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Abstract
We analyze light curves of 284,834 unique K2 targets using a Gaussian process model with a quasi-periodic kernel
function. By cross-matching K2 stars to observations from Gaia Data Release 2, we have identified 69,627 likely
main-sequence stars.From these we select a subsample of 8977 stars on the main sequence with highly precise
rotation period measurements.With this sample we recover the gap in the rotation period−color diagram first
reported by McQuillan et al. While the gap was tentatively detected in Reinhold & Hekker, this work represents the
first robust detection of the gap in K2 data for field stars. This is significant because K2 observed along many lines
of sight at wide angular separation,in contrastto Kepler’s single line of sight.Together with recentresults for
rotation in open clusters,we interpret this gap as evidence for a departure from the t−1/2 Skumanich spin-down
law, rather than an indication of a bimodal star formation history. We provide maximum likelihood estimates and
uncertainties for all parameters of the quasi-periodic light-curve model for each of the 284,834 stars in our sample.
Unified Astronomy Thesaurus concepts: Stellar properties (1624); Stellar rotation (1629); K dwarf stars (876); G
dwarf stars (556); Gaussian Processes regression (1930); Star clusters (1567); Stellar astronomy (1583); Stellar
ages (1581)

1. introduction
Stellar rotation is a key physical property for understanding

individual stars as wellas stellar populations.Rotation drives
the stellar dynamo that produces surface magnetic fields. These
magnetic fields in turn give rise to stellar activity (e.g., starspots
and flares). The rotation period (Prot) of a star is tied to its age
through magnetic braking, which slows the star’s rotation over
time (Durney 1972;Skumanich 1972).Age is a fundamental
stellar parameter but is difficult to determine from the position
of a star on a color–magnitude diagram, especially for stars on
the main sequence.Any information we can extractabout the
age of a star from its rotation period is therefore very valuable.
This is the subject of gyrochronology, which seeks to measure
stellar ages by observing the star’s rate of rotation (Barnes
2003).

The Kepler mission (Borucki et al. 2010) revolutionized the
study of stellar rotation by producing high-precision light
curves for hundreds ofthousands ofstars,from which over
34,000 rotation periods have been inferred (Nielsen et al. 2013;
McQuillan et al. 2014). The distribution of rotation periods
measured by McQuillan etal. (2013) showed an unexpected
bimodality in the field M dwarfs, which was found to extend to
K dwarfs by McQuillan et al. (2014). This bimodality was
recovered in G dwarfs by Davenport& Covey (2018), who
used Gaia astrometry to limittheir analysis to main-sequence
stars with well-determined Gaia photometric solutions, remov-
ing contamination by subgiants.

Severalexplanations have been putforward to explain this
bimodal period distribution.Davenport& Covey (2018) and
McQuillan et al. (2013, 2014) suggest that the bimodality may
be the result of a bimodal star formation history, with a recent
burstof star formation accounting for the fast-rotating branch
of the bimodality and an older population of stars forming the

slow-rotating branch.Reinhold etal. (2019) propose thatthe
gap between modalities may representa minimum in detect-
ability of rotation periods due to the transition from spot-
dominated to faculae-dominated stellar activity.

A third possibility, to be discussedin more detail in
Section 4, is that the gap results directly from the spin evolution
of G, K, and M dwarfs. An epoch of stalled spin-down
followed by a period of rapid angular momentum loss before
the resumption of Skumanich spin-down may be able to
explain such a feature.To date, rotation periods from open
clusters have provided the most compelling evidence that
modified spin evolution is indeed the cause of the gap.These
fixed-age populations have shown that rotation periods for low-
mass stars break from the expected Skumanich spin-down
model, such as the cluster of rotation periods at Prot ≈ 10 days
found in the 1 Gyr old cluster NGC 6811 by Meibom et al.
(2011). Similar deviations from the traditional Skumanich spin-
down profile have been seen in, e.g., Praesepe at650 Myr
(Douglas et al. 2017) and NGC 752 at 1.3 Gyr (Agüeros et al.
2018). Curtis et al. (2019) note in their analysis of NGC 6811
that the stall in spin-down appears to be mass and age
dependent.Further, Curtis et al. (2020) show compelling
evidence that this deviation from Skumanich spin-down indeed
corresponds to the gap in field rotation periods, with individual
cluster sequences “crossing” the rotation period gap.

This scenario may be explained in terms of time-variable and
mass-dependentrotational coupling between the core and
envelope of the star (Spada & Lanzafame 2020).Magnetic
braking slows the rotation of the convective envelopes of stars.
However, if the core and envelope are only weakly coupled, the
stellar core may continue to spin rapidly even as the envelope
slows down. A decoupled core and envelope with reduced
angular momentum exchangeis expected for young stars
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(Endal & Sofia 1981; MacGregor& Brenner 1991; Bouvier
2008; Denissenkovet al. 2010; Gallet & Bouvier 2013;
Lanzafame & Spada 2015; Somers& Pinsonneault 2016).
After a period of time, which appears to depend on stellar mass,
the core and the envelope begin exchanging angular momen-
tum. When angular momentum transport is happening
efficiently, the core’s angular momentum transferred to the
envelope would offset magnetic braking, allowing the envelope
to maintain a constant rotation period. After the core and
envelope have coupled and the star rotates as a solid body, the
star would resume spinning down. This process would result in
a departure from the Skumanich spin-down law (Skumanich
1972), which prescribesa smooth spin-down over time
following the relation

µ -P t , 1rot
1 2 ( )

where Prot is the stellar rotation period as a function of the age
of a star, t. This scenario may explain the convergence of
cluster sequences below the gap.Explaining the underdensity
within the gap requires us to posit an additional stage in stellar
spin evolution consisting of a period of accelerated spin-down
immediately after the epoch of stalled spin-down and before the
resumption of Skumanich spin-down (Curtis et al. 2020). This
accelerated spin-down is not predicted by the coupling scenario
presented here,and its explanation will likely require further
theoretical work.

