
A Bunched Logic for Conditional Independence
Jialu Bao

University of Wisconsin–Madison

Justin Hsu
University of Wisconsin–Madison

Simon Docherty
University College London

Alexandra Silva
University College London

Abstract—Independence and conditional independence are fun-
damental concepts for reasoning about groups of random vari-
ables in probabilistic programs. Verification methods for inde-
pendence are still nascent, and existing methods cannot handle
conditional independence. We extend the logic of bunched impli-
cations (BI) with a non-commutative conjunction and provide a
model based on Markov kernels; conditional independence can be
directly captured as a logical formula in this model. Noting that
Markov kernels are Kleisli arrows for the distribution monad,
we then introduce a second model based on the powerset monad
and show how it can capture join dependency, a non-probabilistic
analogue of conditional independence from database theory.
Finally, we develop a program logic for verifying conditional
independence in probabilistic programs.

I. Introduction

The study of probabilistic programming languages and their
semantics dates back to the 1980s, starting from the seminal
work of Kozen [1]. The last decade has seen a surge of richer
probabilistic languages [2, 3, 4], motivated by applications
in machine learning, and accompanying research into their
semantics [5, 6, 7]. This burst of activity has also created
new opportunities and challenges for formal verification.

Independence and conditional independence are two funda-
mental properties that are poorly handled by existing verifi-
cation methods. Intuitively, two random variables are prob-
abilistically independent if information about one gives no
information about the other (for example, the results of two
coin flips). Conditional independence is more subtle: two
random variables X and Y are independent conditioned on
a third variable Z if for every fixed value of Z, information
about one of X and Y gives no information about the other.

Both forms of independence are useful for modelling and
verification. Probabilistic independence enables compositional
reasoning about groups of random variables: if a group of
random variables are independent, then their joint distribution
is precisely described by the distribution of each variable
in isolation. It also captures the semantics of random sam-
pling constructs in probabilistic languages, which generate
a fresh random quantity that is independent of the program
state. Conditional independence often arises in programs with
probabilistic control flow, as conditioning models probabilistic
branching. Bayesian networks encode conditional indepen-
dence statements in complex distributions, and conditional
independence captures useful properties in many applications.

For instance, criteria ensuring that algorithms do not discrim-
inate based on sensitive characteristics (e.g., gender or race)
can be formulated using conditional independence [8].

Aiming to prove independence in probabilistic programs,
Barthe et al. [9] recently introduced Probabilistic Separation
Logic (PSL) and applied it to formalize security for several
well-known constructions from cryptography. The key ingre-
dient of PSL is a new model of the logic of bunched implica-
tions (BI), in which separation is interpreted as probabilistic
independence. While PSL enables formal reasoning about
independence, it does not support conditional independence.
The core issue is that the model of BI underlying PSL provides
no means to describe the distribution of one set of variables
obtained by fixing (conditioning) another set of variables
to take specific values. Accordingly, one cannot capture the
basic statement of conditional independence—X and Y are
independent random variables conditioned on any value of Z.

In this paper, we develop a logical framework for formal
reasoning about notions of dependence and independence.
Our approach is inspired by PSL but the framework is more
sophisticated: to express conditional independence, we develop
a novel assertion logic extending BI with new connectives—#
and its adjoints. The key intuition is that conditional indepen-
dence can be expressed as independence plus composition of
Markov kernels; as our leading example, we give a kernels
model of our logic.

Then, we show how to adapt the probabilistic model to
other settings. As is well-known in category theory, Markov
kernels are the arrows in the Kleisli category of the distribution
monad. By varying the monad, our logic smoothly extends to
analogues of conditional independence in other domains. To
demonstrate, we show how replacing the distribution monad
by the powerset monad gives a model where we can cap-
ture join/multivalued dependencies in relational algebra and
database theory. We also show that the semi-graphoid laws,
introduced by Pearl and Paz [10] in their work axiomatizing
conditional independence, can be translated into formulas that
are valid in both of our models.

The rest of the paper is organized as follows. We give
a bird’s-eye view in Section II, providing intuitions on our
design choices and highlighting differences with existing work.
Section III presents the main contribution: the design of
DIBI, a new bunched logic to reason about dependence and
independence. We show that the proof system of DIBI is978-1-6654-4895-6/21/$31.00 © 2021 IEEE

sound and complete with respect to its Kripke semantics.
Then, we present two concrete models in Section IV, based
on probability distributions and relations. In Section V, we
consider how to express dependencies in DIBI: we show that
the same logical formula captures conditional independence
and join dependency in our two models, and our models
validate the semi-graphoid laws. Finally, in Section VI, we
design a program logic with DIBI assertions, and use it to
verify conditional independence in two probabilistic programs.

II. Overview of the contributions

The logic DIBI: The starting point of our work is the
logic of bunched implications (BI) [11]. BI extends intuition-
istic propositional logic with substructural connectives to fa-
cilitate reasoning about sharing and separation of resources, an
idea most prominently realized in Separation Logic’s handling
of heap-manipulating programs [12]. The novel connectives
are a separating conjunction P ∗ Q, intuitively stating that P
and Q hold in separate resources, and its adjoint −∗, called
magic wand. We will extend BI with a non-commutative
conjunction, written P # Q. Intuitively, # expresses a possible
dependency of Q on P. The end result is a logic with
two conjunctive connectives—∗ and #—capturing notions of
independence and dependence. We call the logic Dependence
and Independence Bunched Implications (DIBI).

To give a semantics to our logic, we start from the semantics
of BI. The simplest BI models are partial resource monoids:
Kripke structures (M,⊑, ◦, e) in which ◦ is an order-preserving,
partial, commutative monoid operation with unit e. The opera-
tion ◦ allows interpreting the separating conjunction P ∗ Q and
magic wand P −∗ Q. For example, the probabilistic model of
BI underlying PSL [9] is a partial resource monoid: by taking
M to be the set of distributions over program memories and ◦
to be the independent product of distributions over memories
with disjoint variables, the interpretation of P ∗ Q gives the
desired notion of probabilistic independence.

This is the first point where we fundamentally differ from
PSL. To capture both dependence and independence, we
change the structure in which formulas are interpreted. In
Section III, we will introduce a structure X = (X,⊑,⊕,⊙, E),
a DIBI frame, with two operations ⊕ : X2 → P(X) and
⊙ : X2 → P(X), and a set of units E ⊆ X. Three remarks
are in order. First, the preorder ⊑ makes DIBI an intuitionistic
logic. There are many design trade-offs between intuitionistic
and classical, but the most important consideration is that
intuitionistic formulas can describe proper subsets of states
(e.g., random variables), leaving the rest of the state implicit.
Second, DIBI frames contain an additional monoidal operation
⊙ for interpreting # (⊕ will be used in interpreting ∗). Third, as
the completeness of BI for its simple PCM models is an open
problem [13], our models are examples of a broader notion
of BI model with non-deterministic operations (following [14,
15]). These models subsume partial resource monoids, and
enable our completeness proof of DIBI. While the conditions
that DIBI frames must satisfy are somewhat cryptic at first
sight, they can be naturally understood as axioms defining

monoidal operations in a partial, non-deterministic setting.
E.g., we will require:

(⊕ Comm.) z ∈ x ⊕ y→ z ∈ y ⊕ x;
(⊕ Assoc.) w ∈ t ⊕ z ∧ t ∈ x ⊕ y→ ∃s(s ∈ y ⊕ z ∧ w ∈ x ⊕ s);
(⊙ Unit Exist.L) ∃e ∈ E. (x ∈ e ⊙ x)

where unbound variables are universally quantified. Crucially,
the operation ⊙ need not be commutative: this operation
interprets the dependence conjunction #, where commutativity
is undesirable. In a DIBI frame, ∗ and # are interpreted as:

x |= P ∗ Q iff exists x′, y, z s.t. x ⊒ x′ ∈ y ⊕ z, y |= P, and z |= Q
x |= P # Q iff exists y, z s.t. x ∈ y ⊙ z, y |= P, and z |= Q

In DIBI, ∗ has a similar reading as in PSL: it states that
two parts of a distribution can be combined because they are
independent. In contrast, the new conjunction P # Q asserts
that the Q part of a distribution may depend on the P
part. Combined with the separating conjunction ∗, the new
conjunction # can express more complex dependencies: e.g.
P # (Q ∗ R) asserts that Q and R both may depend on P, and
are independent conditioned on P.

