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Abstract

Gaussian processes (GPs) are commonly used as a model of stochastic variability in astrophysical time series. In
particular, GPs are frequently employed to account for correlated stellar variability in planetary transit light curves.
The efficient application of GPs to light curves containing thousands to tens of thousands of data points has been
made possible by recent advances in GP methods, including the celerite method. Here we present an extension of
the celerite method to two input dimensions where, typically, the second dimension is small. This method scales
linearly with the total number of data points when the noise in each large dimension is proportional to the same
celerite kernel and only the amplitude of the correlated noise varies in the second dimension. We demonstrate the
application of this method to the problem of measuring precise trangibirameters from multiwavelength light

curves and show thatt has the potentiato improve transitparameters measurements by orders of magnitude.
Applications of this method include transit spectroscopy and exomoon detectiorgs well a broader set of
astronomical problems.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Natural satellites (Extrasolar) (483); Transmission
spectroscopy (2133); Transits (1711); Gaussian Processes regression (1930); Astrostatistics (1882); Bayesian
statistics (1900)

1. Introduction include various sliding filter methods (such as a sliding mean or
median),sums of sines or cosines (Mazeh & Faigler2010;
Kipping et al. 2013),and others.

Our work focuses on the Gaussian process (GP) method of
modeling correlated noise. In this paper we introduce an
extension to the popular celerite code which can be used to
3Mhodel correlated noise in two-dimensions.We use this

extension to simulate multiwavelength stellar variability in

All exoplanettransit observationsmust contend with the
presence of noisd.ight curves can display both uncorrelated,
or white, noise and correlated nois&Vhile white noise often
results from the the statistics of photon counting, and may only
be ameliorated by collecting more photons, correlated noise ¢
arise from a variety of sourceslhese can be broadly divided

into t_wo categories: astrophysicahoise, which results from transit observationsWe show that by accurately modeling
physical processes at the source of the observed photons such,,reation across wavelengths we can improve measurements
as stellar granulation and oscillations (Pereiraet al. 2019; of transit parameters by orders of magnitude in some common
Barros etal. 2020; Morris et al. 2020; Sulis etal. 2020),and limits.

instrumental noise, which results from imperfections in While this paper focuses on multiwavelength transit
detectors,errors in spacecraft pointing, or other processes  gpservations with a smalhumber of bands our method also
taking place atthe location of the observer rather than e naturally extendsto transit spectroscopy asthe number of
source. bands becomes largén this paper we consider a trapezoidal

Our ablllty to detect transits and infer their parameters transit model that has no Wave]ength dependencebut a
depends on how well we can model both white and correlated wavelength-dependent transit model can easily be incorporated.

noise. While white noise is  straightforward to model as a For transitspectroscopythe transitdepth and limb-darkening
Gaussian distributed random variaBleorrelated noise can be  parameters should be allowed to vary between bands.

more challenging to account for. Additionally, as more We further assume thathe data have been preprocessed to
powerful telescopes yield more precise observatiopsoton- remove instrumental systematics.Long-term trends in the
counting noise will decrease while astrophysicatorrelated observations may eithebe removed during preprocessing or
noise (which does noddepend on photon counts) wilhot. In incorporated into the mean of the GP model. If removed during

fact, correlated noise will become more dominant as decreasingreprocessing any uncertainties introduced should be carefully

white noise amplitudes reveal previously undetectable  accounted for so that they can be incorporated into the GP. In

variability. the case studies presented in Section 4 we assume a zero mean,
A number of methods have been used to modefilter, or indicating that the observations have been normalized to zero in

otherwise accounfor correlated noise in astrophysicslating each band.We assume there are eitheno long-term trends

back to work by Rybicki & Press (19921995).Among these  presentor that they have been removed in preprocessing

techniques are wavelet filtering (Carter et al. 2008) and Kalmarwithout introducing any meaningful additional uncertainty.

filtering (Kelly et al. 2014). A comprehensive study of various  The final assumptionwe make is that the correlated

detrending methods is given in Hippke etal. (2019). These componenbf the variability is stationary by which we mean

that the parametersdescribing the correlated noisedo not

Which is the limit of a Poisson distribution at high photon count rates. change with time. This is a fundamental limitation that is
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inherited from the 1D celerite method. Our method does, complete discussion of model selection in the general case we
however,allow for a heteroscedastic white noise component. refer the reader to chapter 5 of Rasmussen & Williams (2006).
This means thateach data pointis allowed to have a unique When searching for a previously undetected transit,the
measured uncertainty thataries from point to point in both results of step 3 will suggest the most likely parameters of the
time and wavelength. transit. In a Bayesian framework the posterior estimates
obtained from the MCMC analysis can then be used to
1.1. A Short Introduction to GPs estimate the evidence for a transit with respect to a flat mean.

In the case of a monochromatic light curve this procedure is
effective atidentifying transits when the depth or duration of
the transit differs significantly from the amplitude and

While more general definitions of GPs may be formulated, it
is most helpful for our purposes to view GPs as an ordered
collection of random variables along one or more axes often SR . : )
representing time or spacén the case of an exoplandtansit chara_mtenstlc timescales dhe noise. For |n§tancg,a transit
the random variables modela series of observations ofthe that is much deeperthan the noise amplitude is poorly
star’s flux taken at discrete times. The Gaussian aspect of a Gescribed by the GP noise modehd thus the likelihood will
describesthe relationship between random variables—we ~ P€ sharply peaked at the location of the correct transit
model N¢ observationswith an N¢dimensional Gaussian parametersSimilarly, a transitthat occurs on a much shorter
distribution. The covariance of the multidimensional Gaussian timescale than the characteristic timescale of the variability will
is described by a kernefunction, which gives the covariance be poorly described by the GP and hence easily detectable via

between any pair of observationsas a function of their the likelihood. Figures 5 and 6 below illustrate these instances.
separation in time or spaceThe kernelfunction then defines A problem occurs when the transitlepth and duration are
the covariance matrixtor a kernelkX;, X)), we have comparable to the noise amplitude and timescarethis case
K ) the GP covariance alone is able to fithe transitwithout the
Kij = ki, %) + djst, (1) need for a mean model. The result is that the GP likelihood is

not sharply peaked abouthe location of the correct transit
parameters and the transits thus difficult or impossible to
detect. Gathering more photons with a larger telescope does not

. . A fix the problem as the correlated noise does not decrease with
which describes the deterministic component of the process. Irhigher photon count rates as white noise does.One simply

the case of an exoplandtansitwe use a transitmodelas the  5ing 4 better measurement the correlated noisebut the
mean function.The GP likelihood function, I, describes the  transit remains masked by the variability.

whered, is the Kronecker delta function and is the white
noise component for the ith data point. In addition to the kernel
function, a GP is characterized by its mean function, nft),

likelihood that a set of observatiodsjs drawn from the GP. It One solution to this problem is to gather lightin multiple
is written as wave bands. With a multiband light curve we can leverage the
1 difference in the spectral dependence of the transit as compared
Inl =-—(¥- mK'(¥Y- m to the correlated variability to disentangle the tranfibm the
2 noise, and thus detect shallower transits across a broader range
1 N¢ . - : . . . .
- —IndetK) - —In@p) 2) in duration than is possible with monochromatic observations.
2 2 This approach depends upon the assumption that the correlated
wheremis a vector where the entries are givenmy= mX;). noise has the same time dependence for each component of the

A typical and much simplified procedure for measuring power spectrumbut varies in amplit_udg with wavellengt.hl.f,
exoplanet transit parametersusing a GP noise model (as on the other handthe correlated noise is achromatiaultiple

applied in Dawson et al. 2014; Barclay et al. 2015, and wave bands will not improve upon the monochromatic case.
Chakrabarty & Sengupta 2019 among others) can be For the remainder of this paper we will assume that there is in
summarized as follows. fact a wavelength dependence to the correlated noise which
] ) ) shares a common time dependence. While in the general case a
1. Choose a suitable kernel function to describe the time delay may be included in these models, the common time
correlated noise. _ dependence is a requiremenf the fast GP methods derived
2. Choose a transit model to use as the GP mean function. pere We exploit the information containedin this time
3. Optionally, maximize the GP likelihood with respecto dependence to demonstrate an improvementthe inference

the mean and kernel parameters or use another method 1@ transiting planetparametersWe also ignore instrumental/
obtain a starting point for initializingMarkov chain Monte systematicvariations, and assume that the white noise is

Carlo (MCMC) chains. dominated by Poisson photon counting uncertainty.
4. Use an I.\/IC.method to sgmple the posterior (def"!ed by In Section 2 we describe our wavelength-dependestéllar
the GR likelihood anq priors for each pqrameter) in order variability model. We then review the one-dimensional version
to estimate uncertaintiesfor the transit and kernel of celerite before describing our extension to two-dimensions
parameters. (Section 3). Next, we conduct an Information analysis to derive
Choosing a suitable kernel function can be a complicated task.approximate, semi-analytic upper bounds on the precision that
The choice of kernel might be motivated by prior knowledge of can be achieved when inferring transit parametersfrom
the characteristics of the datar might be “learned” from the multiband light curves with different noise properties,and
data, such spectral mixing kernels (Wilson & Adams 2013). In comparethe results of our Information analysis to a full
Section 2 we discuss and justify our choice of a kernel for MCMC treatment for select noise parameters (Section 4). In the
modeling stellar variability which has the added benefit of discussion (Section 5) we outline additional applications of our
being easily expressible in the celerite framework. For a more method including exomoon detection and transmission
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Figure 1. Left: power spectrum of the simple harmonic oscillator kernel for several values of the quality fact®io€2 < 1/+/2 the system is overdampe&or

Q> 1/4/2 the system is underdamped and the Gaussian process (GP) shows oscillations at the characteristic frequency. For our simulafdas 1ye/8etin

which case the system is critically damped. Right: noise realizations for each power spectrum on the left. Note the decreasing coherency of the oscillations as we r
from high to low values of Q. The decreasing noise amplitudes from top to bottom are a result of the fact that the GPs with larger Q values have more total power &
constant &

spectroscopyWe conclude in Section 6 with a discussion of  would be complicated by the presence obscillations atthe
the limitations of and potential improvements to our method.  characteristic frequencyhoosing differentvalues for Q will
not affect the qualitative aspects of our results.

