise. This is why we see significant improvement in
the measurementof the transit depth at high α and low σ
between the single-band and two-band simulations,while the
timing parameters show much less improvement until we reach
the low white noise limit. At this point the white noise
amplitude is small enough compared to the correlated noise
amplitude that the relatively low correlated noise on the
timescale of the ingress/egress duration does begin to interfere
with timing measurements in the single-band case.

In Figure 12 we plot Information uncertainty curvesin
regime III for the multiband model against those for the
monochromatic modelhaving the same transitparameters but
with only a white noise component—thecorrelated noise
amplitude is setto zero. The colored curves representing the
Information uncertainties for the fullnoise model(white and
correlated noise) match the white noise-only uncertainty in the
limit that the correlated noise componentis very small, as
expected. As we increase the relative amplitude of the
correlated noise componentthe uncertainty for the fullmodel
jumps from the white noise-only curve with the same white
noise amplitude to the white noise-only curve with10 times
greateramplitude.As the correlated noise amplitude further
increases,the Information uncertainty for the full model
behaves as though we are doing inference on an equivalent
model with the correlated noise componentexchanged fora
larger white noise amplitude.

The behavior seen here is explained by the analytical model
outlined in Section 2.6.In particular, Equation (30) explains
why the uncertainty scales as the white noise-only uncertainty
with s10 in the large correlated noise limitfor two bands
with amplitudes related bya a= 22 1.

Figure 11. Information uncertainty curves overlaid with MCMC uncertainty
estimates for trapezoidal transit parameters.Dashed lines show results for the
monochromatic noise model and solid lines show results for the two-band noise
model. Circles represent the MCMC uncertainty for distinct realizations of the
noise and transit.
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This completes our description of the simulated light curves
and the results from these simulations.We next discuss the
implications of these results.

5. Discussion
We have demonstrated the application of our method to the

problem of fitting a transit observed in multiple bands in the
presence of correlated noise. We now revisit and summarize the
results of that demonstration beforeoutlining some other
potential applications of our method.

Monochromatic transit observations are ill-equipped to deal
with correlated noise,as the wavelength-integrated flux does
not provide enough information to distinguish between transits
and noise features except when the correlated noise amplitude
is low on the timescale of the transitduration.When transits
occur on timescales similarto or longer than the variability
timescale we must rely on the spectral dimension to provide the
information necessary to distinguish between the two.

We use the Information matrix to explore the difference
between inference on a monochromatic noise modeland a
multiband modelwith wavelength-dependentvariability. We
constructsets of monochromatic and multiband models with
identical noise properties by splitting a given number of
photons perwavelength into differentspectralbins. We find
that our results depend strongly on the timescale of the noise
with respect to the transit duration.When the timescale of the
correlated variability is much longer than the transitduration
the monochromatic and multiband models perform similarly,

though the multiband modelstill allows us to infer slightly
more precise parameters in the limitthat the correlated noise
amplitude is much larger than the white noise amplitude (see
Figure 11).

For the noise regime in which the correlated variability
timescale is similar to or shorter than the transitduration we
summarize our results as follows.

1. As the white noise amplitude decreases and the correlated
noise amplitude increases,the precision inferred by the
monochromatic noise modelstays approximately con-
stant, getting slightly worse for the radius ratio but
improving slightly for the timing parameters δ and t0. In
contrast,the precision inferred by the multiband noise
model improves as the white noise amplitude decreases
even with increasing correlated noise amplitude. The
increase in precision scales the same as if the correlated
noise were held constant. The presence of correlated
noise simply decreases the precision of the parameters by
a constant factor which is related to the form of the
variability as a function of wavelength.

2. Most of the benefits of the multiband noise model can be
realized by splitting the monochromatic variability into
just two bands,but more bands achieve slightly better
precision (see Figure 8).

3. In the limit that we approach an infinitely high-resolution
spectrum we can derive the factor by which the precision
of the transit parameters is worse than the case where
there is no correlated variability. Using Equation (28) we

Figure 12. Information uncertainty curves (colored lines) for the two-band model compared to the white noise-only versions of the corresponding monochromatic
noise model (black lines) in regime III. For the white noise-only models we set the correlated noise amplitude to zero and leave all other parameters the same as the
monochromatic model. As we transition from the white noise-dominated to the correlated noise-dominated regimes the Information uncertainty curves for the two-
band model transition from following the white noise model withs s¢= to the white noise model withs s¢= 10 . In effect perfect knowledge of the two-band
correlated noise hyperparameters allows us to recover transit parameters at the same precision as if the correlated noise were simply white noise with a10 larger
amplitude.
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find that the precision inferred in the presenceof
correlated noise is worse than in the white noise-only
case by a factor of 2 when the variability amplitude scales
linearly with cumulative photon counts with wavelength
and 2.2 when the variability amplitude is distributed
according the the blackbody distribution. In other words,
in the presence of linearly scaling correlated variability
amplitudes,we need four times as many photons to
achieve the same precision in the presence of correlated
noise as can be achieved when there is only white noise,
provided we use a multiband noise model to do our
inference.

