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Quench dynamics in a two-dimensional system of interacting fermions is analyzed within the semiclas-
sical truncated Wigner approximation (TWA). The models with short-range and long-range interactions are
considered. We show that in the latter case, the TWA is very accurate, becoming asymptotically exact in the
infinite-range limit, provided that the semiclassical Hamiltonian is correctly identified. Within the TWA, different
dynamical timescales of charges and spins can be clearly distinguished. Interestingly, for a weak and moderate
disorder strength, we observe subdiffusive behavior of charges, while spins exhibit diffusive dynamics. At strong
disorder, the quantum Fisher information shows logarithmic growth in time with a slower increase for charges
than for spins. It is shown that in contrast to the short-range model, strong inhomogeneities such as domain
walls in the initial state can significantly slow down thermalization dynamics, especially at weak disorder. This
behavior can put additional challenges in designing cold-atom experimental protocols aimed to analyze possible
many-body localization in such systems. While within this approach we cannot make any definite statements
about the existence of a many-body localized phase, we see a very fast crossover as a function of disorder
strength from rapidly thermalizing to a slow glassylike regime both for the short-range and long-range models.
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I. INTRODUCTION

Understanding the dynamics of isolated interacting disor-
dered many-body systems has recently became a forefront
of both theoretical and experimental research [1–15]. Such
systems have been explored both with respect to possible
applications to quantum information [12,13] and as generic
models of possible ergodicity breaking in interacting systems
[14,16]. It is well known that a competition of interaction and
disorder leads to a peculiar dynamical behavior of the en-
tanglement entropy and information propagation [3,11,12,17–
20]. In particular, this dynamical behavior can be highly sen-
sitive to the interaction range [21–25]. Disordered systems
with long-range interaction have already been realized in ex-
periments with trapped ions [3,5]. There also exist solid-state
disordered materials with long-range Coulomb interactions
[26]. Electrons in such materials are strongly localized and
charge carries cannot screen long-range interactions, making
their long-range nature play a very important role. Coulomb
interactions also remain unscreened in two-dimensional ma-
terials such as suspended graphene [27]. There is thus a very
clear need for the development of efficient theoretical methods
which could simulate such systems in any dimension.

Conceptually, the interplay of disorder and interactions can
be understood within the framework of the Hubbard model
[28]. Originally introduced as a toy model to understand inter-
acting systems, it has been experimentally realized in different
spatial dimensions. In particular, a realization of a disordered
or quasiperiodic Hubbard model in one and two spatial dimen-
sions has been reported in Refs. [1,4,8,9,15]. In several recent

works, it has been argued that two-component fermions might
not have the many-body localized phase in one spatial di-
mension due to the coexistence of spin and charge excitations
[29–36]. In particular, charge and spin degrees of freedom can
exhibit different localization properties and affect long-time
dynamics [37,38].

In this paper, we systematically analyze quantum dynamics
in an interacting fermionic Hubbard model with long-range
interactions using the fermionic version of the truncated
Wigner approximation (fTWA) [39,40]. We focus on two-
dimensional (2D) systems, but also mention some results in
the one-dimensional (1D) case, mostly to benchmark the ap-
proach against the exact diagonalization. We show that for
the accuracy of the method, it is crucial to choose the cor-
rect representation of the Weyl symbol of the Hamiltonian
and of the observables. In particular, the fermionic number
operator n̂α = ĉ†

α ĉα , where α is some index labeling of the
corresponding single-particle state, always satisfies the iden-
tity n̂2

α = n̂α . At the same time, the Weyl symbols of n̂α and n̂2
α

are different. Thus there is an ambiguity in defining the phase-
space representation of the corresponding operators. Within
the exact analysis of the dynamics, this ambiguity is irrelevant,
but within the semiclassical TWA approximation it plays a
significant role. In this paper, we remove the ambiguity by
choosing the representation of the Hamiltonian, which leads
to asymptotically exact fTWA dynamics when the range of in-
teractions becomes infinite. It is shown that the choice of this
particular representation also leads to a dramatic improvement
in the accuracy of fTWA over a more naive representation
if interactions decay as a power law. We note that such an
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ambiguity might exist for other setups, e.g., spin-1/2 systems,
where the spin operators satisfy similar identities: ŝ2

x,y,z = Î/4.
Our work suggests that in those situations, choosing the right
representation of the Hamiltonian can significantly improve
the accuracy of TWA.

Using this improved representation, fTWA was applied
to analyze the charge and spin dynamics in the long-range
interacting systems. In particular, we study transport and time-
dependent correlation functions and the role of disorder and
interactions. It is found that within fTWA it is possible to
clearly distinguish different dynamical timescales in the trans-
port of charge and spin degrees of freedom. For weak and
moderate disorder strength, the charges exhibit subdiffusive
dynamics, while the spin dynamics remains nearly diffusive.
This separation of timescales is related to the fact that both
spin components are subject to the same disorder potential.
For strong disorder, both charge and spin are nearly localized,
undergoing very slow glassy dynamics. In this regime, the
quantum Fisher information (QFI) is shown to be a good
indicator of the timescales associated with spin and charge
sectors. Such QFI has been recently measured in a quantum
simulator of a one-dimensional disordered spin system with
long-range interactions [3]. We observed a logarithmic growth
of QFI for both degrees of freedom. However, the growth
rate for charges is slower than for spins, which is consistent
with a stronger tendency of localization of the charge degrees
of freedom. This difference disappears in the noninteracting
limit, in which the system exhibits the Anderson localization
reflected in a rapid saturation of QFI [20,24]. Moreover, in
contrast to the Hubbard model with short-range interactions,
strong inhomogeneities in the initial state like that used in
the short-range systems (Ref. [2]) is found to significantly
slow down the dynamics, even at weak disorder. Thus, in the
long-range systems, extra care should be taken to choose the
right initial state needed to check the possible existence of
many-body localization.

Most of the numerical studies are performed for 2D square
lattices, which are intractable by exact methods. While we
cannot definitely address all questions, in particular whether
the system can be in a localized state beyond some disorder
threshold, we can extract many quantitative and qualitative
features of the dynamics in such systems, showing the power
of the fTWA approach to study cold-atom systems and possi-
bly even real materials.

The rest of the paper is organized as follows. In Sec. II,
the semiclassical fTWA method and, in particular, its imple-
mentation in the Hubbard model are discussed. In Secs. III
and IV, we analyze charge and spin transport in the presence
of quenched disorder. In Sec. V, the impact of different ini-
tial conditions on transport and thermalization timescales is
revealed. In the last section, we summarize our results. Addi-
tional technical details of the fTWA method are discussed in
the Appendices.