2. Multiwavelength Noise Model The corresponding kernel function to Equation (5) is
Here we describe our model for noise that is correlated
across both time and wavelength. We start with a description of k(t) = Swe 72 cos @“ - £>], (6)
the time dependence of the noise. 2 4

2.1. Time-correlated Variability Model wheret = [ - .

Foreman-Mackey et al. (2017) describe how celerite can be
used as a physically motivated model for stellar variability. The
following discussion is closely based on the discussion inthat  We are now interested in constructing a simple model for the

2.2. Wavelength Dependence of Variability

paper. wavelength dependence ddtellar variability based upon our
We follow Anderson & Jefferies (1990) in modeling stellar  time-dependentorrelated variability model. To begin, we
oscillations as the result of stochasticexcitations that are consider a two-component photosphere where each component
damped by convection and turbulent viscosity in the star. This has a unique spectrum and covering fraction. The star’s
process is described by the differential equation variability is then a result of variations in the covering fraction
1 d2 1 d of these components, and the covering fractions vary according
——Y(t) + —=Y() + Y{¢) = 0() (3) to the stochastic process described in Section 2.1.
wg dt2 neQ dt We label the two components “hot” and “cold.” Their

spectraare given by S,(/) and S(/) and their covering
fractions are given by x and X, = 1 - X,. In the absence of
limb-darkening the flux observed in a band B given by

wherewy is the characteristic frequency of the oscillat@l,is
the quality factor of the oscillator[l (f) is a stochastic driving
force, and y(t) is the amplitude of the oscillations.If [(f) is
Gaussian distributed then the solution to Equation (3) is a GP 2

with the power spectral density Fg, = 72 OXSe(/) + XSn(/))0 &(1)dl (7)
S(w) = P iol/lé = 4) where [ g(/) is the response curve for the filter and the
p (- Wg) + ”% w/Q integral is taken over all wavelengths, d is the distance from the

Figure 1 shows this power spectrum for several values of Q.observer to the starand R is the stellar radius.Substituting
For our modeling we se® = 1/4/2, in which case the power X, = 1- X allows us to rewrite this expression as
spectral density simplifies to

2
Fo = PR (2 d
p (W we)* + 1 PR2
This power spectrum has been used to describe granulation- ) XC(O (S(1) - () 51(/)0// ) (8)
driven stellar variability (Kallinger et al. 2014). We employ this
kernel in our work both because stellar granulation is a The first term of Equation (8) is the total flux for a photosphere

significant source of noise on transit timescales and to simplify completely covered by the hot component, and the second term
our discussion of relevent noise timescales in Section 4.1 whicls a correction dependent on the contrast between the hot and
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cold componentsFor simplicity, we define

Foura = 222 38,130 8(1)9] ©
and
2
=7 (1) - S0 s(!)dl (10)
wheresZ=var(X;). With these definitions we have
X
FB1 = FB1,hot - Zan. (11)
Sc

We can do the same for a second hypothetical band@iBing
us
£ X

8, = Fb,hot - ;"az. (12)

Since the only time-dependenuantity in Equations (11) and
(12) is the covering fraction of the cold componen{ we see
that the flux in each band willvary coherently with the same
power spectral density and the amplitude of the variability will

be set by the contrast between the hot and cold components of

the photosphere in each band.
The covariance between two bands can now be computed:

COV(FB11 FBZ) = 5-02C0V(Xca1, caZ)
= aqa;cormn(Xg, Xc). (13)

Now we let x be a function of time, ), and assert that it is
drawn from a one-dimensionalGP evaluated attimes t; for
id=01, K, N (i.e., a correlated time series) with a kernel whic
can be described with the celerite formalism.Then the full
covariance matrix for the time and wavelength dimensions is
given by the block matrix

i+ TRT R TinR
K = LR . , (14)
O
v R Sw TnaR
where
5?2, 0 \
Si= — | (19
0 5,‘2/

is a diagonal matrix containing the white noise components for

each band at time i; T; = corr(X.(t), X.(%j)) is the time
covariance matrix for the processdescribed in Section 2.1
normalized by the variance @f and R is the covariance matrix
across bandgjefined as
ai az)
a3

2
R= (;‘1
241

(16)

b

e|genvalues of the Kronecker product plus diagonal covariance

Gordon,Agol, & Foreman-Mackey

For Mbands B, B,,..Bu with amplitudes given by
a4, d» ,...am, R becomes
a2 aja .. ajam)
R— |@2ar U azam
O O
Ma1 avasy ... ax J
=aa’ (17)
wherea = (a4, as ,...,am)T. The covariance matrix can now
be written
K=S +TAR, (18)
where Z is the block matrix
4 .. 0
S=100D , (19
O Sn

and where ® denotes the Kronecker produdthe Kronecker
productis defined for two matrices A and B with dimensions
NOxOM an® © Q, respectively,as the NP~ MQ block
matrix

1B aB .. anB
AAB= ,1B a,,B (20)
O
N,1B aN,NB

An important consideration for constructing new GP
covariance matrices is that valid covariance matrix musbe
positive-definite for allinputs (Rasmussen & Williams 2006).

For a detailed discussion of the postive-definiteness of the 1D

celerite kernel we refer the reader to Appendix A of Foreman-

TAR+ S can be ascertainedby considering the
matrix, which are uniformly positive if and only if the matrix is
positive-definite.For now we state the conclusion thatK is
positive-definite if R is positive-definite,or if R is positive-
semidefinite and 2 has all nonnegativeentries along its
diagonal. A proof i |sp|ven in Appendix E. In the case that R is
the outer producaa ', R is positive-semidefinite and positive-
definiteness is thus ensured as long as a nonzero white noise
component is given for each data point.

In practice, providing too small a white noise component
when Ris positive-semidefinitemay result in numerical

instabilities.For this reason we recommend that care be taken

when applying this method to extremely high-precision data.
For arbitrary definitions of R positive-definiteness should be
ensured on a case-by-case baslis.generalit is sufficient to
show that Ris positive-definite, or that Ris positive-
semidefinite with a nonzero white noise amplitude provided
for each data point.

When the numberof bands,M, is small, this covariance
matrix can be used to modahultiband observationd/Ve can
also allow M to become arbitrarily large, in which case the
resultantcovariance matrix can be used to model spectral
observations.Here each entry in @ would representthe
amplitude of the correlated variability in one wavelength bin

Mackey et al. (2017). Assuming that the covariance matrix T is
osmve deflnlte the positive-definiteness of the full covariance
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Figure 2. Left: SOHO three-channel Sun photometer time series of the Sun. Right: a three-band light curve simulated from a GP with a kernel consisting of three
Kronecker-product terms (see Equation (59)), each term having the covariance described by Equation (17). The GP hyperparameters were obtained by optimizing
GP likelihood with respect to the data in the left panel.

of the spectrum. The linear scaling of our method with respect Oin
to both the time and wavelength dimension makes it feasible to g
model high spectral resolution time series this way. We include

additionaldiscussion on the subjecif modeling transmission

spectra in Section 5. Fo)
To validate this model of multiwavelength stellar variability, > R 2
we compare with observed solar variability in Figure Z his p

figure shows a time series from the SOHO VIRGO three-
channel Sun photometer (SPM; Frohlich et al. 1995). The SPM
monitors the Sun’s variability in three visible light wave bands
at one minute cadenceand each of these bands exhibits a Figure 3. Schematic of the trapezoidal transit model. The center of trarisit t
power spectrum which has the same shape, but with amplitudeih® midpoint of the transit.
which increases from red (862 nm) to blue (402 nm) as shown )
in Sulis et al. (2020). Alongside the SOHO SPM data we show 2.3. Transit Model
a GP drawn from our two-dimensionatelerite algorithm in To simplify and sharpen our simulated light curves, we use a
which the amplitudes in each band have been scaled to matchtrapezoidal transit model (Carter et 2008); this is the mean
the SOHO SPM multiband data. The qualitative agreement ~ model whose parameterswe wish to infer. For all our
between the observed and simulated data is remarkatded simulationsthe out-of-transitflux is normalized to unity in
indicates thatour model contains the necessary properties to  order to reduce the number of parameters to be inferred, though
capture high-precision multiwavelength stellar variability. we note that this would represent an additional free parameter
The algorithm used to simulate multiwavelength stellar when modeling realobservationsA schematic of this transit
variability and to compute the likelihood model is described in Model is shown in Figure 3. For the purposes of this paper, we
Section 3.2. Our implementation of the multiband GP, which is ignore limb-darkening (which can have a wavelength depend-
based on the celerite GP methodachievesl (NMJ?) scaling _ence), and we ignore the slight curvature which occurs during
where N is the size of T corresponding to the length ofthe ingressand egress.We also assume thatthe radius of the

vector x and M is the number of bands and corresponds to thetrangiting pltaneljsbconsltant\évi:h respectto v(\j/a\t/:tlength._Th.is
. e requirementcan be relaxed to accommodatetransmission

size of the vector_a. Ap_pendlx A mt_roduces a mo\r&ggneral spectroscopywhich we discuss in Section 5.

form of the two-dimensional GP which scale§ 48/ ) for The model is described by the function m,.(t, g) with

arbitrary covariance in the second dimensiomhe remaining apte

o S . q= (Ro, &, d d,) where R is the planet's radius in units of
comp_onent of the likelihood funct|0|_'1 is the mean model, which the star’s radiusgy ts the time at center of transit, & is the transit
for this paper we take to be a transit modelescribed next.

Y - o duration, and{, is the ingress/egress duration. Note that we set
Similarly, Loper et al. (2020) recently derived a multivariate the normaliza?ion of thig moder?o one under the assumption
generalization ofcelerite with linear scaling for a class of

) ) . that the out-of-transit data will be sufficiently lengthy to
covariance functions called latent exponentially generated  ,nstrain the unocculted stellar flux.

(LEG) kernels.These LEG kernefunctions are presented for With the noise and mean models specified, we next describe
multivariate outputs instead of multivariate inputs as described oyr simulated data.
here, but it should be possible to express the kernels described

here as membersof the LEG family. However, for our

restricted application, the computational cost and scaling of our

method is better, since LEG GPs will scalé 48/J2M3) in the We simulate a suite of multiband light curves and construct a
notation above. parallel set of monochromatic light curves by summing the flux

2.4. Simulations
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blue band simulations, unless otherwise specifiedwe use a two-band
4 z&g‘ g"fi‘ f:g\ﬁs; model with a, = 2a, to represent the multiband case.
Rt ’/s&.; ! "f AL monochromatic We hold the transit duration and ingress/egressiuration
! ' \» b/ “'M f‘ﬂ,"x’\.ﬁi constantso that the value of wg changes to determine which
¥ M A noise regime we fall under.

red band
W@k&fﬁ'\ﬁ'\?ﬂ / Into all of our simulations we injecta transitsignal with a
A AR E fractional depth of 1% of the star’s flux. We use a transit
duration of 12 hr in the middle of a 10 day baseline.The

Figure 4. Two bands from a multiband simulation combined to simulate a  ingress/egress duration is set to 1.2 hr.
monochromatic light curve with the same noise realization. Note that the white

noise amplitude is smaller in the monochromatic lighturve than for either ; ; i
individual band, while the amplitude of the correlated noise is the photon- 2.5. Information Matrix Analysis
weighted mean of the amplitude in the two bandblere the blue band has a The Information matrix encodes the amouaot information

correlated noise amplitude twice that of the red band. about a signal that can be determined from observations taken

in the presence of noise with a given covarianée&r a model

between the bands ofour multiband light curves. Figure 4 made up of a mean functiam, with N parameters, ¢ ,... gy,
shows schematically how we produce a monochromatic light ©Pscured by noise drawn from a mUIF'Va”atﬁl QaKISS|an with
curve from the simulated multiband lighturve.We compute covariance K,_the Information matrix is the T g matrix
the Information matrix (see Section 2.5) and run MCMC with entries given by
analysis on each lightcurve using our multiband GP model. Am\' m
The Information matrix tells us the theoreticiwer limit for [0glij = I‘d_) K-1 (21)
the uncertainty of each parametemhile the MCMC analysis q aq
gives us an estimate of the uncertainty on the parameters.