The Kepler data alone gives us a limited ability to explore
these varioushypothesesdue to its single pointing, which
admits the possibility that the bimodality is unique to the
Kepler field. In contrast,K2 observed the sky in 18 separate
campaigns, each having different lines of sight (save for a few
overlapping campaigns). As van Saders et al. (2019) note, if the
Kepler line of sight happened to pointdirectly through a late
burst of star formation, thereby accounting for the fast-rotating
branch of the bimodal period distribution, we would not expect
this feature to be visible in all 18 K2 campaigns.

In this work, we measure and report probabilistic constraints
on periodic signals for 284,834 K2 stars from all 18 campaigns
and analyze a subset of 8943 highly accurate rotation periods.
For those stars appearing in multiple campaigns,we run our
analysis separately for each light curve. We use a modification
of the Gaussian Process (GP) regression method described in
Angus etal. (2018) to measure periodic signals.We find that
the bimodality is visible in all K2 campaigns,lending support
to the idea that the feature is related to stellar physics rather
than being a productof the star formation history within the
Kepler field.

2. Measuring Rotation Periods
We begin by describing the model that we use to infer

probabilistic rotation periods from the EVEREST lightcurves
(Luger et al. 2018). Stellar magnetic activity induces starspots and
faculae on the star’s surface. As the star rotates, these features are
carried into and out of view, introducing periodicity into the light
curve. If the starspots and faculae were static over time, we would
observe a perfect periodicity,with the star returning to the same
luminosity once every period. However, starspots and faculae are
not static but rather evolve over time, emerging, changing shape,
and disappearing as the star’s rotation brings them into and out of
view. As a result, the light curves do not display perfectly periodic
variations but rather a quasi-periodic variability with the shape and

amplitude of the variability changing from period to period. This
means that inferring rotation periods using straightforward
sinusoidal variability models does not give good results. Instead,
non-inference-based methods such as autocorrelation functions
(ACFs;McQuillan etal. 2013),or Lomb-Scargle periodograms
(Reinhold et al.2013) can be employed.An alternative to these
non-inference methods is to use a stochastic variability model
such as a GP (Angus et al. 2018). In this work, we use the ACF to
derive a multimodal“prior” over the period. We then use a
Markov chain Monte Carlo (MCMC) method to estimate
posteriors for the parameters of the quasi-periodic GP variability
model defined in Section 2.2. The use of quotation marks around
the word “prior” references the fact that this is not technically a
Bayesian prior because itdoes notstrictly depend on our prior
beliefs about the period distribution. We explain this further and
describe the effect that this has on our analysis in the next section.

2.1. Autocorrelation Function Analysis
We use long-cadence K2 EVEREST light curves from Luger

et al. (2018) as the starting point for our analysis.We use the
cotrending basis-vector-corrected flux (keyword FCOR in the
EVEREST FITS files),which removes systematic trends from
the raw light curves.To further remove long-term trends,we
subtract a third-order polynomial from each light curve before
computing the ACF. This has the effect of flattening the overall
decay of the ACF atshort time lags,improving our ability to
detect the rotation period from the ACF peak. We note that the
third-order polynomialmay overfitand remove some rotation
signals for the slowestrotators in our sample.This primarily
affects rotation periods longer than about 25 days, which does
not interfere with our detection or analysis of the period gap in
Section 3.In our initial experiments,we found that a second-
order polynomialdid not sufficiently flatten the decay of the
ACF, and higher-order polynomials were too likely to overfit
the rotation signal. We remove outliers from our light curves by
masking allflux observations greater than 3σ from a running
median with a kernel width of five K2 long cadences.

After preprocessing the lightcurve as described above,we
compute the ACF for each lightcurve using the implementa-
tion provided in exoplanet, which wraps the astropy
ACF function (Astropy Collaboration et al. 2018; Foreman-
Mackey et al. 2019). We smooth the ACF with a Gaussian filter
with a kernel width of 0.5 days.We then use the smoothed
ACF to constructa unique multimodalperiod “prior,” which
we find aids in convergence during the MCMC step. We place
“prior” in quotes because, strictly speaking, a prior should only
reflect our prior beliefs about the period distribution rather than
depending on the data itself. The distribution we derive here is
not technically a prior although we use it as such. Because we
are building our “prior” from the same data thatwe use to fit
the GP, we risk underestimating the uncertainty on the period.
Because our analysis focuses on point estimates of the period
rather than the fullposterior,we elected to acceptthis risk in
exchange for the benefit of recovering more rotation periods.

Our prior is a Gaussian mixture with 3N components, where
N is given by

=
> > <

> 
N

N N

N
p 0.01 p 0.01 10

10 p 0.01 10, 2peaks peaks

peaks

⎧
⎨⎩

( ) ( )
( ) ( )

where Npeaks(p) is an integer corresponding to the number of
peaks in the ACF with topographical prominence greater than
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p. The topographicalprominence is computed with respectto
the adjacent ACF minima, by scipyʼs signal library
(Virtanen et al. 2020). We take each of these peaks to represent
a candidate period, recognizing that for a well-defined periodic
signal there will be multiple peaks corresponding to the same
period.