5.1. Low Transit S/N Limit
The limit where the transitdepth is smallcompared to the

correlated noise amplitude is importantif we are interested in
detecting planets with small radii, or rocky planets around Sun-
like stars.The Information matrix analysis above was done in
the high-S/N limit, because thatis the limit in which the
Information matrix can be shown to approximate the
uncertainty on modelparameters.We now include results on

the correspondencebetween the Information matrix and
MCMC uncertainties in the low-S/N limit. Since we are
primarily interested in the correlated noise component, we use
S/N to refer to the ratio of the transitdepth to the correlated
noise amplitude.

Figure 13 shows the MCMC-derived uncertainties and the
Information uncertainties for our four trapezoidal transit
parameters in both the monochromatic and two-band cases.
We use a correlated noise to white noise amplitude ratio( ) a s
of 150 for this portion of the analysis.

When we use a monochromaticmodel the Information
uncertanties diverge from the MCMC uncertainties at an S/N
of about 10. This corresponds to the point at which the MCMC
uncertainties jump to very high values for the timing
parameters,indicating that the MCMC fails to converge to
the correct solution.

This contrasts strongly with the two-band model. Using two
bands the Information analysis finds the same uncertainty as the
MCMC analysis down to an S/N of about 1/100, for which the
ratio of the transit depth to the white noise is near unity.

In Figure 14 we repeatthe analysis for α/σ=10.With a
larger white noise component the MCMC uncertainties diverge

Figure 13. MCMC uncertainties (dots) and Information matrix uncertainties (lines) for monochromatic and two-band noise models as a function of the transit signal-
to-noise ratio (S/N) witha a= 22 1 for the two-band simulations. For these simulations the correlated noise is held constant at 150 times the amplitude of the white
noise component and the total noise, defined to be the sum in quadrature of the white noise and correlated noise amplitudes, is conserved. The variability timescale
w d=1 100 , placing these simulations in regime II. For the monochromatic model, the Information and MCMC uncertainties correspond down to an S/N of about

10, which is the point at which the MCMC simulations no longer converge to the correct transit solution, as evidenced by the scatter in MCMC uncertainties at lower
S/N. For the two-band simulations the Information and MCMC uncertainties correspond down to an S/N of 1/100.

Figure 14. MCMC uncertainties (dots) and Information uncertainties (lines) for monochromatic and two-band noise models as a function of the transit S/N with
wavelength dependence specifieda a= 22 1 for the two-band simulations. For these simulations the correlated noise is held constant at 10 times the amplitude of the
white noise componentand the totalnoise,defined to be the sum in quadrature of the white noise and correlated noise amplitudes,is conserved.The variability
timescale w d=1 10, placing these simulations in regime II.The larger white noise componentcompared to Figure 13 pushes the S/N limitbelow which the
MCMC and Information uncertainties diverge to higher S/N. As before, there is an abrupt transition at this limiting S/N where the MCMC suddenly fails to converge
to the correct transit solution.
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from the Information uncertainties at a higher S/N.However,
the two-band model still outperforms the monochromatic
modelwith the MCMC corresponding to the Information and
converging to the correct solution down to an S/N of about 1/
10, where again the transitdepth is comparable to the white
noise.

These resultsimply that the improvementresulting from
multiple bands applies only when the signal is larger than the
white noise,and in this limit, the Information matrix provides
an adequateestimate of the uncertaintieson the model
parameters,assuming that the GP parametersare well
constrained asthese were not varied in our analysis.This
approach may be used to estimate sensitivity and detection of
transiting bodies,such as exomoons,discussed next.

5.2. Other Applications
Exomoons,or moons of exoplanets,are oft-theorized but

thus far undetected objects of interestboth for their ability to

inform understanding of planetary formation and for their
potentialhabitability. While one candidate exomoon,Kepler-
1625b-i (Teachey & Kipping 2018), has been identified it
remains unconfirmed (Kreidberg etal. 2019; Teachey etal.
2020). The saga of Kepler-1625bi illustrates one of the primary
barriers to observing exomoons:their small size and corre-
spondingly shallow transits. An additional complication is that
exomoon transits will not be strictly periodic, due to orbital
motion abouttheir planets.This means thatfolding the light
curve on the planet’s orbitalperiod to increase the S/N for a
detection will not be effective.

Observationsdesigned for detecting transiting exomoons
may likely need to consist of very high-S/N photometry of
more than one transit of a known exoplanet. In the near future
the James Webb Space Telescope (JWST) will be the
observatory best suited to these observations (Beichman et al.
2014). It has the ability to observe time series spectra of bright
objects via the NIRSpec instrument (Bagnasco et al. 2007). Our

Figure 15. Benchmarks for the two-dimensional celerite implementation with outer-product covariance in the second dimension. We recover the anticipated linear
scaling with respect to both N and M,and the quadratic scaling with respect to J.

17

The Astronomical Journal, 160:240 (24pp),2020 November Gordon,Agol, & Foreman-Mackey



method is well-suited to model these observationsand we
believe it may end up being the optimal method of identifying
an exomoon transitsignal. Simulating JWST observations of
transiting planet systemswith realistic noise (Sarkar et al.
2019), while applying our multiwavelength GP modelto the
results,would reveal what sensitivity JWST would have to
shallow transiting bodies such as exomoons.