We split our simulations into three noise regimes based on
the ratio between the characteristic variability timescalend
the ingress/egressand total duration of the transit. The [05' » covg, q). (22)
characteristic variability timescale is given by2pvg' where ) o o .
ug is the characteristic frequency of the variability appearing in This approximation represents a lower lingh the covariance
Equation (4).We define the three regimes as follows: that can be estimated in practice via methods such as MCMC
simulation. It is valid in the limit that the posterior probability is a
2. regime li:dh < 1/f, < d multidimensional Gaussiandistribution near the maximum

3. il Ili' 1n/f . cO{ likelihood solution.This corresponds to the limitin which a

' "o " signal may be approximatedas linear with respectto its

where f, = 15/(2p) is the characteristicfrequency of the parametersknown as the linear signal approximation (LSA).
variability. Figure 5 contains repres.entative ligleurves frqm Vallisneri(2008) shows thain order for the LSA to apply we
each regime, chosen where the white and correlated noise 1 stpe in the high signal-to-noise ratio (S/N)imit. Accord-
a_mphtucjes are comparable[n regime | thg transit signal is ingly, the following analysis should be taken to apply only to a
distinguishable from the noise by its duration—all of the POWer .~ citwith a depth much largerthan both the correlated and

in the correlated variability is on longer timescales than the hit . ts of th iaAlhile th imati
transit duration. In regime Il the characteristic timescale of the WN''€ NOIS€ components ol the noissiile the approximation

noise is smaller than the transitiuration, but longer than the ~ May continue to be accurate for smallsignal-to-noisea full
ingress/egress timescal@he transitstill stands outfrom the quantification of the uncertainty in the low-S/N limit should rely
noise because the transition into and owf transit is sharper on sampling the posterior directly via MCMC analysis.

than is characteristic for the simple harmonic oscillator (SHO) ~We compute the Information matrix for the transit
variability. In regime Il the variability timescale is shorter than parameters assuming th#e hyperparameters of the GP are

all of the relevant transit durations. We can see from Figures 1known exactly. In practice the GP hyperparameters willbe

and 6 that the SHO power spectrum allocates equal power to alinknown, and should be fit simultaneously with the transit
oscillations on timescales longer than the characteristic time- parameters. Our results thus represent a scenario in which there
scale. The transit durations are thus swamped by correlated ~ are sufficient out-of-transit observationsto determine the
noise.As a resultin the monochromatic case iis difficult to covariance of the noise to arbitrary precision.

differentiate between the transitgnaland noise both by eye We adopt a semi-analyticapproachto computing the

and with the GP. Fortunately the multiband GP is able to makeInformation matrix by using exact derivatives of the trapezoidal
use of additional information in the correlation between bands transitmodel and using celerite to compute products ofthe

The covariancebetween parameterof the mean are then
approximated by

1. regime 1:1/f; > d

to disentangle the transit signal from the variability. inverted covariance matrix with the transibdel’s derivatives.
Among all of our simulations we hold constantthe total This approach is necessary because the covariance matrix for our

noise, a2 + s2 where a2 is the weighted varianceof the GP model cannot be inverted analytically except in special cases.

correlated noise over albands ands? is the variance of the i ) o

white noise summed overall bands.We then vary the ratio 2.6. Analytical Estimates for Parameter Uncertainties

between the noise amplitudes in order to analyze the The Information matrix approach can yield analytic results

simulations as a function of a/s. For the multiband for the depth uncertainty in the limit that limb-darkening is

simulations,a is the weighted mean of the amplitudes of ignored, the ingress/egress duration is shorff, » 0, and all

variability in the individual bands given by a;. For all of our other parametersare assumed to have no uncertainty. In
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Figure 5. Representative light curves for the three noise regimes. The left panels show the two bands separately and the right panels show the monochromatic ligh
curve resulting from the summation of the two bandBop: in regime | the variability timescale is much longer than the transit duratibtiddle: in regime Il the

variability timescale is between the transituration and ingress/egress duratioBottom: in regime |l the variability timescale is shorter than the ingress/egress
duration.Figure 6 shows power spectra corresponding to each of these regimes (but not to the light curves pictured here).

—— regime | For this covariance matrixhe Information matrix gives an
— regimell uncertainty on the depth of the transi g2, of
~ 1073 = regime Ill P
< 2 2
~ a1 daz
e oy ) ()
a 2 — _ 1 2
2 SRg,pon l\$_12 + 5% 1+ (a1~ az)? (25
S s?+ 53
g
Note that the prefactor equalsthe noise in the limit of no
correlated noise componetd, = a, = 0).
104 In the monochromatic case we can compute the uncertainty
107! 10° 10! 102 ; - . . .
frequency (Hz) assuming thatthe noise is Poisson,in which case the mean

amplitude of correlated noise is given by
Figure 6. Power spectrabensities for the three regimeslhe shaded region

spans from the inverse transit duration on the left to the inverse ingress/egress

- 1
duration on the right. Note that the densities plotted here are only meant to be 2 1 1 —
illustrative,and do not correspond to the power spectra of the light curves in SRg mono — >t — + as, (26)
Figure 5. ' 1 52

particular we make the approximation thatthe out-of-transit ~ where we have assumed the noise to be Poisson anda is
flux is measured to high precision from extensive monitoring. defined to be the weighted mean amplitude of the correlated

In this limit the transit model has a derivative of noise in both bandsgiven by
1Meap 0 out- of- transit 1 \
Rz - {- 1 in - transit ’ (23) a= %+ iz) a; + a_; (27)
1 52 1 52

where R? is the depth of the transit. If we assume thatthe
transitduration matches exactly a single observation cadence  The relations for the polychromatic and monochromatic
then the covariance matrix may be written in the two-band caseasesare plotted in Figure 7inthe casea, = 2a; and

as S1 = S» = s in which the sum of the white noise and correlated
) ) noise is held fixed. Compare with Figure 12 to see the
_ pitar ara similarity of this analytic approximation with the Information
K= \ (24) ) :
aja, si+ a3 matrix results for the full trapezoidal model.

We can generalize these expressions fdhe depth uncer-
wheres; , are the white noise components on the timescale of tainty in the monochromatic and two-band case to an arbitrary
the transitand a; » are the correlated noise amplitudes on the numberof bands when the white noise is identicafor each
timescale of the transit in the two bands. band (i.e.,si = s for M bands indexed by i).In this case the
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10-2 10-1 100 10 102 Figure 8. Information uncertainty curves for the planet—star radius ratio as a
ai/o function of contrast ratio for a spectrum that increases linearly with photon flux
) ) o . ) from amin t0 @max- We plot the Information uncertainty for different values of
Figure 7. Analytic approximation for the fractionalincertainty on depth for M, the number of bands into which the spectrum is binned for modeling. The
two bands vs. the ratio of the correlated noise to white noise in firsibasd, dashed line is the minimum uncertainty achievableas the contrastratio

in the limit of a constant amplitude of the sum of correlated and white noise (stbecomes infinite whichfor the two-band caseis equalto 20 where o is the
that the white noise declines as the correlated noise increases). The ratio of thenformation uncertainty in the absence of correlated noise.

correlated noise in the two bands is two, i.&;, = 2a4. Plotted are the single-

band case (blue dashed), two-band case (orange solid), and the white noise in

each band, g, times 1/4/2 and /5 (dotted). The fractional precision is

normalized to the casa;= 0. becomes
o M
: 5’2"3’,‘/’ jpoly a_,af
uncertainties are given by slljma]m P e, (5_ oV (30)
' i=191 ~ =1 i)
512?2 ol 1+ 52 - M a,~2
pl:ép Y = — 2a =t — o (29 Settinga; = 1anda,= 2, we findsr poy/s = +/10 which
M(1 + 523 ;:131‘) - (5' 'a /:1‘3") explains the scaling of the Information uncertainty at large a/a
in Figure 12.
for the M-band caseand We also examine the Information uncertainties as a function
of number of bands. We consider a photon spectrum for which
2o ono 1 Y 2 the variability increasesfrom a value pf ‘Amin to A max- We
= 4 % 5. a;) ) (29) assume thatthe photon spectrum variability is split into M
s? M S =1 bands with an equalphoton countrate in each band to give

equivalent Poisson noise acrossall bands. In addition, we
for the corresponding monochromatic case. Similar expressiongssume that a varies linearly with the photon count rate across
may likely be found for the other transit parameters as well as all bands, so that the ith band has a correlated noise amplitude
for non-uniform noise in M bands, which we leave to of & = amin + (@max- @min) ( - 1/2)/M. For example,in
future work. the case of two bands withnax/amin = 5, we havea, = 2ay,

While the uncertainties predicted by these equations differ 28 in Figure 7.Figure 8 shows the uncertainty for the planet-
from those found by a fullInformation matrix analysis of the star radius ratio as a function of the ratio between the minimum

trapezoidaltransit, we find that they correctly predict the .?.ﬂd maximum Var:!ab'“gam“/artm‘(" tfor sel\\;leral value?]s Of. '\¢ it
relationship between the monochromatic and multiband € minimum achievable uncertainty as M approaches infinity
uncertaintiesin the limits a 0 s anda O s not only for and aqutD I.am.‘t”’ \?/E'Ch ctgn b((;s)arrlvde? at ?y ta.klngtjhthe
: appropriate limits of Equation and transforming the sums
;hsevs(;aﬁ)th, but for the other parameters of the trapezoidal transif integrals as M approachesinfinity. In these limits the
y ini hievabl rtainty is twice thatfor the whit
This is illustrated by Figure 12 which shows the Information mc;?slzgmyaga'szvv%highugcfepigsﬁe: It?; thea dgrshe(caj \I?/n é ien
uncertainties for each parameter of the trapezoidal transit mod ’

: : ) igure 8.
in the presence of correlated nois#Ve use a two-band noise The same calculation may be performed for alternative

model witha, = 2™ a;. When the white noise dominates over spectraFor a blackbody spectrum we arrive at limit of 2.2

the correlated noiseq [ a 2), the Information uncertainties  times the white noise-only case when the number of bands and
for the model with correlated noise are identical to those for a the contrast ratio is large. For arbitrary spectra the integrals can
white noise-only model with the same white noise component, be computed numerically to yield the minimum achievable

as we expect given that the correlated noise components uncertainties for realistic stellar spectra and spot models.
insignificant in this limit. We can use Equation (28) to predict The Information matrix and analytic approachesdescribe

the Information matrix for the two-band model in the limit that approximationsto the parameter uncertainties. We next

the correlated noise component dominates over the white noissummarize ourMCMC analysis to check and validate these
component (s 0 as). Taking this limit Equation (28) approximations.
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2.7.MCMC Analysis data pointdV¢ = N, taken at timeé = (&, t, ,...tx) is given by
We use the exoplanet package (Foreman-Mackey etal. y
2019) which interfaces with PyMC3 to conductour MCMC nl = -—(¥Y- mK'(¥Y- m
simulations. Each simulation is initialized with the true 2
parametersDuring MCMC we hold the GP hyperparameters 1 In det(K) - ﬁ InR2p) (31)
constant as we did for the Information matrix analysis, and vary 2

only the parameters of the trapezoiddtansit model. We use

PyMC3'’s implementation of No U-Turn sampling (NUTS; where m= (mt), mt),...mMiyv)) and Kis the covariance
Hoffman & Gelman 2014),which requires the derivatives of = matrix of the GP. This equation involves the inverse and

the Iog likelihood to carry outthe Hamiltonian markov chain determinant of the NOxCIN matrix K. In general, Computing the

integration. The NUTS sampleris initialized by tuning each inverse and determinanbf an NCIxCIN matrix requireg/N3)
simulation for 2000 stepsSubsequentIythfa S|mL_JIat|on IS run operations. Thus computing the likelihood for a GP by directly
another2000 steps to sample the posterior.This procedure inverting K becomes prohibitively expensive for data sets

results in about tDeffective samples for each parameter of the
model for each simulation as the autocorrelation length of the
chains is extremely shorfone of the advantages of using the
NUTS sampler).

The final ingredientneeded for our Information matrix and
MCMC simulations involves our novel two-dimensional
version of celerite,which we describe next.

larger than about!0* observations (Deisentroth & Ng 2015).
This is especially true for applications thatrequire repeated
calls to the likelihood function as is the case for minimization
and MCMC.

Because ofthis, much work has been done to reduce the
complexity of GP computations.This can be accomplished
primarily in two nonexclusive ways. The first is by employing
inexact methods in which the full GP covariance matrix is

3. Implementation of the Multiwavelength Variability approximatedby a matrix for which the relevant matrix

Model operations (primarily inversion and computation of the
_ . o determinant)can be computed more efficiently than (N?)