A sound and complete proof system for DIBI: To reason
about DIBI validity, in Section III we also provide a Hilbert-
style proof system for DIBI, and prove soundness and com-
pleteness. The proof system extends BI with rules for the new
connective #, e.g. # Conj, and for the interaction between # and
∗, e.g., RevEx:
P ⊢ R Q ⊢ S

P # Q ⊢ R # S
Conj

(P # Q) ∗ (R # S) ⊢ (P ∗ R) # (Q ∗ S)
RevEx

RevEx—reverse-exchange—captures the fundamental interac-
tion between the two conjunctions. Computations T = P # Q
and U = R # S are built from dependent components, yet T
and U are independent and hence can be combined with ∗.
We can then infer that the building blocks of T and U must
also be pair-wise independent and can be combined, yielding
formulas P ∗ R and Q ∗ S . These can then be combined with #
as they retain the dependency of the original building blocks.

Models and applications of DIBI: Separation logics are
based on a concrete BI model over program states, together
with a choice of atomic assertions. Before explaining the
models of DIBI, we recall two prior models of BI.

In the heap model, states are heaps: partial maps from
memory addresses to values. Atomic assertions of the form
x ↦→ v indicate that the location to which x points has value
v. Then, x ↦→ v ∗ y ↦→ u states that x points to v and y points
to u, and x and y do not alias—they must point to different
locations. In general, P ∗ Q holds when a heap can be split
into two subheaps with disjoint domains, satisfying P and Q
respectively.

w

x

y

z

heap:

|= P ∗ Q ⇐⇒

|= P

|= Q

In PSL, states are distributions over program memories,
basic assertions D[x] indicate that x is a random variable,

2

and P ∗ Q states that a distribution µ can be factored into
two independent distributions µ1 and µ2 satisfying P and Q,
respectively. Consider the following simple program:

x $← B1/2; y $← B1/2; z← x ∨ y (1)

Here, x and y are Boolean variables storing the result of two
fair coin flips and z stores the result of x ∨ y. The output
distribution µ is a distribution over a memory with variables
x, y and z (depicted below on the right). In µ, the variables
x and y are independent and D[x] ∗ D[y] holds, since the
marginal distribution of µ is a product of µ1 and µ2, which
satisfy D[x] and D[y] respectively:

µ1
4

1
4

1
4

|= D[x] ∗ D[y]

0

0

0

0

1

1

1

0

1

1
4

1

1

1

1
2

0 x

y

z

x
1
2

1x

1
2

0y

1y

µ1 |= D[x] µ2 |= D[y]

1
2

In Section IV, we develop two concrete models for DIBI:
one based on probability distributions, and one based on
relations. Here we outline the probabilistic model, as it
generalizes the model of PSL. Let Val be a finite set
of values and S a finite set of memory locations. We
use Mem[S] to denote functions S → Val, representing
program memories. The states in the DIBI probabilistic
model, over which the formulas will be interpreted, are
Markov kernels on program memories. More precisely, given
sets of memory locations S ⊆ U, these are functions
f : Mem[S]→ D(Mem[U]) that preserve their input. Regular
distributions can be lifted to Markov kernels: the distribution
µ : D(Mem[U]) corresponds to the kernel fµ : Mem[∅] →
D(Mem[U]) that assigns µ to the only element in Mem[∅].

dom(f) range(f)

We depict input-preserving Markov kernels as
trapezoids, where the smaller side represents
the domain and the larger side the range;
our basic assertions will track dom(f) and
range(f), justifying this simplistic depiction.

Separating and dependent conjunction will be interpreted
via ⊕ and ⊙ on Markov kernels. Intuitively, ⊕ is a parallel
composition that takes union on both domains and ranges,
whereas ⊙ composes the kernels using Kleisli composition.

⊕ ↦→

f1 f2 f1 ⊕ f2

⊙ ↦→

g1 g2 g1 ⊙ g2

To demonstrate, recall the simple program (1). In the output
distribution µ, z depends on x and y since z stores x∨ y, and x
and y are independent. In our setting, this dependency structure
can be seen when decomposing fµ = (fµ1 ⊕ fµ2) ⊙ fz, where
kernel fz : Mem[{x, y}]→ D(Mem[{x, y, z}]) captures how the
value of z depends on the values of {x, y}:

a
b

x
y

fz
↦−−−−−−→ δ

(︄)︄
z a ∨ b
y

x

b
a

δ : X → D(X) is the Dirac distribution
δ(v)(w) = 1 if v = w, 0 otherwise.

We can then prove:

fµ1 ⊕ fµ2 |= Px∗y and fz |= Qz implies fµ |= Px∗y # Qz (2)

When analyzing composition of Markov kernels, the domains
and ranges provide key information: the domain determines
which variables a kernel may depend on, and the range
determines which variables a kernel describes. Accordingly,
we use basic assertions of the form (A ▷ [B]), where A and B
are sets of memory locations. A Markov kernel f : Mem[S]→
D(Mem[T]) satisfies (A ▷ [B]) if there exists a f ′ ⊑ f with
dom(f ′) = A and range(f ′) ⊇ B (we will define f ′ ⊑ f for-
mally later and for now read it as f extends f ′). For instance,
the kernel fz above satisfies ({x, y} ▷ [x, y]), ({x, y} ▷ [x, y, z]),
and ({x, y} ▷ [∅]). One choice for Px∗y and Qz in (2) can be:
Px∗y = (∅ ▷ [x]) ∗ (∅ ▷ [y]) and Qz = ({x, y} ▷ [x, y, z]))

Formalizing conditional independence: The reader might
wonder how to use such simple atomic propositions, which
only talk about the domain/range of a kernel and do not
describe numeric probabilities, to assert conditional inde-
pendence. The key insight is that conditional independence
can be formulated using sequential (⊙) and parallel (⊕)
composition of kernels. In Section V, we show that given
µ ∈ D(Mem[Var]), for any X,Y,Z ⊆ Var, the satisfaction of

fµ |= (∅ ▷ [Z]) # (Z ▷ [X]) ∗ (Z ▷ [Y]) (3)

captures conditional independence of X,Y given Z in µ.
Moreover, the formula in (3) smoothly generalizes to other

models. In the relational model of DIBI—obtained by switch-
ing the distribution monad to the powerset monad—the exact
same formula encodes join dependency, a notion of conditional
independence from the databases and relational algebra liter-
ature. More generally, we also show that the semi-graphoid
axioms of Pearl and Paz [10] are valid in these two models,
and two of the axioms can be derived in the DIBI proof system.

III. The Logic DIBI

A. Syntax and semantics

The syntax of DIBI extends the logic of bunched impli-
cations (BI) [11] with a non-commutative conjunctive con-
nective # and its associated implications. Let AP be a set of
propositional atoms. The set of DIBI formulas, FormDIBI, is
generated by the following grammar:

P,Q ::= p ∈ AP | ⊤ | I | ⊥ | P ∧ Q | P ∨ Q | P→ Q

| P ∗ Q | P −∗ Q | P # Q | P⊸ Q | P⟜ Q.