Transit transmissionspectroscopyaims to measurethe
transmissionspectrum of an exoplanet by measuring the
effective radius of the planet as a function of wavelength. This
is typically accomplished by varying the transit depth in the fit
to the time series photometry ateach wavelength as in (Berta
et al. 2012) and Mandell et al. (2013). In studies like these the
effects of stellar variability have been minimal and largely
ignored.However in the future high-precision observations of
bright stars at optical and near-IR wavelengths will likely have
to contend with variability resulting from stellar granulation
and/or pulsations (Sarkar et al.2018).

Our method offers an elegant means of measuring the
transmission spectrum. Given a sufficiently long time baseline,
the wavelength dependenceof a star’s variability can be
arbitrarily well-determined. In this case any “leftover”
variability—variations in transitdepth thatare not explained
by the wavelength dependence of the star’s variability—can be
attributed to the planet’s transmission spectrum.By allowing
the GP mean function to vary in transit depth across
wavelength during MCMC analysis we can recover an estimate
of the transmission spectrum with uncertainties in the presence
of stellar variability. As such, this is a straightforward
extension of ourmodel as the only change involves varying
the depth and limb-darkening asa function of wavelength,
while the covariance remains the same as in the examples we
have already shown.

Transit timing variations occur when the gravitational
interaction between planets in a multi-planetsystem perturbs
a transiting planetaway from a Keplerian orbit (Agol et al.
2005; Holman 2005).The perturbed planetwill transitearlier
or later than the Keplerian solution would dictate based on the
relative position of the transiting planet and perturbing planet.
Observations of these transit timing variations over the course
of many orbits help to constrain the orbitalparameters of the
perturber as wellas the masses of both the perturber and the
transiting planet.A notable application of this technique is to
the seven-planetTRAPPIST-1 system (Gillon et al. 2017;
Grimm et al. 2018).Correlated noise on timescales similar to
the ingress/egresstime of a transit can substantially affect
measurements of the transit time (Agol & Fabrycky 2018).

At present correlated noise is observablefor transiting
planets around evolved stars. A notable example is Kepler-91b
(Barclay et al. 2015), a hot Jupiter orbiting a red giant.
Individual transits of Kepler-91b are nearly undetectable due to
correlated noise on similartimescales and amplitudes to the
transit signal. While most main-sequence Kepler targets do not
show significant correlated variability, we expect that this
variability will become observable in the near future with the
advent of larger space-based telescopes such as the JWST. This
meansthat accuratetransit timing measurementsfor small
planets transiting main-sequence stars willrequire the use of
methods like ours to overcome the effects of correlated noise.

Variable phenomena.While we are primarily interested in
the transiting planet problem, our multiwavelength GP
implementation is likely to be useful for studies of other

astronomical objects displaying time-correlated,stochastic
variations. Many subfields in astronomy make use of GP
variability models, or stochastic models that are equivalent to a
Gaussian process,including the study of eclipsing binaries
(e.g., Mahadevan etal. 2019), pulsating binaries (e.g.,Hey
et al. 2020), X-ray variability of the logarithm of the flux of
X-ray binaries and active galactic nuclei(e.g., Uttley et al.
2005; Kelly et al. 2014), the study of transient phenomena such
as supernovae (e.g., Kim et al. 2013), quasar variability (Kelly
et al. 2009; MacLeod et al.2010),reverberation mapping (Zu
et al. 2011; Pancoast et al. 2014), and gravitational lensing time
delays (Presset al. 1992; Hojjati et al. 2013; Hojjati &
Linder 2014). Multiwavelength data may be exploited to better
characterize these systems.For example,Boone (2019) found
much better characterization of transients with multiwavelength
Gaussian process modeling,while Peters etal. (2015) use the
color dependence of the time-correlation of quasar variability to
better characterize their physical properties.It is our hope that
some of these fields may benefit from applying our new
multiwavelength GP implementation to study the wavelength
dependence of these various phenomena.

5.3. Limitations of the Method
When the second dimension’scovariance matrix can be

represented in terms of an outer product between a vector and
itself, our method has a fastscaling with the number of data
points. If the second dimension cannot be described as an outer
product, then we obtain a poor scaling with the size of this
dimension cubed. For the method to be computationally
efficient in this case, the non-celerite dimension should be
small compared to the size of the dimension along which the
covarianceis specified by a celerite kernel function. For
problems where the second dimension is comparable in size to
the first and where R must be arbitrarily defined,approximate
methodssuch as the HODLR method (Ambikasaran et al.
2015), KISS-GP (Wilson & Nickisch 2015), or the black box
methods implemented in GPyTorch (Gardner et al. 2018) may
be more efficient.

The celerite method is a stationary GP method,meaning
that the covariance kernelis constantin the one-dimensional
coordinate.In other words, ( ) (∣ ∣)= -k x x k x x,i j i j . Our two-
dimensional method inherits this limitation. What this means is
that our method is not suited to modeling variability which
changes substantially in amplitude or timescale over the time
period in question. For instance,while our method is well-
suited to modeling stellar variability over relatively short time
periods,it would not be able to modelsolar variability across
an entire solarcycle because the changing amplitude ofthe
Sun’s variability could not be captured by our stationary kernel.