We mplement our mult|wavelength varlabl_llty quel asan (Rasmussen & Williams 2006). Members of this class of
extension of the celerite GP method to two dimension3he methods include the HODLR factorization method of Ambi-
celerite algorithm (Foreman-Mackey et a2017) is a method kasaran et al. (2015) which achieVé8 log2) scaling as well

for computing GPs in one dimension thatscales as) (NV2) 55\ arious sparse GP methods (Csaté & Opper 2002; Snelson &
where N is the number of data points belng modeled and J is Ghahramani 2006: Almosallam et £016)

the number of terms used to represetite covariance matrix.
While one-dimensionalGPs are suitable for a wide range of
applications there are many problems fowhich we need to
model covariance between data points in two or more
dimensionsHere we describe a method for computing a two-
dimensional GP when the covariance in the second dimension
can be written as the outer product of a vector with itself. This
covariance matrix is relevant to the common task of modeling
time-variable spectra, as in our multiband transit model
application.Our method is scalablewith computationaltime
increasing linearly with the number of data points. In this

The second is by restricting the user to covariance matrices
of a specific form. These methods are often known as structure-
exploiting methods since they take advantage of the properties
of specially structure matrices (e.g., low-rank matrices,
Toeplitz matrices, Kronecker-producimatrices)to speed up
Gaussian process operations (Zhang et al. 2005; Nickson et al.
2015; Wilson & Nickisch 2015).

The celerite algorithm is a fast, one-dimensional GP method
which exploits the properties ofsemiseparable plus diagonal
matrices to accelerate GP computations, achievingll (NJ?)
scaling where J is the number of celerite terms that make up

section we introduce the method and revisit the celerite the k Lfunct 4 Nis th berof dat ints.F
algorithm for Cholesky decomposition of the covariance matrix € kernetiunction an 1S the humberol data points.For
commonly used kernelmodels the numberof terms will be

as it applies to a two-dimensional data set. In Appendices B, C,

and D we discuss the algorithms for computing the likelihood, very S”_‘a” compared to N. . . .
predicting or extrapolating from the GP,and sampling from celerite works by representing the GP covariance matrix as
the GP. ’ the sum of a diagonalmatrix and J semi-separable matrices.

For problems where the covariance cannot be modeled as ar) "€ Cholesky factorization of J sgmi-sepzarable matrices plus a
outer productwe offer a more generalextension ofcelerite diagonalmatrix can be computed in) (NJ?) ratherthan the

where the covariance matrix for the second dimension can be U (N°/3) required for an ordinary matrix Once the Cholesky

arbitrary. We discussour implementation of the arbitrary factors are in hand, the inverse and determinantof the
covariance method in Appendix A. covariancematrix can be computed in 0 (NJ) and 0 (N)

respectively Here we briefly describe the celerite algorithm,
referring the reader to Foreman-Mackey et al. (2017) for a more

3.1. The One-dimensional celerite Method detailed exposition of the method.

. . Consider a one-dimensiondbaussian process evaluated at
Until the past few decades, the adoption of GP methods WaSihe coordinates

limited by computational expense.As a reminder, the log-
likelihood function for a GP model for a series of N flux
measurements/ = (¥, ¥, ,...¥y), so thatthe total number of X=(4 0 M) (32
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Figure 9. Approximation to various commonly used GP kernela) Simple kernels with an exact celerite representation: cosimreexponential times cosingb)
Approximation of (a) referred to as “exponential-squared” to distinguish it from sine-squared kemdilsated in (c).(d) Matern kernels.

The celerite kernel is given by and A is given by
J
J o
s 1 C e id Ann = s3 . 36
Ky (tn, tm) = s2chm + ?:15[@, + ibjp - & d)em hn = SA+ ja;1aj (36)
+ (8 - lbjp @ "d/)tnm] (33) We will soon see thatthe Cholesky decomposition forthis

covariance matrix can be computed in I (NJ?) operations,
whereb = (&...a@, b,..by, ¢,...¢;, d;...d), s2is the variance  allowing for the fast evaluation of the GP likelihood function.
of the Gaussian-distributed white noiseand tam = |th - o The kernel function implemented by celerite is versatile in
with n.m T 1 .% . N. This kernel defines a celerite model that by_choosmg_approprlate coefficients |’car.1 be made to
with J terms approximate a wide range of other kerndlinctions.Further-

For a kernel function of this form, the covariance matrix isa "o " Loper et al. (2020) demonstrated thatelerite kernels
. . R ; . provide a complete basis for one-dimensionalstationary
symmetric, semiseparable matrix with semiseparability rank covariancefunctions, meaning that these methods can, in
P = 2J. A matrix of this type can be written in terms of two ’ )

. . ) principle, be used to approximate any stationary kernel, though
g;%%r:;?rmrgﬁti;"fs U and V, both of ¢ie  P), along with a there mightbe issues with numericaprecision and computa-

tional cost when a large number of terms are required for
accuracy. This versatility is demonstratedqualitatively in
Figure 9 which shows approximationsof several popular
kernels achieved by carefully choosig, {6},{§ and{d}.
where tril is the lower-triangular operator which, when applied Since each ofthese kernels may be approximated welly a
to a square matrix, preserves the entries below the diagonal arsklerite kernel, the products and sums of these component

K =A+ tril(UVT) + triu(VUT), (34)

replaces all entries on and above the diagonal with zefidse kernels are also celerite kernels, meaning that complex kernels
triu operator does the same for the upper-triangular entries in can still be approximated within the celerite kernel formalism.
the matrix.In the case of our covariance matrithe generator _The Cholesky factorization ofthe covariance matrix K is
matrices are specified by given by

K = LDLT (37)

Ungi. 1= &€ 9% cogdjtn) + be % sin(djty),
Uny = @€ 9 sin(dity) - bje 0 cogdity), where Lis th(-? lower-triangular Cholesky factorand .D is a
Vo o s ot diagonal matrix. Foreman-Mackey etal. (2017) begin their
me- 1= cos(djlm), derivation of the Cholesky factorization algorithm with the

Vg = €' sin(djtm), (39) ansatz that L can be represented in terms of U and a new (at this

10
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point unknown) matrix W with the same dimensions asas, which has sizeN¢~ N¢= NM~ NM_ Here % is a diagonal
L=ls il (UWT) (38) matrix containing the white noise components foeach data
a ’ point, which may be heteroscedastic, T is the covariance matrix
Then W and D can be found via the recursion relations in the first dimension,which must be defined by a celerite
Sk =S 1jk + D qn. W 1 VW 14 kernel, and R is the covariance matrix for the second dimension
. e p ’ which must be an outer product of the form
Dn’n = An’n - é_ ké_ Un§ n!j,kUn,k R = aa T, (47)
j=1k=1
1 P wherea = (a4, az,...,am)" is a vector of length M.
W, = ni- a UnR njk | (39 Writing K in terms of the celerite generator matrices from
Dnp k=1 Equation (34):
wheresljk is a matrix of zeros and P is both the rank of the K=S +[Ay + tril(UVT) + triu(VUH] AR
semiseparable covariance matrix and the number of columns in = S +diagA A R)
U and V, here equal /. In the original celerite paper it was + tril (UVT A R) + triu(VUT A R), (48)

found that,in order to avoid numericaktability issues caused
by the exponential factors in Equation (35), it was necessary towhere A is the diagonalcomponenbf T obtained by setting

redefine the generatormatricesU and V and to define an sn= 0forall T 1,%, N in Equation (36).Substituting the
additional matrix f of the same dimensions as U and VThe outer producta T for R inside the upper and lower triangular
generators become operators we have
Unyi. 1= @ cogdity) + bjsin(djty) K =S + diagA; A R)
U, 5 = asin(dtn) - by cog(d;tn) + tril(UVT A aa )
Tms - 1= cos(Gtm) + triu(VUT A aaT™). (49)
Ving = sin(d;ty). (40) Applying the formula for mixed Kronecker and matrix
Th K trix W b products,
e unknown matrix ecomes . . .
(AB)A (CD) = (AA C)R A D), (50)

Woo. 1=€ 95 Wy. 4 , . .
we can rewrite the covariance matrix as

Wi = € S0y (41) )
“ “ K =S + diagiA, A R)
And the new matrix f is defined +tril((UA a) VA a))
Fogi. 1= fng = € 90m -, (42 + triu((VA a) U A a)n). (51)

The algorithm for decomposing the covariance matrix becomesNe now see thatthe two-dimensionakovariance matrix has
£ ) D W exactly the same semi-separable structure as the one-dimen-
Sk = fof 0[S 1jk + Pnape W W0 (43) sional covariance matrix with new definitions of the generator

b F matrices in terms of their Kronecker products wigh
Dn,n = An,n -daad Un?? ”J',kU”vk (44) i A
j=1k=1 Ag =S "d|ag(A0 A R)
] - p Ug UA a
W= — ﬁn] - aU0g n,j,k:l (45) Ve VA a (52)
Dn,n k=1

) . ) ) The componentsof the refactored generator matrices,

celerite; next we describe our novel two-dimensional version.
Ufip- 4y pai- 1= ap(@ cos(djty) + b sin(dity))

U = ap(@ sin(dity) - b dit
We now consider the Cholesky decompositionof the )%' 4 p2l = ap( sin(Gl) ) cos(fn)
covariance matrix for a two-dimensional GP when the \7)%7- 4 pgi- 1= ap cos(Tjlm)
covariance in the second dimension can be written as the outer Vg o it 53
productof a vector with itself. This form of the covariance m- 4 pa = ap sin(Glm), (53)
applies when the correlated componemif the noise has the
same shape along the firslarge dimension (of size N) and

3.2. Computing the Two-dimensional GP

andft is given by

varies proportionally in amplitude along the second small e Gt p=1
dimension (of size M),as is the case for the multiwavelength f%m. 9 p: = { y p> 1 (54)
stellar variability problem discussed above.
This covariance matrix is given by Equation (18), repro- with n,m T 1,% N, pT 1,% M, and the colon indicating
duced here: that the elementis identical for every entry of that row. For
K=S +TAR, (46) these definitions of the generator matrices the recursive

11
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Cholesky decomposition algorithm becomes

Shik = £ i [S 1jk + Dooap W V4],
P P

Dn’n = A,q;n - é 5 U,g? n,/',kUrg?k,
j=1k=1

s Foe 98 o
7. 2 0 i
Dn’n ’93/ ka:1 rﬁ J’k,

where again P is the number of columns #h¢ andV¢.

The recursive algorithm defined above require®ne pass
through each of th&/¢ = NM rows ofU¢and V¢ At each step
we compute a double sum over the P columns of these
matrices. The resultant scaling is thugVMP2). For the outer-
product definition of R we hav@ = 2J and the method scales
asll (NMJ2) (see Appendix B for benchmarks).

As shown in Appendix A, we can come up with similar
definitions of Ug, V¢, and f¢ for arbitrarily defined R which
yield P =2JM_ allowing us to compute the Cholesky
decomposition in (NJaV3), Algorithms for computing the
likelihood function, computing predictionsor extrapolations
from the GP, and sampling the GP are given in Appendices B,
C, and D respectively for both outer-productand arbitrary
definitions of R.

