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This paper presents a method of computing approximate conservation laws and eigenstates of integrability-
broken models using the concept of adiabatic continuation. Given some Hamiltonian, eigenstates and conserved
operators may be computed by using those of a simple Hamiltonian close by in parameter space, dressed by
some unitary rotation. However, most adiabatic continuation analyses only use this unitary implicitly. In this
work, approximate adiabatic gauge potentials are used to construct a state dressing using variational methods, to
compute eigenstates via a rotated truncated spectrum approximation. These methods allow construction of both
low- and high-energy approximate nonthermal eigenstates, as well as quasilocal almost-conserved operators,
in models where integrability may be nonperturbatively broken. These concepts will be demonstrated in the
mixed-field Ising model.
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I. INTRODUCTION

Adiabatic continuation is a well-used concept [1]. Given
some Hamiltonian of interest, low-energy eigenstates of that
system may be computed by finding a “simple” Hamiltonian
“nearby” in parameter space, which can be easily diago-
nalized. Then, those simple eigenstates can be mapped to
interacting ones using some dressing by a unitary U . This
procedure can be used to show that ground states can be
mapped to other ground states, as long as there is some path in
parameter space which does not go through some gap-closing
critical point [2–4]. For example, low energies of interacting
fermions may be described by a Fermi gas or Fermi liquid
with dressed quasiparticle excitations [5]. However, most of
these proofs are nonconstructive in the sense that the unitary
U is generally never actually computed, or only done so
perturbatively.

This work details explicitly connecting noninteracting
trivial states to nontrivial interacting ones, by variationally
computing an approximate, local adiabatic gauge potential
(AGP) to construct the unitary transformation. The latter
modifies noninteracting particle states to quasiparticle states
which are “dressed” within some local span of sites. Impor-
tantly, the dressing is nonperturbative and not limited to low-
energy states. This construction leads to long-lasting quasi-
particles and stable nonthermal states, even at finite-energy
densities.

As a consequence of computing unitary rotations for
approximate eigenstates, this procedure also allows one to
compute local almost-conserved operators from the approx-
imate eigenstates and dressed noninteracting symmetries. In
the presence of integrability-breaking terms in some system,
undressed symmetries and conserved operators are generally
no longer conserved [6–8]: instead, these operators may be
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“dressed” locally by the unitary U to restore approximate
conservation of some quasilocal and long-lived operator, even
though the full system may no longer be integrable [9–11].
Similarly, for particular initial wave functions with large
overlap with good approximate eigenstates, one may compute
long-time effective quench dynamics within a small subspace
of states, in spirit of Schrieffer-Wolff transformations [12].

The presence of such unitary dressings, quasilocal conser-
vation laws, and good approximate eigenstates in interacting
models may suggest that not all integrability-broken models
should be treated equally. Certain models may be “close to
integrable,” in the sense that there exists a good local dressing
of particular eigenstates, and strong eigenstate thermalization
hypothesis (ETH) may be violated. Two particular cases of
such ETH violation are many-body localization [13] and
quantum scars in the PXP model [14,15]. Conversely, other
models may be far from any simple system, in the sense
that there is no path in parameter space that admits a good
local adiabatic dressing, and the model is quantum chaotic
[16]. In fact, this unitary rotation may potentially be seen as
the analog of the canonical transformation of Kolmogorov-
Arnold-Moser (KAM) theory, which restores integrability in
classical models [17,18]. While this paper focuses on a quan-
tum model, the whole methodology, including variationally
computed canonical transformations generated by the AGP
[19], is fully applicable to classical nonintegrable systems.

The rest of this paper is structured as follows. First, we will
describe the methods of computing approximate eigenstates
with the variational adiabatic gauge potential and the rotated
truncated spectrum approach (rTSA). The method is a dif-
ferent perspective of Schrieffer-Wolff block-diagonalization
methods, as discussed in Ref. [12]. Next, we will introduce
the specific model used in this work, the nonintegrable mixed-
field Ising spin- 1

2 chain, and demonstrate the performance of
computing approximate eigenstates. Finally, there will be an
example of an approximately conserved local operator for the
mixed-field Ising chain, the total quasiparticle number.
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II. COMPUTING LOCAL APPROXIMATE EIGENSTATES

In general, directly computing eigenstates and quasipar-
ticle excitations is hard, as computational difficulty scales
exponentially in system size, and normally there are no well-
defined quantum numbers. Instead, let us continue in spirit
of adiabatic continuation [1]. Suppose some parametrized
Hamiltonian H (μ), with μ = 1 being the particular system
of interest, and μ = 0 being exactly solvable, in the sense that
the eigenstates are easily computable via symmetry, integra-
bility, or other means. μ describes some choice of path in a
(multi)parameter space of Hamiltonians between 0 and 1:

H (0) �⇒ H (μ) �⇒ H (1)
Path from 0 to 1

Exactly solvable ⇓ System of interest
AGP

|En(0)〉 �⇒ A(μ) �⇒ |En(1)〉.
At all points along this path, there are parametrized eigen-

states {|En(μ)〉} with eigenenergies {En(μ)}. How these eigen-
states change as a function of parameter μ is given by the
adiabatic gauge potential (AGP) A(μ) [19], computed from
the instantaneous Hamiltonian H (μ):

i∂μ|En(μ)〉 = A(μ)|En(μ)〉. (1)

In principle, given the (parameter-dependent) AGP A(μ),
one could use Eq. (1) to evolve the simple eigenstates |En(0)〉
into exact interacting eigenstates |En(1)〉, or equivalently use
a unitary rotation

U † = T exp

(
i
∫ 1

0
A(μ)dμ

)
(2)

such that |En(1)〉 = U |En(0)〉, with T indicating path order-
ing. In practice, this recipe runs into the same infeasibility as
directly computing eigenstates: computing the exact AGP is
generally as difficult as computing the exact eigensystem. It
is nonlocal, exponentially large, and highly parameter depen-
dent [19] for generic interacting systems, making computing
the unitary a similarly difficult task.

