Stellar Rotation in the K2 Sample: Evidence for Modified Spin-down

Tyler A. Gordon ${ }^{1} \oplus$, James R. A. Davenpó ${ }^{1}$, Ruth Angus ${ }^{2} \oplus$, Daniel Foreman-Mack ${ }^{3}{ }^{\circ} \oplus$, Eric Agol ${ }^{1} \oplus$, Kevin R. Covey ${ }^{4} \oplus$, Marcel A. Agüeros ${ }^{5}$ ©, and David Kipping ${ }^{5}$ (c)
${ }^{1}$ Department of AstronomyUniversity of WashingtonBox 351580,U.W., Seattle,WA 98195-1580,USA; tagordon@uw.edu
${ }^{2}$ Department of AstrophysicsAmerican Museum of Natural History200 Central Park WesManhattan, NY, USA
${ }^{3}$ Center for Computational Astrophysidslatiron Institute, 162 5th Avenue,New York, NY 10010 USA
${ }^{4}$ Department of Physics \& Astronomy,Vestern Washington University/MS-9164,516 High StreetBellingham,WA, 98225 USA
${ }^{5}$ Department of AstronomyColumbia University,Manhattan,NY, USA
Received 2021 January 19; revised 2021 April 1; accepted 2021 April 6; published 2021 May 26

Abstract

We analyze light curves of 284,834 unique K2 targets using a Gaussian process model with a quasi-periodic kernel function. By cross-matching K2 stars to observations from Gaia Data Release 2, we have identified 69,627 likely main-sequence starßrom these we select a subsample of 8977 stars on the main sequence with highly precise rotation period measurementisVith this sample we recover the gap in the rotation period-color diagram first reported by McQuillan et al. While the gap was tentatively detected in Reinhold \& Hekker, this work represents the first robust detection of the gap in K2 data for field stars. This is significant because K2 observed along many lines of sight at wide angular separationin contrastto Kepler's single line of sight. Together with recentesults for rotation in open clusterswe interpret this gap as evidence for a departure from th ${ }^{1{ }^{1}}{ }^{2} t$ Skumanich spin-down law, rather than an indication of a bimodal star formation history. We provide maximum likelihood estimates and uncertainties for all parameters of the quasi-periodic light-curve model for each of the 284,834 stars in our sample. Unified Astronomy Thesaurus concepts: Stellar properties (1624); Stellar rotation (1629); K dwarf stars (876); G dwarf stars (556); Gaussian Processes regression (1930); Star clusters (1567); Stellar astronomy (1583); Stellar ages (1581)

1. introduction

Stellar rotation is a key physical property for understanding individual stars as wellas stellar populationsRotation drives the stellar dynamo that produces surface magnetic fields. These magnetic fields in turn give rise to stellar activity (e.g., starspots and flares). The rotation period (f) of a star is tied to its age through magnetic braking, which slows the star's rotation over time (Durney 1972;Skumanich 1972)Age is a fundamental stellar parameter but is difficult to determine from the position of a star on a color-magnitude diagram, especially for stars on the main sequenceAny information we can extracabout the age of a star from its rotation period is therefore very valuable. This is the subject of gyrochronology, which seeks to measure stellar ages by observing the star's rate of rotation (Barnes 2003).

The Kepler mission (Borucki et al. 2010) revolutionized the study of stellar rotation by producing high-precision light curves for hundreds ofthousands ofstars, from which over 34,000 rotation periods have been inferred (Nielsen et al. 2013 McQuillan et al. 2014). The distribution of rotation periods measured by McQuillan etal. (2013) showed an unexpected bimodality in the field M dwarfs, which was found to extend to K dwarfs by McQuillan et al. (2014). This bimodality was recovered in G dwarfs by Davenport\& Covey (2018), who used Gaia astrometry to limitheir analysis to main-sequence stars with well-determined Gaia photometric solutions, removing contamination by subgiants.

Severalexplanations have been pfibrward to explain this bimodal period distribution. Davenport\& Covey (2018) and McQuillan et al. $(2013,2014)$ suggest that the bimodality may be the result of a bimodal star formation history, with a recent burstof star formation accounting for the fast-rotating branch of the bimodality and an older population of stars forming the
slow-rotating branchReinhold etal. (2019) propose thathe gap between modalities may represeatminimum in detectability of rotation periods due to the transition from spotdominated to faculae-dominated stellar activity.
A third possibility, to be discussedin more detail in Section 4, is that the gap results directly from the spin evolution of G, K, and M dwarfs. An epoch of stalled spin-down followed by a period of rapid angular momentum loss before the resumption of Skumanich spin-down may be able to explain such a feature.To date, rotation periods from open clusters have provided the most compelling evidence that modified spin evolution is indeed the cause of the gaiphese fixed-age populations have shown that rotation periods for lowmass stars break from the expected Skumanich spin-down model, such as the cluster of rotation periods at ∓ 10 days found in the 1 Gyr old cluster NGC 6811 by Meibom et al. (2011). Similar deviations from the traditional Skumanich spindown profile have been seen in, e.g., Praesepe ab50 Myr (Douglas et al. 2017) and NGC 752 at 1.3 Gyr (Agüeros et al. 2018). Curtis et al. (2019) note in their analysis of NGC 6811 that the stall in spin-down appears to be mass and age dependent.Further, Curtis et al. (2020) show compelling evidence that this deviation from Skumanich spin-down indeed corresponds to the gap in field rotation periods, with individual cluster sequences "crossing" the rotation period gap.