For this two-dimensional GP the set of observations used to
compute the GP likelihood is also two-dimensional. Actual
computation of the likelihood, however, requires that the input
be reduced to one dimensio he Kronecker structure of the
covariance matrix determinesthe form of the vector of
observationsFor input defined on a grid of sizet © I where
t representsthe dimension along which the covarianceis
described by a celerite kernel and I represents the second
small dimension, we have a two-dimensional matrix of
observations:

/= (55)

Y =Y, ). (56)
We define the observation vector to be
Y = veqY), (97)

whereveqY) is the concatenation of the rows of Yln other
words,

y= (\;/,1, Y2,YN) (58)

With the description of our computationalmethods com-
pleted,we now turn to the results of transit simulations.

4. Results

We have carried outan analysis of simulated transitlight
curves with a wide range of noise amplituddsnescalesand
ratios of correlated to white noise which we summarize the
results of here. We start with a discussion of the results from a
case study of seven examples with different ratios of correlate

to white noise (Section 4.1), and then expand the discussion to

a wider range of simulations for which we comparethe
Information matrix, analytic, and MCMC error analyses
(Section 4.2).

4.1. Case Studies

To start with, Figure 10 shows seven examplesof our
simulationsfor two bands with correlated noise amplitudes
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which differ by a ratio of two. These were made with moderate
S/N and with ug d =100, which corresponds to a character-
istic timescale of the correlated noise which is shorter than the
transit duration and the ingress/egress timescales (regime IIl).
In this case we held the white noise in the two bands to be
identical in amplitude (corresponding to an identicabhoton
count rate in both bands), and we compared a joint analysis of
the two bands (we referto this as “polychromatic”) with an
analysis ofa single band consisting ofthe sum of the same
simulated light curves from the two bands (this analysis we
refer to as “monochromatic”). Across these simulationswe
have varied the ratio of the totatorrelated noise to the white
noise, a/a, over seven values, {0.02, 0.55, 1, 2, 4, 20, 143}, to
examine the precision of the two-band analysis compared with
a monochromatic analysis.

For the first two simulationsy[0=[0.020 and aO=C0¢h&50,
variance of the correlated noise is smaller than that of the white
noise. At this low ratio of a/o we find that the measurement of
the transit depth and timing parameters is about the same in the
two-band case as in the monochromaticcase (top panel,
Figure 10).In the third panel where the white and correlated
noise amplitudes are equale see a slight improvement in the
measurementf the transittime and depth.In the remaining
panels (bottom four panels of 10), we find an increasing degree of
improvementin all the measured parameters a increases
relative to a. As we approach the smallhite noise limit the
improvement in all parameters between the single-band and two-
band analyses is dramatic, with the transit depth improving by a
factor of 18 at a[d=[1200 and by a factor of 1+&Hit48a. The
transittime measuremeritmproves by a factorof 21 and 65
respectively for these simulations. This improvement results from
the ability to distinguish correlated noise variations from the
transit signal when two bands are utilized, thanks to the different
amplitudes of the correlated noise in the two bands; the correlated
noise variations are measured to high precision in this case due to
the small photon noise.Even so, the precision of the transit
parameters is worse than it would be if there were no correlated
noise by a factor af10. This is an astrophysical limitation, and
yet it still demonstrates a dramatic improvement in the analysis
which splits the the photonsinto two bands versusa single
summed band.

The intermediatevalues of a/ocl]=[1{12, 4} shown in
Figure 10 have a behavior which is intermediate between the
high white noise and low white noise limits that we discuss
above:a monotonic improvemenin all of the measurements
with the increase in a/o.

The general trends of these simulations hold over a broader
range of parameters. To examine a larger number of cases, we
summarize the uncertainties of the monochromatic cases and
polychromatic cases based on the measurerpestision as a
function of the noise parameters, which amounts to measuring
the breadth of the posterior distributions inferred for each
arameter(left-hand panels ofFigure 10). We also compare
hese to the uncertainty estimates using the Information matrix
approach and the analytic estimates given in Sections 2.5 and
2.6, which we discuss next.

4.2. Noise Comparison

We have carried out a much broader parameterstudy,
varying the ratio of a/o over a wide range of values for three
values of the timescalay d =0.1, 10, and 100.We compare
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Figure 10. Left: posteriors for three transit parameters estimated by MCMC analysis on the two-band (colored) and single-band (gray) data. Posteriors are smoothe
using Gaussian kernel density estimationiigrd =100 (corresponding to the final panel of Figure 11). From left to right: the center of trapsiahsit duration d,

and radius ratiEp/R,,. For a/c00=020 and a/al0=[143 the posterior distributions for the two-band case are too sharply peaked to be visible. Right: representative
curves for each value of the noise amplitude ratio a/o zoomed in on the transit signal (the input light curves have a duration of 10 days).

the Information matrix analysis againte MCMC anlysis in agree closely with the Information uncertainty curves for
the monochromatic case with the two-band casealso with almost all of our simulations, as demonstrated by Figure 11 for
a; = 2a4, in Figure 11. The MCMC uncertainty estimates moderate S/N.
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Regime I: wed = 0.1 is distinguishable from the noise on the basis of its duration

® alone, the amountof additional information contained in the
inter-band correlation is insignificant and both models perform
similarly well.

We now skip to regime Ill, witmg d =100 (the same as the
case studies in the previous subsection),in which the
characteristic variability timescale is smallethan the transit
duration. Because the SHO powerspectrum allocatessqual
power to all oscillations on timescales longer thaty ng, the
transit signal is not distinguishable from the variability on the
basis of its duration. In this case the inter-band correlation
contains the additional information necessary to correctly infer
transit parametersBoth models perform similarly when the
‘ ‘ ‘ ‘ ‘ correlated noise amplitude is small compared to the white
-2 -1 0 1 2 noise, but when the correlated noise amplitude a begins to

log(a/o) dominate overthe white noise o the monochromatic model
does a poor job of inferring parameters (as evidenced by the
Regime II: woé = 10 large uncertainties) while the multiband model infers more and
more precise values as the white noise decreases relative to the
correlated noise.

The results for regime I, here representedipyd =10, fall
intermediately between regimes band Ill. In regime Il, the
characteristictimescaleof the variability falls between the
transit duration and the ingress/egresstimescale so that
measurementf the transit duration must contend with
correlated noise on the same timescale, whereas measurements
of the ingress and egress are affected primarily by white noise
rather than correlated noise. Since the ftransit time is
constrained by the ingress and egress times rather than by the
transit duration, measurements ghte also primarily affected
by white noise. This is why we see significant improvement in
the measuremenbf the transit depth at high a and low o
between the single-band and two-band simulationsdile the
. timing parameters show much less improvement until we reach
Regime lll: web6 = 100 the low white noise limit. At this point the white noise

° e © o o amplitude is small enough compared to the correlated noise
amplitude that the relatively low correlated noise on the
timescale of the ingress/egress duration does begin to interfere
with timing measurements in the single-band case.

In Figure 12 we plot Information uncertainty curvesin
regime lll for the multiband model againstthose for the
monochromatic modehaving the same transpparameters but
with only a white noise component—thecorrelated noise
amplitude is setto zero. The colored curves representing the
Information uncertainties for the fullnoise model(white and
correlated noise) match the white noise-only uncertainty in the
limit that the correlated noise components very small, as

) e 0 1 5 expected. As we increasethe relative amplitude of the
log(a/o) correlated noise componettie uncertainty for the fullmodel
Figure 11. Information uncertainty curves overlaid with MCMC uncertainty Jumps from. the white nOISfa-O”IY curve with the S.ame .Whlte
estimates for trapezoidal transit parametédashed lines show results for the noise amplitude to the white noise-only curve WW% times
monochromatic noise model and solid lines show results for the two-band noisgreateramplitude. As the correlated noise amplitude further
quel. Circles r_epresent the MCMC uncertainty for distinct realizations of the increases,the Information uncertainty for the full model
noise and transit, behaves as though we are doing inference on an equivalent
model with the correlated noise componenéxchanged fora

In regime Iug d =0.1, in which the characteristic variability ~larger white noise amplitude.

timescale is longer than the transit duration, the uncertainties on The behavior seen here is explained by the analytical model
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the transit parametersare nearly identical between the outlined in Section 2.6.In particular, Equation (30) explains
monochromatic and multiband simulations up ta/s » 10, why the uncertainty scales as the white noise-only uncertainty
where the multiband uncertaintiesbegin to diverge slightly with ~/10s in the large correlated noise limitfor two bands

from the monochromatic uncertaintieSince the transit signal  with amplitudes related by, = 2as.
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Figure 12. Information uncertainty curves (colored lines) for the two-band model compared to the white noise-only versions of the corresponding monochromatic
noise model (black lines) in regime Ill. For the white noise-only models we set the correlated noise amplitude to zero and leave all other parameters the same as tt
monochromatic model. As we transition from the white noise-dominated to the correlated noise-dominated regimes the Information uncertainty curves for the two-

band model transition from following the white noise model witlt = s to the white noise model withs¢ = /10s. In effect perfect knowledge of the two-band
correlated noise hyperparameters allows us to recover transit parameters at the same precision as if the correlated noise were simply white y/di6danitbra

amplitude.

This completes our description of the simulated light curves though the multiband modelstill allows us to infer slightly

and the results from these simulationsWe next discuss the
implications of these results.

more precise parameters in the limthat the correlated noise
amplitude is much larger than the white noise amplitude (see

Figure 11).

5. Discussion

For the noise regime in which the correlated variability

o timescale is similar to or shorter than the transduration we
We have demonstrated the application of our method to the summarize our results as follows.

problem of fitting a transitobserved in multiple bands in the

presence of correlated noise. We now revisit and summarize the 1- As the white noise amplitude decreases and the correlated

results of that demonstration beforeoutlining some other
potential applications of our method.

Monochromatic transit observations are ill-equipped to deal
with correlated noiseas the wavelength-integrated flux does
not provide enough information to distinguish between transits
and noise features except when the correlated noise amplitude
is low on the timescale of the transitduration. When transits
occur on timescales similarto or longer than the variability

timescale we must rely on the spectral dimension to provide the

information necessary to distinguish between the two.

We use the Information matrix to explore the difference
between inference on a monochromatic noise modeénd a
multiband modelwith wavelength-dependentariability. We
constructsets of monochromatic and multiband models with
identical noise properties by splitting a given number of
photons perwavelength into differentspectralbins. We find
that our results depend strongly on the timescale of the noise
with respect to the transit duratiotVhen the timescale of the
correlated variability is much longer than the transituration
the monochromatic and multiband models perform similarly,

15

noise amplitude increaseshe precision inferred by the
monochromatic noise modelstays approximately con-
stant, getting slightly worse for the radius ratio but
improving slightly for the timing parameters 0 angl tn
contrast,the precision inferred by the multiband noise
modelimproves as the white noise amplitude decreases
even with increasing correlated noise amplitude. The
increase in precision scales the same as if the correlated
noise were held constant. The presence of correlated
noise simply decreases the precision of the parameters by
a constantfactor which is related to the form of the
variability as a function of wavelength.

. Most of the benefits of the multiband noise model can be

realized by splitting the monochromatic variability into
just two bands, but more bands achieve slightly better
precision (see Figure 8).