The factor of 3 in 3N arises from our inclusion of candidate
periods at τi/2 and 2τi, where τi is the lag of the ith peak so that
for each peak we have three candidate periods.The weight of
the component of the Gaussian mixture prior corresponding to
each peak is given by

=w h p , 3i i i ( )

where hi is the height of the peak and is the same for the
candidate periods at τi/2 and 2τi as for the candidate period at
τ i itself. The standard deviation of each Gaussian component,
σi, is given by the width of the peak at half of the peak height.
This means thatthe width of the Gaussian componentof the
prior is wider by a factor of approximately 2.35 than the
standard deviation of the Gaussian equivalent to the ACF peak.

The standard deviation associated with the candidate period at
τ i is also used for the candidate periods at 2τi and τi/2. In the
case where no peaks are detected in the ACF,we adopt a
uniform prior over the range P = (0,ΔT/2), where ΔT is the
total duration of the light curve.

The choices we made in computing wi and σi are motivated
by the logic that a higher peak should be given more weight in
the mixture than a lower peak and thatthe componentin the
mixture should have a smaller standard deviation if the peak in
the ACF is sharper,reflecting the smalleruncertainty on the
corresponding period.We also aim to construct a prior that is
informative but that does not prohibit the MCMC from
exploring periods notidentified as period candidates by our
algorithm. As can be seen in Figure 1,the period priors we
constructtend to have wide regions of high probability and
therefore limited influence over our point estimatesof the
rotation period.

2.2. Gaussian Processes and MCMC Analysis
A GP can be thought of as a distribution from which we may

draw random functions with a given covariance structure. They

Figure 1. Sample output from our period detection procedure for three K2 stars with well-determined rotation periods. The top row of panels shows the cotrending
basis-vector-detrended EVEREST flux. The second row shows the period prior and MCMC-estimated posterior. The third row shows the autocorrelation function, and
the bottom row shows the light curve folded on the mean of the posterior for the period. For visibility of the prior, both the prior and posterior are normalized such that
their maximum probability is 1.
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are commonly used in astrophysicsto model stochastic
variability in light curves (see Dawson etal. 2014, Barclay
et al. 2015, and Chakrabarty & Sengupta 2019 for examples
from studies of transiting exoplanets and MacLeod et al. 2010
for an example in which a GP is used to model AGN
variability). A GP can be split into two components:a kernel
function k(τ) that describes the covariance of the functions in
the distribution and a mean function μ(t).The kernel function
defines the covariance matrix of a multidimensionalGaussian
distribution by specifying the covariance between every pair of
flux measurements.The covariance matrix is given by

t=K k , 4i j i j, ,( ) ( )

where τ i,j = |t i − t j| is the absolute value of the separation
between times ti and tj and Ki,j is the ith, jth entry of the
covariance matrix K.

The log of the likelihood function of the GP is given by

m m p= - - - - -- y yK K
N

ln 1
2

1
2

lndet
2

ln 2 ,

5

T 1( ) ( ) ( ) ( )

( )

where y is a vector of observations and μ is a mean vector with
the same length as y. Both the kernel and mean are parameterized
by a set of hyperparameters.GP regression is the process of
finding the hyperparameters thatmaximize the GP’s likelihood
with respect to a set of observations. For a more detailed primer
on GP in astronomy, see Foreman-Mackey et al. (2017), or, for a
more complete resource on GP across fields, we refer the reader to
Rasmussen & Williams (2006).

To construct a GP stellar rotation model,we take the mean
function of the GP to be constant and allow the kernel function
to model the correlated variability introduced into the star’s
light curve by spots and faculae as they rotate in and outof
view and evolve over time. Our GP model has three terms:
two quasi-periodic terms to capture the rotationally induced
variability and one that is aperiodic to capture any leftover
variability originating from other astrophysicalsourcesor
instrumental effects. The power spectrum of each term is given
by

w
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w
w w  w w
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For the periodic terms,we follow Foreman-Mackey etal.
(2017) in setting
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where Q is the quality factor,ΔQ specifies the offsetin the
quality factor between the two oscillators, P is the period of the
oscillator,σ2 is the variance of the oscillation,and f specifies

the fractionalcontribution of the oscillator atthe half period
P/2 compared to the oscillator at the full period. For the
aperiodic term we set

=Q 1 2 , 83 ( )

while ω3 and S3 are free parameters. Setting=Q 1 23 means
that the third oscillator is critically damped and will not
display periodic oscillations. For this term the power spectrum
simplifies to

w
p  w w

=
+

S
S2

1
. 93

3

3
4( )

( )
( )

The full variability model including both the quasi-periodic
and aperiodic terms has the power spectrum

åw w=S S . 10
i

i

3
( ) ( ) ( )

To compute the GP model we use the celerite GP
method (Foreman-Mackey etal. 2017) as implemented in
exoplanet (Foreman-Mackey et al. 2019). We maximize the
GP likelihood with respect to the EVEREST cotrending basis-
vector-detrended flux for the parameters {P,Q, ΔQ, A, f, S3,
ω3}. We then use the maximum likelihood solution as a starting
point for our MCMC analysis. We use uninformative priors for
all GP hyperparameters exceptthe period, for which we use
the multimodal Gaussian mixture priordescribed previously.
We use the NUTS sampler provided by PyMC3 (Salvatier et al.
2016) to run 1000 tuning samples followed by 500 production
samples on each of 28 cores for a totalof 28,000 tuning and
14,000 production samples.We have found that a relatively
large number of tuning samples is helpful for achieving
convergence when using a multimodal period prior in order to
allow the sampler to fully explore the multimodallikelihood
space.