To circumvent the problems of computing the exact AGP,
one can instead use approximate adiabatic gauge potentials.
One might hope that simple eigenstates “dressed” by a local
approximation of the AGP will closely resemble eigenstates
of the full system. As the complexity of the approximation
grows, so too should the approximate AGP approach the exact
one, and the approximate eigenstates become exact, at the
expense of them being highly entangled and nonlocal.

From an adiabatic continuation standpoint, the connection
with this approximate gauge potential is clear; in fact Hastings
in Ref. [1] has a particular implementation of an approximate
AGP for gapped ground states. A simplified version of Eq.
(17) in Ref. [1] is equivalent to Eq. (2) with

A(μ) ≈ −1

2

∫ ∞

−∞
SGN[t] f (t )[∂μH](t )dt, (3)

f (t ) = erfc

(∣∣∣∣ t

τq

∣∣∣∣
)

, (4)

where ∂μH (t ) is the operator ∂μH in the Heisenberg repre-
sentation, erfc is the complementary error function for which

erfc(0) = 1 and erfc(∞) = 0, and SGN(t ) is ±1 depending
on sign of t (see Appendix A for more details). This expres-
sion is nothing but an approximation of the gauge potential
with a particular choice of regularizer f (t ) [20]. For the
regularization time τq → ∞, this approximate AGP becomes
exact. For a finite regularization time, the AGP is approximate
but local within some span of sites.

Instead of computing an approximate gauge potential via
some choice of regulator, which is computationally difficult,
one can instead compute it variationally [21]. Here, some
ansatz for the variational gauge potential is chosen based
on the system at hand, then variationally optimized to best
approximate the exact AGP. In this case, the variational AGP
is chosen to be the sum of some set of (local) operators {Bi}
for variational parameters {αi}:

A({α}) =
∑

i

αiBi. (5)

The particular choice of operators {Bi} depends on the
problem at hand; if the set is expanded to include all operators
in the space modulo symmetries (a potentially exponential
number), the exact AGP can be reconstructed from the set,
and the variational version becomes exact. Thus, one should
expect improvement as the size of the ansatz is expanded. It
has been found [20] that a local variational AGP can accu-
rately reproduce the exact one, at least for matrix elements
which are far separated in energy or protected by approximate
symmetries. This is shown by using a Taylor series expansion
of Eq. (3). In fact, this argument is mirrored by an equivalent
justification from an adiabatic continuation perspective for
gapped ground states: As long as there is a gap, the ground
state will only entangle within some light cone [2,3,22] and
thus a local approximation for the rotation generator is always
possible.

The optimization of the AGP is computed by finding the
minimum of [19,21]

S(α) = ||[H, ∂μH + i[A(α), H]]||, (6)

where parameter dependence of α and H on μ is implicit, and
||Q|| = Tr[Q2]/D is the Hilbert-Schmidt norm. Equation (6)
has the property that S = 0 for the exact AGP, and is solvable
even for very large system sizes. This is because the function
S(α) can be computed using trace identities, and is quadratic
in α, making optimization simple. This minimization leads
to a quasilocal operator A(μ) which approximates the exact
AGP.

One can then use this approximate AGP to compute ap-
proximate eigenstates, in the same manner of the exact AGP
computing exact eigenstates. First, choose some set of Dp

states {|q〉} of the exactly solvable Hamiltonian H (0). This
choice depends on the system at hand. One choice could
be, for example, all eigenstates below some energy cutoff.
Another choice would be all states within some particular
symmetry sector such as fixed particle number, which form
a subset of eigenstates not necessarily sorted by energy. The
set of states forms some projective subspace P with projector
P = ∑

q |q〉〈q|.
Approximate eigenstates of the interacting model H (1)

can be computed by “dressing” each state via Schrödinger
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evolution of Eq. (1) to implement the unitary of Eq. (2). This
gives some set of “dressed” states {|q(1)〉} ≡ {U |q〉}.

As a comment on implementation, care must be taken
in the direction of evolution: the AGP is parameter depen-
dent so generally A(1) �= A(0). For perturbative couplings,
this parameter dependence is very weak so that the AGP
approximately commutes with itself for all μ and the di-
rectionality does not matter; however, strong coupling may
lead to nonsensical answers. One may start by accidentally
acting on a noninteracting wave function with the AGP from
the interacting point, which may be much different than the
correct noninteracting AGP.

An effective Hamiltonian within that subspace can be
computed via matrix elements in the dressed subspace:

(Heff )
pq = 〈p(1)|H (1)|q(1)〉 = 〈p|U †H (1)U |q〉. (7)

Note that this is equivalent to computing the effective
Schrieffer-Wolff Hamiltonian [12], where one rotates the
operator H̃ = U †H (1)U instead of the states. If the AGP is
exact, this effective Hamiltonian will be exactly diagonal.
However, if the AGP is not exact or the initial subspace was
a degenerate symmetry sector, the effective Hamiltonian will
not be diagonal. One can then compute the eigensystem of the
Dp × Dp matrix via standard linear algebra techniques to find
eigenenergies Ei and eigenvectors Vi such that

(Heff )
pqVqi = EiVpi. (8)

The approximate eigenvectors of the system are then given
by

|Ei〉 =
∑

q

Vqi|q(1)〉 (9)

with eigenvalues Ei. This final step is functionally equivalent
to the truncated spectrum approach (TSA) [23], except instead
of using a noninteracting subspace P, the subspace is first
rotated by the approximate AGP to obtain some improved
subspace P̃ (see Table I). This basis better resembles eigen-
vectors of the interacting system, and may be exponentially
orthogonal from the original basis due to the finite rotation.
This corresponds to a rotated truncated spectrum approach
(rTSA).