. In the limit that we approach an infinitely high-resolution

spectrum we can derive the factor by which the precision
of the transit parameters is worse than the case where
there is no correlated variability. Using Equation (28) we
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Figure 13. MCMC uncertainties (dots) and Information matrix uncertainties (lines) for monochromatic and two-band noise models as a function of the transit signal-
to-noise ratio (S/N) witha, = 2a for the two-band simulations. For these simulations the correlated noise is held constant at 150 times the amplitude of the white
noise component and the total noise, defined to be the sum in quadrature of the white noise and correlated noise amplitudes, is conserved. The variability timescal
1/w = d/10, placing these simulations in regime Il. For the monochromatic model, the Information and MCMC uncertainties correspond down to an S/N of about
10, which is the point at which the MCMC simulations no longer converge to the correct transit solution, as evidenced by the scatter in MCMC uncertainties at lowe
S/N. For the two-band simulations the Information and MCMC uncertainties correspond down to an S/N of 1/100.
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Figure 14. MCMC uncertainties (dots) and Information uncertainties (lines) for monochromatic and two-band noise models as a function of the transit S/N with
wavelength dependence specifaigd= 2a4 for the two-band simulations. For these simulations the correlated noise is held constant at 10 times the amplitude of the
white noise componenénd the totalnoise,defined to be the sum in quadrature of the white noise and correlated noise amplituidesynservedThe variability
timescalel/w= d/10, placing these simulations in regime |[The larger white noise componemtompared to Figure 13 pushes the S/N limibelow which the

MCMC and Information uncertainties diverge to higher S/N. As before, there is an abrupt transition at this limiting S/N where the MCMC suddenly fails to converge

to the correct transit solution.

find that the precision inferred in the presenceof the correspondencebetween the Information matrix and
correlated noise is worse than in the white noise-only MCMC uncertainties in the low-S/N limit. Since we are
case by a factor of 2 when the variability amplitude scalesprimarily interested in the correlated noise component, we use
linearly with cumulative photon counts with wavelength  S/N to refer to the ratio of the transitdepth to the correlated
and 2.2 when the variability amplitude is distributed noise amplitude.
according the the blackbody distribution. In other words,  Figure 13 shows the MCMC-derived uncertainties and the
in the presence of linearly scaling correlated variability  Information uncertaintiesfor our four trapezoidal transit
amplitudes,we need four times as many photons to parameters in both the monochromatic and two-band cases.
achieve the same precision in the presence of correlated We use a correlated noise to white noise amplitude fafie )
noise as can be achieved when there is only white noise, of 150 for this portion of the analysis.
provided we use a multiband noise model to do our When we use a monochromaticmodel the Information
inference. uncertanties diverge from the MCMC uncertainties at an S/N
of about 10. This corresponds to the point at which the MCMC
uncertainties jump to very high values for the timing

5.1.Low Transit S/N Limit parametersijndicating that the MCMC fails to converge to
The limit where the transitdepth is smallcompared to the the correct solution.
correlated noise amplitude is importaifitwe are interested in This contrasts strongly with the two-band model. Using two

detecting planets with small radii, or rocky planets around Sun-bands the Information analysis finds the same uncertainty as the
like stars.The Information matrix analysis above was done in MCMC analysis down to an S/N of about 1/100, for which the
the high-S/N limit, because thatis the limit in which the ratio of the transit depth to the white noise is near unity.
Information matrix can be shown to approximate the In Figure 14 we repeatthe analysis for a/a0=C110/ith a
uncertainty on modebarametersWe now include results on larger white noise component the MCMC uncertainties diverge

16



The Astronomical Journal,  160:240 (24pp)2020 November Gordon,Agol, & Foreman-Mackey

10724 __ o(M) - 2 -
- -= o) -
—o— N=100 -
- 100
—e— N=200 -
g o~ N=300 _~--" o @
g —o— N=400 g
0 1073 —e— N=500 g 107
(0] (0]
2 2
4] )
£ £107?
-+ -+
1074
1073
102 103 102
M (size of second dimension) J (number of terms in kernel)
- o) - -= o2 -
—o— M=20 PPtae 5| —— M=200 -7
—o— M=40 ”a” 10 —o— M=400 -
11073 —o— M=60 _’,—f’ o ) o— M=600 _-
g —o— M=80 g L] M=800 _~»~
O —o—= M=100 O 1070 o
(0] (0]
2 o -
g £
1072
S 107 i
1073
103 102
N (size of first dimension) J (number of terms in kernel)
ol 77 ON) ,—"’_-
10 —o— |=40 ‘—‘——’—
—o— |=80 ‘_——’—
m o= J=120 o0° m
° _ o © o
C 101 =—o— |=160 o c
o o o
O —e— J=200 O
(O] (]
2 2
[N [0}
£ £
-+ -~
1073
103
N (number of points in first dimension) M (size of second dimension)

Figure 15. Benchmarks for the two-dimensional celerite implementation with outer-product covariance in the second dimension. We recover the anticipated linear
scaling with respect to both N and Mand the quadratic scaling with respect to J.

from the Information uncertainties at a higher S/Mowever, inform understanding of planetary formation and for their
the two-band model still outperforms the monochromatic potential habitability. While one candidate exomooriKepler-
modelwith the MCMC corresponding to the Information and  1625b-i (Teachey & Kipping 2018), has been identified it
converging to the correct solution down to an S/N of about 1/ remains unconfirmed (Kreidberg etl. 2019; Teachey etal.
10, where again the transitiepth is comparable to the white  2020). The saga of Kepler-1625bi illustrates one of the primary
noise. barriers to observing exomoonstheir small size and corre-
These resultsimply that the improvementresulting from spondingly shallow transits. An additional complication is that
multiple bands applies only when the signal is larger than the - gxomoon transits will not be strictly periodic, due to orbital
white noise,and in this limit, the Information matrix provides  motion abouttheir planets. This means thatfolding the light
an adequateestimate of the uncertaintieson the model  ¢rve on the planet's orbitaperiod to increase the S/N for a
parameters,assuming that the GP parametersare well detection will not be effective.

constrained asthese were not varied in our analysis. This Observationsdesigned for detecting transiting exomoons
approach may be used to estimate sensitivity and detection of 11, jikely need to consist of very high-S/N photometry of
transiting bodiessuch as exomoonsliscussed next. more than one transit of a known exoplanet. In the near future
L the James Webb Space Telescope (JWST) will be the
5.2. Other Applications observatory best suited to these observations (Beichman et al.
Exomoons,or moons of exoplanets are oft-theorized but 2014). It has the ability to observe time series spectra of bright
thus far undetected objects of interelsbth for their ability to objects via the NIRSpec instrument (Bagnasco et al. 2007). Our
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method is well-suited to model these observationsand we astronomical objects displaying time-correlated, stochastic
believe it may end up being the optimal method of identifying variations. Many subfields in astronomy make use of GP
an exomoon transitsignal. Simulating JWST observations of  variability models, or stochastic models that are equivalent to a

transiting planet systemswith realistic noise (Sarkar et al. Gaussian processincluding the study of eclipsing binaries
2019), while applying our multiwavelength GP modeto the (e.g., Mahadevan etal. 2019), pulsating binaries (e.g.,Hey
results, would reveal what sensitivity JWST would have to et al. 2020), X-ray variability of the logarithm of the flux of
shallow transiting bodies such as exomoons. X-ray binaries and active galactic nuclei(e.g., Uttley et al.
Transit transmission spectroscopyaims to measurethe 2005; Kelly et al. 2014), the study of transient phenomena such
transmissionspectrum of an exoplanet by measuringthe as supernovae (e.g., Kim et al. 2013), quasar variability (Kelly

effective radius of the planet as a function of wavelength. This et al. 2009; MacLeod et al2010), reverberation mapping (Zu
is typically accomplished by varying the transit depth in the fit et al. 2011; Pancoast et al. 2014), and gravitational lensing time
to the time series photometry atach wavelength as in (Berta delays (Presset al. 1992; Hojjati et al. 2013; Hojjati &
et al. 2012) and Mandell et al. (2013). In studies like these the Linder 2014). Multiwavelength data may be exploited to better
effects of stellar variability have been minimal and largely ~ characterize these systenfior example Boone (2019) found
ignored.However in the future high-precision observations of much petter characterlza.tlon (_)f transients with multiwavelength
bright stars at optical and near-IR wavelengths will likely have Gaussian process modelinghile Peters efal. (2015) use the
to contend with variability resulting from stellar granulation ~ color dependence of the time-correlation of quasar variability to
and/or pulsations (Sarkar et aR018). better character!ze their phyS|ca_I propertikss our hope that

Our method offers an elegant means of measuring the some of these fields may benefit from applying our new
transmission spectrum. Given a sufficiently long time baseline, Multiwavelength GP implementation to study the wavelength

the wavelength dependencef a star’s variability can be dependence of these various phenomena.
arbitrarily well-determined. In this case any “leftover”
variability—variations in transitdepth thatare not explained 5.3. Limitations of the Method

by the wavelength dependence of the star’s variability—can be When the second dimension’s covariance matrix can be

attributed to the planet’s transmission spectruBy allowin -
P P y 9 represented in terms of an outer product between a vector and

the GP mean function to vary in transit depth across itself thod h fasteali th th ber of dat
wavelength during MCMC analysis we can recover an estimatd S€'"» OUr Method has a fasscaling wi € humber of data
oints. If the second dimension cannot be described as an outer

of the transmission spectrum with uncertainties in the presenceo ; . ! . ;
of stellar variability. As such, this is a straightforward product_,then we obtain a poor scaling with the size (.)f this

. ! ’ . . dimension cubed. For the method to be computationally
extension of ourmodel as the only change involves varying

. : h efficient in this case, the non-celerite dimension should be
the depth and limb-darkening asa function of wavelength, T . . .
while tﬁe covariance remaing the same as in the examgles we small _comp_ared to _the size of the (_jlmen3|on along_ which the
have already shown covarianceis specified by a celerite kernel function. For

T it timi iati hen th itational problems where the second dimension is comparable in size to
__'ransit iming variations occur when the gravitationa the first and where R must be arbitrarily defineglyproximate
mteracppn between planets in a multl-.planeiystem perturbs methodssuch as the HODLR method (Ambikasaran et al.

a transiting planetaway from a Keplerian orbit (Agol et al. 2015), KISS-GP (Wilson & Nickisch 2015), or the black box

2005; Holman 2005).The perturbed planetvill transitearlier ds imol ted in GPvTorch tal 2018
or later than the Keplerian solution would dictate based on the [)neetmhgres (lar#i[():ieer:&(.an ed in GPyTorch (Gardner et al. ) may

relative position of the transiting planet and perturbing planet. The celerite method is a stationary GP method,meaning
Observations of these transit timing variations over the course 5t the covariance kerneis constantin the one—dir;]ensional
of many orbits help to constrain the orbitgbarameters of the ., rginateln other words, K, X) = k(| - X{). Our two-
perturber as wellas the masses of both the perturber and the  jimensjonal method inherits this limitation. What this means is
transiting planetA notable application of this technique is o that our method is not suited to modeling variability which
the seven-planefTRAPPIST-1 system (Gillon et al. 2017; changes substantially in amplitude or timescale over the time
Grimm etal. 2018). Correlated noise on timescales similar to  heriod in question. For instance,while our method is well-
the ingress/egresstime of a transit can substantially affect  syited to modeling stellar variability over relatively short time
measurements of the transit time (Agol & Fabrycky 2018).  periods,it would not be able to modelsolar variability across
At presentcorrelated noiseis observablefor transiting an entire solarcycle because the changing amplitude ahe
planets around evolved stars. A notable example is Kepler-91bgyn’s variability could not be captured by our stationary kernel.
(Barclay et al. 2015), a hot Jupiter orbiting a red giant. If non-stationarity is required for a particular application, we
Individual transits of Kepler-91b are nearly undetectable due torefer users to other methods such as the sparse GP method of
correlated noise on similartimescales and amplitudes to the  Almosallam etal. (2016) or the tree-structured GP of Bu&
transit signal. While most main-sequence Kepler targets do notTurner (2014), both of which are approximate methods. It also
show significant correlated variability, we expect that this may be possible to extend the celerite algorithm to non-
variability will become observable in the near future with the  stationary kernels by, for example, allowing the kernel
advent of larger space-based telescopes such as the JWST. Thisefficients to vary explicitly as a function of time, but we
meansthat accuratetransit timing measurementsfor small have yet to implement this.
planets transiting main-sequence stars willquire the use of Another limitation is fundamentalto the Gaussian process
methods like ours to overcome the effects of correlated noise. framework: our methodijke all GP methodsdoes a poor job
Variable phenomenaWhile we are primarily interested in of modeling outliers. When analyzing observationaldata,
the transiting planet problem, our multiwavelength GP outliers are often dealt with by discarding them prior to
implementation is likely to be useful for studies of other analysis. However, in some cases outliers may represent useful
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information and should be included in a model. One method of parameters that the inference of a tranisituinambiguousWe

dealing with outliers without discarding them is to adopt a also defer this question to future work.