If non-stationarity is required for a particular application, we
refer users to other methods such as the sparse GP method of
Almosallam etal. (2016) or the tree-structured GP of Bui&
Turner (2014), both of which are approximate methods. It also
may be possible to extend the celerite algorithm to non-
stationary kernels by, for example, allowing the kernel
coefficients to vary explicitly as a function of time, but we
have yet to implement this.

Another limitation is fundamentalto the Gaussian process
framework: our method,like all GP methods,does a poor job
of modeling outliers. When analyzing observationaldata,
outliers are often dealt with by discarding them prior to
analysis. However, in some cases outliers may represent useful
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information and should be included in a model. One method of
dealing with outliers without discarding them is to adopt a
Student-t likelihood (Vanhatalo et al. 2009; Jylänki et al. 2011;
Shah et al. 2014; Tang et al. 2017). The wider Student-t
likelihood better accommodatesoutliers than the Gaussian
likelihood, decreasing their influence on the regression.
Similarly, a Gaussian mixture likelihood may be adopted,
again increasing the robustnessof the method to outliers
(Daemi et al. 2019). We consider that a Student-t process (TP)
may be an even better model for data sets containing outliers as
well as having other advantages,especially with regard to TP
prediction (Tracey & Wolpert 2018). We leave to future
investigation the prospectsfor implementing a TP or TP
likelihood version of celerite and evaluating the performance
of these models on transit photometry. Unfortunately, Gaussian
mixture likelihoods appearnot to be compatablewith the
celerite formalism.

5.4. Limitations of the Multiband Photometric Noise Model
We make severalassumptionsin the construction of our

multiband noise modelwhich likely do not hold in all cases.
First and foremost, a Gaussian process assumes that the noise is
stationary and Gaussian.This does not apply to some sources
of noise, such as stellar flares, or sources that undergo outbursts
in which the amplitude and/or shape of the power spectrum
change dramatically.Likewise our method does notapply if
there is a significant time delay between the bands, if one band
involves a time convolution of the other,nor if the correlated
components of the bands have no correlation with one another.

Second, the specific form we have chosen for the wavelength
covariance assumes that the wavelength dependence of the flux
is due to varying covering fractions of a hot and cold
componentin a two-componentphotosphere.We expectthat
this model will work under different assumptions; for instance,
small-amplitude temperature variations should have a similar
behavioras area fluctuations.However, different sources of
variability will result in different forms for the covariance in the
wavelength dimension.

Additionally, if there are more than two components to the
photosphere,then we mustconsider the possibility thateach
component’scovering fraction varies with a different char-
acteristic timescale.In this case rather than pairing a single
wavelength covariance matrix T with a single time covariance
matrix R to form the full covariance matrix = ÄK T R, we
should pair multiple wavelength covariancematrices with
corresponding time covariance matrices,each having different
characteristic timescales:

( )å= Ä
=

K T R . 59
i

N

i i

1

Our code acceptsmultiple kernel components,each with a
unique T matrix. While we have limited ourselves to the case of
a single kernel component in this paper for the sake of clarity
and simplicity, we plan to introduce this extension in more
detail in a future paper.

In the examples in this paper we chose to fix the kernel
parameters.In practice the kernelparameters willneed to be
measured alongside the parameters ofthe mean model.This
brings up the question of how long of a time series is required
to produce a sufficiently strong constraint on the kernel

parameters that the inference of a transitis unambiguous.We
also defer this question to future work.

Finally, our formulation assumes thatthe observations are
complete;i.e., in the multiband times series example,every
time of observation contains data in every band.In principle
this assumption could be relaxed,and in Equation (52) the
Kronecker products witha could be replaced with ana (and
corresponding R matrix)which varies with time stamp, and
only contains the amplitudes of the bands observed at each time
stamp. This would also require modifying the indexing in
Equations (53)and (54), but the rest of the method would
remain the same.

6. Conclusions
We have extended the celerite method for fast one-

dimensional GP computations to two dimensions. Our method
inherits the ( ) N scaling of celerite in one of the two
dimensions while incurring a computational cost of( ) M for a
grid with size M in the second dimension. Computing the two-
dimensional GP on an N×M grid thus costs( ) NM using our
method, compared to ( ) N M3 3 for the direct solution (i.e.,
inverting the full ´NM NM covariance matrix).This scaling
applies only when the amplitude of correlated noise varies
across the bands;a more generaldependence on the second
dimension has a poorer scaling,yet still improves upon direct
solution.

This extension may have many possible applications, among
them simultaneous modeling of stellar variability across
wavelength.This application is of particular interestto us, as
we would like to mitigate the effects of stellar variability on
detecting transiting exoplanets and measuring their properties.
We demonstrate thatwe can improve the precision of transit
depth, time, and duration measurements by modeling the transit
in multiple wavelengths when compared to the monochro-
matic case.

When the S/N is high, we have shown that a precision
which is proportionalto the photon noise limitis achievable.
For instance, in the two-band case in which the correlated noise
in one band is twice that in the second band,one can achieve

10 of the photon-noise limit. This means thatto reach the
same precision as the no correlated noise case requires 10 times
as many photons, or a telescope which has a collecting area 10
times larger. In the limit of a blackbody which is photon-noise
dominated,with a large number of bands,one can reach 2.2
times the photon-noise limitin which the correlated noise is
absent.Hence,one needs to use a telescope with =2.2 4.82

times the collecting area.Thus, in generalone can achieve a
precision of measurementwhich is comparable to the pure
photon-noise limit, but this requires about an order of
magnitude more photons to do so.