DIBI is interpreted on DIBI frames, which extend BI frames.

Definition III.1 (DIBI Frame). A DIBI frame is a structure
X = (X,⊑,⊕,⊙, E) such that ⊑ is a preorder, E ⊆ X, and
⊕ : X2 → P(X) and ⊙ : X2 → P(X) are binary operations,
satisfying the rules in Figure 1.

Intuitively, X is a set of states, the preorder ⊑ describes
when a smaller state can be extended to a larger state, the
binary operators ⊙, ⊕ offer two ways of combining states, and
E is the set of states that act like units with respect to these

3

(⊕ Down-Closed) z ∈ x ⊕ y ∧ x ⊒ x′ ∧ y ⊒ y′ → ∃z′(z ⊒ z′ ∧ z′ ∈ x′ ⊕ y′);
(⊙ Up-Closed) z ∈ x ⊙ y ∧ z′ ⊒ z → ∃x′, y′(x′ ⊒ x ∧ y′ ⊒ y ∧ z′ ∈ x′ ⊙ y′)
(⊕ Commutativity) z ∈ x ⊕ y → z ∈ y ⊕ x;
(⊕ Associativity) w ∈ t ⊕ z ∧ t ∈ x ⊕ y → ∃s(s ∈ y ⊕ z ∧ w ∈ x ⊕ s);
(⊕ Unit Existence) ∃e ∈ E(x ∈ e ⊕ x);
(⊕ Unit Coherence) e ∈ E ∧ x ∈ y ⊕ e → x ⊒ y;
(⊙ Associativity) ∃t(w ∈ t ⊙ z ∧ t ∈ x ⊙ y) ↔ ∃s(s ∈ y ⊙ z ∧ w ∈ x ⊙ s);
(⊙ Unit ExistenceL) ∃e ∈ E(x ∈ e ⊙ x);
(⊙ Unit ExistenceR) ∃e ∈ E(x ∈ x ⊙ e);
(⊙ CoherenceR) e ∈ E ∧ x ∈ y ⊙ e → x ⊒ y;
(Unit Closure) e ∈ E ∧ e′ ⊒ e → e′ ∈ E;
(Reverse Exchange) x ∈ y ⊕ z ∧ y ∈ y1 ⊙ y2 ∧ z ∈ z1 ⊙ z2 → ∃u, v(u ∈ y1 ⊕ z1 ∧ v ∈ y2 ⊕ z2 ∧ x ∈ u ⊙ v).

Fig. 1: DIBI frame requirements (with outermost universal quantification omitted for readability).

operations. The binary operators return a set of states instead
of a single state, and thus can be either deterministic (at most
one state returned) or non-deterministic, either partial (empty
set returned) or total. The operators in the concrete models
below will be deterministic, but the proof of completeness
relies on the frame’s admission of non-deterministic models,
as is standard for bunched logics [14].

The frame conditions define properties that must hold for
all models of DIBI. Most of these properties can be viewed
as generalizations of familiar algebraic properties to non-
deterministic operations, suitably interacting with the preorder.
The “Closed” properties give coherence conditions between
the order and the composition operators. It is known that
having the Associativity frame condition together with either
the Up- or Down-Closed property for an operator is sufficient
to obtain the soundness of associativity for the conjunction
associated with the operator [16, 14]. The choices of Closed
conditions match the desired interpretations of ⊕ as indepen-
dence and ⊙ as dependence: independence should drop down
to substates (which must necessarily be independent if the
superstates were), while dependence should be inherited by
superstates (the source of dependence will still be present in
any extensions). Having ⊙ non-commutative also splits the ⊙
analogues of ⊕ axioms into pairs of axioms, although we note
that we exclude the left version of (⊙ Coherence) for reasons
we explain in Section III-B. Finally, the (Reverse Exchange)
condition defines the interaction between ⊕ and ⊙.

We will give a Kripke-style semantics for DIBI, much like
the semantics for BI [17]. Given a DIBI frame, the semantics
defines which states in the frame satisfy each formula. Since
the definition is inductive on formulas, we must specify which
states satisfy the atomic propositions.

Definition III.2 (Valuation and model). A persistent valuation
is an assignment V : AP → P(X) of atomic propositions to
subsets of states of a DIBI frame satisfying: if x ∈ V(p) and
y ⊒ x then y ∈ V(p). A DIBI model (X,V) is a DIBI frame
X together with a persistent valuation V.

Since DIBI is an intuitionistic logic, persistence is necessary
for soundness. We can now give a semantics to DIBI formulas
in a DIBI model.

Definition III.3 (DIBI Satisfaction and Validity). Satisfaction
at a state x in a model is inductively defined by the clauses in
Figure 2. P is valid in a model, X |=V P, iff x |=V P for all
x ∈ X. P is valid, |= P, iff P is valid in all models. P |= Q iff,
for all models, X |=V P implies X |=V Q.

Where the context is clear, we omit the subscript V on
the satisfaction relation. With the semantics in Figure 2,
persistence on propositional atoms extends to all formulas:

Lemma III.1 (Persistence Lemma). For all P ∈ FormDIBI, if
x |= P and y ⊒ x then y |= P.

The reader may note the difference between the semantic
clauses for # and ∗, and −∗ and ⊸: the satisfaction of the Up-
Closed (Down-Closed) frame axiom for ⊙ (⊕) leads to the
persistence and thus the soundness of the simpler clause for
(−∗) [16]. Without the other Closed property, we must use a
satisfaction clause which accounts for the order, as in BI.

B. Proof system

A Hilbert-style proof system for DIBI is given in Figure 3.
This calculus extends a system for BI with additional rules
governing the new connectives #, ⊸ and ⟜: in Section III-C
we will prove this calculus is sound and complete. We briefly
comment on two important details in this proof system.

Reverse exchange: The proof system of DIBI shares
many similarities with Concurrent Kleene Bunched
Logic (CKBI) [14], which also extends BI with a non-
commutative conjunction. Inspired by concurrent Kleene
algebra (CKA) [18], CKBI supports the following exchange
axiom, derived from CKA’s exchange law:

(P ∗ R) # (Q ∗ S) ⊢CKBI (P # Q) ∗ (R # S)

In models of CKBI, ∗ describes interleaving concurrent
composition, while # describes sequential composition. The
exchange rule states that the process on the left has fewer
behaviors than the process on the right—e.g., P # Q allows
fewer behaviors than P ∗ Q, so P # Q ⊢CKBI P ∗ Q is derivable.