In Figure 2 we show the variation in the binned mean of the
period P, maximum quality factor =Q Q Qmax ,max 1 2( ), the
logarithm of the ratio between the periodic and aperiodic
components of the model,and the logarithm of the fractional
uncertainty in rotation period.

2.3. Selecting Main-sequence Stars
We begin by making selections based on the quality of the

Gaia DR2 photometric solutions (Gaia Collaboration et al.
2018).We require that the following conditions be met:

1. σ(G)/G < 0.01
2. σ(GRP)/G RP< 0.01,

where G and GRP refer to the passbands used in Gaia DR1
and DR2.

In order to reduce contamination from giants, subgiants, and
unresolved binary stars, we require that stars in our sample be
on or near the main sequence, as defined by a MIST isochrone
(Paxton et al. 2011, 2013, 2015; Choi et al. 2016; Dotter 2016)
with an age of 200 Myr and a metallicity of [Fe/H] = +0.25,
to identify the nominal main sequence,and we select stars
within 0.3 mag below and 0.9 mag above the isochrone,as
shown in Figure 3. This wide slice of magnitude space allows
us to encompass different ages and metallicities while reducing
contamination from the giant and subgiant branches.The cost
of selecting such a wide slice is thatwe likely incorporate a
significant number of unresolved binaries into our final sample,

4
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which will add some amountof contamination.We find this
acceptable because we do not expect this contamination to have
a systematic influence on the overall shape of the period–color
diagram.

It should be emphasized that we made no attempt to choose
an isochrone that represents the actual main sequence for stars
in our sample,which would be infeasible because the K2
sample contains stars with a wide range of ages and
metallicities.The choice of [Fe/H] = +0.25 was made on the
basis that this isochrone does an adequate job of matching the
trend of the main sequence.We have found that the exact
choice of age and metallicity does not have a significant impact
on our results, so long as the isochrone and the width of the box
in MG selects a sufficient number of stars for our edge finding
algorithm to perform well.Our final sample consists of 8943
stars near the main sequence, passing our Gaia photometry cuts
and possessing well-determined periodicity.

2.4. Vetting Rotation Periods
We select a final sample of well-measured rotators from the

main-sequencesample based on MCMC convergence and

period measurementprecision.For inclusion of a star in our
final sample,we require the following conditions be met:

1. P/σP > 15
2. > -A Alog 310 3( )
3. < <R0.9 1.1Pˆ ,

where P is the measured period,σP is the error on the period
derived from MCMC, A is the variance of the periodic GP
component (the amplitude iss = A, and A3 = S3ω3Q3 is the
amplitude of the aperiodic GP component;RPˆ is the Gelman-
Rubin statistic,Gelman & Rubin 1992),which compares the
variance of samples for an individual parameter (in this case the
period,P) within a chain to the variance between chains.For
chains thathave converged to the same solution,these values
will be approximately the same, and their ratio,R̂, will be close
to 1. The cutoff on A Alog10 3( ) is meantto exclude stars for
which the periodic componentis very small compared to the
nonperiodic variability on the basis thatthese stars are more
likely to be showing periodicity due to contamination or
systematics, rather than rotation. We find that when we do not
include this cutoff,a pileup of stars at a period of around two
days is observed.This pileup, as shown in Figure 4,spans a

Figure 2. Selected hyperparameters plotted over the Gaia color–magnitude diagram. For each plot the color in a bin indicates the mean of the quantity given in the
upper-right-hand corner of the plot and the scattered points are colored by that quantity in regions where the density of stars is low. Upper left: rotation period. Upper
right: log of the ratio between the periodic variance, A, and the variance of the aperiodic component, A3. Lower left: log of the fractional uncertainty for the inferred
period.Lower right: log of the mean quality factor,Qmax, with larger Qmax indicating stronger periodicity.
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range of stellar masses butis extremely localized in period
space and therefore appears to be artificial, though its origin is
not known. Figure 5 shows our final sample including the
main-sequence cuts described in Section 2.3 in blue compared
to the full main-sequencesample in the P/σP versus

A Alog10 3( ) plane.
We have chosen these specific conditions with the goalof

being conservative aboutselecting only the highest-quality
period measurementsin order to highlight structure in the
color–period diagram.As a result, many periodic signals are
excluded from our finalsample because they do notmeetthe
condition P/σP > 15. A less selective criteria could be used to
obtain a much larger sample size for applications thatdo not
require such high precision, such as an analysis of the rotation
period–metallicity relation reported by Amard etal. (2020).
The exclusion of signals on the basis of P/σP affects the
completeness of our sample most at long periods.In Figure 6
this means that the upper envelope of the rotation period–color
distribution is not as well defined as it might appear in the plot,
especially toward the fainter K and M dwarfs toward the right-
hand side of the plot.

3. Features in Period–Color Space
Figure 6 shows the distribution of rotation periods in period–

color space for our finalsample.There are severalprominent
features in this space, among them the aforementioned gap, the
upper edge of the envelope of rotation periods, the lower edge
of the same envelope,and the overdensity of M dwarfs with
short rotation periods in the lower-right-hand corner.In this
section we focus on the gap and the overdensity of fast-rotating
M dwarfs. The upper edge of the envelope is not well measured
in our sample as it is largely determined by the exclusion of
rotation periods longer than 32 days, as well as by our cutoff in

the precision of the rotation period measurement,which
preferentially excludes slow rotators.