II. fTWA IMPLEMENTATION OF THE HUBBARD MODEL

Semiclassical representation of fermionic dynamics within
the fTWA in terms of phase-space stringlike variables was
recently exploited in Refs. [39,40]. These string variables can
be introduced through Weyl symbols of the following bilinear

operators:

Êα
β = 1

2 (ĉ†
α ĉβ − ĉβ ĉ†

α ), Êαβ = ĉα ĉβ, Êαβ = ĉ†
α ĉ†

β = −Ê†
αβ,

(1)

where ĉ†
α and ĉα , α = {i, σ } are the fermionic creation and

annihilation operators, where i is the site position and σ is
the spin index. These bilinear operators generate the SO(2N )
group and their corresponding Weyl symbols are ραβ =
(Êα

β )
W

, ταβ = (Êαβ )W , −τ ∗
αβ = (Êαβ )W , which satisfy canon-

ical Poisson bracket relations with the structure constants of
this SO(2N ) group [39]. In addition, the subset of number-
conserving operators Êα

β serve as generators of the U(N )
subgroup of SO(2N ). Using phase-space representation of the
operators and the Hamiltonian in terms of ραβ and ταβ , one
can define the dynamics within fTWA, which is a straightfor-
ward generalization of the classical dynamics of coupled rigid
rotators (see, also, Appendix A).

In Ref. [39], it was shown that phase-space (Weyl) repre-
sentation of the interaction term in the Hamiltonians can lead
to ambiguities. For example, two-particle interactions in the
Hubbard model of the type

Uαβγ δ ĉ†
α ĉ†

β ĉγ ĉδ (2)

can be represented either through a product of the operators
Êα

δ and Êβ
γ (permutation of indexes α, β or γ , δ leads to

an equivalent representation [39]) or, alternatively, through a
product of operators Êαβ and Êγ δ . In the first representation,
the Weyl symbol of the Hamiltonian is represented entirely
through ρ variables, while in the second representation, the
Hamiltonian is generally expressed through both ρ and τ vari-
ables. These two different representations are not equivalent
and while in some situations the first ρ representation gives
an accurate description of the dynamics within the fTWA, in
other situations, such as for the Sachdev-Ye-Kitaev (SYK)
model, the second ρ, τ representation leads to an accurate
(and even asymptotically exact) fTWA description [39,40].
In a way, a choice of representation in fTWA is similar to
the choice of a particular decoupling in mean-field approxi-
mations. Here we show that even if we focus on the first ρ

representation, there are still some ambiguities in rewriting
the interaction term. We use this ambiguity to our advan-
tage, significantly improving the accuracy of simulations of
the semiclassical many-body dynamics in systems with long-
range interactions.

This new ambiguity comes from noticing that the quan-
tum operators n̂iσ and n̂2

iσ , where n̂iσ = ĉ†
iσ ĉiσ , are identical.

However, the Weyl symbols for these two operators lead to
different phase-space representations of the corresponding
terms. In particular,

n̂iσ → ρiσ iσ + 1/2, n̂2
iσ → (ρiσ iσ + 1/2)2. (3)

Generally, within the semiclassical dynamics, there is no
conservation law of the single cite occupation number ρiσ iσ

because this conservation law does not originate from the
corresponding Lie algebra, but rather from its particular
(fundamental) representation. A simple way to see this in-
equivalence is to observe that if the Hamiltonian contains the
corresponding n̂iσ term, then the second representation leads
to nonlinear equations of motion within the fTWA, while the
first representation keeps equations linear. In the following,
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we explain that this ambiguity can be resolved by requiring
that the fTWA becomes exact in the limit of infinite-range
interactions. It is found that the corresponding representation
also significantly improves the accuracy of the fTWA for
algebraically decaying long-range interactions.

In this work, we focus on the Hubbard Hamiltonian with
long-range interactions,

ĤI = −J
∑
〈i j〉σ

(ĉ†
iσ ĉ jσ + H.c.) +

∑
iσ

	in̂iσ

+
∑

i j

Ui j n̂i↑n̂ j↓ +
∑
i< j,σ

Vi jσ n̂iσ n̂ jσ , (4)

where J is the spin-independent hopping amplitude between
neighboring sites, 	i is the on-site disorder potential with the
strength uniformly distributed in the range 	i ∈ [−	, 	],
and Ui j (Vi jσ ) is the density-density interaction coupling be-
tween different (identical) spin components. We assume that
these interparticle interactions are translationally invariant and
depend only on the distance between the particles: Ui j =
U (|ri − r j |) and Vi jσ = Vσ (|ri − r j |) (ri is a real-space vector
corresponding to the location of the site i). Open boundary
conditions are used.

While identical fermions cannot interact on the same site
due to the Pauli principle, we can formally add this self-
interaction without affecting the dynamics by considering a
different Hamiltonian instead,

ĤII = −J
∑
〈i j〉σ

(ĉ†
iσ ĉ jσ + H.c.) +

∑
iσ

	in̂iσ

+
∑

i j

Ui j n̂i↑n̂ j↓ + 1

2

∑
i j,σ

Vi jσ n̂iσ n̂ jσ

= ĤI + 1

2

∑
σ

V0σ

∑
i

n̂2
iσ︸ ︷︷ ︸

1
2 V0↑N̂↑+ 1

2 V0↓N̂↓

, (5)

where V0σ ≡ Vσ (|ri − ri| = 0). The difference between the
two Hamiltonians is proportional to terms with a conserved
number of fermions in each spin degree of freedom,

ĤII − ĤI = 1

2
V0↑N̂↑ + 1

2
V0↓N̂↓, N̂σ =

∑
i

n̂iσ , (6)

which commutes ĤI and, hence, both Hamiltonians lead to
identical quantum dynamics. However, these two Hamiltoni-
ans lead to different semiclassical approximations. In the next
section (Sec. III), we show that fTWA based on ĤII leads to
much more accurate predictions. Intuitively, this improvement
follows from considering infinite-range interactions where
Ui j,Vi jσ are independent of ri − r j . In this case, it is easy to
check (see Appendix B for details) that the interaction term
commutes with the rest of the Hamiltonian and drops out
from the equations of motion. However, within the fTWA, the
interaction term in this limit only drops if we use the Weyl
representation of ĤII , but not ĤI . We checked that for the sys-
tems with short-range interactions, both Weyl representations
lead to similar results.