In future work, we plan to extend our variability modelto
model more realistic stellar variability by including terms in the
covariance kernel function that capture variability on different
timescales with different wavelength dependencies. We suggest
that the SOHO spacecraft’s three-channel SPM data may be a
useful starting point for exploring the wavelength dependence
of variability in Sun-like stars. This data set consists of
measurementsof the Sun’s irradiance in three visible-light
bands at one minute cadence (Frohlich et al.1995).

We are additionally interested in applying ourmethod to
radial velocity observations of exoplanethost stars,following
the method demonstratedby Rajpaul et al. (2015). This
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requires us to compute linear combinations of the GP and its
time derivatives,which in principle should be feasible.

Our code is available in the form of a pip installable python
package called specgp. specgp extends exoplanet 4 to
enable two-dimensional GP computations. Interested users can
find instructions and tutorials athttps://github.com/tagordon/
specgp.
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Appendix A
celerite Algorithm for the Arbitrary Covariance Matrix in

the Second Dimension
In this section we assume that the covariance in the second

dimension,defined by the covariance matrix R,is arbitrary,
subject to the constraint that the full covariance matrix K must
be positive-definite.

We start by rewriting T in terms of the celerite generator
matrices A,U, and V from Equation (34):

[ ( ) ( )]
( )

( ) ( ) ( )

=  +S + + Ä
=  +S Ä

+ Ä + Ä

K A UV VU R
A R

UV R VU R

tril triu
diag

tril triu . A1

0
T T

0
T T

We rewrite R asRIM where IM is the ´M M identity matrix,
which allows us to write K as

( )
(( ) ( ) )
(( ) ( ) ) ( )

=  +S Ä

+ Ä Ä
+ Ä Ä

K A R

U R V I

V I U R

diag
tril
triu A2

M

M

0
T

T

where we have again applied Equation (50).As for the outer
product case, we now have a semi-separable matrix defined by
a new set of generators:

( )

( )

¢ =  +S Ä
¢ = Ä
¢ = Ä

A A T

U U T
V V I

diag

. A3M

0

In terms of the celerite coefficients the refactored generator
matrices are defined element-wise as follows:

˜ ˜

˜ ˜

˜ ˜

˜ ˜ ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )

ås

d

d

¢ = +

¢ =

¢ =

¢ =

¢ =

- + - + - +

=

- + - + -

- + +

- + - + -

- + +

A R a

U R U

U R U

V V

V V , A4

n M p n M p n M p p
j

J

j

n M p j M q p q n j

n M p jM q p q n j

n M p j M q p q n j

n M p jM q p q n j

1 , 1 1 1
2

,
1

1 , 2 1 , ,2 1

1 ,2 , ,2

1 , 2 1 , ,2 1

1 ,2 , ,2

whereŨ andṼ are the refactored generator matrices defined in
Equation (40), n ranges over( )N1, , p and q range over( )M1, ,
anddp q, is the Kronecker delta function:

⎧⎨⎩ ( )d =
=

¹

p q
p q

1
0 . A5p q,

The recursive algorithm for carrying out the Cholesky
decomposition is identicalto the outer-productcase.Starting
with = ¢D A1,1 1,1 and ˜ ˜=W V Dj j1, 1, 1,1, we then recursively
define:

⎡
⎣
⎢

⎤
⎦
⎥

[ ˜ ˜ ]

˜ ˜

˜ ˜ ˜ ( )

 å å

å

f f= ¢ ¢ +

= ¢ - ¢ ¢

= ¢ - ¢

- - - - -

= =

=

S S D W W

D A U S U

W
D

V U S

,

,

1 , A6

n j k n j n k n j k n n n j n k

n n n n
j

P

k

P

n j n j k n k

n j
n n

n j
k

P

n k n j k

, , , , 1, , 1, 1 1, 1,

, ,
1 1

, , , ,

,
,

,
1

, , ,

for =  ¢¼n N2, , , ¢=N NM, with =P JM2 the numberof
rows in ˜ ¢U and ˜¢V . This additional factor of M accounts for the
relatively poorer scaling of the method for arbitrary R over the
outer-product case. For arbitrary definitions of R,=P JM2 and
the Cholesky decomposition thus scales as( ) NJ M2 3 .

Appendix B
Computing the Log-likelihood

The log-likelihood is given by

( ) ( )

( ) ( ) ( )

m m

p

= - - -

- -
¢

- y yK

K
N

ln 1
2
1
2

ln det
2

ln 2 , B1

T 1

which incorporates both the inverse and log-determinant of the
covariance matrix,K. We therefore begin by describing the
algorithms for each of these computationsseparately.The
following algorithm comes directly from the originalcelerite
paper,but with our modified definitions of the semi-separable
matrix components,̃ ˜¢ ¢U V, andW̃, andf ¢n j, rather thanf n j, (see
Section 3.2).