3.1. The Period Gap
The gap in rotation periods extendsfrom ∼15 days at

G − GRP= 0.75 to ∼25 days at G − GRP= 1.1. This gap has
been extensively studied in the Kepler data, first by McQuillan
et al. (2013) for M dwarfs in the Kepler sample. In McQuillan
et al. (2014) the same feature was found in Kepler K dwarfs.
Davenport(2017) identified the gap for the G dwarfs, and
Davenport& Covey (2018) showed thatthe gap is presentin
stellar populations out to 525 pc, beyond which the feature can
no longer be recovered due to the difficulty in recovering
rotation periods at large distances.Besides the tentative
detection by Reinhold & Hekker (2020),our work represents
the first robust measurementof this feature outside of the
Kepler data.In contrast to the Kepler data, the gap detected
here appears wider and has more sharply defined boundaries
than is seen in the Kepler sample.

Figure 3. K2 stars on the Gaia color–magnitude diagram.The boxed region
shows the area selected as the main sequence in order to exclude, e.g., evolved
stars and unresolved binaries from ourfinal sample.The main sequence is
defined by a MIST isochrone with an age of 109 yr and [Fe/H] = +0.5. We
identify 123,079 stars belonging to the main sequence, of which 8943 meet the
requirements for our final sample.

Figure 4. A segment of the period–color diagram showing the presumed
artificial pileup at a period of two days. Points are colored by A/A 3, the
amplitude of the periodic componentof the GP relative to the aperiodic
component. Stars in the pileup are notable for having a very small value for this
ratio relative to the restof the stars in the sample,allowing us to effectively
remove this feature by imposing a cutoff in A/A3 for our final sample.

Figure 5. Main-sequence stars plotted in the P/σP vs. A Alog 3( ) plane.The
full main-sequence sample is shown with the grayed-out area representing the
region excluded by the cuts detailed in Section 2.4. Our final sample consists of
stars in the highlighted region.
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The robustness ofour detection of this gap allows us to
constrain new details of the feature.We use an edge-detection
procedure based on the Canny edge-detectionalgorithm
(Canny 1986) to find the edges of the period gap. The position
of the gap edges at select values of G−GRP are given in
Table 2. We then fit a parametric model to the gap edges as a
function of color. We measure the locations of the gap edge in
each campaign individually in order to verify the presence of
the gap in each campaign.We confirm that the gap properties
do not appear to depend on the direction of the K2 pointing.

We begin by applying our edge-detection algorithm to the
rotation period–color distribution for all campaigns combined.
Our edge-detection algorithm isbased on the Canny edge-
detection algorithm, which operates on a two-dimensional
array. The Canny algorithm first applies a Sobel operator to the
image, which produces an approximation to the gradient.It
then identifies localmaxima and minima of the approximated
gradient, which correspond to edges (points where the intensity
of the image is changing mostquickly) in the original image.
Our modification replaces the firststep of applying the Sobel
operator with the computation of a kernelgradientestimator,
allowing us to apply the algorithm directly to the distribution of
stars in rotation period–color space, which is not possible to do
directly with the Canny algorithm as it requires a two-
dimensional image grid rather than a set of points in the plane.
The kernelgradientestimator is defined to be the gradientof
the kerneldensity estimator.The kernelgradientestimator is
defined

å =  - -f x y
nh

K xh yh, 1 , , 11
i

n

i 1 1ˆ ( ) ( ) ( )

which is the gradient of the more widely known kernel density
estimator. Ki is the kernel function taken here to be a Gaussian
centered at the coordinates of the ith data point, n is the number
of data points used to make the estimate,h is the width of the
kernel,which we set to 0.04, and (x, y) are the coordinate at
which the kernel estimate is computed.We then apply the

second part of the Canny algorithm as implemented in
scikit-image (van der Walt et al. 2014) to identify local
maxima and minima of the kernelgradientestimate.We take
these local extrema to be the edges of the distribution. Figure 7
shows the output of this algorithm applied to our sample.

We parameterize the gap edges using a function of the form

= - - + - -P A G G x B G G x 12upper RP 0 RP 0
1 2( ) ( ) ( )

using the edges identified in the slice of color space given by
< - <G G0.8 1.05. 13RP ( )

which corresponds to the stellar mass range
< <M M M0.57 0.76 . 14( ) 

Equation (12) is taken from the gyrochronology model of
Barnes(2003). Our decision to fit the gap edgeswith this
equation is motivated by the observation thatthe gap edges
appearto have a similar trend to the gyrochrones from that
work, but this choice is not meant to imply that the gap edges
occur at constantage. The best-fit parametersare given in
Table 1, and Figure 7 shows the best-fit models in period–color
space.