This scenario may be explained in terms of time-variable and mass-dependentotational coupling between the core and envelope of the star (Spada \& Lanzafame 2020).Magnetic braking slows the rotation of the convective envelopes of stars. However, if the core and envelope are only weakly coupled, the stellar core may continue to spin rapidly even as the envelope slows down. A decoupled core and envelope with reduced angular momentum exchangeis expected for young stars
(Endal \& Sofia 1981; MacGregor\& Brenner 1991; Bouvier 2008; Denissenkovet al. 2010; Gallet \& Bouvier 2013; Lanzafame \& Spada 2015; Somers \& Pinsonneault 2016). After a period of time which appears to depend on stellar the core and the envelope begin exchanging angular momentum. When angular momentum transport is happening efficiently, the core's angular momentum transferred to the envelope would offset magnetic braking, allowing the envelop to maintain a constant rotation period. After the core and body, th巴larkov chain Monte Carlo (MCMC) method to estimate star would resume spinning down. This process would result inposteriors for the parameters of the quasi-periodic GP variability a departure from the Skumanich spin-down law (Skumanich 1972), which prescribes a smooth spin-down over time following the relation

$$
\begin{equation*}
P_{\text {rot }} \mu t^{-1 / 2} \tag{1}
\end{equation*}
$$

where $P_{\text {rot }}$ is the stellar rotation period as a function of the age of a star, t . This scenario may explain the convergence of cluster sequences below the gaøxplaining the underdensity within the gap requires us to posit an additional stage in stellar spin evolution consisting of a period of accelerated spin-down immediately after the epoch of stalled spin-down and before the resumption of Skumanich spin-down (Curtis et al. 2020). This accelerated spin-down is not predicted by the coupling scenari presented hereand its explanation will likely require further theoretical work.

The Kepler data alone gives us a limited ability to explore these varioushypothesesdue to its single pointing, which admits the possibility that the bimodality is unique to the Kepler field. In contrast, K2 observed the sky in 18 separate campaigns, each having different lines of sight (save for a few overlapping campaigns). As van Saders et al. (2019) note, if therder polynomialdid not sufficiently flatten the decay of the Kepler line of sight happened to pointlirectly through a late ACF, and higher-order polynomials were too likely to overfit burst of star formation, thereby accounting for the fast-rotating the rotation signal. We remove outliers from our light curves by branch of the bimodal period distribution, we would not expect masking allflux observations greater than 3σ from a running this feature to be visible in all 18 K2 campaigns.

In this work, we measure and report probabilistic constraints After preprocessing the lighturve as described abovere on periodic signals for 284,834 K2 stars from all 18 campaignscompute the ACF for each lighturve using the implementaand analyze a subset of 8943 highly accurate rotation periods. tion provided in exoplanet, which wraps the astropy For those stars appearing in multiple campaignse run our ACF function (Astropy Collaboration et al. 2018; Foremananalysis separately for each light curve. We use a modificationMackey et al. 2019). We smooth the ACF with a Gaussian filter of the Gaussian Process (GP) regression method described in with a kernel width of 0.5 days. We then use the smoothed Angus etal. (2018) to measure periodic signalkVe find that the bimodality is visible in all K2 campaignsending support to the idea that the feature is related to stellar physics rather than being a productof the star formation history within the Kepler field.

2. Measuring Rotation Periods

We begin by describing the model that we use to infer probabilistic rotation periods from the EVEREST liglaurves (Luger et al. 2018). Stellar magnetic activity induces starspots faculae on the star's surface. As the star rotates, these features achange for the benefit of recovering more rotation periods. carried into and out of view, introducing periodicity into the light Our prior is a Gaussian mixture with 3N components, where curve. If the starspots and faculae were static over time, we would given by
observe a perfect periodicityith the star returning to the same $\begin{array}{ll}\text { luminosity once every period. However, starspots and faculae are } \\ \text { not static but rather evolve over time, emerging, changing shape, }\end{array} \quad N= \begin{cases}N_{\text {peaks }}(p>0.01) & N_{\text {peaks }}(p>0.01)<10 \\ 10 & N_{\text {peaks }}(p>0.01)\end{cases}$ not static but rather evolve over time, emerging, changing shape, and disappearing as the star's rotation brings them into and out of view. As a result, the light curves do not display perfectly periodibere $N_{\text {peak }}(p)$ is an integer corresponding to the number of variations but rather a quasi-periodic variability with the shape peaks in the ACF with topographical prominence greater than

Figure 1. Sample output from our period detection procedure for three K2 stars with well-determined rotation periods. The top row of panels shows the cotrending basis-vector-detrended EVEREST flux. The second row shows the period prior and MCMC-estimated posterior. The third row shows the autocorrelation function, the bottom row shows the light curve folded on the mean of the posterior for the period. For visibility of the prior, both the prior and posterior are normalized such th their maximum probability is 1 .
p. The topographicaprominence is computed with respetct the adjacent ACF minima, by scipy's signal library Virtanen et al. 2020). We take each of these peaks to rep a candidate period, recognizing that for a well-defined periodic uniform prior over the range $P=(0 \Delta T / 2)$, where ΔT is the signal there will be multiple peaks corresponding to the same total duration of the light curve. period.

The factor of 3 in 3 N arises from our inclusion of candidate periods at ${ }_{i} 12$ and $2 \mathrm{~T}_{\mathrm{i}}$, where \uparrow is the lag of the ith peak so that for each peak we have three candidate periođlse weight of the component of the Gaussian mixture prior corresponding to each peak is given by

$$
\begin{equation*}
w_{i}=h_{i} \sqrt{p_{i}}, \tag{3}
\end{equation*}
$$

where h is the height of the peak and is the same for the candidate periods $a t / 2$ and $2 \mathrm{~T}_{\mathrm{i}}$ as for the candidate period at T_{i} itself. The standard deviation of each Gaussian component, rotation period.
σ_{i}, is given by the width of the peak at half of the peak height. This means thatthe width of the Gaussian componerdf the prior is wider by a factor of approximately 2.35 than the standard deviation of the Gaussian equivalent to the ACF peakdraw random functions with a given covariance structure. They

The standard deviation associated with the candidate period at T_{i} is also used for the candidate periods at $\mathrm{amd}_{\mathrm{i}} / 2$. In the
are commonly used in astrophysicsto model stochastic variability in light curves (see Dawson eal. 2014, Barclay et al. 2015, and Chakrabarty \& Sengupta 2019 for examples from studies of transiting exoplanets and MacLeod et al. 2010 for an example in which a GP is used to model AGN variability). A GP can be splitinto two componentsa kernel function $k(T)$ that describes the covariance of the functions in the distribution and a mean function $\mu(\mathrm{t}$). .he kernel function defines the covariance matrix of a multidimensionalaussian distribution by specifying the covariance between every pair of flux measurements.he covariance matrix is given by

$$
\begin{equation*}
K_{i j}=k\left(t_{i j}\right) \tag{4}
\end{equation*}
$$

where $T_{i, j}=\left|t_{i}-t_{j}\right|$ is the absolute value of the separation between times \ddagger and t_{j} and $K_{i, j}$ is the ith, jth entry of the covariance matrix K.