In our models, ∗ has a different reading: it states that two
computations can be combined because they are independent
(i.e., non-interfering). Accordingly, DIBI replaces Exch by the
reversed version RevEx—the fact that the process on the left

4

x |=V ⊤ always x |=V ⊥ never
x |=V I iff x ∈ E x |=V p iff x ∈ V(p)
x |=V P ∧ Q iff x |=V P and x |=V Q
x |=V P ∨ Q iff x |=V P or x |=V Q
x |=V P→ Q iff for all y ⊒ x, y |=V P implies y |=V Q
x |=V P ∗ Q iff there exist x′, y, z s.t. x ⊒ x′ ∈ y ⊕ z, y |=V P and z |=V Q
x |=V P # Q iff there exist y, z s.t. x ∈ y ⊙ z, y |=V P and z |=V Q
x |=V P −∗ Q iff for all y, z s.t. z ∈ x ⊕ y: y |=V P implies z |=V Q
x |=V P⊸ Q iff for all x′, y, z s.t. x′ ⊒ x and z ∈ x′ ⊙ y: y |=V P implies z |=V Q
x |=V P⟜ Q iff for all x′, y, z s.t. x′ ⊒ x and z ∈ y ⊙ x′: y |=V P implies z |=V Q

Fig. 2: Satisfaction for DIBI

P ⊢ P
Ax

P ⊢ ⊤
⊤

⊥ ⊢ P
⊥

P ⊢ R Q ⊢ R

P ∨ Q ⊢ R
∨1

P ⊢ Qi

P ⊢ Q1 ∨ Q2
∨2

P ⊢ Q P ⊢ R

P ⊢ Q ∧ R
∧1

Q ⊢ R

P ∧ Q ⊢ R
∧2

P ⊢ Q1 ∧ Q2

P ⊢ Qi
∧3/ ∧ 4

P ∧ Q ⊢ R

P ⊢ Q→ R
→

P ⊢ Q→ R P ⊢ Q

P ⊢ R
MP

P ∗ Q ⊢ R

P ⊢ Q −∗ R
−∗

P ⊢ Q −∗ R S ⊢ Q

P ∗ S ⊢ R
−∗MP

P # Q ⊢ R

P ⊢ Q⊸ R
⊸

P ⊢ Q⊸ R S ⊢ Q

P # S ⊢ R
⊸MP

P # Q ⊢ R

Q ⊢ P⟜ R
⟜

P ⊢ Q⟜ R S ⊢ Q

S # P ⊢ R
⟜MP

P ⊣⊢ P ∗ I
∗-Unit

P ⊢ R Q ⊢ S

P ∗ Q ⊢ R ∗ S
∗-Conj

P ∗ Q ⊢ Q ∗ P
∗-Comm

(P ∗ Q) ∗ R ⊣⊢ P ∗ (Q ∗ R)
∗-Assoc

P ⊢ I # P
#-Left Unit

P ⊢ R Q ⊢ S

P # Q ⊢ R # S
#-Conj

P ⊣⊢ P # I
#-Right Unit

(P # Q) # R ⊣⊢ P # (Q # R)
#-Assoc

(P # Q) ∗ (R # S) ⊢ (P ∗ R) # (Q ∗ S)
RevEx

Fig. 3: Hilbert system for DIBI

is safe to combine implies that the process on the right is also
safe. P ∗ Q is now stronger than P # Q, and P ∗ Q ⊢ P # Q is
derivable (see the extended version [19]).

Left unit: While # has a right unit in our logic, it does not
have a proper left unit. Semantically, this corresponds to the
lack of a frame condition for ⊙-CoherenceL in our definition
of DIBI frames. This difference can also be seen in our proof
rules: while #-Right Unit gives entailment in both directions,
#-Left Unit only shows entailment in one direction—there is
no axiom stating I # P ⊢ P.

We make this relaxation to support our intended models,
which we will see in Section IV. In a nutshell, states in our
models are Kleisli arrows that preserve their input through
to their output—intuitively, in conditional distributions, the
variables that have we conditioned on will remain fixed.
Our models take ⊙ to be Kleisli composition, which exhibits
an important asymmetry for such arrows: f can always be
recovered from f ⊙ g, but not from g ⊙ f . As a result, the set
of all arrows naturally serves as the set of right units, but these
arrows cannot all serve as left units.

C. Soundness and Completeness of DIBI

A methodology for proving the soundness and completeness
of bunched logics is given by Docherty [14], inspired by the
duality-theoretic approach to modal logic [20]. First, DIBI
is proved sound and complete with respect to an algebraic
semantics obtained by interpreting the rules of the proof
system as algebraic axioms. We then establish a representation
theorem: every DIBI algebra A embeds into a DIBI algebra
generated by a DIBI frame, that is in turn generated by A.

Soundness and completeness of the algebraic semantics can
then be transferred to the Kripke semantics. Omitted details
can be found in [19].

Definition III.4 (DIBI Algebra). A DIBI algebra is an al-
gebra A = (A,∧,∨,→,⊤,⊥, ∗,−∗, #,⊸,⟜, I) such that, for all
a, b, c, d ∈ A:

• (A,∧,∨,→,⊤,⊥) is a Heyting algebra;
• (A, ∗, I) is a commutative monoid;
• (A, #, I) is a weak monoid: # is an associative operation

with right unit I and a ≤ I # a;
• a ∗ b ≤ c iff a ≤ b −∗ c;
• a # b ≤ c iff a ≤ b⊸ c iff b ≤ a⟜ c;
• (a # b) ∗ (c # d) ≤ (a ∗ c) # (b ∗ d).

An algebraic interpretation of DIBI is specified by an
assignment J−K : AP → A. The interpretation is obtained
as the unique homomorphic extension of this assignment,
and so we use the notation J−K interchangeably for both
assignment and interpretation. Soundness and completeness
can be established by constructing a term DIBI algebra by
quotienting formulas by equiderivability.

Theorem III.2. P ⊢ Q is derivable iff JPK ≤ JQK for all
algebraic interpretations J−K.

We now connect these algebras to DIBI frames. A filter on
a bounded distributive lattice A is a non-empty set F ⊆ A
such that, for all x, y ∈ A, (1) x ∈ F and x ≤ y implies y ∈ F;
and (2) x, y ∈ F implies x ∧ y ∈ F. It is a proper filter if it
additionally satisfies (3) ⊥ ∉ F, and a prime filter if it also

5

satisfies (4) x ∨ y ∈ F implies x ∈ F or y ∈ F. We denote the
set of prime filters of A by PFA.

Definition III.5 (Prime Filter Frame). Given a DIBI algebra
A, the prime filter frame of A is defined as Pr(A) = (PFA,⊆
,⊕A,⊙A, EA), where F ⊕A G := {H ∈ PFA | ∀a ∈ F, b ∈ G(a ∗
b ∈ H)}, F ⊙A G := {H ∈ PFA | ∀a ∈ F, b ∈ G(a # b ∈ H)} and
EA := {F ∈ PFA | I ∈ F}.

Proposition III.3. For any DIBI algebra A, the prime filter
frame Pr(A) is a DIBI frame.

In the other direction, DIBI frames generate DIBI algebras.

Definition III.6 (Complex Algebra). Given a DIBI frame
X = (X,⊑,⊕,⊙, E), the complex algebra of X is defined to
be Com(X) = (P⊑(X),∩,∪,⇒X, X, ∅, •X,⊸︁X, ▷X,−▷X, ▷−X, E):
P⊑(X) = {A ⊆ X | if a ∈ A and a ⊑ b then b ∈ A}

A⇒X B = {a | for all b, if b ⊒ a and b ∈ A then b ∈ B}
A •X B = {x | there exist x′, a, b s.t x ⊒ x′ ∈ a ⊕ b, a ∈ A and b ∈ B}

A⊸︁X B = {x | for all a, b, if b ∈ x ⊕ a and a ∈ A then b ∈ B}
A ▷X B = {x | there exist a, b s.t x ∈ a ⊙ b, a ∈ A and b ∈ B}

A −▷X B = {x | for all x′, a, b, if x ⊑ x′, b ∈ x′ ⊙ a and a ∈ A then b ∈ B}
A ▷−X B = {x | for all x′, a, b, if x ⊑ x′, b ∈ a ⊙ x′ and a ∈ A then b ∈ B}.

Proposition III.4. For any DIBI frame X, the complex algebra
Com(X) is a DIBI algebra.

The following main result facilitates transference of sound-
ness and completeness.