We have estimated the locations of the gap edges in each
campaign individually in terms of their offset from the best-fit
model for the full sample.Because the sample sizes are small
for some campaigns, we collapse the problem to one dimension
rather than considering the fulltwo-dimensionalperiod–color
diagram.For each edge of the gap (upper and lower) in each
campaign, we first subtract off the gap trend and then sum over
color in the range of colors for which the best-fit edge model is
valid:

< - <G G0.8 1.05. 15RP ( )
This gives us the one-dimensionalperiod distribution in

terms of the offset from the edge locations defined in Table 1.
Treating each gap edge separately,we apply the Gaussian
kernel derivative estimator, which is the one-dimensional
analog of Equation (11),to the period distribution. We then

Figure 6. Inferred rotation periods for the 8943 main-sequence K2 stars, plotted against Gaia G − GRP color. Left: scatter plot showing the measured periods. Right:
the same rotation periods presented as a two-dimensional histogram in order to highlight the variations in the density of stars across period–color space.
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identify the local maximum (in the case of the upper edge) or
minimum (in the case of the lower edge) nearestto the zero-
offset point and take this to be an estimate of the location of the
edge relative to the edges in Figure 7.Figure 8 illustrates this
procedure for Campaign 8.

Figure 9 shows the superimposed kerneldensity estimates
for each campaign,and Figure 10 shows the lower edge
locations plotted against the upper edge locations for 16 of the
18 campaigns.We have excluded Campaigns 0,2, and 11,
which have too few stars to make an accurate determination of
the edge locations. The error bars are determined by bootstrap
resampling from the full sample. We do not observe an obvious
correlation between the upperand lower gap edges,which
would indicate a shifting of the gap toward longer or shorter
periods for some campaigns. There are a few outlier
campaigns,with Campaign 18 being the most significant.
Campaigns 4, 8, 10, 13, and 15 also deviate noticeably from at

least one of the measured gap edgesfor the all-campaign
sample.In Figure 11 we show the period–color diagrams for
these outliers. We note that Campaigns 5 and 18 observed the
Praesepe cluster,which imprints a visible sequence of stars
corresponding to a 600–700 Myr gyrochrone onto the diagram.
This does not appearto influence the gap measurementfor
Campaign 5, but for Campaign 18 the Praesepe cluster is likely
responsible for the displacement of the lower gap edge from the
expected position. For the rest of the outliers we do not see any
obvious evidence of a systematic displacement in the gap edges
from the locations derived from the all-campaign data.In
generalwe do not find the outliers to be significant,and we
conclude that the rotation period gap shows no dependence on
the direction of the K2 pointing.

To further illustrate this point, Figure 12 shows the locations
of the K2 footprints for these outlying campaigns on the sky
relative to the restof the campaigns.We note thatthe outlier
campaigns are in generalwidely separated on the sky,appear
both above and below the galactic plane, and show no evidence
of clumping. We therefore state our conclusion that the rotation
period gap appears to be an isotropic feature of the stellar
populations in the nearby Milky Way.

3.2. Other Features in the Rotation Period–Color Diagram
In addition to the prominentperiod gap,a major feature of

the period–color distribution seen here is the overdensity in the
bottom-left corner, which representsa population of fast-
rotating M dwarfs.This population has been studied in young
open clusters(Rebull et al. 2016, 2018) as well as in the
MEarth sample (Newton etal. 2016).The break between the
slow-rotating M dwarfs for which the rotation period increases
with decreasing mass, and the fast-rotating sequence for which
the rotation period decreases with decreasing mass occurs at
approximately the mass at which M dwarfs becomefully
convective and corresponds to a change in the morphology of
the surface magnetic field from a more complex toward a more
simple configuration (Morin et al. 2010; Garraffo et al. 2018).

We find that the light curves of these fast-rotating M dwarfs
show rotational modulation that is more periodic than those of
the other stars in our sample.For our GP rotation model,the
degree to which a light curve shows periodic variations is
measured by the parameters Q1 and Q2 in Equation (7). Larger
values of Q1 and Q2 mean that the power spectrum of the
variability is more sharply peaked aboutω1 and ω2. In this
analysis we consider the maximum of (Q1, Q2), which we call
Qmax. Figure 13 demonstrates how this parameter affects the
appearance of the light curve. We interpret a larger Qmax value
to indicate that features on the star’s surface are stable over a
longer period of time, giving rise to variations that are coherent
across many periods.

The right panel of Figure 14 shows how Qmax varies across
the period–colordiagram.From this figure we see thatstars
with large Qmax, indicating stronger periodicity,cluster in the
fast-rotating M dwarfs. These stars are, however, not limited to
this cluster and occur in lower densities across the full range of
G − GRP at short rotation periods.The left panel of Figure 14
shows our sample in period–Qmax space with stars colored by
their G − GRP color. In this space we observe a distinct
population of strongly periodic rotators with a negative
correlation between rotation period and Qmax.

Figure 7. Detected edges ofthe rotation period diagram using a modified
version of the Canny edge-detection algorithm. Best-fit models to the gap edges
are shown with blue dashed lines.The model used to fit the edges is given in
Equation (12) and the best-fit parameters are in Table 1.

Table 1
Best-fit Parameters from Equation (12)

A (days) B (days) x0

Upper edge 68.2277 −43.7301 −0.0653
Lower edge 34.0405 −2.6183 0.3150

Table 2
Measured Gap Edges and Widths

G − GRP (mag) Plower (days) Pupper (days) Gap Width (days)

0.80 15.20 17.97 2.771
0.85 15.92 19.90 3.98
0.90 17.97 22.26 4.29
0.95 19.54 24.89 5.35
1.00 20.66 28.61 7.95
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4. Discussion
There has been much interest in, and discussion of, the origin

of the rotation period gap, with several promising possible
explanationshaving been put forward since its discovery
(Reinhold et al. 2013; Davenport& Covey 2018; Reinhold
et al. 2019; Angus et al. 2020). We now consider these
potential explanations in light of our new measurements,as
well as taking into account recent work on the 2.7 Gyr cluster
Ruprecht147 by Curtis et al. (2020) and Gruner& Barnes
(2020),which crosses the rotation period gap.