The log of the likelihood function of the GP is given by

$$
\begin{equation*}
\ln \left[=-\frac{1}{2}(y-m)^{\top} K^{-1}(y-m)-\frac{1}{2} \operatorname{lndet}(K)-\frac{N}{2} \ln (2 p)\right. \tag{5}
\end{equation*}
$$

where y is a vector of observations and μ is a mean vector with the same length as y. Both the kernel and mean are parameter by a set of hyperparameter\&P regression is the process of finding the hyperparameters thaaximize the GP's likelihood with respect to a set of observations. For a more detailed prim on GP in astronomy, see Foreman-Mackey et al. (2017), or, fove use the NUTS sampler provided by PyMC3 (Salvatier et al. more complete resource on GP across fields, we refer the readeat to) to run 1000 tuning samples followed by 500 production Rasmussen \& Williams (2006).

To construct a GP stellar rotation modelve take the mean function of the GP to be constant and allow the kernel function to model the correlated variability introduced into the star's light curve by spots and faculae as they rotate in and ouff view and evolve over time. Our GP model has three terms: two quasi-periodic terms to capture the rotationally induced variability and one that is aperiodic to capture any leftover variability originating from other astrophysicalsources or instrumental effects. The power spectrum of each term is given by

$$
\begin{equation*}
S(w)=\sqrt{\frac{2}{p}} \frac{S w_{1}^{4}}{\left(w^{2}-w_{i}^{2}\right)^{2}+2 w^{2} w_{i}^{2}} \tag{6}
\end{equation*}
$$

For the periodic terms, we follow Foreman-Mackey etal. (2017) in setting

$$
\begin{align*}
Q_{1} & =1 / 2+Q+D Q \\
Q_{2} & =1 / 2+Q \\
w_{1} & =\frac{4 p Q_{1}}{P \sqrt{4 Q_{1}^{2}-1}} \\
w_{2} & =\frac{8 p Q_{1}}{P \sqrt{4 Q_{1}^{2}-1}} \\
S_{1} & =\frac{s^{2}}{(1+f) w_{1} Q_{1}} \\
S_{2} & =\frac{f_{s}^{2}}{(1+f) w_{2} Q_{2}} \tag{7}
\end{align*}
$$

where Q is the quality factor, ΔQ specifies the offsetin the quality factor between the two oscillators, P is the period of oscillator, σ^{2} is the variance of the oscillationand f specifies
the fractional contribution of the oscillator atthe half period P/2 compared to the oscillator at the full period. For the aperiodic term we set

$$
\begin{equation*}
Q_{3}=1 / \sqrt{2} \tag{8}
\end{equation*}
$$

while ω_{3} and ς are free parameters. Sett隹 $=1 / \sqrt{2}$ means that the third oscillator is critically damped and will not display periodic oscillations. For this term the power spectrum f ${ }^{\text {simplifies to }}$

$$
\begin{equation*}
S_{3}(w)=\sqrt{\frac{2}{p}} \frac{S_{3}}{\left(w / w_{3}\right)^{4}+1} \tag{9}
\end{equation*}
$$

The full variability model including both the quasi-periodic and aperiodic terms has the power spectrum

$$
\begin{equation*}
S(w)=\stackrel{3}{a}_{i}^{3} S(w) \tag{10}
\end{equation*}
$$

To compute the GP model we use the celerite GP method (Foreman-Mackey etal. 2017) as implemented in exoplanet (Foreman-Mackey et al. 2019). We maximize the hGP likelihood with respect to the EVEREST cotrending basis-ryector-detrended flux for the parameters $\left\{Q_{n}, \Delta Q, A, f, S_{3}\right.$, $\left.\omega_{3}\right\}$. We then use the maximum likelihood solution as a starting point for our MCMC analysis. We use uninformative priors for all GP hyperparameters excette period, for which we use年he multimodal Gaussian mixture priordescribed previously. samples on each of 28 cores for a totælf 28,000 tuning and 14,000 production samples/Ve have found that a relatively n large number of tuning samples is helpful for achieving convergence when using a multimodal period prior in order to allow the sampler to fully explore the multimodallikelihood space.

In Figure 2 we show the variation in the binned mean of the period P, maximum quality factor $Q_{\max }=\max \left(Q_{1}, Q Q_{2}\right)$, the logarithm of the ratio between the periodic and aperiodic ncomponents of the modeland the logarithm of the fractional uncertainty in rotation period.

2.3. Selecting Main-sequence Stars

We begin by making selections based on the quality of the Gaia DR2 photometric solutions (Gaia Collaboration et al. 2018). We require that the following conditions be met:

1. $\sigma(G) / G<0.01$
2. $\sigma\left(G_{R P}\right) / G_{R P}<0.01$,
where G and $G_{R P}$ refer to the passbands used in Gaia DR1 and DR2.