Theorem III.5 (Representation of DIBI algebras). Every DIBI
algebra is isomorphic to a subalgebra of a complex algebra:
given a DIBI algebra A, the map θA : A → Com(Pr(A))
defined by θA(a) = {F ∈ PFA | a ∈ F} is an embedding.

Given the previous correspondence between DIBI algebras
and frames, we only need to show that θ is a monomorphism:
the necessary argument is identical to that for similar bunched
logics [14, Theorems 6.11, 6.25]. Given J−K on A, the rep-
resentation theorem establishes that VJ−K(p) := θA(JpK) is a
persistent valuation on Pr(A) such that F |=VJ−K P iff JPK ∈ F,
from which our main theorem can be proved.

Theorem III.6 (Soundness and Completeness). P ⊢ Q is
derivable iff P |= Q.

IV. Models of DIBI

In this section, we introduce two concrete models of DIBI to
facilitate logical reasoning about (in)dependence in probability
distributions and relational databases. In both models the
operations ⊙ and ⊕ will be deterministic partial functions; we
write h = f • g instead of {h} = f • g, for • ∈ {⊙,⊕}. We start
with some preliminaries on memories and distributions.

A. Memories, distributions, and Markov kernels

Operations on Memories: Let Val be a fixed set of values
(e.g., the Booleans), S be a set of variable names, and let
Mem[S] denote the set of functions of type m : S → Val. We
call such functions memories because we can think of m as
assigning a value to each variable in S ; we will refer to S as

the domain of m. The only element in Mem[∅] is the empty
memory, which we write as ⟨⟩.

We need two operations on memories. First, a memory m
with domain S can be projected to a memory mT with domain
T if T ⊆ S , defined as mT (x) = m(x) for all x ∈ T . Second, two
memories can be combined if they agree on the intersection of
their domains: given memories m1 ∈ Mem[S], m2 ∈ Mem[T]
such that mS∩T

1 = mS∩T
2 , we define m1 ⊗ m2 : S ∪ T → Val by

m1 ⊗ m2(x) :=
{︄

m1(x) if x ∈ S
m2(x) if x ∈ T

(4)

Probability distributions and Markov kernels: We use the
distribution monad to model distributions over memories.
Given a set X, let D(X) denote the set of finite distributions
over X, i.e., the set containing all finite support functions
µ : X → [0, 1] satisfying

∑︁
x∈X µ(x) = 1. This operation

on sets can be lifted to functions f : X → Y , resulting
in a map of distributions D(f) : D(X) → D(Y) given by
D(f)(µ)(y) :=

∑︁
f (x)=y µ(x) (intuitively, D(f) takes the sum of

the probabilities of all elements in the pre-image of y). These
operations turn D into a functor on sets and, further, D is also
a monad [21, 22].

Definition IV.1 (Distribution Monad). Define unit : X → D(X)
as unitX(x) := δx where δx denotes the Dirac distribution on
x: for any y ∈ X, we have δx(y) = 1 if y = x, otherwise
δx(y) = 0. Further, define bind : D(X)→ (X → D(Y))→ D(Y)
by bind(µ)(f)(y) :=

∑︁
p∈D(Y)D(f)(µ)(p) · p(y).

Intuitively, unit embeds a set into distributions over the
set, and bind enables the sequential combination of proba-
bilistic computations. Both maps are natural transformations
and satisfy the following interaction laws, establishing that
⟨D, unit, bind⟩ is a monad:

bind(unit(x))(f) = f (x), bind(µ)(unit) = µ,
bind(bind(µ)(f))(g) = bind(µ)(λx.bind(f (x))(g)).

(5)

The distribution monad has an equivalent presentation in
which bind is replaced with a multiplication operation
DD(X)→ D(X), which flattens distributions by averaging.

The monad D gives rise to the Kleisli category of D,
denoted Kℓ(D), with sets as objects and arrows of the form
f : X → D(Y), also known as Markov kernels [23]. Arrow
composition in Kℓ(D) is defined using bind: given f : X →
D(Y), g : Y → D(Z), the composition f ⊙ g : X → D(Z) is:

(f ⊙ g)(x) := bind(f (x))(g) (6)

Markov kernels generalize distributions: we can lift a distri-
bution µ : D(X) to the kernel fµ : 1→ D(X) assigning µ to the
single element of 1. Kernels can also encode conditional dis-
tributions, which play a key role in conditional independence.

Example IV.1. Consider the program p in Figure 4a, where
x, y, and z are Boolean variables. First, flip a fair coin and
store the result in z. If z = 0, flip a fair coin twice, and store
the results in x and y, respectively. If z = 1, flip a coin with

6

z $← B1/2;
if z then

x $← B1/4;
y $← B1/4;

else
x $← B1/2;
y $← B1/2

(a) Probabilistic program p

x y z µ

0 0 0 1/8
0 0 1 1/32
1 0 0 1/8
1 0 1 3/32
0 1 0 1/8
0 1 1 3/32
1 1 0 1/8
1 1 1 9/32

(b) Distribution µ generated by p

x y µ0

0 0 1/4
1 0 1/4
0 1 1/4
1 1 1/4

(c) µ conditioned on z = 0

x y µ1

0 0 1/16
1 0 3/16
0 1 3/16
1 1 9/16

(d) µ conditioned on z = 1

Fig. 4: From probabilistic programs to kernels

bias 1/4 twice, and store the results in x and y. This program
produces a distribution µ, shown in Figure 4b.

If we condition µ on z = 0, then the resulting distribution
µ0 models two independent fair coin flips: 1/4 probability for
each possible pair of outcomes (Figure 4c). If we condition on
z = 1, however, then the distribution µ1 will be skewed—there
will be a much higher probability that we observe (1, 1) than
(0, 0), but x and y are still independent (Figure 4d).

To connect µ0 and µ1 to the original distribution µ, we
package µ0 and µ1 into a Markov kernel k : Mem[z] →
D(Mem[{x, y, z}]) given by k(i)(d) = µi(d{x,y}). Then, the
relation between the conditional and original distributions is
fµ = fµz ⊙ k, where µz is the projection of µ on {z}.

Finite distributions of memories over U, denoted
D(Mem[U]), will play a central role in our models.
We will refer to maps f : Mem[S] → D(Mem[U]) as
(Markov) kernels, and define dom(f) = S and range(f) = U.

We can marginalize/project kernels to a smaller range.

Definition IV.2 (Marginalizing kernels). For a Markov kernel
f : Mem[S] → D(Mem[U]) and V ⊆ U, the marginaliza-
tion of f by V is the map πV f : Mem[S] → D(Mem[V]):
(πV f)(d)(r) :=

∑︁
m∈Mem[U\V] f (d)(r ⊗ m) for d ∈ Mem[S], r ∈

Mem[V]; undefined terms do not contribute to the sum.

We say a kernel f : Mem[S] → D(Mem[U]) preserves
its input to its output if S ⊆ U and πS f = unitMem[S].
Intuitively, such kernels are suitable for encoding conditional
distributions: once a variable has been conditioned on, its value
should not change. We can compose these kernels in two ways.

Definition IV.3 (Composing Markov kernels on memories).
Given f : Mem[S] → D(Mem[T]) and g : Mem[U] →
D(Mem[V]) that preserve their inputs, we define their par-
allel composition, whenever S ∩ U = T ∩ V , as the map
f ⊕ g : Mem[S ∪ U]→ D(Mem[T ∪ V]) given by

(f ⊕ g)(d)(m) := f (dS)(mT) · g(dU)(mV).

If T = U, the sequential composition f ⊙ g : Mem[S] →
D(Mem[V]) is just Kleisli composition (Eq. (6)).