Because the variational AGP is local by construction,
various tricks can be employed to go to large or even thermo-
dynamic system sizes. As commented above, computing the
variational AGP is not a problem for a large number of sites, as
complexity scales linearly with system size. It is reasonable to
compute an AGP for hundreds of sites for all operators span-
ning less than 5–6 sites on a modern desktop. This locality
can also be used for step 4 when evolving the basis states:
due to the finite evolution “time,” states are only entangled
within some finite region (using intuition of Lieb-Robinson
bounds [3]). This suppresses the finite-size effects of evolving
some small (typically 15–20) number of sites exactly, and
enables tensor methods such as matrix product states (MPS)
and variational evolution [24]. This work employs the former
method of exact evolution on small systems [25].

Choosing a larger subspace should also be expected to
improve the computation of the approximate eigensystem. In
the limit where the projective subspace is the full Hilbert

TABLE I. The abbreviated method.

1. Define some Hamiltonian H (μ), with H (0) being exactly
solvable and H (1) being a system of interest, with some path in
parameter space linking the two.

2. Given some ansatz, compute a variational adiabatic gauge
potential A(μ) along the points μ ∈ [0, 1].

3. Define some set of eigenstates of H (0), either within some
energy window or within some symmetry sector(s) such as
particle number.

4. Evolve the set of states via the Schrödinger equation from
μ = 0 to μ = 1 with the variational AGP.

5. Compute the effective Hamiltonian and its eigensystem to find
approximate eigenstates and eigenvalues.

space or within one of the symmetries of the full Hamiltonian,
the effective Hamiltonian is the exact one and likewise the
eigenstates are exact, independent of the rotation. Choosing
a subspace within some larger energy window should also be
expected to improve the variational dressing: the AGP fails to
suppress excitations close together in energy, but those can
then be recaptured within the subspace P via off-diagonal
elements of the effective Hamiltonian.

Note that choosing a larger subspace will also increase
the range of initial conditions for nonequilibrium and quench
dynamics; an initial quench wave function must have large
overlap with the rotated projective subspace to be efficiently
simulatable [12]. For example, choosing a subspace within
a larger energy window allows for higher-energy quenches,
or a subspace with more particles allows for higher-order
ground-state correlation functions.

Because both the variational AGP ansatz and the projective
subspace can be systematically expanded, this method gives
a controllable approximation to compute eigenstates: as the
complexity increases, the eigenstates will asymptotically ap-
proach the exact ones.

The eigenstates computed in this manner are approximate,
in that they are not exact eigenstates of the Hamiltonian H (1).
The simplest indicator of the closeness to an exact eigenstate
is the energy variance of the state

�2
n ≡ 〈En|H2|En〉 − |〈En|H |En〉|2. (10)

Exact eigenstates have zero-energy variance, and so approxi-
mate eigenstates should have minimal energy variance �2

n ≈
0. The average energy variance of these eigenstates within
the subblock corresponds to the average block-off-diagonal
matrix elements in the Hamiltonian and thus indicates the
performance of the block-diagonalization procedure (see
Appendix B).

III. MODEL

As a concrete example, suppose the following system, the
mixed-field Ising model:

H =
N∑
i

Jσ i
zσ

i+1
z + hxσ

i
x + hzσ

i
z . (11)

For hz = 0 the model is integrable via a Jordan-Wigner trans-
formation to free fermions [26–28] with a critical point at
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hx = 1 and small hz being an integrable E(8) field theory
[29]. For hx = 0 the model is a purely classical Ising model.
For h2

x + h2
z → ∞ the model is an exactly solvable collection

of single spins with an onsite field. At hz = 2, hx = 0 there
is a first-order multicritical point [30] and for small hx, the
low-energy effective Hamiltonian is the PXP model [14,31].
Elsewhere, the model has no apparent conservation laws or
symmetries beyond geometric ones and is generally quantum
chaotic [32,33]. However, this does not prevent approximate
conservation laws or nonthermal states, as will indeed be seen.

The variational ansatz is chosen to be that of Jordan-
Wigner strings, i.e., strings of Pauli operators which map to
fermion bilinear operators, plus all operators local within a
span of n sites:

{B} = {
σ 0

y , σ 0
x σ 1

y , . . . , σ 0
x σ n

y , . . . , σ 0
y σ 1

z σ 2
x , . . . ,

σ 0
z σ 1

y , σ 0
z σ 1

x σ 2
y , σ 0

z σ 1
x σ 2

x σ 3
y , σ 0

z σ 1
x σ 2

x σ 3
x σ 4

y . . .
}
.

(12)

Additional symmetries and properties reduce the size of
the ansatz: the AGP has all of the symmetries of the full
Hamiltonian [34]. By gauge choice the AGP can be com-
pletely imaginary for real Hamiltonians [19], constraining {B}
to only include terms with an odd number of σy. Because
the Hamiltonian is translation and reflection invariant, the
ansatz can be chosen to be as well. The inclusion of Jordan-
Wigner strings is motivated by this ansatz being exact for the
transverse Ising model [19], due to its extra symmetries and
mapping to free fermions.

While a Hamiltonian of interest is given by particular
choice of parameters hx, hz, there is relative freedom for
choice of the path hx(μ), hz(μ) in the two-dimensional
(2D) parameter space H (μ), and especially choice of simple
Hamiltonian H (0). This is because there are many “simple”
points in the (hx, hz ) parameter space which might be consid-
ered “close” to the Hamiltonian of interest. The (hx, 0) line
is the transverse Ising model; the (0, hz ) line is the classical
Ising model; and the (hx, hz ) → ∞ line are independent spins
with onsite fields.