In the rest of the paper, we focus on the situation Ui j = Vi jσ

corresponding to an additional SU(2) spin symmetry [41,42].

We also consider long-range power-law interactions such that

Ui j = Vi jσ = U

|ri − r j |α , i 
= j, (7)

and, for on-site interactions, Uii = Viiσ = U is taken. As we
already pointed out in the infinite-range case α = 0, the dy-
namics of the system becomes effectively noninteracting, i.e.,
equivalent to U = 0, because in this case the interaction term
simply reduces to the square of the total number of fermions
with factor U .

III. BENCHMARKING ACCURACY OF THE FTWA
IN ONE DIMENSION

Before proceeding with analyzing dynamics in two-
dimensional systems, we will check the accuracy of fTWA
and the differences between the two semiclassical representa-
tions of the quantum Hamiltonian in smaller one-dimensional
systems. In particular, we will analyze the quench dynam-
ics in the half-filled one-dimensional lattice of eight sites
with open boundary conditions. Such a system is amenable
to exact-diagonalization methods and hence can be used to
test the semiclassical method. Following recent cold-atom
experiments [1,2,4,8], we will study the dynamics of the spin
and charge imbalance after quenching from a charge or spin
density wave state. This imbalance serves as a good indicator
of ergodicity in the system. At strong disorder, where the
imbalance does not decay in time due to localization, a more
sensitive probe distinguishing the dynamics of interacting
and noninteracting systems is the quantum Fisher information
(QFI), which was recently measured for long-range interact-
ing ions in the presence of disorder [3]. Like entanglement,
the QFI can distinguish between a noninteracting Anderson
localization mechanism [43] and possible many-body local-
ization (MBL) [18,44,45]. The details of implementation of
the fTWA method are described in Appendices A and B.

To study the dynamics of charge and spin degrees of free-
dom, we prepare the system in a charge density wave (CDW)
and spin density wave (SDW), respectively. For the charge
dynamics, we consider a pure initial state,∣∣
C

init

〉 = |0,↑↓, 0,↑↓, . . . 〉, (8)

and for spin dynamics, we start from a different initial state,∣∣
S
init

〉 = |↓,↑,↓,↑, . . . 〉. (9)

As observables, we choose the charge [zC (t )] and the spin
[zS (t )] imbalances normalized to the total number of fermions
N , which we define as

zC (t ) = 1

N
〈ẐC (t )〉 = 1

N

∑
i

(−1)i
〈

C

init

∣∣n̂i(t )
∣∣
C

init

〉
(10)

and

zS (t ) = 1

N
〈ẐS (t )〉 = 1

N

∑
i

(−1)i
〈

S

init

∣∣m̂i(t )
∣∣
S

init

〉
, (11)

where n̂i = n̂i↑ + n̂i↓ and m̂i = n̂i↑ − n̂i↓ are the on-site
charge density and the on-site spin polarization, respectively.
In a two-dimensional square lattice, analyzed in Sec. IV, we
replace (−1)i with (−1)ix , where ix and iy are the integer site
indexes along the x and y directions.
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FIG. 1. Time dependence of the charge imbalance zC [cf.
Eq. (10)] for the initial CDW state. The black dashed line represents
the exact-diagonalization (ED) results, while the solid blue (dark
gray) and the solid red (light gray) lines represent the results of
the fTWA method based on the Hamiltonians ĤI and ĤII , respec-
tively. (a) The infinite-range interactions (α = 0); (b) the interactions
decaying with the power α = 1. All simulations are obtained on a
system consisting of 8-lattice sites at half filling with U/J = 1 in the
absence of disorder (	 = 0).

For a pure initial state, we will also study the normalized
QFI corresponding to the charge and spin imbalance operators
ẐC and ẐS [3,20,24,46–49]:

fQ,C/S (t ) = 4

N

[〈
Ẑ2

C/S (t )
〉 − 〈ẐC/S (t )〉2]

. (12)

We stress that it is the presence of quantum noise that is
essential to get the nontrivial QFI in the fTWA method. In the
mean-field approximation, which is equivalent to the fTWA
if we suppress all the noise to zero, fQ,C/S (t ) ≡ 0 because
there are no fluctuations and, hence, 〈Ẑ2

C/S (t )〉 = 〈ẐC/S (t )〉2.
On top of quantum averaging, we will also perform averaging
of the observables over different disorder realizations, which
we denote by an overline and show numerical results for z̄C/S ,
f̄Q,C/S .

First let us analyze the charge imbalance zC (t ) starting
from the initial CDW state. In Fig. 1, we show a comparison
of the ED and fTWA dynamics for a nondisordered lattice
(	 = 0). Figures 1(a) and 1(b) correspond to the infinite inter-
action range (α = 0) and the interactions proportional to the
inverse distance (α = 1). As we discussed in Sec. II, fTWA
based on ĤII (HII -fTWA) is exact for α = 0 for any system
size. In comparison, the fTWA based on ĤI (HI -fTWA) is only
accurate for relatively short times. In the case of power-law in-
teractions, the system is nonintegrable and generally exhibits
thermalization [Fig. 1(b)]. In this case, both representations
of the fTWA give similar accurate predictions of the charge

imbalance decay with HII -fTWA still overperforming the HI -
fTWA. We checked that the situation is similar for the spin
imbalance zS (t ).

As we increase the disorder strength, the improvement of
the HII -fTWA over the HI -fTWA becomes even more signif-
icant, especially at longer times. This is illustrated in Fig. 2,
where we plot zC/S and fQ,C/S for a fixed power α = 1. Here
the upper panels represent the results for the charges and the
lower panels correspond to spins. Figures 2(c) and 2(f) show
the mean-square error (MSE) of the fTWA simulations as a
function of the disorder strengths. The MSE is defined as

1

M

M∑
i=1

[
z̄ED

C/S (ti ) − z̄ f TWA
C/S (ti )