B. A concrete probabilistic model of DIBI
We now have all the ingredients to define a first concrete

model: states are Markov kernels that preserve their input; ⊕

(resp. ⊙) will be parallel (resp. sequential) composition. The
use of ⊕ to model independence generalizes the approach in
Barthe et al. [9]. Combining both compositions—sequential
and parallel—enables capturing conditional independence.

Definition IV.4 (Probabilistic frame). We define the frame
(MD,⊑,⊕,⊙,MD) as follows:
• Let MD consist of Markov kernels that preserve their

input to their output;
• ⊕, ⊙ are parallel and sequential composition of kernels;
• Given f , g ∈ MD, f ⊑ g if there exist R ⊆ Val, h ∈ MD

such that g = (f ⊕ unitMem[R]) ⊙ h.

We make two remarks. First, f ⊑ g holds when g can
be obtained from extending f : compose f in parallel with
unitMem[R], then extend the range via composition with h. We
can recover f from g by marginalizing g to range(f) ∪ R,
then ignoring the R portion. Second, the definition of f ⊙g on
MD can be simplified. Given f : Mem[S]→ D(Mem[T]) and
g : Mem[T]→ D(Mem[V]), Eq. (6) yields the formula:

(f ⊙ g)(d)(m) :=
∑︂

m′∈Mem[T]

f (d)(m′) · g(m′)(m).

Since f , g ∈ MD preserve input to output, this reduces to

(f ⊙ g)(d)(m) = f (d)(mT) · g(mT)(mV). (7)

We show that our probabilistic frame is indeed a DIBI frame.

Theorem IV.1. (MD,⊑,⊕,⊙,MD) is a DIBI frame.

Proof sketch. First, we show that MD is closed under ⊕ and ⊙,
and ⊑ is transitive and reflexive. The frame axioms are mostly
straightforward, but some conditions rely on a property of our
model we call Exchange Equality: if both (f1 ⊕ f2) ⊙ (f3 ⊕ f4)
and (f1 ⊙ f3) ⊕ (f2 ⊙ f4) are defined, then they are equal, and
if the second is defined, then so is the first. For example:
(⊕ Unit Coherence): The unit set in this frame is the entire

state space MD: we must show that for any f1, f2 ∈ MD,
if f1 ⊕ f2 is defined, then f1 ⊑ f1 ⊕ f2:

f1 ⊕ f2 = (f1 ⊙ unitrange(f1)) ⊕ (unitdom(f2) ⊙ f2)
= (f1 ⊕ unitdom(f2)) ⊙ (unitrange(f1) ⊕ f2) (Exch. Eq.)

= (f1 ⊕ unitdom(f2)) ⊙ (f2 ⊕ unitrange(f1)) (⊕ Comm.)

7

We present the complete proof in [19]. □

Example IV.2 (Kernel decomposition). Recall the distribution
µ on Mem[{x, y, z}] from Example IV.1. Let kx : Mem[z] →
D(Mem[{x, z}]) encode the conditional distribution of x given
z, and let ky : Mem[z] → D(Mem[{y, z}]) encode the condi-
tional distribution of y given z. Explicitly, for v = x or y,

kv(z = 0)(v = 1, z = 0) = 1/2 kv(z = 0)(v = 0, z = 0) = 1/2
kv(z = 1)(v = 1, z = 1) = 1/4 kv(z = 1)(v = 0, z = 1) = 3/4.

Since kx, ky include z in their range, kx ⊕ ky is defined. A
small calculation shows that kx ⊕ ky = k, where k : Mem[z]→
D(Mem[{x, y, z}]) is the conditional distribution of (x, y, z)
given z. This decomposition shows that x and y are inde-
pendent conditioned on z (we shall formally prove this later
in Section V-A).

C. Relations, join dependency, and powerset kernels

We developed the probabilistic model in the previous section
using operations from the distribution monad D. Instantiating
our definitions with operations from other monads gives rise to
other interesting models of DIBI. In this section, we develop
a relational model based on the powerset monad P, and show
how our logic can be used to reason about join dependency
properties of tables from database theory. Before we present
our relational model, we introduce some notations and basic
definitions on relations.

Tables are often viewed as relations—sets of tuples where
each component of the tuple corresponds to an attribute.
Formally, a relation R over a set of attributes S is a set of
tuples indexed by S . Each tuple maps an attribute in S to a
value in Val, and hence can be seen as a memory in Mem[S],
as defined in Section IV-A. The projection and ⊗ operations
on Mem[S] from Equation (4) can be lifted to relations.

Definition IV.5 (Projection and Join). The projection of a rela-
tion R over attributes X to Y ⊆ X is given by RY := {rY | r ∈ R}.
The natural join of relations R1 and R2 over attributes X1 and
X2, respectively, is the relation R1 ▷◁ R2 := {m1 ⊗ m2 | m1 ∈

R1 and m2 ∈ R2} over attributes X1 ∪ X2.

Since tables can often be very large, finding compact
representations for them is useful. These representations can
leverage additional structure common in real-world databases;
for instance, the value of one attribute might determine the
value of another, a so-called functional dependency. Other
dependency structures can enable a large relation to be fac-
tored as a combination of smaller ones. A classical example
is on join dependency, a relational analogue of conditional
independence.

Definition IV.6 (Join dependency [24, 25]). A relation R over
attribute set X1 ∪ X2 satisfies the join dependency X1 ▷◁ X2 if
R = (RX1) ▷◁ (RX2).

Example IV.3 (Decomposition). Consider the relation R in
Figure 5, with three attributes: Researcher, Field, and Con-
ference. R contains triple (a, b, c) if and only if researcher a

works in field b and attends conference c. If we know that re-
searchers in the same field all have a shared set of conferences
they attend, then we can recover R by joining two relations:
one associating researchers to their fields, and another asso-
ciating fields to conferences. As shown below, R satisfies the
join dependency {Researcher,Field} ▷◁ {Conference,Field}.
While the factored form is only a bit smaller (12 entries instead
of 15), savings can be significant for larger relations.

Powerset monad and kernels: Much like how we decom-
posed distributions as Markov kernels—Kleisli arrows for the
distribution monad—we will decompose relations using Kleisli
arrows for the powerset monad, Kℓ(P).

Definition IV.7 (Powerset monad). Let P be the endofunctor
Set→ Set mapping every set to the set of its subsets P(X) =
{U | U ⊆ X}. We define unitX : X → P(X) mapping each x ∈ X
to the singleton {x}, and bind : P(X) → (X → P(Y)) → P(Y)
by bind(U)(f) := ∪{y | ∃x ∈ U. f (x) = y}.

The triple ⟨P, unit, bind⟩ forms a monad, and obeys the laws
in Equation (5). We overload the use of unit and bind as
it will be clear from the context which monad, powerset or
distribution, we are considering. The Kleisli category Kℓ(P)
is defined analogously as forD, with sets as objects and arrows
X → P(Y), and composition given as in Equation (6).

Like before, we consider maps Mem[S] → P(Mem[T]),
which we call powerset kernels in analogy to Markov kernels,
or simply kernels when the monad is clear from the context.
Powerset kernels can also be projected to a smaller range.

Definition IV.8 (Marginalization). Suppose that T ⊆ U. A
map f of type Mem[S]→ P(Mem[U]) can be marginalized to
πT f : Mem[S]→ P(Mem[T]) by defining: (πT f)(s) := f (s)T

We need two composition operations on powerset kernels.
We say that powerset kernel f : Mem[S] → P(Mem[S ∪ T])
preserves input to output if πS f = unitMem[S].