McQuillan et al. (2014) and Davenport& Covey (2018)
propose that the gap may be an artifact of a recent (<500 Myr)

burst of star formation in either the solar neighborhood or in the
direction of the Kepler field, which would have produced a
population of young, fast-rotating stars that make up the lower
branch of the observed bimodality.The single pointing of the
Kepler mission admitted the possibility that this feature is
confined to that field. Our sample hasthe benefit of K2ʼs
multiple pointings,which has allowed us to demonstrate that
the bimodality is presentin all directions and is therefore not
unique to the stellar population observed by Kepler. The
possibility remains that the bimodal star formation history

Figure 8. Histograms showing the distribution of rotation periods for stars in Campaign 8, in the color grange 0.8 < G − GRP< 1.05. The kernel density estimate is
shown in black, and its derivative is shown in red. The locations determined for the gap edges are shown by the dashed vertical line. The left panel shows the upper
gap edge and the periods are given as the difference between the observed rotation period and the trend of the upper gap edge. The right panel shows the same for the
lower gap edge.

Figure 9. Kernel density estimates for the 16 campaigns with N > 200,for
stars with G − GRP in the range defined in Equation (15). The thick black curve
is the kernel density estimate for all 16 campaigns combined.

Figure 10. Location of the lower edge of the gap plotted against the location of
the upper edge. Both gap edge locations are given as the displacement in days
from the best-fit gap edges in Figure 7 and are determined from the slope of the
one-dimensionalkerneldensity estimates in Figure 9.The four mostnotable
outliers are labeled and their period–color diagrams are shown in Figure 11.
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Figure 11. Period–color plots for the outliers identified in Figure 10. The dark purple points show the stars from the individual campaign, while the gray points are the
full sample of 8943 stars. The locations of the K2 footprints on the sky for these campaigns is shown in Figure 12. The Praesepe sequence can be seen in Campaign 18,
but it only appears to impactthe gap edge detection for Campaign 18,as seen in Figure 10.With the possible exception of Campaign 13,the gap appears to be
respected by the subsamples for each campaign, which indicates to us that the outliers in Figure 10 are the result of stochastic variations within the sample and are not
significant.
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suggested by McQuillan et al. (2014) and Davenport & Covey
(2018) might be isotropic. However, the position and shape of
the gap revealed by our sample make this explanation
untenable,as the trend of the gap shows a sharper slope than
the sequences associated with constantage populations from
Praesepeand NGC 6811 (e.g., Curtis et al. 2019). It is
interesting to note that the sequence of stars associated with the
2.7 Gyr cluster Ruprecht147 appears to cross the gap around
G − GRP∼ 0.7. While caution should be exercised due to the
fact that this sequence has a relatively smaller number of stars
than for the younger clusters and shows a large intrinsic scatter,
this apparent crossing of the gap lends further evidence against

the hypothesis that the gap represents a feature at constant age.
Indeed, as Curtis et al. (2020) note in their analysis of periods
for Ruprecht 147 and other clusters, this gap crossing seems to
occur at a roughly fixed Rossby number, rather than at a single
fixed age,which agrees with our assessment.

Reinhold et al. (2013, 2019) suggestthat the gap is an
artifact of the transition from spot-dominated to faculae-
dominated photospheres as stars age.In this explanation,the
gap would result from a minimum in the detectability of
rotation periods for stars atthe point in this transition where
neither spot- nor facula-induced variability is able to dominate
the light curves of these stars. Our measurements of the gap do
not rule out this explanation.To do this would require more
work on the evolution of stellar activity over a range of ages
and spectral types.

Our preferred explanation is thatthe gap emerges from a
period of accelerated spin-down immediately after the stalled
spin-down noted by Curtis et al. (2020). This explanation was
first put forth by McQuillan et al. (2013),but the hypothesis
was dismissed in favorof the “two populations” hypothesis
preferred by McQuillan et al. (2014) and Davenport &
Covey (2018).

In this scenario,a young star with its envelope initially
decoupled from its core would experience magnetic braking,
reducing the spin of the envelope while the decoupled core
would be allowed to continue its faster rotation. At a later time
the core and envelope would begin to exchange angular
momentum.At this point the transferof angularmomentum
from the core to the envelope would slow or even haltspin-
down by offsetting magnetic braking at the surface, resulting in
an overdensity of stars just below the period gap. The
underdensity making up the gap itself could then be explained
by a period of increased spin-down once thiscoupling is
complete and before the star resumes ordinary Skumanich spin-
down. This could be due to a temporary increase in magnetic
activity. Lanzafame & Spada (2015) and Spada & Lanzafame
(2020) have developed a spin-down modelfeaturing a mass-
dependentcore–envelope coupling timescale thatreproduces
the stalling behavior and has been applied to observations of
open clusters. Curtis et al. (2020) found the stall in spin-down
corresponds to a track of roughly constantRossby number.

Figure 12. Positions of the campaigns shown in Figure 11 with Milky Way as seen by Gaia DR2 for reference. There is no obvious correlation between the direction
of the K2 pointing and the change in shape or position of the gap for the outlier campaigns.Background image credit: ESA/Gaia/DPAC.