In order to reduce contamination from giants, subgiants, and unresolved binary stars, we require that stars in our sample be on or near the main sequence, as defined by a MIST isochrone (Paxton et al. 2011, 2013, 2015; Choi et al. 2016; Dotter 2016) with an age of 200 Myr and a metallicity of $[\mathrm{Fe} / \mathrm{H}]=+0.25$, to identify the nominal main sequenceand we select stars within 0.3 mag below and 0.9 mag above the isochroneas shown in Figure 3. This wide slice of magnitude space allows us to encompass different ages and metallicities while reducing contamination from the giant and subgiant brancherse cost heof selecting such a wide slice is thatwe likely incorporate a significant number of unresolved binaries into our final sample,

Figure 2. Selected hyperparameters plotted over the Gaia color-magnitude diagram. For each plot the color in a bin indicates the mean of the quantity given in the upper-right-hand corner of the plot and the scattered points are colored by that quantity in regions where the density of stars is low. Upper left: rotation period. Upp right: log of the ratio between the periodic variance, A, and the variance of the aperiodic componleonyef left: log of the fractional uncertainty for the inferred period. Lower right: log of the mean quality factor $Q_{\max }$ with larger $Q_{m a x}$ indicating stronger periodicity.
which will add some amounbf contamination.We find this acceptable because we do not expect this contamination to a systematic influence on the overall shape of the period-color diagram.

It should be emphasized that we made no attempt to choose an isochrone that represents the actual main sequence for stars in our sample, which would be infeasible because the K2 sample contains stars with a wide range of ages and metallicities. The choice of $[\mathrm{Fe} / \mathrm{H}]=+0.25$ was made on the basis that this isochrone does an adequate job of matching the trend of the main sequence. We have found that the exact choice of age and metallicity does not have a significant impact on our results, so long as the isochrone and the width of the bo in M_{G} selects a sufficient number of stars for our edge finding algorithm to perform well. Our final sample consists of 8943 stars near the main sequence, passing our Gaia photometry cu and possessing well-determined periodicity.

2.4. Vetting Rotation Periods

We select a final sample of well-measured rotators from the main-sequencesample based on MCMC convergence and
period measuremendrecision. For inclusion of a star in our fimal sample,we require the following conditions be met:

1. $P / \sigma_{P}>15$
2. $\log _{10}\left(A / A_{3}\right)>-3$
3. $0.9<R_{P}<1.1$,
where P is the measured period d_{P} is the error on the period derived from MCMC, A is the variance of the periodic GP component (the amplitude is $=\sqrt{A}$, and $A_{3}=S_{3} \omega_{3} Q_{3}$ is the amplitude of the aperiodic GP componertip is the GelmanRubin statistic,Gelman \& Rubin 1992), which compares the variance of samples for an individual parameter (in this case the period, P) within a chain to the variance between chain $\sqrt{3}$ or chains thathave converged to the same solutidh,ese values will be approximately the same, and their ratipwill be close to 1. The cutoff on $\log _{10}\left(A / A_{3}\right)$ is meantto exclude stars for which the periodic componenis very small compared to the nonperiodic variability on the basis thathese stars are more likely to be showing periodicity due to contamination or systematics, rather than rotation. We find that when we do not include this cutoff,a pileup of stars at a period of around two days is observedThis pileup, as shown in Figure 4,spans a

Figure 3. K2 stars on the Gaia color-magnitude diagranhine boxed region shows the area selected as the main sequence in order to exclude, e.g., evolve stars and unresolved binaries from oufinal sample. The main sequence is defined by a MIST isochrone with an age of $P \mathrm{Oyr}$ and $[\mathrm{Fe} / \mathrm{H}]=+0.5$. We identify 123,079 stars belonging to the main sequence, of which 8943 meet the requirements for our final sample.
range of stellar masses butis extremely localized in period space and therefore appears to be artificial, though its origin is not known. Figure 5 shows our final sample including the main-sequence cuts described in Section 2.3 in blue compared to the full main-sequencesample in the P / σ_{P} versus $\log _{10}\left(A / A_{3}\right)$ plane.

We have chosen these specific conditions with the goufl being conservative aboutselecting only the highest-quality period measurementsin order to highlight structure in the color-period diagramAs a result, many periodic signals are excluded from our finalsample because they do noteetthe condition $P / \sigma_{P}>15$. A less selective criteria could be used to obtain a much larger sample size for applications thedd not require such high precision, such as an analysis of the rotation period-metallicity relation reported by Amard etal. (2020). The exclusion of signals on the basis of P / σ_{P} affects the completeness of our sample most at long periohtsFigure 6 this means that the upper envelope of the rotation period-color distribution is not as well defined as it might appear in the plot, especially toward the fainter K and M dwarfs toward the righthand side of the plot.

3. Features in Period-Color Space

 color space for our finalsample.There are severabrominent Davenport\& Covey (2018) showed thathe gap is presenin features in this space, among them the aforementioned gap, thstellar populations out to 525 pc , beyond which the feature can upper edge of the envelope of rotation periods, the lower edge no longer be recovered due to the difficulty in recovering of the same envelopeand the overdensity of M dwarfs with rotation periods at large distances. Besides the tentative short rotation periods in the lower-right-hand cornerln this detection by Reinhold \& Hekker (2020)pur work represents section we focus on the gap and the overdensity of fast-rotatinghe first robust measuremenbf this feature outside of the M dwarfs. The upper edge of the envelope is not well measure Kepler data. In contrast to the Kepler data, the gap detected in our sample as it is largely determined by the exclusion of here appears wider and has more sharply defined boundaries rotation periods longer than 32 days, as well as by our cutoff inthan is seen in the Kepler sample.

Figure 6. Inferred rotation periods for the 8943 main-sequence K2 stars, plotted against GaiapGel®b. Left: scatter plot showing the measured periods. Right: the same rotation periods presented as a two-dimensional histogram in order to highlight the variations in the density of stars across period-color space.