The product of the inverse covariance matrix with a vector,
= -z yK 1 , is computed with a two-part algorithm. We first

compute the intermediary¢z , setting ¢=z y1 1, and then using the
recursion relation

[ ˜ ] ( )f= ¢ + ¢
- - -

f f W z B2n j n j n j n j n, , 1, 1, 14 https://github.com/exoplanet-dev/exoplanet
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˜ ( )å¢= - ¢

=

z y U f , B3n n
j

P

n j n j
1

, ,

for =  ¢¼n N2, , , where ¢=N NM and =f 0j0, for all j. We
then use ¢z to computez in the second step of the algorithm,
first setting = ¢¢ ¢ ¢ ¢

z z DN N N N, , and then using downward
recursion

[ ˜ ] ( )f= ¢ + ¢
+ + + +g g U z B4n j n j n j n j n, 1, 1, 1, 1

˜ ( )å=
¢

-
=

z
z

D
W g B5n

n

n n j

P

n j n j
, 1

, ,

for = ¢ - ¼n N 1, , 1, where =¢
g 0N j, for all j and P is the

number of columns in˜ ¢U , ˜¢V , andW̃.
The log-determinant of K is given by

( ) ( ) ( )å=
=

¢

K Dln det ln . B6
n

N

n n

1
,

Putting these two steps togetherwe can compute the log-
likelihood. Because the algorithm fortaking productsof the
inverse requires( ) NMP operations, whereas the log-determinant
can be computed in only ( ) NM operations,the log-likelihood
computation asa whole scalesas ( ) NMP . In practice, the
bottleneck for applications such as maximizing the likelihood or
MCMC is computing the Cholesky factor rather than computing
the log-likelihood,since the log-likelihood computation itself is
fasterby ( ) P . Again we have =P J2 when R is an outer
product and =P JM2 when R is any arbitrary covariance matrix.
Figure 15 shows benchmarks for the log-likelihood computation
demonstrating that the predicted scalings hold.

Appendix C
Prediction Algorithm

A GP prediction is an interpolation or extrapolation of the
observed data using with the GP model. A prediction evaluated
at each data point can also be thought of as a smoothing
operation as ityields an estimate ofthe function with white
noise removed.

The predictive distribution of a GP is a multivariate normal
with a mean m* and covariance K* evaluated at the input
coordinatesx* . For a GP with no white noise componentthe
mean is constrained to pass directly through each observation
of the data points y. For a GP with a non-zero white noise
component the GP will act as a filter such that when the mean is
subtracted from the data the residuals will be distributed
according to a Gaussian distribution whose width is given by
the GP white noise.

The predictive mean and covariance are computed as
follows:

( ) ( ) ( ) [ ( )] ( )m m m= + -q q
-x x x x x y xK K, , C11* * *

( ) ( ) ( ) ( ) ( )= - -x x x x x x x xK K K K K, , , , C21* * * * *

where ( )x xK ,* and ( )x xK , * are the covariance kernel
evaluated between the input coordinates and the data
coordinates.If the input coordinates consistof N* points in
the first dimension and M* points in the second then these
matrices have dimensions( )´M N NM* * and( )´NM N M* *
respectively.

For the two-dimensionalKronecker-structured covariance
matrix = ÄK T R, we can rewrite Equation (C1) as

( ) [ ( ) ( )] ( )
[ ( )] ( )

m m
m

= + Ä
´ -

q

q

-x x x x x x x

y x

T R K, , ,
C3

1* * * *

( ) [ ( ) ( )] ( )m= + Äq
x x x x x zT R, , C4* * *

where ( ) [ ( )]m= - q
-z x x yK x, 1 . Writing the second term of

Equation (C3) in terms of the vectorization operator we have

[ ( ) ( )] [ ( ) ( )] ( )
( )

Ä = Äx x x x z x x x xT R T R Z, , , , vec
C5

* * * *

where ( )m= - q
Z Y X with X and Y matrices of size N×M

defined by ( )=x Xvec and ( )=y Yvec respectively.For
matrices A,B, and C of sizes( )´n m , ( )´m p , and( )´p q
respectively there is an identity that states the following:

( ) ( ) ( ) ( )= ÄABC A C Bvec vec . C6T

Applying this to Equation (C5) gives

[ ( ) ( )] ( ) ( )Ä =x x x x zT R TZR, , vec . C7* *

The full expression for the predictive mean is now

( ) ( ) ( )m m= +q
x TZRvec . C8* *

The matrix product TZR can be computed via a modified
version of the celerite prediction algorithm presented in
Foreman-Mackey et al.(2017).

First, we compute the product ZR at a computational cost of
( ) NM when R is outer productand ( ) NM2 for arbitrary R.