]2
(13)

for the charge or spin imbalance, and

1

M

M∑
i=1

[
f̄ ED
Q,C/S (ti ) − f̄ f TWA

Q,C/S (ti )
]2

(14)

for the QFI. Here, M is the total number of time simulation
steps within the time interval tiJ ∈ [0, 200]. From Figs. 2(c)
and 2(f), we see that the fTWA gives satisfactory predictions
both for short- and long-time dynamics in the limits of weak
(	/J ≈ 1) and strong (	/J � 1) disorder potentials. In the
intermediate disorder regime, the fTWA introduces a signifi-
cant error. This situation is qualitatively similar to the one for
spin systems [50,51]. At these intermediate disorder strengths,
the semiclassical dynamics clearly leads to faster thermaliza-
tion than exact quantum dynamics. A possible explanation for
why classical systems thermalize faster was given in Ref. [52].
There the authors argued that it is discreteness of quantum lev-
els, which further suppresses slow classical transport through
chaotic resonances. While it is unclear how these consider-
ations extend to fTWA, which deals with nonlocal bilinears,
qualitatively the situation is very similar. We point out that
fTWA shows a stronger tendency to localization than, e.g.,
the cluster TWA. It is possible that the accuracy of fTWA
can be further improved by choosing a more efficient operator
basis, e.g., the basis of l-bits [53], which is obtained by a local
unitary transformation of the local fermion basis. Unitary
transformations do not change the commutation relations of
the basis operators and, hence, the dressed operators still form
a closed algebra and can be used to construct dressed versions
of fTWA. This possibility needs further investigation, which
is beyond the scope of the current manuscript.

It is also interesting to point out that both the ED and the
fTWA (cf. Fig. 2) show that spin degrees of freedom tend to
thermalize faster than charges. A similar tendency was also
observed in several recent papers [29–33,35–38]. The reason
behind the asymmetry between spin and charge degrees of
freedom is that the Hamiltonian (5) introduces only disorder in
the charge sector, allowing spins to delocalize much faster. In
order to localize spins, one can introduce additional disorder
in the spin channel [29,35]. We checked that this is indeed
correct in Sec. IV, where charge and spin dynamics in the
two-dimensional setup are discussed.

From the MSE, it is also seen that the HII -fTWA is gen-
erally more accurate in predicting both the imbalance and
the QFI, especially in the crossover region [cf. Figs. 2(c)
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FIG. 2. Time dependence (a),(d) of the imbalance zC/S and (b),(e) of the QFI fC/S for different disorder strengths 	/J . Simulations are
done for a 1D system of size 8 and open boundary conditions. The top and bottom rows correspond, respectively, to the CDW and SDW initial
states (see text for details). The solid blue (dark gray) and red (light gray) lines represent simulations done with HI − fTWA and HII − fTWA,
respectively; the black dashed line shows ED simulations. (c),(f) The mean-square error (MSE) of the two fTWA approximations. All the
results were averaged over 100 different disorder realizations. The remaining parameters of the Hamiltonian are U/J = 1, α = 1.

and 2(f)]. Also, the HII -fTWA is able to capture the initial
transient imbalance oscillations up to longer times (tJ ≈ 10)
as compared to the HI -fTWA, which agrees with the ED only
up to tJ ≈ 3.

Next, we analyze the accuracy of the fTWA as we vary the
exponent α. As we mentioned in Sec. II, HII -fTWA should
approach the exact results for α → 0. We only consider the
behavior of the charge imbalance zC (t ) and fC (t ) (the be-
havior of the spin imbalance is qualitatively similar), which
is shown in Fig. 3 for a fixed quenched disorder with the
strength 	/J = 8. At this strong disorder, the charge transport
is suppressed, and yet the imbalance changes significantly
compared to its initial value. Within the ED, the charge
imbalance zC (t ) is nearly identical for all three considered
values of α = 0, 0.25, 1, while the QFI information clearly
distinguishes the infinite-range α = 0 regime from the other
two. In all three cases, the HII -fTWA gives more accurate re-
sults than the HI -fTWA. As expected, the HII -fTWA becomes
asymptotically exact as the exponent α approaches zero; in
particular, for α = 0.25, the charge imbalance zC (t ) is nearly
exactly reproduced by the HII -fTWA. These observations are
also consistent with the analytical considerations presented
in Appendix B. Differences between the two fTWA simu-
lations and the ED are even more pronounced for the QFI

[Figs. 3(d)–3(f)]. In particular, the HI -fTWA is not able to
predict the long-time behavior of the QFI for all values of α,
while the HII -fTWA yields significantly more accurate results.

It is worthwhile to add that the HII -fTWA also slightly
improves predictions for the long-time dynamics of the im-
balance in the Hubbard model with short-range (on-site)
interactions (i.e., Ui j = Vi jσ = 0 for i 
= j and Uii = Viiσ =
U0 
= 0). We checked this for the charge imbalance function;
see Fig. 4. The improvement is observed for the higher disor-
der strengths, but it is not so pronounced as in the long-range
case. Perhaps the lack of significant improvement of fTWA
in the short-range model is expected as both fTWA repre-
sentations become exact in the noninteracting limit U0 = 0
and none of them is favored over the other when interactions
become large. On the contrary, for the long-range model, HII -
fTWA is significantly favored over HI -fTWA by the proximity
to the infinite-range model (α = 0), where HII -fTWA is exact,
while HI -fTWA is not (see Appendix B for details).

IV. CHARGE AND SPIN DYNAMICS IN TWO DIMENSIONS

We now proceed to analyze the two-dimensional Hubbard
Hamiltonian, where the ED is limited to very small system
sizes such that any extrapolation to the thermodynamic limit
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FIG. 3. Time dependence of the (a)–(c) charge imbalance function zC (t ) and the (d)–(f) QFI density fQ,C . Simulations are done for a 1D
system with eight sites and open boundary conditions. The system is initially prepared in a CDW state (every even side is doubly occupied).
The interaction strength is U/J = 1 with (a),(d) α = 1, (b),(e) α = 0.25, and (c),(f) α = 0. Moreover, the HI − fTWA data are represented by
the blue (dark gray) line, HII − fTWA by the red solid (light gray) line, and ED by the black dashed line. All the results were averaged over at
least 100 disorder potentials with the strength 	/J = 8.

is nearly impossible. In what follows, we present the results of
numerical simulations for a 6 × 6 square lattice using the HII -
fTWA. Note that while these system sizes are far beyond reach
of the ED, they are still relatively small and computationally
demanding even within the fTWA approach. The reason is that
the fTWA implementation requires one to solve a system of
coupled nonlinear differential equations with the number of
degrees of freedom scaling as the square of the number of sites
in the system (i.e., with the fourth power of the linear system
size). It is highly plausible that one can go to larger system
sizes by introducing further approximations into solving these
nonlinear equations, such as an effective media approxima-
tion beyond a certain distance, but the corresponding analysis
lies beyond the scope of our work. As we will see, even
for such system sizes, we can effectively suppress finite-size
effects and make statements about the thermodynamic limit.
We focus on the same observables as in the previous section,
namely, on the charge and spin imbalances zC/S (t ) and the
corresponding QFI fC/S (t ).