The robustness ofour detection of this gap allows us to constrain new details of the featurdle use an edge-detection procedure based on the Canny edge-detectionalgorithm (Canny 1986) to find the edges of the period gap. The position of the gap edges at select values of $G-G_{R P}$ are given in Table 2. We then fit a parametric model to the gap edges as a function of color. We measure the locations of the gap edge in each campaign individually in order to verify the presence of the gap in each campaigive confirm that the gap properties do not appear to depend on the direction of the K2 pointing.
We begin by applying our edge-detection algorithm to the rotation period-color distribution for all campaigns combined. Our edge-detection algorithm isbased on the Canny edgedetection algorithm, which operates on a two-dimensional array. The Canny algorithm first applies a Sobel operator to the image, which produces an approximation to the gradientlt then identifies locamaxima and minima of the approximated gradient, which correspond to edges (points where the intensity of the image is changing mosquickly) in the original image. Our modification replaces the firsttep of applying the Sobel operator with the computation of a kernedradientestimator, allowing us to apply the algorithm directly to the distribution of stars in rotation period-color space, which is not possible to dospace.
directly with the Canny algorithm as it requires a two- We have estimated the locations of the gap edges in each dimensional image grid rather than a set of points in the plane. The kernelgradientestimator is defined to be the gradierof the kerneldensity estimator.The kernelgradientestimator is defined

$$
\begin{equation*}
\text { ■ } \left.f(x, y)=\frac{1}{n h} \stackrel{a}{a}_{i}^{n} \square K_{i} x h-1, y h 1\right), \tag{11}
\end{equation*}
$$

which is the gradient of the more widely known kernel density estimator. Kis the kernel function taken here to be a Gaussian centered at the coordinates of the ith data point, n is the numb of data points used to make the estimathes the width of the kernel, which we setto 0.04 , and (x, y) are the coordinate at which the kernel estimate is computed. We then apply the
second part of the Canny algorithm as implemented in scikit-image (van der Walt et al. 2014) to identify local maxima and minima of the kernegradientestimate.We take these local extrema to be the edges of the distribution. Figure 7 shows the output of this algorithm applied to our sample.
We parameterize the gap edges using a function of the form

$$
\begin{equation*}
P_{\text {upper }}=A\left(G-G_{R P}-x_{0}\right)+B\left(G-G_{R P}-x_{0}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

using the edges identified in the slice of color space given by

$$
\begin{equation*}
0.8<G-G_{R P}<1.05 . \tag{13}
\end{equation*}
$$

which corresponds to the stellar mass range

$$
\begin{equation*}
0.57 M_{\square}<M<0.7 \sigma M_{\square} . \tag{14}
\end{equation*}
$$

Equation (12) is taken from the gyrochronology model of Barnes(2003). Our decision to fit the gap edges with this equation is motivated by the observation thathe gap edges appearto have a similar trend to the gyrochrones from that work, but this choice is not meant to imply that the gap edges occur at constantage. The best-fit parametersare given in Table 1, and Figure 7 shows the best-fit models in period-color campaign individually in terms of their offset from the best-fit model for the full sampleBecause the sample sizes are small for some campaigns, we collapse the problem to one dimension rather than considering the fullwo-dimensionaberiod-color diagram.For each edge of the gap (upper and lower) in each campaign, we first subtract off the gap trend and then sum over color in the range of colors for which the best-fit edge model is valid:

$$
\begin{equation*}
0.8<G-G_{R P}<1.05 . \tag{15}
\end{equation*}
$$

This gives us the one-dimensionalperiod distribution in
 Treating each gap edge separatelywe apply the Gaussian kernel derivative estimator, which is the one-dimensional analog of Equation (11), to the period distribution. We then

Figure 7. Detected edges ofthe rotation period diagram using a modified version of the Canny edge-detection algorithm. Best-fit models to the gap edges are shown with blue dashed line $\overline{\text { she }}$ model used to fit the edges is given in Equation (12) and the best-fit parameters are in Table 1.

Table 1
Best-fit Parameters from Equation (12)

	A (days)	B (days)	x_{0}
Upper edge	68.2277	-43.7301	-0.0653
Lower edge	34.0405	-2.6183	0.3150

Table 2
Measured Gap Edges and Widths

$\mathrm{G}-\mathrm{G}_{\mathrm{RP}}$ (mag)	$\mathrm{P}_{\text {lower }}$ (days)	$\mathrm{P}_{\text {upper }}$ (days)	Gap Width (days)
0.80	15.20	17.97	2.771
0.85	15.92	19.90	3.98
0.90	17.97	22.26	4.29
0.95	19.54	24.89	5.35
1.00	20.66	28.61	7.95

identify the local maximum (in the case of the upper edge) or minimum (in the case of the lower edge) nearest the zerooffset point and take this to be an estimate of the location of th edge relative to the edges in Figure Figure 8 illustrates this procedure for Campaign 8.
Figure 9 shows the superimposed kernelensity estimates for each campaign, and Figure 10 shows the lower edge locations plotted against the upper edge locations for 16 of the 18 campaigns. We have excluded Campaigns 02, and 11, which have too few stars to make an accurate determination of with large $Q_{\text {max }}$ indicating stronger periodicitycluster in the the edge locations. The error bars are determined by bootstrapfast-rotating M dwarfs. These stars are, however, not limited to resampling from the full sample. We do not observe an obvioushis cluster and occur in lower densities across the full range of correlation between the upperand lower gap edges, which would indicate a shifting of the gap toward longer or shorter periods for some campaigns. There are a few outlier campaigns, with Campaign 18 being the most significant. Campaigns $4,8,10,13$, and 15 also deviate noticeably from atcorrelation between rotation period and Q $_{\text {Q }}$.

Figure 8. Histograms showing the distribution of rotation periods for stars in Campaign 8, in the color grange 0.8 反p -1.05 . The kernel density estimate is shown in black, and its derivative is shown in red. The locations determined for the gap edges are shown by the dashed vertical line. The left panel shows the upp gap edge and the periods are given as the difference between the observed rotation period and the trend of the upper gap edge. The right panel shows the same f lower gap edge.

Figure 9. Kernel density estimates for the 16 campaigns with $\mathrm{N}>20$ ofor stars with G - Gppin the range defined in Equation (15). The thick black curve is the kernel density estimate for all 16 campaigns combined.