We then compute

[ ( ∣ ∣)

( ∣ ∣)] [ ] ( )

∣ ∣ å åm = -

+ -

= =

- -e a d t t

b d t t ZR

cos

sin . C9

p m
n

N

j

J
c t t

j j p n

j j p n n m

,
1 1

,

j p n* *

*

*

in two parts. Here p and m index the elements of the predicted
mean matrix.The first part consists of a forward pass through

=n N1 ,...,0 where we define:

[ [ ] ˜ ] ( )( )//= + ¢-
-
- - -+G G ZR V e C10n m k n p k n m n k

c t t
, , 1, , , ,

k n n2 1

˜ ( )( )//= ¢- - - +H e U , C11p n k
c t t

p k, , ,
k p n2 1 **

and5 the second consisting of a backward pass through
=n N ,..., 10 where we define

[ [ ] ˜ ] ( )( )//= + ¢+
+
+ - - -G G ZR U e C12n m k n p k n m n k

c t t
, , 1, , , ,

k n n2 1

˜ ( )( )//= ¢+ - --H e V , C13p n k
c t t

p k, , ,
k n p2 1 **

where =t t0 1, =+
t tN N1 , =-G 0m k0, , , and =+

+G 0N m k1, , for
=k J1 ,..., 2 and for all m. The expressions for̃¢U p i,* and ˜¢V p i,*

are evaluated attp* . For each value of p, G are evaluated
recursively from n to n 0 and then the prediction mp m,* is
computed from

[ ] ( )åm = +
=

- -
+

+
+

+G H G H . C14p m
k

P

n m k p n k n p k p n k,
1

, , , , 1, , , 1,0 0 0 0
*

5 //k 2 denotes integer division of k by 2. In other words,
( )// =k k2 floor 2 .
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This two-part computation scales as ( )+ nN n N* * where n
and n* are constants. The overall scaling is therefore
determined by the cost of the matrix multiplication step.

Appendix D
Sampling from the GP

A sample y can be drawn from a Gaussian process by
computing

( )m= +y nL D1

wherem is the mean function andn is a vector of draws from a
normal distribution

( ) ( )~ n D0, D2i i i,
1 2

for each entry ni in n. The ordering of entries in m and
consequentlyy is determined by the structure ofK. For the
Kronecker structured covariance matrix given in Equation (18),
m is the concatenation of the N length-M vectors containing the
mean function evaluated at each point in the second dimension
at a given point in the first.In other words,

( ) ( )m  m m m= , ,... D3N1 2

where ( )m m m m= , ,...i i i i M,1 ,2 , is the mean function evaluated at
the ith point in the first dimension.

Thusm is a one-dimensionalvector of length ¢=N NM
where N is the size of the first dimension and M the size of the
second. The sample vectory then has the same structure. Most
users will wish to either unpack the sample into M separate
vectors obtained by taking every Mth entry iny or reshape it
into an N×M array beforedisplaying or examining the
sample.

Appendix E
Proof of the Positive-definiteness of the Two-dimensional

Kernel
To begin, we give the following equivalent definitions of

positive-definite and positive-semidefinite matrices.

1. A square matrix Î ´A n n is positive-definite if and only
if all of its eigenvalues are positive.

2. Equivalently, a square matrix Î ´A n n is positive-
definite if and only if the scalarx xAT is positive for all
real-valued vectors Î x n.

3. A square matrix Î ´A n n is positive-semidefinite if and
only if all of its eigenvalues are nonnegative (they may
be zero).

4. Equivalently, a square matrix Î ´A n n is positive-
semidefinite if and only if the scalarx xAT is nonnegative
for all real-valued vectors Î x n.

For a square matrixÎ ´A n n with eigenvalues given byl i for
i=1, K, n andÎ ´B m m with eigenvaluesmj for = ¼j m1, , ,
the eigenvalues of the Kronecker productÄA B are given by
 l mi j for all values of i and j. To see this, note that for eigenvectors
u and v corresponding to eigenvaluesλ and μ of A and B
respectively, ( ) ( ) ( )lmÄ = Ä Ä = Äu v u v u vA B A B .

We now consider a positive-definite covariancematrix
Î ´T N N and a positive-semidefinitesquare matrix ÎR
´

M M . We consider the Kronecker product ÄT R: since the
eigenvalues ofT are positive and the eigenvalues of R are
nonnegative,the products of their eigenvalues thatmake up

the eigenvalues of ÄT R will also be nonnegative.Therefore
ÄT R is a positive-semidefinite matrix.
Similarly, if R is positive-definite(rather than positive-

semidefinite),the eigenvaluesof ÄT R will be uniformly
positive and ÄT R will be a positive-definite matrix.

We now consider the effect of adding a real, positive-valued
diagonal matrix  S Î ´ NM NM to the Kronecker productÄT R.

First consider the case that R is positive-definite. In this case
ÄT R is positive-definite.Using the definition of positive-

definiteness that states that a matrix A is positive definite if and
only if x xAT is a positive scalar for all Î x n, we compute

( ) ( ) ( )Ä + S = Ä + Sx x x x x xT R T R E1T T T

Assuming that R is positive-semidefinitewe have already
established that ÄT R is positive-semidefinite as well. The left
term above is therefore nonnegative.Since the matrix Σ is a
diagonal matrix with positive entries, its eigenvalues, which are
given by the diagonalentries,are positive,and therefore Σ is
positive-definite.Consequently Sx xT is a positive scalar and
the matrix Ä + ST R is proven to be positive-definite.This
completes the proof that the covariance matrix
= Ä + SK T R is positive-definite in the case that T is a

positive-definite kernel function, R is positive-definite, and Σ is
a diagonal matrix with positive entries.

If we assume that R is positive-definite rather than positive-
semidefinite then, as shown previously, ÄT R is itself a
positive-definite matrix. In this case the covariance matrix
= ÄK T R is positive-definite even without the addition of Σ.