We consider the initial striped CDW or SDW configura-
tions, where the stripes are oriented along the y axis and have
a fixed period two along the x axis [see the insets in Figs. 8(a)
and 8(c)]. These initial states are obtained from those used
earlier in one-dimensional systems [cf. Eqs. (8) and (9)] by

adding more rows of lattice sites. We define the charge and
spin imbalance operators as

ẐC (t ) =
∑
ix iy

(−1)ix n̂ix iy (15)

and

ẐS (t ) =
∑
ix iy

(−1)ix m̂ix iy , (16)

where ix, iy are the x and y coordinates of the lattice site
i = (ix, iy) and n̂i = n̂i↑ + n̂i↓, m̂i = n̂i↑ − n̂i↓. As before, we
use the notations z̄C (t ) and z̄S (t ) for the disorder-averaged
expectation values of these operators normalized by the total
number of sites. Similarly, we define the corresponding charge
and spin QFI according to Eq. (12). All the expectation values
are calculated either with the initial CDW or the initial SDW
configurations. At half filling, these configurations correspond
to zC/S (t = 0) = 1.

In Fig. 5, we plot the results of simulations of the long-time
dynamics of the imbalances and the QFI. These plots corre-
spond to the interaction strength U/J = 1 and the exponent
α = 1. Similarly to the 1D results discussed in Sec. III, we
observe the decay of charge and spin imbalances for any
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FIG. 4. Time dependence of the charge imbalance function zC (t ).
Simulations are done for a 1D system of size 8 with open boundary
conditions. The system is initially prepared in the CDW state (every
even site is doubly occupied) and the interactions are short range
(on-site, i.e., Ui j = Vi jσ = 0 for i 
= j and Uii = Viiσ = U0 
= 0). The
interaction strength is U0/J = 1. The HI − fTWA data are repre-
sented by the blue (dark gray) lines, the HII − fTWA data by the red
(light gray) lines, and the ED data by the black dashed lines. The
results were averaged over at least 100 disorder potentials with
the strengths 	/J = 24, 8, 2 (from top to bottom).

disorder strength. As expected at higher disorder, the decay of
the charge and spin imbalances is more suppressed. Interest-
ingly, essentially at all values of the disorder potential, charge
transport exhibits subdiffusive behavior: z̄C � t−β , 0 < β <

1, while the spin dynamics is nearly always diffusive: z̄S ≈ t−1

with stronger disorder resulting only in a longer approach
to the asymptotic diffusive regime. Thus, our results clearly
demonstrate stronger and qualitatively different transport sup-
pression in the charge channel. Qualitatively, the situation is
similar to that in one dimension discussed in the previous
section (cf. Fig. 2) and in the literature [29–33,35–38], but
the difference between the two is more pronounced. Our find-
ings are also consistent with the findings of Ref. [54], where
subdiffusive dynamics was observed in a short-range Hubbard
model at the infinite-temperature limit using self-consistent
perturbation theory.

As in the one-dimensional case, the QFI serves as a good
indicator of information spreading due to interactions even
when the charge and spin degrees of freedom are nearly
localized, clearly distinguishing the interacting system from
the Anderson insulator [3,20,24]. In Figs. 5(c) and 5(d), we
show the charge and spin QFI density for different disorder
strengths 	/J and for U/J = 1, α = 1. In both the charge and
the spin sectors, we observe a very fast (at tJ ≈ 1) saturation
of the QFI at low disorder (	/J � 4). With increasing dis-
order, the dynamics of the QFI slows down, approaching the

logarithmic in time growth at strong disorder [see, e.g., the
QFI data for 	/J = 24 in Figs. 5(c) and 5(d)]. At the same
value of disorder, the spin QFI grows at a faster rate than the
charge QFI [cf. black lines in Figs. 5(c) and 5(d)] and reaches
the saturation value earlier at tJ ≈ 600. From these simula-
tions, we can conclude that the information propagation is
faster in the spin channel consistent with the faster imbalance
decay there.

Next we analyze the QFI propagation through the system,
varying the range of interactions. In Fig. 6, we show the
corresponding time dependences of the QFI for α = 0, 0.25,
and 1. Interestingly, even for α = 0.25, i.e., for interactions
which decay in space very slowly, we still observe very pro-
nounced logarithmic growth of the QFI both for charges and
for spins. Interestingly, the anisotropy of the decay times be-
tween charge and spin sectors gets larger at smaller values of
α. These results suggest that as the interaction range increases,
the charge sector is localized especially strongly. We note
that the fTWA is expected to be nearly exact for α = 0.25
(see Sec. III). As anticipated, after transient behavior, the QFI
growth rate for spins and charges decreases with lowering
α. This happens because the system is quickly approaching
a noninteracting limit (α = 0) for which its ability to store
new information is lower, i.e., the system becomes less com-
plex. Exactly at α = 0, QFI saturates immediately after the
transient growth. This dynamics of QFI is aligned with the
dynamics of charge and spin imbalances shown in the insets
in Fig. 6. For the noninteracting case (α = 0), imbalances
do not decay because the system is in the regime of An-
derson localization. As α increases, the imbalances start to
decay because of the additional charge and spin transport
mediated by interactions (cf. Fig. 5). One can argue that
generally the fTWA should be more accurate in 2D than 1D
because the system is closer to the mean-field regime. So,
even for α = 1, we anticipate that the fTWA gives reliable
results.