4. Discussion

There has been much interest in, and discussion of, the origin of the rotation period gap, with several promising possible explanationshaving been put forward since its discovery (Reinhold et al. 2013; Davenport\& Covey 2018; Reinhold et al. 2019; Angus et al. 2020). We now consider these potential explanations in light of our new measurementsas well as taking into account recent work on the 2.7 Gyr cluster Ruprecht 147 by Curtis et al. (2020) and Gruner \& Barnes (2020), which crosses the rotation period gap.

McQuillan et al. (2014) and Davenport\& Covey (2018) propose that the gap may be an artifact of a recent (<500 Myr)
burst of star formation in either the solar neighborhood or in the direction of the Kepler field, which would have produced a population of young, fast-rotating stars that make up the lower branch of the observed bimodality.the single pointing of the Kepler mission admitted the possibility that this feature is confined to that field. Our sample hasthe benefit of K2's multiple pointings, which has allowed us to demonstrate that the bimodality is presentn all directions and is therefore not unique to the stellar population observed by Kepler. The uniquessibility remains that the bimodal star formation history

Figure 11. Period-color plots for the outliers identified in Figure 10. The dark purple points show the stars from the individual campaign, while the gray points are th full sample of 8943 stars. The locations of the K2 footprints on the sky for these campaigns is shown in Figure 12. The Praesepe sequence can be seen in Campa but it only appears to impacthe gap edge detection for Campaign 1\%s seen in Figure 10With the possible exception of Campaign 1 fhe gap appears to be respected by the subsamples for each campaign, which indicates to us that the outliers in Figure 10 are the result of stochastic variations within the sample and ar significant.

Figure 12. Positions of the campaigns shown in Figure 11 with Milky Way as seen by Gaia DR2 for reference. There is no obvious correlation between the directio of the K2 pointing and the change in shape or position of the gap for the outlier campaißgaskground image credit: ESA/Gaia/DPAC.

the hypothesis that the gap represents a feature at constant age. Indeed, as Curtis et al. (2020) note in their analysis of periods for Ruprecht 147 and other clusters, this gap crossing seems to occur at a roughly fixed Rossby number, rather than at a single fixed age,which agrees with our assessment.

Reinhold et al. $(2013,2019)$ suggestthat the gap is an artifact of the transition from spot-dominated to faculaedominated photospheres as stars adrethis explanation, the gap would result from a minimum in the detectability of rotation periods for stars athe point in this transition where neither spot- nor facula-induced variability is able to dominate the light curves of these stars. Our measurements of the gap do not rule out this explanation.To do this would require more work on the evolution of stellar activity over a range of ages and spectral types.

Our preferred explanation is thathe gap emerges from a period of accelerated spin-down immediately after the stalled spin-down noted by Curtis et al. (2020). This explanation was first put forth by McQuillan et al. (2013), but the hypothesis was dismissed in favorof the "two populations" hypothesis preferred by McQuillan et al. (2014) and Davenport \& Covey (2018).

In this scenario, a young star with its envelope initially Figure 13. Samples drawn from our GP model showing the effect of increasing lecoupled from its core would experience magnetic braking the quality factor, Q, on a light curve. All light curves have the same period anddecoupled from its core would experience magnetic braking, amplitude. We have set $\Delta Q=0$ for these simulations so that $Q=Q_{\text {max. }}$. A higher Q value means that the light curve shows stronger periodicity. In terms of stellar rotation, this likely indicates that surface features are stable foa longer period of time when Q is large.
reducing the spin of the envelope while the decoupled core would be allowed to continue its faster rotation. At a later time the core and envelope would begin to exchange angular momentum.At this point the transferof angularmomentum from the core to the envelope would slow or even hal\$pinsuggested by McQuillan et al. (2014) and Davenport \& Covey down by offsetting magnetic braking at the surface, resulting in (2018) might be isotropic. However, the position and shape of an overdensity of stars just below the period gap. The the gap revealed by our sample make this explanation untenableas the trend of the gap shows a sharper slope than the sequences associated with constarge populations from underdensity making up the gap itself could then be explained by a period of increased spin-down once thiscoupling is complete and before the star resumes ordinary Skumanich spinPraesepeand NGC 6811 (e.g., Curtis et al. 2019). It is down. This could be due to a temporary increase in magnetic interesting to note that the sequence of stars associated with thæetivity. Lanzafame \& Spada (2015) and Spada \& Lanzafame 2.7 Gyr cluster Ruprecht47 appears to cross the gap around (2020) have developed a spin-down modłaturing a mass-$G-G_{R P} \sim 0.7$. While caution should be exercised due to the dependentcore-envelope coupling timescale thateproduces fact that this sequence has a relatively smaller number of starsthe stalling behavior and has been applied to observations of than for the younger clusters and shows a large intrinsic scatteopen clusters. Curtis et al. (2020) found the stall in spin-down this apparent crossing of the gap lends further evidence againstorresponds to a track of roughly constantRossby number.

Figure 14. Left: sample in period-Gax space, showing that sinusoidal rotators (high-Q stars) cluster separately from the main population and preferentially occur at short rotation periods. Right: sample in period-color space with stars colored by the maximum quality fagetbthole stars with higher Rax values cluster in the fast-rotating M dwarfsthey also occur across all colorand hence across all stellar masses in our sample.

Figure 15. Clusters Praesepe, NGC 6811, and Ruprecht 147 superimposed on the distribution of field stars. For Praesepe, we use our own rotation measurements membership in the clustertaken from Douglas etal. (2019). Rotation periods forNGC 6811 are from Curtis et al. (2019) and for Ruprecht147 from Curtis et al. (2020).