Definition IV.9 (Composition of powerset kernels). Given
kernels f : Mem[S] → P(Mem[T]) and g : Mem[U] →
P(Mem[V]) that preserve input to output, we define their
parallel composition whenever T ∩ V = S ∩ U as the map
f ⊕g : Mem[S ∪U]→ P(Mem[T ∪V]) given by (f ⊕g)(d) :=
f (dS) ▷◁ g(dU). Whenever T = U we define the sequential
composition f⊙g : Mem[S]→ P(Mem[V]) using Kleisli com-
position. Explicitly: (f ⊙ g)(s) = {v | u ∈ f (s) and v ∈ g(u)}.

D. A concrete relational model of DIBI
We can now define the second concrete model of DIBI:

states will be powerset kernels, and we will use the parallel
and sequential composition in a construction similar to MD.

Definition IV.10 (Relational frame). We define the frame
(MP,⊑,⊕,⊙,MP) as follows:
• MP consists of powerset kernels preserving input to output;
• ⊕, ⊙ are parallel and sequential composition of powerset

kernels;
• Given f , g ∈ MP, f ⊑ g if there exist R ⊆ Val, h ∈ MP such

that g = (f ⊕ unitMem[R]) ⊙ h.

8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Researcher Field Conference
Alice Theory LICS
Alice Theory ICALP
Bob Theory LICS
Bob Theory ICALP
Alice DB PODS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
R

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Field Conference
Theory LICS
Theory ICALP
DB PODS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
R1

▷◁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Field Researcher
Theory Alice
Theory Bob
DB Alice

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
R2

Fig. 5: Factoring a relation

Like in MD, f ⊑ g iff g can be obtained from f by adding
attributes that are preserved from domain to range, and then
mapping tuples in the range to relations over a larger set
of attributes. We can recover f from g by marginalizing to
range(f) ∪ R, and then ignoring the attributes in R.

MP is also a DIBI frame.

Theorem IV.2. (MP,⊑,⊕,⊙,MP) is a DIBI frame.

Proof sketch.. The proof follows Theorem IV.1 quite closely,
since MP also satisfies Exchange equality. We present the full
proof in [19]. □

V. Application: Modeling Conditional and Join Dependencies
In our concrete models, distributions and relations can be

factored into simpler parts. Here, we show how DIBI formulas
capture conditional independence and join dependency.

A. Conditional independence

Conditional independence (CI) is a well-studied notion in
probability theory and statistics [26]. While there are many
interpretations of CI, a natural reading is in terms of irrele-
vance: X and Y are independent conditioned on Z if knowing
the value of Z renders X irrelevant to Y—observing one gives
no further information about the other.

Before defining CI, we introduce some notations. Let µ ∈
D(Mem[Var]) be a distribution. For any subset S ⊆ Var and
assignment s ∈Mem[S], we write:

µ(S = s) :=
∑︂

m∈Mem[Var]

µ(s ⊗ m).

Terms with undefined s ⊗ m contribute zero to the sum. We
can now define conditional probabilities:

µ(S = s | S ′ = s′) :=
µ(S = s, S ′ = s′)
µ(S ′ = s′)

,

where µ(S = s, S ′ = s′) := µ(S ∪ S ′ = s ⊗ s′). Intuitively,
this ratio is the probability of S = s given S ′ = s′, and it is
only defined when the denominator is non-zero and s, s′ are
consistent (i.e., s⊗ s′ is defined). CI can be defined as follows.

Definition V.1 (Conditional independence). Let X,Y,Z ⊆ Var.
X and Y are independent conditioned on Z, written X ⊥⊥ Y | Z,
if for all x ∈Mem[X], y ∈Mem[Y], and z ∈Mem[Z]:

µ(X = x | Z = z) · µ(Y = y | Z = z) = µ(X = x,Y = y | Z = z).

When Z = ∅, we say X and Y are independent, written X ⊥⊥ Y .

Example V.1. We give two simple examples of CI.

Chocolate and Nobel laureates: Researchers found a
strong positive correlation between a nation’s per capita Nobel
laureates number and chocolate consumption. But the corre-
lation may be due to other factors, e.g., a nation’s economic
status. A simple check is to see if the two are conditionally
independent fixing the third factor.

Algorithmic fairness: To prevent algorithms from dis-
criminating based on sensitive features (e.g., race and gender),
researchers formalized notions of fairness using conditional
independence [8]. For instance, let A be the sensitive features,
Y be the target label, and ˆ︁Y be the algorithm’s prediction for
Y . Considering the joint distribution of (A,Y,ˆ︁Y), an algorithm
satisfies equalized odds if ˆ︁Y ⊥⊥ A | Y; calibration if Y ⊥⊥ A | ˆ︁Y .

We will define a DIBI formula P such that a distribution µ
satisfies X ⊥⊥ Y | Z if and only if its lifted kernel fµ := ⟨⟩ ↦→ f
satisfies P. For this, we will need a basic atomic proposition
which describes the domain and range of kernels.

Definition V.2 (Basic atomic proposition). For sets of vari-
ables A, B ⊆ Var, a basic atomic proposition has the form
(A ▷ [B]). We give the following semantics to these formulas:

f |= (A ▷ [B]) iff there exists f ′ ⊑ f

such that dom(f ′) = A and range(f ′) ⊇ B.

For example, f : Mem[y] → D(Mem[y, z]) defined by
f (y ↦→ v) := unit(y ↦→ v, z ↦→ v) satisfies (y ▷ [y]),
(y ▷ [z]), (y ▷ [∅]), (y ▷ [y, z]), (∅ ▷ [∅]), and no other atomic
propositions.

Theorem V.1. Given distribution µ ∈ D(Mem[Var]), then for
any X,Y,Z ⊆ Var,

fµ |= (∅ ▷ [Z]) # (Z ▷ [X]) ∗ (Z ▷ [Y]) (8)

if and only if X ⊥⊥ Y | Z and X ∩ Y ⊆ Z are both satisfied.

The restriction X ∩ Y ⊆ Z is harmless: when X ⊥⊥ Y | Z but
X ∩ Y ⊈ Z, X ∩ Y must be deterministic given Z (see [19]),
and it suffices to check X ⊥⊥ Y | Z ∪ (X ∩ Y). For simplicity,
we abbreviate the formula (∅ ▷ [Z]) # ((Z ▷ [X]) ∗ (Z ▷ [Y])) as
[Z] # ([X] ∗ [Y]).

Proof sketch. For the forward direction, suppose fµ satisfies
8. Then by [19, Lemma A.38], there exist f , g, and h in MD

with f ⊙ (g ⊕ h) ⊑ fµ, where f : Mem[∅] → D(Mem[Z]),
g : Mem[Z] → D(Mem[Z ∪ X]), and h : Mem[Z] →

9

D(Mem[Z ∪ Y]); we also have X ∩ Y ⊆ Z as f ⊙ (g ⊕ h)
is defined. Since dom(fµ) =Mem[∅], f ⊙ (g⊕h) ⊑ fµ implies:

f ⊙ (g ⊕ h) = πZ∪X∪Y fµ and f = πZ fµ.

Further, we can show that f ⊙ (g ⊕ h) = f ⊙ g ⊙ (unitX ⊕ h) =
f ⊙ h ⊙ (unitY ⊕ g), and thus:

f ⊙ g = πZ∪X fµ and f ⊙ h = πZ∪Y fµ.

These imply that g (h resp.) encodes the conditional distribu-
tions of X (Y resp.) given Z, and g⊕h encodes the conditional
distribution of (X,Y) given Z. Hence, the conditional distribu-
tion of (X,Y) given Z is equal to the product distribution of
X given Z and Y given Z, and so X ⊥⊥ Y | Z holds in µ.