What starting points, and which path in parameter space,
are optimal for computing approximate eigenstates, given
ansatz {B}, Hamiltonian H (1), and subspace P? This is a
question of a path-dependent Schrieffer-Wolff transformation,
as the performance of computing approximate eigenstates,
or equivalently block diagonalization, may depend on these
choices. This work chooses from a limited set of parametrized
Hamiltonians with particular starting and ending points. Two
additional parametrizations are discussed in Appendix C:

H1(μ) =
N∑
i

σ i
zσ

i+1
z + μ

(
hxσ

i
x + hzσ

i
z

)
, (13)

H2(μ) =
N∑
i

−σ i
zσ

i+1
z + μ

(
hxσ

i
x + hzσ

i
z

)
, (14)

H3(μ) =
⎧⎨
⎩
∑N

i 2μhxσ
i
x + hzσ

i
z , μ∈ [0, 0.5)

∑N
i (2μ− 1)σ i

zσ
i+1
z + (

hxσ
i
x + hzσ

i
z

)
, μ∈ [0.5, 1].

(15)

FIG. 1. Example basis states of two particles separated by six
sites. Top and middle are states with two boundary walls (red dashes),
which are low-energy eigenstates of H1(0) and H2(0), with excitation
energy 4J . Bottom is a state with two spin-flip particles, which is a
low-energy state of H3(0) with excitation energy 4hz.

The first and second parametrizations start from the σzσz

point, whose eigenstates are Z-polarized spins. Depending
on the sign, the ground state could be an antiferromagnetic
(AFM) Neél (13) or a polarized ferromagnetic (FM) state (14).
Low-energy particle excitations are boundary walls of spin
flips (see Fig. 1) [35].

The third parametrization (15) is split into two parts. The
first leg is simply rotating the onsite field and thus the AGP is
exact A(μ) ∼ ∑

i σy, and is an example of the Landau-Zener
problem, rotating the spin in the XZ plane. The second leg
has no such local exact representation. The ground state is
a product state of spins pointing in Z. Low-energy particle
excitations are spin flips (see Fig. 1) to the opposite direction.

In all cases, H∗(0) is degenerate, with a natural choice of
projective subspace being fixed particle number on top of the
ground state. Thus, P1 is 0 and 2 boundary walls on top of an
AFM ground state; P2 is 0 and 2 boundary walls on top of a
FM state; and P3 is the 0, 1, and 2 particle spin flips on top of
a polarized state:

P1 = {|↑ ↓ . . . ↑↓〉, (
σ i

xσ
i+1
x . . . σ i+n

x

)|↑ ↓ . . . ↑↓〉},
P2 = {|↑ ↑ . . . ↑↑〉, (

σ i
xσ

i+1
x . . . σ i+n

x

)|↑ ↑ . . . ↑↑〉},
P3 = {|↓ ↓ . . . ↓↓〉, (

σ i
x

)|↓ ↓ . . . ↓↓〉,(
σ i

xσ
j

x

)|↓ ↓ . . . ↓↓〉}. (16)

Because the system is translation invariant, the zero-
momentum sector is chosen as a numerical simplification.
Under these constraints, each subspace P has N + 1 states
each out of total Hilbert space dimension ≈2N/N .

These basis states are each dressed by the variational AGP
to create dressed boundary wall states: the hard boundary
is softened by the dressing procedure to better describe the
interacting quasiparticle excitations.

IV. APPROXIMATE EIGENSTATES AND SPECTRUM

As an explicit example, let us choose the parameters
hx = 0.4 = hz, and coupling J = ±1. These parameters are
nonperturbative, in the sense 0.4 is O(1) away from any
simple point. For J = −1, the ground state is ferromagnetic,
and the hz term acts as a constant attractive force between two
boundary wall particles. This leads to “meson” bound states
of the two boundary walls [36]. For J = +1, the hz term does
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FIG. 2. Eigenspectrum of the zero-momentum mixed-field Ising model of Eq. (11). Left is for 18-site AFM states (J = +1) while right is
for 18-site FM states (J = −1). Top are matrix elements of the rotated and unrotated effective Hamiltonian indexed by boundary wall distance.
Bottom is a comparison between the exact spectrum (computed numerically), the unrotated TSA spectrum (red), and the rotated spectrum
(blue). Error bars are the energy variance of the approximate eigenstates.

not change the AFM ground-state energy [37,38]; however, it
will affect energies of spin flips on up/down Neél sublattices,
which, from a band theory context, leads to two free-particle
species.

One can then go through the process of computing approx-
imate eigenstates, as outlined in Sec. II, for these particular
choices of subspaces. Here, Hamiltonians (13) and (14) are
chosen starting from the FM and AFM subspaces, with an
ansatz of all operators local to 3 sites plus Jordan-Wigner
strings, with 18 total sites in the 0 momentum sector. The form
of the AGP is shown in Appendix E.

Results for these parameters are shown in Fig. 2. Top
plots show the effective unrotated and rotated Hamiltonian, or
equivalently the Hamiltonian in the projective and rotated pro-
jective subspaces, for AFM (left) and FM (right) excitations.
It can be clearly seen that the rotated effective Hamiltonian
becomes slightly more nonlocal: a dressed boundary wall of
width 3 may hop to become width 5, for example. These
effects are especially pronounced when the two boundary
walls are close together, which is an indicator of a two-
particle interaction. When the two particles are far apart, the
Hamiltonian becomes independent of distance.

The spectrum is shown on the bottom plots of Fig. 2.
Clearly, there is remarkable improvement over naive TSA
(red) with the unrotated basis, which can be considered a

semiclassical limit of two free (left) or attractive (right) lattice
particles [39,40]. The rotated version (blue) is almost identical
to the exactly computed eigenspectrum (black). The error
bars are the energy variance of the approximate eigenstates,
as computed from Eq. (10). Note that the exact eigenvectors
are matched with approximate ones by choosing those which
have maximum fidelity |〈En|E exact

m 〉|2; normally, this value is
>0.9.

Importantly, the eigenstates are not necessarily all the
lowest-energy states. For example, two of the lowest-energy
FM boundary walls (each with excitation energy 4.4J) has
a higher energy then a single FM boundary wall of width 6
(with excitation energy 8.7J). This means it is energetically
possible for the width-6 boundary wall to decay into two
width-1 boundary walls, for example. However, the small
energy variance of these dressed states indicates that such a
process is almost completely suppressed.