The qualitative and quantitative differences between the
dynamics in spin and charge sectors originates because the
disorder potential in the Hamiltonian (5) directly couples only
to charge degrees of freedom (see the discussion in Sec. III).
In other words, there are perfect correlations between the
disorder potential acting on both spin components manifested
in the SU(2) symmetry of the model in the spin sector. How-
ever, by also adding disorder in the spin channel, e.g., by
considering an independent disorder potential for “up” and
“down” spins, the dynamics of local charges and spins become
equivalent, as is demonstrated in Fig. 7 (for a 1D system, see
Ref. [29]). For these simulations, we used the independent
disorder potential of the form∑

iσ

	in̂iσ →
∑

iσ

	iσ n̂iσ , (17)

where 	i↑ and 	i↓ are independently distributed. This po-
tential obviously breaks the SU(2) spin symmetry. The data
presented in Fig. 7 were generated using the same initial
conditions as before, starting from either CDW or SDW stripe
configurations and following the imbalance functions z̄C (t )
and z̄S (t ). Apart from small differences at short times, we
see that the imbalance decay in both sectors is nearly iden-
tical, which is contrasted to the slower decay of the charge
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FIG. 5. Time dependence of (a),(b) the disorder-averaged charge z̄C (t ) and spin z̄S (t ) imbalance and (c),(d) the corresponding QFI for a
6 × 6 square lattice with the same on-site disorder for both spin components. (a),(c) The dynamics starting from the striped CDW initial state;
(b),(d) the dynamics starting from the striped SDW initial state. Different colors represent different disorder strengths: 	/J = 2, 4, 8, 12, 24
[(a),(b) from bottom to top; (c),(d) from top to bottom]. The straight black lines show (a),(b) the best algebraic and (c),(d) the logarithmic fits
to the long-time behavior of the corresponding imbalances and the QFI, respectively, and serve as a guide to the eye. All of the shown results
were averaged over at least 20 different disorder realizations. The remaining parameters of the Hamiltonian are U/J = 1, α = 1.

imbalance in the SU(2) case discussed above and shown for
completeness in the inset of Fig. 7. This observation confirms
that the difference of the dynamics in the charge and spin
sectors in the system with the spin-independent (correlated)
disorder is not due to the difference in initial conditions, but
rather due to different thermalization mechanisms. One can
also notice that with the uncorrelated disorder, decay of the
charge and the spin imbalances is still subdiffusive with the
exponent somewhat larger than for charge decay in the SU(2)
regime (cf. the fitting curves in Figs. 5 and 7 for 	/J = 8).

Let us note that in all of the simulations shown in this
section, we used noise filtering to suppress the sampling noise,
which is rather significant at long times. This noise goes down
with the number of realizations of the initial conditions, but
the convergence of the results is rather slow. We checked that
the filtering we use does not introduce any systematic error
and that the filtered fTWA accurately describes all nonspuri-
ous short-time oscillations of the observables. The effect of
filtering on the charge imbalance together with the analysis of
the finite-size effects is shown in Appendix C.
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FIG. 6. Time dependence of the QFI density for a 6 × 6 lattice and the different values of α = 0, 0.25, 1 (from bottom to top). The
disorder and interaction strength are 	/J = 24, U/J = 1. The other parameters are the same as in Fig. 5. The systems are prepared in the
striped (a) CDW and (b) SDW initial states. The black lines are the fits to the logarithmic time dependence. The insets show the time decay of
the charge (spin) imbalance for α = 0, 0.25, 1 (from top to bottom).

FIG. 7. Decay of charge and spin imbalance for the uncorrelated
disorder potential for each spin component. The red (light gray) and
blue (dark gray) lines represent the system initially prepared in the
striped CDW and SDW state, respectively. The gray dashed line with
algebraic time dependence is a guide for the eye for the best fit of the
long-time imbalance to a power law. The disorder strength is 	/J =
8 and the remaining parameters are the same as in Fig. 5. The inset
shows the same results, but for a spin-independent disorder potential

V. MEMORY EFFECTS FOR DIFFERENT INITIAL STATES

Up to now, we analyzed a particular striped CDW or SDW
initial state and saw how the presence of disorder slows down
the dynamics in the system. In the absence of disorder, the
system is expected to quickly thermalize, as illustrated in
Figs. 8(a) and 8(c). Interestingly, in the long-range model,
the thermalization time strongly depends on the initial state.
This is easily seen by changing the initial CDW or SDW stripe
width from the unit length to the half of the system size and by
analyzing the corresponding imbalance functions, which are
adjusted according to the width of the initial configuration.
For clarity, we represent these initial states in the insets of
Fig. 8, i.e., doubly occupied or empty (up or down) sites are
depicted as a shadow or empty boxes for the CDW (SDW)
initial states, respectively. As we can see, for newly introduced
initial conditions [Figs. 8(b) and 8(d)], the thermalization time
for charge degrees of freedom becomes significantly longer
than for the striped initial configuration with the unit width
[Figs. 8(a) and 8(c)]. In particular, we observe that for the
single domain-wall initial state (i.e., for CDW or SDW stripe
with the width of half of the system size), the timescale at
which the charge imbalance zC (t ) decays to zero is around
tJ ≈ 700 [Fig. 8(b)]. A qualitatively similar slowing down in
a fermionic system with long-range hopping was numerically
observed in Ref. [39]. We contrast the above results with
those for the short-range interacting model with only on-site
interactions between “up” and “down” species of strength
U0 (dashed purple lines), where the difference between the
thermalization times for these two initial configurations is
much less pronounced. Qualitatively, this long-memory effect
can be explained by a high energy released by the particles
traveling from the filled to the empty part of the system in
the presence of long-range interactions. This energy has to be
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FIG. 8. Imbalance dynamics for short-range (U0/J = 1) and
long-range (U/J = 1, α = 1) interactions with different initial con-
ditions. Stripes in the initial conditions are (a),(c) width 1 and
(b),(d) width 3 (see insets). Simulations are performed for a nondis-
ordered 6 × 6 lattice. Stripes contain doublons (spin-up) or empty
(spin-down) sites when the system starts from the CDW (SDW)
initial condition. Doublons or spin-up states in the initial conditions
are denoted as shadow regions in the insets.

redistributed among the other degrees of freedom, resulting in
a large kinematic barrier and hence in a smaller decay rate. As
one can see from Figs. 8(c) and 8(d), the long-memory effect
is absent, or at least is much weaker, for the SDW initial state.

To confirm the observed slowdown of thermalization of
the charge sector in the long-range model, we perform the

ED simulations in small systems and contrast them with the
fTWA simulations. In Figs. 9(a) and 9(b), we analyze the
charge imbalance decay for the domain-wall initial state for
systems of sizes 8 × 1 and 4 × 2, respectively. The initial state
corresponds to the empty left half of the system and the fully
occupied by doublons right half of the system. We see that
long-range interactions lead to a slower thermalization rate
of the charge imbalance compared to the short-range model,
though the effect is not as strong as for larger system sizes
analyzed in Fig. 8. At the same time, there is a little effect
of the initial state on the decay of the SDW state [Fig. 9(c)],
again in agreement with the earlier fTWA results for larger
system sizes. From the comparison of the fTWA and the ED
predictions in small systems, we see that the agreement is very
good, especially for the long-range interactions and thus the
fTWA simulations lead to reliable predictions. In Fig. 10, we
analyze how the decay of the charge imbalance depends on
the width of the system, which is gradually increased from
Ly = 1 to Ly = 4. We see that there is a dramatic jump in the
relaxation time as the width increases from 1 to 2, followed
by its more gradual dependence if the width increases further.
In the inset, we show that there is a very small effect of the
width on the relaxation time for the short-range model.