By the same logic as above, the addition of Σ will preserve the
positive-definiteness ofthe covariance and = Ä + SK T R
will be positive-definite as well.

Appendix F
Notation

Notation and symbols,in order of appearance:

K: covariance matrix.
k: kernel function corresponding to K.
x: general independent variable for the GP.
 : GP likelihood.
m: GP mean vector.
y: vector of observations.
¢N : number of observations corresponding to the length of

vector y.
w0: characteristic frequency ofsimple harmonic oscillator
(SHO) term.
: stochastic force term,driving force of SHO.
t: an independent variable used to represent time.
Q: quality factor of SHO.
w: an independentvariable used to representfrequency in
expressions for the power spectral density of a process.
S0: Amplitude of the SHO.
t : an independentvariable used to representtime lag, as
in ∣ ∣∣ ∣t = --

t ti j i j .
n m i j p q, , , , , : integers used to index independent variables
and matrices.
x x,h c: covering fractions of a hot and cold component of the
stellar photosphere.
R* : stellar radius.
d: distance from star to observer.
F: flux.
Bn: nth spectral band.
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l : independent variable representing wavelength.
( ) ( )l lS S,c h : spectra of the hotand cold components of a

stellar photosphere.
( )l Bi : Response curve for band Bi.

a i : variability amplitude integrated over band Bi.
sc, sh: ( )xvar c

1 2 , ( )xvar h
1 2 respectively; the rms of the cold

and hot covering fraction.
S i : diagonal matrix containing. the white noise variances for
each wavelength at the ith time index.
T: covariance matrix representing the first dimension or time
dimension of the two-dimensionalGP. T will always be
described by a celerite kernel function.
R: covariance matrix representing.the second dimension or
wavelength dimension of the two-dimensional GP. R may be
an arbitrary covariance matrix or an outer-product.
N: length of the first dimension, equal to the number of times
in our example application of multiband time series.
M: length of second dimension, equal to the number of bands
in our example application of multiband time series.
J: number of celerite terms in kernel function.
P: rank of celerite generator matrices.
a : vector of correlated noiseamplitudes in the second
dimension.
S : diagonal matrix containing the white noise variances for
each observation;the white noise component of the GP
covariance matrix.
s i

2: white noise variance for ith data point.
Rp: planetary radius.
t0: time of center of transit.
din: duration of transit ingress/egress
d: transit duration (mid-ingress to mid-egress).
q: vector of transit parameters.
mtrap: transit mean model.
f0: characteristic frequency of the correlated noise model.
ā : weighted mean ofa used to represent the total amplitude
of the correlated variability componentof the GP summed
over all bands (“monochromatic”).
s : mean of s , the vector of white noise terms; used to
representthe total amplitude of the uncorrelated variability
component of the GP.
 : Information matrix.
Nθ: number of mean-modelparameters,equalto the length
of q.
sRp

2: uncertainty on the transit depth (with “poly” and
“mono” to indicate the polychromatic and monochromatic
values).
b : vector of coefficients used in defining the celerite kernel
(Foreman-Mackey et al.2017 use α).
a, b, c, d: celerite coefficients.
A: diagonal component of full kernel func-
tion; ( ) ( )= + +K A UV VUtril triuT T .
U V, : celerite generator matrices.
L: lower triangular matrix used in LDLT Cholesky
decomposition.
tril, triu: lower and upper triangular matrix operators.
D: diagonal matrix used in decomposition.
W: matrix used in semi-separableLDLT Cholesky
decomposition.
I: identity matrix.
S: intermediary matrix used in the celerite decomposition
algorithm.
D: diagonal matrix in the Cholesky decomposition of K.

A0: diagonal component of K with white noise amplitude set
to zero; = - SA A0 .
¢ ¢ ¢U V A, , : Kronecker products ofU V, , and A taken witha

or R and IM.
˜ ˜ ˜U V W, , : refactored celerite matrices corresponding to U,

V, and W.
˜ ˜ ˜¢ ¢ ¢U V W, , : refactored celerite matricescorresponding to
¢U , ¢V , and ¢A .
 f f¢, : matrices used in the refactored version of celerite.
 F G, : intermediary matrices for prediction algorithm.

f g,n j n j, , : intermediary vectorsused to compute the like-
lihood of the GP model.
m* : predictive mean model.
K* : predictive covariance.
x* independentvariable used to represent the points at
which the predictive mean and covariance ofthe GP are
evaluated.
z: product between the observed vectory and the inverse of
the covariance matrix -K 1 used to compute the GP
likelihood.
¢z : intermediary vector used to computez.

X Y Z, , : ( )=x Xvec , ( )=y Yvec , and ( )=z Zvec respec-
tively; the matrix versions of x, y, and z for the two-
dimensional GP.
t*: independent variable used to represent the points at which
the predictive mean and covariance of the GP are evaluated;
same as x* when the independent variable is time.

H : intermediary matrix used to compute the GP prediction
( Q in Foreman-Mackey et al.2017).
N* : the number of points at which the prediction is evaluated
in the first dimensions.
n*: constanton which the computationalscaling of the
prediction algorithm depends.
n: vector of random draws from a standard normal
distribution used to draw a sample from the GP.
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