Student-t likelihood (Vanhatalo et al. 2009; Jylanki et al. 2011;  Finally, our formulation assumes thathe observations are

Shah et al. 2014; Tang et al. 2017). The wider Student-t complete;i.e., in the multiband times series examplegvery

likelihood better accommodatesutliers than the Gaussian time of observation contains data in every bandh principle

likelihood, decreasingtheir influence on the regression. this assumption could be relaxedand in Equation (52) the

Similarly, a Gaussian mixturelikelihood may be adopted, Kronecker products witt@ could be replaced with a@ (and

again increasing the robustnessof the method to outliers corresponding R matrix)which varies with time stamp, and

(Daemi et al. 2019). We consider that a Student-t process (TP)only contains the amplitudes of the bands observed at each time

may be an even better model for data sets containing outliers astamp. This would also require modifying the indexing in

well as having other advantagesspecially with regard to TP~ Equations (53)and (54), but the rest of the method would

prediction (Tracey & Wolpert 2018). We leave to future remain the same.

investigation the prospectsfor implementinga TP or TP

likelihood version of celerite and evaluating the performance

of these models on transit photometry. Unfortunately, Gaussian

mixture likelihoods appearnot to be compatablewith the We have extendedthe celerite method for fast one-

celerite formalism. dimensional GP computations to two dimensions. Our method

inherits the 0 (N) scaling of celerite in one of(}ge two

Lo . . . dimensions while incurring a computational cost ¢M) for a

5.4. Limitations of the Multiband Photometric Noise Model grid with size M in the second dimension. Computing the two-
We make severalassumptionsn the construction of our dimensional GP on an NCI1x[IM grid thus o@$#) using our

multiband noise modeivhich likely do not hold in all cases. method, compared toll (N3M3) for the direct solution (i.e.,

First and foremost, a Gaussian process assumes that the noisénigerting the full NM © NM covariance matrix)This scaling

stationary and Gaussiaithis does not apply to some sources applies only when the amplitude of correlated noise varies

of noise, such as stellar flares, or sources that undergo outburstsross the bandsa more generaldependence on the second

in which the amplitude and/or shape of the power spectrum  dimension has a poorer scalinget still improves upon direct

change dramaticallyLikewise our method does notapply if solution.

there is a significant time delay between the bands, if one band This extension may have many possible applications, among

involves a time convolution of the othemor if the correlated them simultaneous modeling of stellar variability across

components of the bands have no correlation with one anotherwavelength.This application is of particular interesto us, as
Second, the specific form we have chosen for the wavelengtive would like to mitigate the effects of stellar variability on

covariance assumes that the wavelength dependence of the flgletecting transiting exoplanets and measuring their properties.

is due to varying covering fractions of a hot and cold We demonstrate thaive can improve the precision of transit

componentin a two-componentphotosphereWe expectthat depth, time, and duration measurements by modeling the transit

this model will work under different assumptions; for instance, in multiple wavelengths when compared to the monochro-

small-amplitude temperature variations should have a similar matic case.

6. Conclusions

behavioras area fluctuations However, different sources of When the S/N is high, we have shown that a precision
variability will result in different forms for the covariance in the which is proportionalto the photon noise limitis achievable.
wavelength dimension. For instance, in the two-band case in which the correlated noise

Additionally, if there are more than two components to the in one band is twice that in the second bandine can achieve
photospherethen we mustconsider the possibility thateach J10 of the photon-noise limit. This means thatto reach the

component’scovering fraction varies with a different char- same precision as the no correlated noise case requires 10 times
acteristic timescaleln this case ratherthan pairing a single as many photons, or a telescope which has a collecting area 10
wavelength covariance matrix T with a single time covariance times larger. In the limit of a blackbody which is photon-noise
matrix R to form the full covariance matrixK = TA R we dominated,with a large number of bandsone can reach 2.2
should pair multiple wavelength covariancematrices with times the photon-noise limitin which the correlated noise is
corresponding time covariance matricesch having different  absentHence,one needs to use a telescope witB.2 = 4.8
characteristic timescales: times the collecting areaThus, in generalone can achieve a

precision of measurementvhich is comparable to the pure

K N T photon-noise limit, but this requires about an order of
=a iAR. (59 magnitude more photons to do so.
=1 In future work, we plan to extend our variability modelto

. . model more realistic stellar variability by including terms in the
Our code acceptsmultiple kernel componentsgach with a covariance kernel function that capture variability on different
unique T matrix. While we have limited ourselves to the case ofjmescales with different wavelength dependencies. We suggest
a single kernel component in this paper for the sake of clarity that the SOHO spacecraft’s three-channel SPM data may be a

and simplicity, we plan to introduce this extension in more useful starting point for exploring the wavelength dependence
detail in a future paper. of variability in Sun-like stars. This data set consists of

In the examples in this paper we chose to fix the kernel measurementsf the Sun’s irradiance in three visible-light
parametersln practice the kernelparameters willneed to be bands at one minute cadence (Frohlich et 895).
measured alongside the parameters thie mean model.This We are additionally interested in applying our method to
brings up the question of how long of a time series is required radial velocity observations of exoplanditost stars,following
to produce a sufficiently strong constrainton the kernel the method demonstratedby Rajpaul et al. (2015). This
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requires us to compute linear combinations of the GP and its In terms of the celerite coefficients the refactored generator
time derivativeswhich in principle should be feasible. matrices are defined element-wise as follows:

Our code is available in the form of a pip installablefython
package called specgp. specgp extends exoplanet A o R 3 a
enable two-dimensional GP computations. Interested users can $- yMpn( - yMp = S M1t ppd
find instructions and tutorials atChttps://github.com/tagordon/ J=1

specgp. U(ﬁ. HMp (2- YMg

J

Ry qU;

= n2j- 1
We acknowledge supportfrom NSF grant AST-1907342. 0(51;_ NMp 2Mg = Ro.aUnzi
We thank Jackson Loper for usefudonversations aboltEG v 4 =V
GPs.E.A. was supported by a Guggenheim Fellowship and & j)MP @- M4 Cfl,q~n,2/ !
NSF grant AST-1615315/e also acknowledge support from V. ymp amg = GhaVha, (A4)
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NASA Astrobiology Institute Cooperative Agreement Number whereU andV are the refactored generator matrices defined in
NNA13AA93A, and the NASA Astrobiology Program grant  Equation (40), n ranges ovdr, N), p and q range ovét, M),
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This work was facilitated though the use ofthe advanced The recursive algorithm for carrying out the Cholesky

computational, storage, and networking infrastructure provideddecomposition is identicato the outer-productcase.Starting
by the Hyak supercomputersystem at the University of with Dyq = Ap1 and VMJ = 1J/DH we then recursively

Washington. define:
Sv,/',k = fﬁj fﬁk[Sv 1jk + D 1,n- 1‘/%. 1jV%. 1,k],
Appendix A PP
celerite Algorithm for the Arbitrary Covariance Matrix in Dpn=Ag, - 5 a U,4§ n/kU,ka
the Second Dimension ’ T iker '

In this section we assume that the covariance in the second
dimension,defined by the covariance matrix R,is arbitrary,
subject to the constraint that the full covariance matrix K must
be positive-definite.

We startby rewriting T in terms of the celerite generator
matrices AU, and V from Equation (34):

a U njkj| (A6)

for N =2,% &N, N¢= NM  with P = 2JM the numberof
rows inU¢andV¢ This additional factor of M accounts for the
relatively poorer scaling of the method for arbitrary R over the
outer-product case. For arbitrary definitions &f R, 2JM and

K'='S +[Ag + tril (UVT) + triu(VUT)] A R the Cholesky decomposition thus scales] géVJ2M3).
= S +diag(A A R) .
+ tril(UVT A R) + triu(VUT A R). (A1) Appendix B

Computing the Log-likelihood

The log-likelihood is given by
We rewrite R asRly where |, is theM = M identity matrix,

which allows us to write K as Nt = - 1(y_ mK- Y- m
: A 1 N¢
K =S +diagA A R) - Eln det(K) - ?In(Zp), (B1)
+ tril (U A R A In)D)
+ triu(VA Iw) UA R (A2) which incorporates both the inverse and log-determinant of the

covariance matrix,K. We therefore begin by describing the

algorithms for each of these computationsseparately.The
where we have again applied Equation (50)s for the outer following algorithm comes directly from the originatelerite
product case, we now have a semi-separable matrix defined byaper,but with our modified definitions of the semi-separable

a new set of generators: matrix componentd/& “¢andW, and fsl;’,- rather tharf,; (see
. Section 3.2).
= S «diagAo A T) The product of the inverse covariance matrix with a vector,
Us UAT z = K-, is computed with a two-part algorithm. We first
Ve VA Iy, (A3) compute the intermediad, settingZ¢ = ¥,, and then using the

recursion relation

fj = Filh 4+ Vho 128 (B2)

4 https://github.com/exoplanet-dev/exoplanet
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P
Z¢=Y,- Q U,g-fnj,
j=1
forn=2,% 0N, whereN¢= NM and f;; = 0 forallj. We
then useZ; to computeZ in the second step of the algorithm,

first setting Zv, = Z4,/Pngv ¢ and then using downward
recursion

For the two-dimensional Kronecker-structured covariance
matrixK = T A R, we can rewrite Equation (C1) as

m = my(¥) + [T, X) A R, X)]K(xx) 1
C Y- m)] (Cy)
= my(¢) + [T0e, %) A RO, X)]2 (C4)
wherez = K(xX,xy [y - my,(X)]. Writing the second term of

(B3)

Gj = iy 1j1%.1) + U$, 120, 1] (B4) Equation (C3) in terms of the vectorization operator we have
z¢ 5 [T, %) A R, X1 2 = [T, %) A RO, X)]ved2)
Z=p5—- a Mo, (B5) (C5)
nn j:1

whereZ = Y- m(X) with X and Y matrices of size NOx[OIM
defined by X = veqX) and ¥ = veqY) respectively.For
matrices AB, and C of sizes(n ©~ m), (M " P), and(P "~ Q)
respectively there is an identity that states the following:

for n = N¢- 1%, 1, whereGy; = 0 for all j and P is the

number of columns it/¢ V¢ andW.
The log-determinant of K is given by

N ..
In (detk) = 5¢ In(Dup). (B6) vedABO) = (A A CT)veqB). (C6)
n=1 Applying this to Equation (C5) gives
Putting thesetwo steps togetherwe can compute the log- [T(X, X) A R(X*, X)]1Z = veo(TZR). (C7)
likelihood. Because the algorithm fortaking productsof the ) o )
inverse requires{NMP) operations, whereas the log-determinant he full expression for the predictive mean is now
can be computed in only (NM) operationsthe log-likelihood m = my(X*) + ved TZR). (C8)

computation asa whole scalesas (NMP). In practice, the , , .
bottleneck for applications such as maximizing the likelihood or The matrix producFTZR can _be compqted via a modlf!ed
MCMC is computing the Cholesky factor rather than computin version of the celerite prediction algorithm presentedin