Figure 13. Samples drawn from our GP model showing the effect of increasing
the quality factor, Q, on a light curve. All light curves have the same period and
amplitude.We have setΔQ = 0 for these simulations so that =Q Qmax. A
higher Q value means that the light curve shows stronger periodicity. In terms
of stellar rotation, this likely indicates that surface features are stable fora
longer period of time when Q is large.
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Angus etal. (2020) suggestthat this mechanism may explain
the period gap as a break between a “young” regime in which
rotation periods increase with decreasing mass from an “old”
regime in which rotation periods are nearly constantor even
decreasing with decreasing mass,with the gap representing a
period of relatively fast spin evolution during the transition
between these regimes. In Figure 15 we plot rotation
measurements for severalimportantclusters over the distribu-
tion of K2 field stars to show the correspondence between the
location of the gap in the field stars and the apparent stalling of
spin-down in clusters. We use the open clusters Praesepe,
which has an age of 600–700 Myrs,NGC 6811 which has an
age of approximately 1 Gyr (Agüeros et al.2018; Curtis et al.
2019), and Ruprecht 147, which is older than both at 2.7 Gyrs.
The sequences for Praesepe and NGC 6811 sit on top of each

other for low-massstars but have diverged for stars more
massive than about0.9 Me , suggesting thatlower-mass stars
have stalled in their angular momentum loss while higher-mass
stars have continued to spin down.By the time we reach the
age of Ruprecht147, spin-down has resumed for stars down
to about 0.7Me . The location of the gap in the rotation
measurements for the K2 field stars coincides with the point at
which the clusters transition from stalled spin-down at low
masses to resumed Skumanich spin-down athigher masses.
This supports the notion that the gap represents a discontinuity
between these two regimes of spin-down.

There is still much work to be done to determine whether
core–envelope coupling and decoupling fully explain these
observations.On the observational side it will be important to
continue to benchmark clusters of ages between 1 Gyr and solar

Figure 14. Left: sample in period–Qmax space, showing that sinusoidal rotators (high-Q stars) cluster separately from the main population and preferentially occur at
short rotation periods. Right: sample in period–color space with stars colored by the maximum quality factor Qmax. While stars with higher Qmax values cluster in the
fast-rotating M dwarfs,they also occur across all colors,and hence across all stellar masses in our sample.

Figure 15. Clusters Praesepe, NGC 6811, and Ruprecht 147 superimposed on the distribution of field stars. For Praesepe, we use our own rotation measurements with
membership in the clustertaken from Douglas etal. (2019). Rotation periods forNGC 6811 are from Curtis et al. (2019) and for Ruprecht147 from Curtis
et al. (2020).
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age, as clusters in this age range may cross the gap (similar to
Ruprecht147). On the theoreticalside, models of rotational
evolution that can explain the period of rapid spin-down after
the epoch of stalled spin-down and in doing so reproduce the
shape and trend of the gap willbe importantfor testing this
explanation. Another promising avenue of investigation may be
the kinematic dating of field stars (Angus et al.2020).Proper
motion measurementsfrom Gaia may provide us with the
ability to estimate ages ofstellar populations by the vertical
componentof their motion with respect to the galactic disk
because stars become excited in this direction by dynamical
interactions over time. This would allow for independent
calibration of gyrochronologicalrelations, which may shed
light on how stars evolve across the gap.

Finally, while the population of stars within the gap is small,
it appears to be nonzero,which opens up the possibility of
targeted studies ofstars thatare currently crossing the gap.
Detailed observations of individual stars in the gap or near the
lower boundary of the gap may revealinteresting aspects of
their activity and the processes that shepherd them across this
span of the color–period diagram.

5. Conclusions
We have measured precise rotation periods for 8943 main-

sequence K2 starsby GP regression. We perform MCMC
simulations on each lightcurve to obtain estimates of the GP
hyperparametersand their uncertainties. We detect and
measure the gap in the rotation period distribution and show
that this feature appearsin all K2 campaigns and is thus
unlikely to result from a peculiarity of the stellar populations
observed by Kepler.We review severalexplanations forthe
gap and argue that the most likely is that the gap results from
stalled spin-down on the fast-rotating sequence for low-mass
stars,followed by rapid evolution across the gap to the slow-
rotating sequence.This evolution may be governed by time-
variable core–envelope coupling,which controls the rate of
transfer of angular momentum from the core to the surface of
the star.

In the future, TESS observations will provide a large sample
of light curves for field stars. We expect that a similar
distribution of rotation periods will be observed for this sample.
One key observation that TESS may enable is whether or not
the gap extends to stars more massive than ∼0.8Me . If the gap
represents the space between two separate stellar populations at
different ages, then it should extend to higher mass stars, but if
the gap emerges from the physics of core–envelope coupling,
then we may expect to observe a mass dependence forthe
phenomenon.

Finally, one dimension that has been left out of this work is
that of metallicity. Amard et al. (2020) report a metallicity
dependenceon stellar rotation in Kepler, which may be
detectable in our K2 sample as well. As the inner structure and
the evolution of a star are known to be dependent on its
chemicalcomposition,this dependence ofrotation period on
metallicity may help to illuminate the relationship between
interior structure and spin-down. We leave the task of
exploring this relationship to future work.

By making the full results of our MCMC simulations
available to the community,we hope to make it possible for
other researchers to make different choices about which periods
to include and exclude.Machine-learning techniques such as
convolutionalneuralnetworks or random forests may also be

useful for identifying rotation signals in EVEREST light
curves.Combining these techniques with our period measure-
ments may resultin a larger final sample withoutsacrificing
quality. Our sample may also be of use as a training setfor
machine-learning algorithms seeking to identify stellar rotation
signals.
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