Angus etal. (2020) suggesthat this mechanism may explain the period gap as a break between a "young" regime in which rotation periods increase with decreasing mass from an "old" regime in which rotation periods are nearly constan even decreasing with decreasing massith the gap representing a period of relatively fast spin evolution during the transition between these regimes. In Figure 15 we plot rotation measurements for seveniahportantclusters over the distribu-
other for low-mass stars but have diverged for stars more massive than about. $9 \mathrm{M}_{\mathrm{e}}$, suggesting thatower-mass stars have stalled in their angular momentum loss while higher-mass stars have continued to spin dowrBy the time we reach the age of Ruprecht147, spin-down has resumed for stars down to about $0.7 \mathrm{M}_{\mathrm{e}}$. The location of the gap in the rotation measurements for the K2 field stars coincides with the point at which the clusters transition from stalled spin-down atlow measurements for seveniahportantclusters over the distribu- which the clusters transition from stalled spin-down atlow
tion of K2 field stars to show the correspondence between the masses to resumed Skumanich spin-down adigher masses.
location of the gap in the field stars and the apparent stalling ofThis supports the notion that the gap represents a discontinuity spin-down in clusters. We use the open clusters Praesepe, between these two regimes of spin-down.

There is still much work to be done to determine whether core-envelope coupling and decoupling fully explain these age of approximately 1 Gyr (Agüeros et 2018 ; Curtis et al.
age, as clusters in this age range may cross the gap (similar touseful for identifying rotation signals in EVEREST light

Ruprecht147). On the theoreticalside, models of rotational evolution that can explain the period of rapid spin-down after the epoch of stalled spin-down and in doing so reproduce the shape and trend of the gap willbe importantfor testing this explanation. Another promising avenue of investigation may besignals.
the kinematic dating of field stars (Angus et a:020). Proper motion measurementsrom Gaia may provide us with the ability to estimate ages ofstellar populations by the vertical componentof their motion with respect to the galactic disk because stars become excited in this direction by dynamical interactions over time. This would allow for independent calibration of gyrochronologicalrelations, which may shed light on how stars evolve across the gap.

Finally, while the population of stars within the gap is small, it appears to be nonzerowhich opens up the possibility of targeted studies ofstars thatare currently crossing the gap. Detailed observations of individual stars in the gap or near the lower boundary of the gap may reveainteresting aspects of their activity and the processes that shepherd them across th span of the color-period diagram.

5. Conclusions

We have measured precise rotation periods for 8943 mainsequence K2 starsby GP regression. We perform MCMC simulations on each lighturve to obtain estimates of the GP hyperparametersand their uncertainties. We detect and measure the gap in the rotation period distribution and show that this feature appearsin all K2 campaigns and is thus unlikely to result from a peculiarity of the stellar populations observed by Kepler.We review severalexplanations forthe gap and argue that the most likely is that the gap results from stalled spin-down on the fast-rotating sequence for low-mass stars,followed by rapid evolution across the gap to the slowrotating sequenceThis evolution may be governed by timevariable core-envelope couplingwhich controls the rate of transfer of angular momentum from the core to the surface of the star.

In the future, TESS observations will provide a large sample of light curves for field stars. We expect that a similar distribution of rotation periods will be observed for this sample. Tyler A. Gordon© https://orcid.org/0000-0001-5253-1987 One key observation that TESS may enable is whether or not the gap extends to stars more massive than ~ 9.8. represents the space between two separate stellar populations different ages, then it should extend to higher mass stars, but the gap emerges from the physics of core-envelope coupling, then we may expect to observe a mass dependence fothe phenomenon.

Finally, one dimension that has been left out of this work is that of metallicity. Amard et al. (2020) report a metallicity dependenceon stellar rotation in Kepler, which may be detectable in our K2 sample as well. As the inner structure and the evolution of a star are known to be dependent on its chemicalcomposition,this dependence ofotation period on metallicity may help to illuminate the relationship between interior structure and spin-down. We leave the task of exploring this relationship to future work.

By making the full results of our MCMC simulations available to the community,we hope to make it possible for other researchers to make different choices about which peri to include and exclude.Machine-learning techniques such as convolutionalneuralnetworks or random forests may also be

This research was supported by the National Aeronautics and Space Administration (NASA) under grant number 80NSSC18K1660 issued through the NNH17ZDA001N Astrophysics Data Analysis Program (ADAP).
T.A.G. was supported by NSF grant AST-1907342

This work was facilitated through the use othe advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington.
J.R.A.D. acknowledges support from the DIRAC Institute in the Department of Astronomy at the University of Washington. The DIRAC Institute is supported through generous gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and sthe Washington Research Foundation.
This paper includes data collected by the Kepler mission and obtained from the MAST data archive at the Space Telescope Science Institute (STScl)Funding for the Kepler mission is provided by the NASA Science Mission Directorat 8 TScl is operated by the Association ofUniversities for Research in Astronomy,Inc., under NASA contract NAS 526555.

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/ gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/ dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

Software: Python, IPython (Pérez \& Granger 2007), NumPy (Oliphant 2007), Matplotlib (Hunter 2007) SciPy (Virtanen et al. 2020), Pandas (Wes McKinney 2010), Astropy (Astropy Collaboration etal. 2013), Exoplanet(Foreman-Mackey edl. 2019), Scikit-image (van der Walt et aRO14).
le
ORCID iDs James RA. DavenportD https://orcid.org/0000-0002-0637-835X
sRepth Angus \oplus https://orcid.org/0000-0003-4540-5661
iDaniel Foreman-Mackey https://orcid.org/0000-0002-9328-5652
Eric Agol © https://orcid.org/0000-0002-0802-9145
Kevin R. Covey© https://orcid.org/0000-0001-6914-7797
Marcel A. Agüeros® https://orcid.org/0000-0001-7077-3664
David Kipping © https://orcid.org/0000-0002-4365-7366