Because the dressing is local, it is possible to take a
continuum or large system size limit. Numerically, this is
done by duplicating the dressed Hamiltonians of Fig. 2 over
thousands of sites: the 19 × 19 matrix is extended to an N × N
matrix, where the middle elements are the duplicated middle
elements of the smaller matrix. Then, the eigensystem of that
Hamiltonian is computed. Results for the continuum disper-
sion relation of excitations on top of the AFM ground state
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FIG. 3. Dispersion relation of the two-particle species on top of
an AFM ground state. The two-heavy-particle energy lies above the
four-light-particle continuum.

are shown in Fig. 3. There are two-particle species which have
mass 1.11 and 2.56. Like the meson case, the states are not
necessarily the lowest-energy states: for example, two heavy
particles can have equal energy to four light particles, and may
potentially decay as such. Note that two light particles could
not decay into one heavy particle, as that is disallowed by the
particles being domain walls.

These approximate eigenstates can be compared with the
general bulk eigenstates, as is shown in Fig. 4 (top). Here,
all eigenstates in the 18-site FM model, 0-momentum sector
(14 602 total) are computed exactly, and their half-cut en-
tanglement entropy is found. Thermal states are extensively
entangled states at finite-energy density, while nonthermal
states are weakly entangled and generally have zero- or low-
energy density [31]. Red circles are the states which have
maximal overlap with the approximate eigenstates: low en-
ergies are FM states while high energies are AFM states.

One particular approximate eigenstate merits more study:
the dressed-all-up eigenstate, indicated by the green circle
and arrow in Fig. 4 (top). This is a ground state of σzσz,
but the most excited state of σz; it has finite-energy density
given roughly by 2hz. But, in particular, it is an explicit
example of a highly nonthermal state far from the edges of
the spectrum [13,31,41,42]. It is locally entangled with a
half-chain entanglement entropy of ≈0.25 bits. It has very
high fidelity of 0.995 with an exact eigenstate. Note that in the
thermodynamic limit the dressed-all-up state is exponentially
orthogonal to the original all-up state due to the finite local
rotation.

A. Quasiparticle lifetimes

The energy variance of these approximate eigenstates takes
special meaning when they can be interpreted as dressed
particles. In this case, the energy variance gives a lower
bound on the quasiparticle lifetime. For an approximate par-
ticle eigenstate |En〉, the time-dependent state overlap under
second-order perturbation theory is

|〈En|En(t )〉|2 ≈1 − t2

τ 2
+ O(t4), (17)

FIG. 4. (Top) Comparison of half-cut eigenstate entanglement
entropy for the 18-site FM chain and 0 momentum. Red circles are
the states with maximum overlap with the approximate eigenstates;
left are dressed ferromagnetic states while right are dressed antifer-
romagnetic states. Note that high-energy states of the FM model are
not the same as the low-energy states of the AFM model. Green circle
and arrow indicates the dressed all-up state, which is a nonthermal
state. (Bottom) Fidelity of the dressed-all-up state with the initial
state |〈E (t )|E (0)〉|2 which indicates the rotated all-up state is very
close to an eigenstate, while the unrotated version is not, and is well
preserved in time.

where τ−2 = �2 = 〈H2〉 − 〈H〉2 is the energy variance of the
state. In other words, the characteristic time for an (eigen)state
of some particles to decay into some other particle state is
given by the energy variance. This timescale is very crude as it
assumes all other states have the same energy: a more refined
timescale can be computed using the Fermi golden rule [26]
for the dressed states, but is not generally possible without a
priori knowledge of the energy of the other states. As such,
the energy variance serves as a lowest bound on (inverse)
quasiparticle lifetime.

As an explicit example of these timescales, a dressed single
flipped down spin on a FM ground state, which corresponds
to the lowest-energy meson excitation, has a characteristic
lifetime of τ = 110, far longer than any local timescale. Exci-
tations on top of an AFM ground state have lifetimes in excess
of τ > 60. The dressed-all-up state has a lifetime of τ = 53.
These lifetimes are longer when adding more parameters to
the variational AGP. Explicit time dynamics of Eq. (17) for
this dressed-all-up state is shown in Fig. 4 (bottom). Clearly,
it is much closer to an eigenstate than expected, as it is close
to 1 at all times. This further indicates the genuineness of
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this nonthermal eigenstate, especially when compared to the
undressed version of the same. Note that the undressed-up
state is exponentially orthogonal in system size from the
dressed-up state, due to the finite rotation.

One application of such a dressed-all-up state is for in-
formation protection in quantum systems. For a classical
Hamiltonian, the all-down (ground) state may be labeled as
a logical 0, while the all-up state is labeled as a logical 1.
An X field will generally change these two states, destroying
the encoded bit. If this bit is instead encoded in the dressed
nonthermal states (the all-down ground state, and the all-up
nonthermal state), they are much more stable, encoding the
information for a much longer time by suppressing transitions.

B. Quasiparticle parameter dependence

A general measure of the quasiparticle lifetime within
a particular subspace is given by their normalized average
inverse lifetime, or equivalently average energy variance

� = 1√
Dp

√
1 + h2

x + h2
z

√∑
n

�2
n. (18)

� equivalently is the block-off-diagonal weight of the rotated
subspace P̃ (see Appendix B). A small value indicates a good
block-diagonalization procedure with well-defined quasipar-
ticles within the subspace. A large value indicates a failure to
block diagonalize the Hamiltonian.

This error can be computed for various values of hx and hz

by evolving with parametrized Hamiltonians (13) and (15),
computing approximate eigenvalues, then computing their
normalized average energy variance �(hx, hz ). Results are
shown in Fig. 5, for a 3-site ansatz and 14 sites. States are
dressed from one of two directions. One is H1(μ), dressing
two-particle AFM boundary wall states out from the σzσz only
point, indicated by the radial arrows in the bottom left. The
other is H3(μ), dressing one- and two-particle spin-flip states
from the hxσx + hzσz only point(s), indicated by the arrows
pointing radially inward.