Interestingly, in the presence of stronger disorder, slowing
down of the thermalization by long-range interactions gets
smaller and the equilibration timescales for the models with
short-range and long-range interactions become comparable.
This is illustrated in Fig. 11, where we compare imbalance
decay for short- and long-range interactions (dashed and solid
lines, respectively) for two different initial states (striped
CDW [Fig. 11(a)] and domain wall [Fig. 11(b)]) and differ-
ent disorder strengths. We see that only for a small disorder
	/J = 2, there is a very significant slowing down of the
imbalance decay in the long-range model and for the domain-
wall initial state [two lowest lines in Fig. 11(b)]. Our findings
suggest that extracting a potential many-body localization
transition in the system with long-range interactions in a 2D
lattice using the experimental protocol proposed in Ref. [2]
requires extra care with choosing a proper initial state.

VI. SUMMARY

In this work, we developed an efficient semiclassical
fTWA representation of dynamics in a Hubbard model with
long-range interactions. The method is based on the proper
phase-space representation of the Hubbard Hamiltonian. In
particular, we resolved the ambiguity of finding the Weyl
symbol of the Hamiltonian coming from the operator identity
n̂2

α = n̂α . We showed that this ambiguity can be eliminated
by requiring that the fTWA becomes exact in the limit of the
infinite-range interactions. We showed that using the corre-
sponding Weyl symbol of the Hamiltonian in the presence
of algebraically decaying interactions significantly improves
the accuracy of the fTWA over a more naive choice of the
Hamiltonian’s phase-space representation.

Using the developed formalism, we applied the fTWA
to study quench dynamics in the fermionic Hubbard model
with long-range interactions in the presence of disorder.
We first benchmarked the method against the ED results
in small one-dimensional systems and then applied the
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FIG. 9. Imbalance dynamics for small systems with short-range (U0/J = 1) and long-range (U/J = 1, α = 1) interactions with domain-
wall initial conditions (see text for details). The simulations are performed for nondisordered (a),(c) 8 × 1 and (b) 4 × 2 lattices. (a),(b) The
initial CDW state; (c) the initial SDW state.

fTWA to a two-dimensional model, which is far beyond
the reach of ED. In particular, motivated by recent experi-
ments and theoretical works related to the Hubbard model
[1,4,8,9,15,20,21,23,29,38], we analyzed the dynamics of
charge and spin imbalance at half filling for different CDW-
and SDW-type initial states and different disorder strengths.
We showed that the fTWA can clearly distinguish different
thermalization timescales of the charge and spin imbalance
when the disorder potential is spin independent. In partic-
ular, even for the weak and moderate disorder potentials,
we obtained subdiffusive charge transport characterized by

FIG. 10. The charge imbalance dynamics for nondisordered sys-
tems of a fixed length Lx = 8 and different width Ly = 1, 2, 3, 4
with long-range interactions (U/J = 1, α = 1) and the domain-wall
CDW initial condition. The inset shows imbalance decay for 8 × 1
and 8 × 4 lattices with on-site interactions strength U0/J = 1.

a power-law decay of the charge imbalance with a disorder-
dependent exponent. At the same time, the spin transport
under the same conditions remained diffusive. This anisotropy
between charge and spin transport is consistent with earlier
studies in one-dimensional systems [23,29–33,35–38]. We
also showed that fTWA can accurately reproduce the QFI and
found that it grows logarithmically in time at strong disorder.
Moreover, we found that its growth rate is smaller for the
QFI associated with the charge imbalance. This observation
is consistent with slower charge transport and indicates that

FIG. 11. Imbalance dynamics for different disorder strengths
(	/J = 2, 8, 24) and different interaction profiles: short-range in-
teractions with U0/J = 1 (dashed lines) and long-range interactions
with U/J = 1 and α = 1 (solid lines). (a) The initial striped CDW
state (width of stripe is 1); (b) the initial domain-wall state (width of
CDW stripe is 3). The system size is 6 × 6.
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the information also spreads more slowly in the charge sector.
We also investigated the role of different initial conditions and
found that for long-range interactions, there is an additional
and very strong mechanism, which suppresses thermalization
of the initial domain-wall-type CDW state, i.e., the state where
all doubly occupied sites are initially clustered together, even
at weak disorder. This effect can be important for properly
designing experimental protocols, which aim to detect po-
tential localization transition in the systems with long-range
interactions.
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APPENDIX A: FERMIONIC TRUNCATED WIGNER
APPROXIMATION (fTWA)

Here, we will summarize the main ideas of the fTWA
formalism and its implementation. Additional details can be
found in Refs. [39,40]. The fTWA formalism is a direct
generalization of the standard TWA to fermionic systems,
where ραβ = ρ∗

βα , ταβ , τ ∗
αβ play the role of the complex

phase-space variables (for their definition, see Sec. II). All
observables including the Hamiltonian and the initial density
matrix are represented by these phase-space variables. How-
ever, as mentioned in Sec. II, one can consider Hamiltonian
dynamics within ρ representation which restrict phase-space
parametrization to ραβ variables only. Then, the expectation
value of some time-dependent observable in the Heisenberg
representation Ô(t ) within the fTWA is evaluated in the fol-
lowing way:

〈Ô(t )〉 =
∫

dρ0W (ρ0)OW (ρ(t )), (A1)

where W is the Wigner function, OW is the Weyl symbol
of the operator Ô, and ρ = {ραβ : α, β ∈ {1, . . . , N}}. Here
the integration is performed over the initial conditions, with
the Wigner function W (ρ0) playing the role of their proba-
bility distribution. Following Refs. [39,40], we approximate
the Wigner function with a positive Gaussian distribution,
which correctly reproduces both the expectation values of
the phase-space variables and their fluctuations in the initial
state. Such positive representation is always possible for any
Slater-determinant-type initial state and is likely possible for
other states. In particular, the CDW and SDW initial states
that are analyzed in this work, and which are straightforward
to realize in cold atoms [1,2,4,8,9], belong to this category.
We note that it is the presence of fluctuations encoded in the
Wigner function that makes the fTWA fundamentally different
from mean field and allows one to extract such purely quan-
tum observables as the QFI. In order to find ρ(t ) entering
Eq. (A1), one has to solve the deterministic classical and
generally nonlinear equations of motion,