% -Mackey et a(2017).
the log-likelihoodsince the log-likelihood computation itself is olgiergacve c?gmep){ﬂee ’?rge%roéuct ZR at a computational cost of
fasterby 0 (P). Again we have P = 2J when Ris anouter (NM) when R is outer producandl (NM?2) for arbitrary R.
product an® = 2JM when R is any arbitrary covariance matrix.\Ve then compute

Figure 15 shows benchmarks for the log-likelihood computation

N J
demonstrating that the predicted scalings hold. = 3 § e 9 bi[a cogdit ) - L)
' n=1j=1
Appendix C . .
Prediction Algorithm + bysin(@f; - tal)] ERnm. (C9

A GP prediction is an interpolation or extrapolation of the  in two parts. Here p and m index the elements of the predicted
observed data using with the GP model. A prediction evaluatednean matrix.The first part consists of a forward pass through
at each data point can also be thought of as a smoothing ny =1 ,...N where we define:
operation as ityields an estimate ofthe function with white

noise removed. Gimk =[G, 1pk + [ZRnmVig]e % 2l &) (C10)
The predictive distribution of a GP is a multivariate normal . B b, 0[] 4
with a mean m and covariance K evaluated atthe input Hpnk =€ G2l Ugy (C1)

coordinatesX*. For a GP with no white noise componerthe
mean is constrained to pass directly through each observation
of the data pointsY. For a GP with a non-zero white noise

and the second consisting of a backward pass through
Ny = N ,..., where we define

component the GP will act as a filter such that when the meanis Gy, =[Gy, | ok + [ZRnmUgy]€ % 2o b-) (C12
subtracted from the data the residualswill be distributed o v o
according to a Gaussian distribution whose width is given by H;‘n’k = € G 2oln ) V¢’,3_k, (C13

the GP white noise.
The predictive mean and covariance are computed as
follows:

m = my(x) + Kee, K xoxy 1ty - my(x)]
K* = K(x*, x*) - K¢ X)K (X x ) 1K (X x*)

(C1)
(C2

where K(X* X) and K(X,X*) are the covariancekernel
evaluated between the input coordinates and the data
coordinates|f the input coordinates consisbf N* points in
the first dimension and M points in the second then these
matrices have dimensiof8/N * © NM) and(NM = N*M *)
respectively.

21

where to =4, In, 1= I, Gypni =0, and Gf, ymx =0 for
k=1 .., and for all m. The expressions fét¢; andV¢;
are evaluated atl;. For each value of p, G’ are evaluated
recursively from nton o and then the prediction r’ig’m is
computed from
P
fﬁ’m = ka [Gr;o_m_kHbynoyk +
=1

G ipiline 1. (C14)

5 kij 2 denotes integer division of k by 2. In other words,
ki 2 = floor(k/2).
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This two-part computation scales as ("N + m™N*) where n
and n are constants. The overall scaling is therefore
determined by the cost of the matrix multiplication step.

Appendix D
Sampling from the GP

A sample ¥ can be drawn from a Gaussian process by
computing

Y=m+ Ln (D)

wheremis the mean function arfdis a vector of draws from a

normal distribution
ni ~ 0(0, D7) (D2)

for each entry n; in N. The ordering of entriesin m and
consequentlyy is determined by the structure ofK. For the

Gordon,Agol, & Foreman-Mackey

the eigenvalues of A R will also be nonnegativelherefore
T A Ris a positive-semidefinite matrix.

Similarly, if Ris positive-definite (rather than positive-
semidefinite),the eigenvaluesof T A R will be uniformly
positive and” A R will be a positive-definite matrix.

We now consider the effect of adding a real, positive-valued
diagonal matri§ T 1 ™™™ to the Kronecker produétA R.

First consider the case that R is positive-definite. In this case
T A R is positive-definite.Using the definition of positive-
definiteness that states that a matrix A is positive definite if and
only if X"AX is a positive scalar for alk T 0 ", we compute

X'(TAR+ S)Xx=Xx"(TARX+ x'Sx (E1)

Assuming that R is positive-semidefinitewe have already
established that A R is positive-semidefinite as well. The left
term above is therefore nonnegativ8ince the matrix £ is a
diagonal matrix with positive entries, its eigenvalues, which are

Kronecker structured covariance matrix given in Equation (18),9iven by the Qiagonalentries,areT positive,and therefore 2 is
mis the concatenation of the N length-M vectors containing thePositive-definite ConsequentlyX” S X is a positive scalar and
mean function evaluated at each point in the second dimensiorfhe matrix T A R+ S is proven to be positive-definiteThis

at a given point in the firstln other words,
m=(m,m,,..n\)

wherem = (m,, na,,...My ) is the mean function evaluated at
the ith point in the first dimension.
Thus m is a one-dimensionalvector of length N¢ = NM

(D3)

completes the proof that the covariance matrix
K =TA R+ S is positive-definite in the case that T is a
positive-definite kernel function, R is positive-definite, and Z is
a diagonal matrix with positive entries.

If we assume that R is positive-definite rather than positive-
semidefinitethen, as shown previously, T A R is itself a

where N is the size of the first dimension and M the size of the POsitive-definite matrix. In this case the covariance matrix

second. The sample vect¥ithen has the same structure. Most
users will wish to either unpack the sample into M separate
vectors obtained by taking every Mth entry il or reshape it
into an NCOx[M array beforedisplaying or examining the
sample.

Appendix E
Proof of the Positive-definiteness of the Two-dimensional
Kernel

To begin, we give the following equivalent definitions of
positive-definite and positive-semidefinite matrices.

1. Asquare matrid T 0™ "is positive-definite if and only

if all of its eigenvalues are positive.

2. Equivalently, a square matrix AT 017 " is positive-
definite if and only if the scalarX” AX is positive for all
real-valued vector® | 0 "

3. Asquare matribd 1 1" " is positive-semidefinite if and
only if all of its eigenvalues are nonnegative (they may
be zero). A

4. Equivalently, a square matrix A | is positive-
semidefinite if and only if the scal¥f AX is nonnegative
for all real-valued vector& | 0 ".

Dn'n

For a square rpatf?xi 0™ " with eigenvalues given hyfor
i0d0=01,K,naBd 0™ with eigenvaluesgifor/ = 1,%,m,

the eigenvalues of the Kronecker proddcfA B are given by

= T A Ris positive-definite even without the addition of .
By the same logic as above, the addition of Z will preserve the
positive-definiteness ofhe covarianceandK = TA R+ S
will be positive-definite as well.

Appendix F
Notation

Notation and symbolsin order of appearance:

K: covariance matrix.

k: kernel function corresponding to K.

x: general independent variable for the GP.

0 : GP likelihood.

m GP mean vector.

Y: vector of observations.

N¢ number of observations corresponding to the length of
vectorY.

we: characteristic frequency ofimple harmonic oscillator
(SHO) term.

0: stochastic force termgriving force of SHO.

t: an independent variable used to represent time.

Q: quality factor of SHO.

w. an independentariable used to represerftequency in
expressions for the power spectral density of a process.
S: Amplitude of the SHO.

t: an independentvariable used to representime lag, as
in gijj=[i- 4.

/im for all values of i and j. To see this, note that for eigenvectors?,m | '/, p,q : integers used to index independent variables

u and v corresponding to eigenvalued and p of A and B
respectivelyAU A Bv = (AA ByU A v) = ImUA V).

‘We now consider a positive-definite covariance matrix
T1 0V N and a positive-semidefinitesquare matrix R
0 MM We consider the Kronecker produdt A R: since the
eigenvalues of T are positive and the eigenvalues ofR are
nonnegative the products of their eigenvalues thamake up

22

and matrices.

Xh, Xc: covering fractions of a hot and cold component of the
stellar photosphere.

Rx: stellar radius.

d: distance from star to observer.

F: flux.

B,: nth spectral band.
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/ : independent variable representing wavelength.

S(1), Si(1): spectra of the hotand cold components of a
stellar photosphere.

0 s(/): Response curve for band.B

a;i: variability amplitude integrated over band.B

Sc, sn: var(X)'?, van(*»)'2 respectively; the rms of the cold
and hot covering fraction.

Si: diagonal matrix containing. the white noise variances for
each wavelength at the ith time index.

T: covariance matrix representing the first dimension or time
dimension of the two-dimensionalGP. T will always be
described by a celerite kernel function.

R: covariance matrix representinthe second dimension or
wavelength dimension of the two-dimensional GP. R may be
an arbitrary covariance matrix or an outer-product.

N: length of the first dimension, equal to the number of times
in our example application of multiband time series.

M: length of second dimension, equal to the number of bands

in our example application of multiband time series.

J: number of celerite terms in kernel function.

P: rank of celerite generator matrices.

a: vector of correlated noise amplitudesin the second
dimension.

S : diagonal matrix containing the white noise variances for
each observationithe white noise component of the GP
covariance matrix.

s#: white noise variance for ith data point.

Ro: planetary radius.

to: time of center of transit.

d,: duration of transit ingress/egress

d transit duration (mid-ingress to mid-egress).

@ vector of transit parameters.

Map transit mean model.

fo: characteristic frequency of the correlated noise model.
a: weighted mean of used to represent the total amplitude
of the correlated variability componentf the GP summed
over all bands (“monochromatic”).

s: mean of s, the vector of white noise terms; used to
representhe total amplitude of the uncorrelated variability
component of the GP.

0 : Information matrix.

Ng: number of mean-modebarametersequalto the length

of g.

sgz: uncertainty on the transit depth (with “poly” and
“mono” to indicate the polychromatic and monochromatic
values).

b: vector of coefficients used in defining the celerite kernel
(Foreman-Mackey et aR017 use a).
a, b, c, d: celerite coefficients.

A: diagonal component of full
tion; K = A + tril(UVT) + triu(VUT).
UV : celerite generator matrices.

L: lower triangular matrix used in LDLT Cholesky
decomposition.

tril, triu: lower and upper triangular matrix operators.

D: diagonal matrix used in decomposition.

W: matrix used in semi-separableLDLT Cholesky
decomposition.

I: identity matrix.

S: intermediary matrix used in the celerite decomposition
algorithm.

D: diagonal matrix in the Cholesky decomposition of K.

kernel func-

23

Gordon,Agol, & Foreman-Mackey

A diagonal component of K with white noise amplitude set

to zero;Ay = A- S .

Ug Vg, Aq: Kronecker products ¢,V , and A taken withy

or R and Iy.

U VW™ refactored celerite matrices corresponding to U,

V,and W.

Ug Vg, We refactored celerite matricescorresponding to

Ug V¢ andAg

f,f¢ : matrices used in the refactored version of celerite.
F” G’ : intermediary matrices for prediction algorithm.
f.j. % intermediary vectorsused to compute the like-

lihood of the GP model.

mi: predictive mean model.

K': predictive covariance.

X* independentvariable used to representthe points at

which the predictive mean and covariance ofthe GP are

evaluated.

Z: product between the observed vedraand the inverse of

the covariance matrix K-' used to compute the GP

likelihood.

Z¢ intermediary vector used to compu#e

XYZ X =veqX), ¥ = vedqY), andZ = veqZ) respec-

tively; the matrix versions of X, ¥, and Z for the two-

Qimensional GP.

: independent variable used to represent the points at which
the predictive mean and covariance of the GP are evaluated;
same as xwhen the independent variable is time.

: intermediary matrix used to compute the GP prediction
(Q“ in Foreman-Mackey et aR017).
N': the number of points at which the prediction is evaluated
in the first dimensions.
n : constanton which the computationalscaling of the
prediction algorithm depends.
n: vector of random draws froma standard normal
distribution used to draw a sample from the GP.
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