In the region where hx, hz is small, the error from dressing
boundary walls is enormously low. With no dressing, the
error grows linearly in |h|, while with dressing, the error
grows sublinearly, which indicates that the dressing is exact
asymptotically. In fact, this dressing accumulates very small
errors even for nonperturbative values of |h|, as shown in
Fig. 5 (bottom), which is dressing along the hx = hz line.
This indicates that in the white areas, there is a good effective
quasiparticle description of the low energies of this otherwise
quantum chaotic model, described by dressed boundary wall
particles.

Similarly, for the (hx, hz ) → ∞ limit there is a good dress-
ing of spin-flip particles in what should be considered the
disordered Ising phase; below a ZZ “perturbation” coupling
strength of ∼0.14 and unit onsite field at 45◦, the error is
effectively zero for a three-site ansatz, as can be seen in Fig. 5
(middle right). This indicates that different limits can still be
captured effectively, except with a different initial subspace.

Although it is not generally so, the error accumulates
monotonically with increasing |h|. This means that at some
critical value, the dressing going outward from the σzσz point

FIG. 5. Results for a 3-site VGP ansatz for the 14-site TLI model.
(Top) Average inverse two-particle lifetime � or equivalently average
energy variance. Blue line indicates transition between different
directions. Star is the (0.4,0.4) point studied more in depth. Arrows
indicate direction of dressing. White and yellow indicate areas with
a good quasiparticle description. (Bottom) Average energy variance
in the direction π/4 from vertical. Middle is improvement from the
undressed subspace. Below h ≈ 0.6, the error is vanishingly small.
(Middle) Energy variance improvement compared to the null ansatz
�/�0 along the hx = hz line. As the ansatz size increases, so too does
the improvement, as expected.

will have a larger error then the dressing going inward from
the (hx, hz ) → ∞ point. At this boundary, the best description
of quasiparticles changes from dressed pairs of boundary
walls, to dressed spin flips. This does not mean that there is
no effective description of certain states in terms of quasi-
particles: there could be some other subspace (say, of doubly
flipped spins) and other path through parameter space which
gives a better quasiparticle picture in that the energy variance
is smaller.

This crossover point may be an indicator of an interact-
ing phase transition. Around hz = 0, hx = 1, which is the
transverse Ising phase transition, it has been found that local
variational adiabatic dressing begins to fail [19]. This finding
is now extended to the interacting case: the crossover gives a
rough region where the interacting critical point may occur,
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as a local AGP fails to reproduce the long-range entanglement
of a critical ground state [3]. With increasing ansatz size, this
point decreases in total error, and shifts in critical parameter
[see Fig. 5 (bottom)] which may eventually converge to some
particular value, indicating the interacting critical point. This
idea is backed up by the convergence in the noninteracting
limit: For hz small, the crossover is around the hx ≈ 1 trans-
verse Ising critical point. Similarly, for hx small, the crossover
is around hz ≈ 2, which is the first-order phase transition in hz

to change the ground state from AFM to polarized [30].

V. LOCAL ALMOST-CONSERVED OPERATORS

Given some set of approximate local eigenvectors {|En〉}
generated by this adiabatic dressing scheme, it is a relatively
simple procedure to construct approximately conserved local
operators. An operator is conserved if it commutes with the
Hamiltonian, or equivalently if it is constructed from eigen-
states of the Hamiltonian. Given approximate eigenstates,
one should then be able to compute approximately conserved
quantities. Conserved operators are defined as

O =
∑

n

On|En〉〈En|, (19)

where On are the eigenstates of the operator, and {|En〉} are
exact eigenstates. An operator of this form has the property
that the symmetric time correlation function is conserved (for
all initial states)

〈{O(t ),O(0)}〉
2

= constant. (20)

There are two ways to construct approximate versions of these
operators. The first way is to explicitly use Eq. (19) using
only the subspace of dressed eigenstates which were directly
computed. In this case, the sum is of size DP, the subspace
size, as opposed to D, the total Hilbert space size. Due to
the global projective structure of particle excitations on top
of a ground state, the resulting operator is not necessary local.
However, this may be implemented with some local operator
plus postselection of states.

In the case of such an operator directly constructed from
approximate eigenstates, the symmetric correlation function
is not conserved in time. Under perturbation theory, the char-
acteristic timescale is given by a weighted-average energy
variance (see Appendix D for derivation)

〈{O(t ), O(0)}〉
2

= 〈O2〉
(

1 − t2

τ 2
O

)
,

1

τ 2
O

≡
∑

n ρnO2
n�

2
n∑

n ρnO2
n

. (21)

Here, ρn = 〈En|ρ|En〉 is the density matrix for the expectation
value, assumed to be diagonal, and �n is the energy variance
of the nth approximate eigenstate. For good eigenstates with
low-energy variance, the decay timescale can be very long.

The second way to construct approximately conserved
operators is to dress conservation laws of the simple system
H (0) with the unitary. Conservation laws, such as particle
number and particle current, are constructed from simple
eigenstates in the form of Eq. (19), with particular choice of

On, and are generally local [27,43]. Then, the dressed operator
is constructed from states better resembling eigenstates:

O = U

(∑
n

On|En(0)〉〈En(0)|
)

U † (22)

�
O = UO0U

†. (23)

Importantly, the eigenstates of operator O are not neces-
sarily the same as the constructed approximate eigenstates,
as it is missing the rediagonalization step of Eq. (9). The
resulting operator is quasilocal, and approximately conserved
[9,44]. As the ansatz span is increased, the AGP approaches
the exact one, resulting in better approximate eigenstates and a
better-conserved operator, at the expense of it becoming more
and more nonlocal.

One such conserved operator for the mixed-field
Ising model is the dressed total particle number
N = U (

∑
i σ

i
zσ

i+1
z )U † which (up to a constant) counts

the number of boundary walls in the system. For H1 and H2,
this is also the initial Hamiltonian; thus, one would expect
that the dressed operator should also approximate dressed
versions of particle-number eigenstates.