References

Agüeros,M. A., Bowsher,E. C., Bochanski,J. J., et al. 2018,ApJ, 862, 33
Amard, L., Roquette,J., \& Matt, S. P. 2020, MNRAS, 499, 3481
Angus, R., Beane,A., Price-WhelanA. M., et al. 2020,AJ, 160, 90
Angus, R., Morton, T., Aigrain, S., Foreman-Mackey, D., \& Rajpaul, V. 2018, MNRAS, 474, 2094
Astropy Collaboration, Price-Whelan, A. M., SipH ocz, B. M., et al. 2018, AJ, 156, 123
Astropy Collaboration,Robitaille, T. P., Tollerud, E. J., et al. 2013, A\&A, 558, A33
Barclay,T., Endl, M., Huber,D., et al. 2015, ApJ, 800, 46
Barnes,S. A. 2003,ApJ, 586, 464

Borucki, W. J., Koch, D., Basri, G., et al. 2010, Sci, 327, 977
Bouvier, J. 2008, A\&A, 489, L53
Canny, J. 1986, ITPAM, PAMI-8, 679
ChakrabartyA., \& Sengupta,S. 2019, AJ, 158, 39
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102
Curtis, J. L., Agüeros, M. A., Douglas, S. T., \& Meibom, S. 2019, ApJ, 879, 49
Curtis, J. L., Agüeros,M. A., Matt, S. P., et al. 2020,ApJ, 904, 140
Davenport,J. R. A. 2017, ApJ, 835, 16
Davenport,J. R. A., \& Covey, K. R. 2018,ApJ, 868, 151
Dawson,R. I., Johnson,J. A., Fabrycky,D. C., et al. 2014, ApJ, 791, 89
Denissenkov, P. A., Pinsonneault, M., Terndrup, D. M., \& Newsham, G. 2010, ApJ, 716, 1269
Dotter, A. 2016,ApJS, 222, 8
Douglas, S. T., Agüeros, M. A., Covey, K. R., \& Kraus, A. 2017, ApJ, 842, 83
Douglas,S. T., Curtis, J. L., Agüeros,M. A., et al. 2019,ApJ, 879, 100
Durney, B. 1972, in Evidence for Changes in the AngularVelocity of the Surface Regionsof the Sun and Stars - Comments,ed. C. P. Sonett, P. J. Coleman,\& J. M. Wilcox, Vol. 308 (WashingtonDC: NASA), 282

Endal,A. S., \& Sofia, S. 1981,ApJ, 243, 625
Foreman-Mackey, D., Agol, E., Ambikasaran, S., \& Angus, R. 2017, celerite: Scalable 1D Gaussian Processes in C+Python, and Julia,Astrophysics Source Code Libraryascl:1709.008
Foreman-Mackey,D., Czekala, I., Luger, R., et al. 2019, dfm/exoplanet v0.2.3, doi:10.5281/zenodo. 1998447
Gaia CollaborationKatz, D., Antoja, T., et al. 2018,A\&A, 616, A11
Gallet, F., \& Bouvier, J. 2013, A\&A, 556, A36
Garraffo, C., Drake, J. J., Dotter, A., et al. 2018, ApJ, 862, 90
Gelman,A., \& Rubin, D. B. 1992, StaSc,7, 457
Gruner,D., \& Barnes, S. A. 2020,A\&A, 644, A16
Hunter, J. D. 2007, Computing In Science Engineering, 90
LanzafameA. C., \& Spada,F. 2015,A\&A, 584, A30
Luger, R., Kruse, E., Foreman-Mackey, D., Agol, E., \& Saunders, N. 2018, AJ, 156, 99

MacGregor,K. B., \& Brenner, M. 1991,ApJ, 376, 204
MacLeod,C. L., Ivezić, Ž., Kochanek,C. S., et al. 2010, ApJ, 721, 1014
McQuillan, A., Aigrain, S., \& Mazeh, T. 2013, MNRAS, 432, 1203
McQuillan, A., Mazeh,T., \& Aigrain, S. 2014,ApJS,211, 24
Meibom, S., Barnes,S. A., Latham,D. W., et al. 2011,ApJL, 733, L9
9 Morin, J., Donati, J. F., Petit, P., et al. 2010, MNRAS, 407, 2269
Newton, E. R., Irwin, J., CharbonneauD., et al. 2016, ApJ, 821, 93
Nielsen,M. B., Gizon, L., Schunker,H., \& Karoff, C. 2013,A\&A, 557, L10
Oliphant, T. E. 2007, CSE, 9, 10
Paxton,B., Bildsten,L., Dotter, A., et al. 2011,ApJS, 192, 3
Paxton,B., Cantiello,M., Arras, P., et al. 2013,ApJS, 208, 4
Paxton,B., Marchant,P., Schwab,J., et al. 2015,ApJS, 220, 15
Pérez,F., \& Granger,B. E. 2007, CSE, 9, 21
Rasmussen, C. E., \& Williams, C. K. I. 2006, Gaussian Processes for Machine Learning (CambridgeMA: MIT Press)
Rebull, L. M., Stauffer,J. R., Bouvier, J., et al. 2016,AJ, 152, 113
Rebull, L. M., Stauffer,J. R., Cody, A. M., et al. 2018, AJ, 155, 196
Reinhold,T., Bell, K. J., Kuszlewicz, J., Hekker, S., \& Shapiro, A. I. 2019, A\&A, 621, A21
Reinhold,T., \& Hekker, S. 2020,A\&A, 635, A43
Reinhold,T., Reiners,A., \& Basri, G. 2013,A\&A, 560, A4
Salvatier, J., Wiecki, T. V., \& Fonnesbeck, C. 2016, PeerJ Computer Science, 2, e55
SkumanichA. 1972,ApJ, 171, 565
Somers,G., \& Pinsonneault,M. H. 2016, ApJ, 829, 32
Spada,F., \& Lanzafame,A. C. 2020,A\&A, 636, A76
van der Walt, S., SchönbergerJ. L., Nunez-Iglesias」., et al. 2014, PeerJ, 2, e453
van Saders.J. L., PinsonneaultM. H., \& Barbieri, M. 2019, ApJ, 872, 128
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Method., 17, 261