∂ραβ

∂t
= {ραβ, HW } ≡

∑
μνγ δ

f (α, β, μ, ν, γ , δ)
∂HW

∂ρμν

ργ ,δ, (A2)

satisfying the randomly sampled initial conditions:
ρ(t = 0) = ρ0. The evolution is governed by HW , which
plays the role of the classical Hamiltonian. We discuss
the two possible choices for HW corresponding to the
Hamiltonians ĤI [Eq. (4)] and ĤII [Eq. (5)] in Appendix B
[cf. Eqs. (B1) and (B2)]. Finally, f in the equation of motion
define the structure constants, which in turn define the
Poisson brackets of the classical Hamiltonian evolution.
These structure constants are found from the commutation
relations,

[
Êα

β , Êμ
ν

] = i
∑
γ δ

f (α, β, μ, ν, γ , δ)Êγ

δ , (A3)

and are easy to compute [39]. Instead of listing them here in
Appendix B, we show the explicit form of Eq. (A2) for the
two choices of the Hamiltonian, ĤI and ĤII .

APPENDIX B: SEMICLASSICAL EQUATIONS OF MOTION FOR ĤI AND ĤII

The Weyl symbols of the Hamiltonians ĤI and ĤII can be found by standard means using the Bopp representation of the
operators ρ̂αβ [39],

HI,W = −J
∑
〈i j〉

ρiσ jσ +
∑

iσ

	iρiσ iσ +
∑

i j

Ui j

(
ρi↑i↑ + 1

2

)(
ρ j↓ j↓ + 1

2

)
+

∑
i< j,σ

Vi jσ

(
ρiσ iσ + 1

2

)(
ρ jσ jσ + 1

2

)
, (B1)

HII,W = −J
∑
〈i j〉

ρiσ jσ +
∑

iσ

	iρiσ iσ +
∑

i j

Ui j

(
ρi↑i↑ + 1

2

)(
ρ j↓ j↓ + 1

2

)
+ 1

2

∑
i, j,σ

Vi jσ

(
ρiσ iσ + 1

2

)(
ρ jσ jσ + 1

2

)
. (B2)

Then the corresponding equations of motion for the ραβ variables [see Eq. (A2)] read

i
∂ρmσnσ

∂t
= −J

∑
δ

(ρmσ,n+δ σ − ρm+δ σ,nσ ) + ρmσnσ

[
(	n − 	m) +

∑
r

(Unr − Umr )
(
ρr−σ r−σ + 1

2

)]

+ρmσnσ

∑
r

[(1 − δnr )Vnrσ − (1 − δmr )Vmrσ ]
(
ρrσ rσ + 1

2

)
, H = HI,W , (B3)
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FIG. 12. Long-time dynamics of the charge imbalance z̄C (t ). (a) Unfiltered data; (b) the same data after filtering. The parameters used
for the simulations are U/J = 1, α = 1, and the lattice size is 6 × 6. The results are averaged over at least 20 different disorder realizations.
(a),(b) Different colors represent different disorder strengths: 	/J = 2, 4, 8, 12, 24 (from bottom to top). (c) The dynamics of the charge
imbalance for two different system sizes 4 × 4 and 6 × 6, suggesting that the long-time saturation of the imbalance at a small but nonzero
value is a finite-size effect.

and

i
∂ρmσnσ

∂t
= −J

∑
δ

(ρmσ,n+δ σ − ρm+δ σ,nσ ) + ρmσnσ

[
(	n − 	m) +

∑
r

(Unr − Umr )
(
ρr−σ r−σ + 1

2

)]

+ρmσnσ

∑
r

(Vnrσ − Vmrσ )
(
ρrσ rσ + 1

2

)
, H = HII,W . (B4)

These equations are similar but not equivalent. In the limit of the infinite-range interactions, where Ui j = U and Vi jσ = V ,
Eqs. (B3) and (B4) simplify to

i
∂ρmσnσ

∂t
= −J

∑
δ

(ρmσ,n+δ σ − ρm+δ σ,nσ ) + (	n − 	m)ρmσnσ + V ρmσnσ

∑
r

(δmr − δnr )
(
ρrσ rσ + 1

2

)
(B5)

and

i
∂ρmσnσ

∂t
= −J

∑
δ

(ρmσ,n+δ σ − ρm+δ σ,nσ ) + (	n − 	m)ρmσnσ . (B6)

We see that the first system of equations, which was obtained using HI,W , still contains nonlinear terms, while the second system
of equations based on the HII,W representation of the Hamiltonian is linear, which has to be the case because the full quantum
evolution is linear. Mathematically, the origin of ambiguity comes from the fact that the operator identity for fermions n̂2

α = n̂α ,
which does not follow from the properties of the U(N ) algebra used to define the Poisson brackets, but rather from the fact that
the operators Êα

β form a particular fundamental representation of this algebra. At the same time, the Weyl phase-space mapping
of the operators is independent of the particular representation.

APPENDIX C: NOISE AND FINITE-SIZE EFFECTS IN
FTWA SIMULATIONS

In Figs. 12(a) and 12(b), we show the charge imbal-
ance before and after removing substantial sampling noise
from the fTWA simulations. For each disorder realization
of fTWA simulations on a 6 × 6 lattice, we use at least 20
different trajectories corresponding to different random initial
conditions. This number is to be contrasted with averaging
over 400 realization in Sec. III, where we benchmarked the
fTWA against the exact results in small systems. While av-
eraging over 20 different initial conditions is sufficient to
obtain a smooth short-time behavior of the imbalance, more

averaging is needed to eliminate the sampling noise at long
times. Because even classical simulations in large systems are
computationally costly, we found that it is more efficient to
apply filtering to the imbalance data to suppress this long-
time spurious noise. As is evident from comparing the curves
shown in Figs. 12(a) and 12(b), the filtering does not introduce
any systematic error.

In Fig. 12(c), we analyze finite-size effects on the imbal-
ance dynamics by comparing the fTWA simulations for two
different system sizes 4 × 4 and 6 × 6. We see that apart from
a small difference in the first oscillation (enhanced in the plot
because of using the logarithmic scale), the results for the two
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system sizes are very similar until the imbalance saturates at
long times at a small positive value, which rapidly goes to zero
with the system size. From this comparison, we can conclude

that the 6 × 6 system size is sufficient to capture some key
features of the imbalance dynamics in the thermodynamic
limit.
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