For hx = hz = 0.4 and J = +1, the dressed particle num-
ber operator becomes

N0 =
∑

i

σ i
zσ

i+1
z (24)

⇓
N =

∑
i

0.9530σ̂ i
z σ̂

i+1
z + 0.2135σ̂ i

x + 0.1927σ̂ i
z σ̂

i+1
x σ̂ i+2

z

+ 0.0616σ̂ i
z σ̂

i+1
x σ̂ i+2

x σ̂ i+3
z − 0.0398

(
σ̂ i

z σ̂
i+1
x + σ̂ i

xσ̂
i+1
z

)
− 0.0243σ̂ i

yσ̂
i+1
y + 0.0211σ̂ i

z σ̂
i+1
x σ̂ i+2

x σ̂ i+3
x σ̂ i+4

z

− 0.0164
(
σ̂ i

xσ̂
i+1
x σ̂ i+2

z + σ̂ i
z σ̂

i+1
x σ̂ i+2

x

)
+ 0.0098σ̂ i

z + · · · , (25)

where the ellipsis represents the more and more nonlocal
terms of the operator. As can be seen, this operator is approx-
imately local, with dominant terms coming from one-, two-,
and three-spin terms. One can then compute the symmetric
correlation function in the initial undressed subspace of two
particles to see its conservation

Tr[P0{N (t ), N (0)}] = C(t ). (26)

Results are shown in Fig. 6 for AFM and FM states, as well
as infinite-temperature typical states [45]. For comparison,
the undressed operator is also shown in red. The conserved
operator for AFM states is almost stationary in time, while the
undressed version is not. The infinite-temperature timescale
can be computed analytically as

Tr[([N, H])2]

2 Tr[N2]
=τ−2

N = 50.93−2, (27)

Tr[([N0, H])2]

2 Tr
[
N2

0

] =(
τN0

)−2 = 1.25−2. (28)
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FIG. 6. Symmetric time correlation function of dressed (blue) and undressed (red) particle number of Eqs. (25) and (24) for a two-particle
AFM subspace (left), two-particle FM subspace (right) and all states (middle), and 14 sites. Dashed lines are the infinite-temperature long-time
values.

Even for an infinite-temperature state, this quasilocal dressed
operator gets a factor of 40 improvement in the characteristic
decay timescale. This indicates that dressed quasiparticle ex-
citations may persist in this interacting model even at infinite
temperature, and that this model is “closer to integrable” than
one might expect.

VI. CONCLUSION

The existence of good approximate dressings has some cu-
rious implications. Even if a model system is not necessarily
integrable or exactly solvable, that does not mean that there
are no local long-lived symmetries and conservation laws.
Indeed, if such a model is close by to an integrable point, a
conservation law of the integrable model can be “dressed”
by a unitary generated by the approximate local adiabatic
gauge potential to restore the symmetry approximately in
a now quasilocal operator. Approximate eigenstates may be
computed in a similar manner: simple particle excitations
of the integrable point can be dressed by the approximate
AGP to construct long-lived quasiparticle excitations of the
interacting point. These new dressed states need not be low-
energy states and in fact may be used to construct finite-energy
density low-entanglement nonthermal states, as demon-
strated in the dressed-all-up state of the mixed-field Ising
model.

Similar studies have been done to compute low-energy
phenomenology of the meson case [39,46,47] using a trun-
cated spectrum approach (TSA). These numerical diagonal-
ization procedures are functionally equivalent except that here
the projective subspace is first rotated by the variational AGP,
leading to a subspace closer to the exact eigenstates. While
this work uses discrete lattices, generalizations to continuous
theories and connections to renormalization methods [48–50]
is an interesting future direction.

The restoration of approximate symmetries and construc-
tion of quasiparticle excitations in interacting models puts a
new perspective on integrability breaking. Instead of reevalu-
ating a Hamiltonian for every new point in parameter space,
one can instead compute properties and approximate sym-
metries based on nearby Hamiltonians with a potentially
simpler structure. This “closeness” is defined in the sense of
being able to compute a good approximate AGP along some
path between the simple Hamiltonian and interacting one,

not in the sense of perturbative parameter changes. Certain
perturbations away from integrability may rapidly destroy
any local conservation laws, if there exists no good local
approximate AGP. Other perturbations, while still breaking
integrability, may still admit quasilocal conservation laws,
nonthermal states, and quasiparticles, if there does exist a
good local approximate AGP.

These unitary rotations restoring approximate integrability
are similar in spirit to canonical transformations in KAM the-
ory [17]: integrability may be approximately restored for par-
ticular subsets of initial conditions of particular integrability-
broken systems via the unitary rotation (e.g., canonical trans-
formation) of conserved quantities. Whether this approach to
stability of quantum integrable systems can be made more
concrete remains to be seen, but these variational local dress-
ings may be a step toward a general theory in that direction.
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APPENDIX A: HASTINGS EQ. (17) TO EQ. (3)

This section serves as a derivation of Eq. (3) from [1], Eq.
(17). Hastings defines the rotation Ṽ (s) (analogously U †) as

Ṽ (s) = S ′ exp

{
−

∫ s

0
ds′

∫ ∞

0
dτ e−(τ/τq )2/2[ũ+

s′ (iτ ) − H.c.]

}
.

(A1)

Here, S ′ is parameter ordering (analogously T ) for parameter
s′ (analogously μ). The object ũ+

s′ (iτ ) is defined as

ũ±(±iτ ) ≡ 1

2π

∫ ∞

−∞
dt

[∂sHs](t )e−(t/τq )2/2

±it + τ
(A2)

with [∗](t ) denoting time evolution with respect to instanta-
neous Hamiltonian Hs′ [analogously H (μ)]. Substituting this
into the inner integrand and simplifying by integrating over τ
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yields ∫ ∞

0
dτ e−(τ/τq )2/2[ũ+

s′ (iτ ) − H.c.]

= 1

2π

∫ ∞

−∞
dt[∂sHs](t )e−(t/τq )2/2

×
∫ ∞

0
dτ e−(τ/τq )2/2

[
2it

t2 + τ 2

]

= 1

2π

∫ ∞

−∞
dt[∂sHs](t )e−(t/τq )2/2

×
[
−iπe(t/τq )2

erfc

(∣∣∣∣∣ t√
2τq

∣∣∣∣∣
)

SGN(t )

]

= −i

2

∫ ∞

−∞
dt[∂sHs](t )erfc

(∣∣∣∣∣ t√
2τq

∣∣∣∣∣
)

SGN(t ).

Up to a trivial factor of
√

2 which can be absorbed by the
regularization time τq, this is the expression in Eq. (3).

APPENDIX B: OFF-DIAGONAL MATRIX ELEMENTS
AND ENERGY VARIANCE

The average energy variance of approximate eigenstates
analogously gives the average block-off-diagonal elements
in the Hamiltonian, as claimed in Sec. IV B. This Appendix
serves to elaborate on this point.

When computing an effective Hamiltonian within a rotated
subspace, the procedure is an analogous one to a Schrieffer-
Wolff transformation: a unitary rotation block diagonalizes
some Hamiltonian into a subspace P and complement Q. A
measure of the quality of this diagonalization is the average
strength of the off-diagonal elements: zero strength means
exact block diagonalization, while nonzero strength means
approximate diagonalization. The average energy variance is
defined as

�2 = 1

DP

p∑
n

〈En|H2|En〉 − (〈En|H |En〉)2, (B1)

�2 = 1

DP

p∑
n

〈En|H (|q〉〈q|+|Ep′ 〉〈Ep′ |)H |Ep〉−(〈En|H |En〉)2,

(B2)

�2 = 1

DP

∑
nq

|〈En|H |q〉|2. (B3)

Step 2 inserts the identity, for complete set of states |q〉 ∈
Q, and complete set of states |Ep〉 ∈ P, while step 3 simpli-
fies using the fact that |En〉 are eigenstates of the effective
Hamiltonian within subspace P. Because |En〉 is a complete
set of states in P and similarly for Q, the sum is then over
all off-block-diagonal matrix elements, giving an average off-
diagonal strength.

APPENDIX C: PATH DEPENDENCE

While this work chooses one particular path to the (0.4,0.4)
point, there exist many other options, which may give better or

FIG. 7. Three paths to get to the (0.4,0.4) point: along X then
along Z (blue); along Z then along X (orange) and diagonally (green).
Energy variance is along each point on the path; the paths turn at
parameter value 0.5.

worse performance. Here, two additional paths are compared
to the diagonal path. The second goes up in hz, for which
the gauge potential is zero, and then right in hx. The third
goes right in hx as the transverse Ising model for which the
gauge potential is exact, and then up in hz (see inset in Fig. 7).
This directionality is shown in Fig. 7 for 14 sites, and a
size-3 ansatz. The diagonal path ends with an average energy
variance of ≈0.02, while the other paths have variance of
≈0.04, a factor of 2 improvement.

APPENDIX D: SYMMETRIC CORRELATORS
AND ALMOST CONSERVED QUANTITIES

This Appendix serves as a derivation of Eq. (21). Suppose
some set of DP approximate eigenstates |En〉 diagonalized
within some subspace P, and operator O = ∑

n On|En〉〈En|
for Hamiltonian H . For simplicity, let us choose a subspace
[ρ, O] = 0 or equivalently ρ = ∑

n ρn|En〉〈En|. In this case,
the symmetric correlation function may be equivalently writ-
ten as

Tr[ρ{O(t ),O(0)}]
2

= Tr[ρO(t )O]. (D1)

Next, expand the operator to second order in a BCH series

O(t ) ≈ O + it[H,O] − t2

2
[H, [H,O]] + · · · (D2)

and substitute back in. The first-order term is zero via trace
identities. What remains is

Tr[ρ{O(t ),O(0)}]
2

≈ 〈O2〉 − t2

2
Tr[ρ[H, [H,O]]O] + · · · .

(D3)

Next, inspecting the second term and using the cyclicity of
the trace and definition of O, find

Tr[ρ[H, [H,O]]O] (D4)

= Tr[H2O2ρ + H2OρO − 2HOHOρ]

= 2ρnOn(On〈En|H2|En〉 − 〈En|H |Em〉Om〈Em|H |En〉).

(D5)
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The DP states |Em〉 are constructed such that they are diagonal
in H within rotated subspace P, by the TSA procedure. This
means that 〈Em|H |En〉 = Enδmn. However, the operator H2

will generally be different, as it will include states outside of
the subspace (see Appendix B for details). Generally, H2 may
be computed efficiently analytically without needing to use a
full Hilbert space. Thus, this simplifies to

Tr[ρ[H, [H,O]]O] = 2ρnO2
n(〈En|H2|En〉 − (〈En|H |En〉)2).

(D6)

The term in parentheses is the energy variance of eigenstate
|En〉 as defined in Eq. (10), and so the decay timescale is
related to the energy variance as

1

τ 2
≡

∑
n ρnO2

n�
2
n∑

n ρnO2
n

. (D7)

APPENDIX E: AGP PARAMETERS

For completeness, the coefficients for the variational adi-
abatic gauge potential are shown in Fig. 8. The values are
independent of system size and are here computed for 20
sites. Some care needs to be taken with the normalization of
the AGP, as it is derived from the differential on some path.
Note that some terms diverge close to hx = 0, but are cut off
numerically.

FIG. 8. Some of the larger terms in the adiabatic gauge potential
along the straight-line path from (hx, hz ) = (0, 0) ⇒ (0.4, 0.4). Note
that one term diverges as 1/h, but is cutoff numerically when
computing the AGP. Notation YX means a translationally invariant
sum of Pauli operators on adjacent sites, e.g.,

∑
i σ

i
yσ

i+1
x .
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