For the reverse direction, suppose that (a) X ⊥⊥ Y | Z holds
in µ and (b) X∩Y ⊆ Z. Now, consider πX∪Y∪Z fµ, the marginal
distribution on (X,Y,Z) encoded as a kernel, and observe that
πX,Y,Z fµ = f ⊙ f ′, where f encodes the marginal distribution of
Z, and f ′ is the conditional distribution of (X,Y) given values
of Z. From (a), the conditional distribution of (X,Y) given Z
is the product of the conditional distributions of X given Z,
and Y given Z, that is f ′ = g⊕h, where g (resp. h) encode the
conditional distribution of X (resp. Y) given Z. Then by (b),
f ⊙ (g ⊕ h) is defined and f ⊙ (g ⊕ h) = πX∪Y∪Z fµ ⊑ fµ. It is
straightforward to see that f ⊙ (g⊕h) satisfies [Z] # ([X] ∗ [Y]).
Hence, persistence shows that fµ also satisfies [Z]#([X] ∗ [Y]).

See [19, Theorem A.11] for details. □

B. Join dependency

Recall that a relation R over attributes X ∪ Y satisfies the
Join Dependency (JD) X ▷◁ Y if R = RX ▷◁ RY . As we
illustrated through the Researcher-Field-Conference example
in Section IV, join dependencies can enable a relation to
be represented more compactly. By interpreting the atomic
propositions in the relational model, JD is captured by the
same formula we used for CI.

Theorem V.2. Let R ∈ P(Mem[Var]) and X,Y be sets of
attributes such that X∪Y = Var. The lifted relation fR = ⟨⟩ ↦→
R satisfies fR |= [X ∩ Y] # ([X] ∗ [Y]) iff R satisfies the join
dependency X ▷◁ Y.

JD is a special case of Embedded Multivalued Dependency
(EMVD), where the relation R may have more attributes than
X∪Y . It is straightforward to encode EMVD in our logic, but
for simplicity we stick with JD.

Proof sketch. For the forward direction, by [19, Lemma A.38],
there exist f , g, and h ∈ MP such that f : Mem[∅] →
P(Mem[X∩Y]), g : Mem[X∩Y]→ P(Mem[X]), h : Mem[X∩
Y]→ P(Mem[Y]), and f ⊙ (g ⊕ h) ⊑ fR. Since by assumption
X ∪ Y = Var, we must have f ⊙ (g ⊕ h) = fR.

Unfolding ⊕ and ⊙ and using the fact that range(f) =
dom(g) = dom(h), we can show:

f ⊙ (g ⊕ h)(⟨⟩) = {u ▷◁ (v1 ▷◁ v2) | u ∈ f (⟨⟩), v1 ∈ g(u), v2 ∈ h(u)}.

Since ▷◁ is commutative, associative and idempotent, we have:

f ⊙ (g ⊕ h)(⟨⟩) = {(u ▷◁ v1) ▷◁ (u ▷◁ v2) | u ∈ f (⟨⟩), v1 ∈ g(u), v2 ∈ h(u)}
= f ⊙ g(⟨⟩) ▷◁ f ⊙ h(⟨⟩).

We can also convert the parallel composition of g, h into
sequential composition by padding to make the respective
domain and range match: f ⊙ (g ⊕ h) = f ⊙ g ⊙ (unitX ⊕ h) =
f ⊙ h ⊙ (unitY ⊕ g). Hence f ⊙ g = πX fR and f ⊙ h = πY fR,
which implies f ⊙ g(⟨⟩) = RX and f ⊙ h(⟨⟩) = RY . Thus:

R = f ⊙ (g ⊕ h)(⟨⟩) = f ⊙ g(⟨⟩) ▷◁ f ⊙ h(⟨⟩) = RX ▷◁ RY ,

so R satisfies the join dependency X ▷◁ Y . The reverse direction
is analogous to Theorem V.1. See [19, Theorem A.14] for
details. □

C. Proving and validating the semi-graphoid axioms

Conditional independence and join dependency are closely
related in our models. Indeed, there is a long line of research
on generalizing these properties to other independence-like no-
tions, and identifying suitable axioms. Graphoids are perhaps
the most well-known approach [10]; Dawid [27] has a similar
notion called separoids.

Definition V.3 (Graphoids and semi-graphoids). Suppose that
I(X,Z,Y) is a ternary relation on subsets of Var (i.e., X,Z,Y ⊆
Var). Then I is a graphoid if it satisfies:

I(X,Z,Y)⇔ I(Y,Z, X) (Symmetry)
I(X,Z,Y ∪W)⇒ I(X,Z,Y) ∧ I(X,Z,W) (Decomposition)
I(X,Z,Y ∪W)⇒ I(X,Z ∪W,Y) (Weak Union)
I(X,Z,Y) ∧ I(X,Z ∪ Y,W)⇔ I(X,Z,Y ∪W) (Contraction)
I(X,Z ∪W,Y) ∧ I(X,Z ∪ Y,W)⇒ I(X,Z,Y ∪W) (Intersection)

If I satisfies the first four properties, then it is a semi-graphoid.

Intuitively, I(X,Z,Y) states that knowing Z renders X irrele-
vant to Y . If we fix a distribution over µ ∈ D(Mem[Var]), then
taking I(X,Z,Y) to be the set of triples such that X ⊥⊥ Y | Z
holds (in µ) defines a semi-graphoid. Likewise, if we fix a
relation R ∈ P(Mem[Var]), then the triples of sets of attributes
such that R satisfies an Embedded Multivalue Dependency
(EMVD) forms a semi-graphoid [24, 28].

Previously, we showed that the DIBI formula [Z]#([X] ∗ [Y])
asserts conditional independence of X and Y given Z in MD,
and join dependency X ▷◁ Y in MPwhen Z = X ∩ Y . Here, we
show that the semi-graphoid axioms can be naturally translated
into valid formulas in our concrete models.

Theorem V.3. Given a model M, define I(X,Z,Y) iff M |=

[Z]#([X] ∗ [Y]). Then, Symmetry, Decomposition, WeakUnion,
and Contraction are valid when M is the probabilistic or
the relational model. Furthermore, Symmetry is derivable in
the proof system, and Decomposition is derivable given the
following axiom, valid in both models:

(Z ▷ [Y ∪W])↔ (Z ▷ [Y]) ∧ (Z ▷ [W]) (Split)

Proof sketch. We comment on the derivable axioms. To derive
Symmetry, we use the ∗-Comm proof rule to commute the

10

separating conjunction. The proof of Decomposition uses the
axiom Split to split up Y ∪W, and then uses proof rules ∧3
and ∧4 to prove the two conjuncts. We show derivations ([19,
Theorems A.15 and A.16]) and prove validity ([19, Theorems
A.17 and A.18]). □

VI. Application: Conditional Probabilistic Separation Logic

As our final application, we design a separation logic for
probabilistic programs. We work with a simplified probabilis-
tic imperative language with assignments, sampling, sequenc-
ing, and conditionals; our goal is to show how a DIBI-based
program logic could work in the simplest setting. For lack of
space, we only show a few proof rules and example programs
here; we defer the full presentation of the separation logic, the
metatheory, and the examples to [19].

Proof rules: CPSL includes novel proof rules for ran-
domized conditionals and inherits the frame rule from PSL [9].
Here, we show two of the rules and explain how to use them
in the simple program from Eq. (1), reproduced here:

Simple := x $← B1/2; y $← B1/2; z← x ∨ y

CPSL has Hoare-style rules for sampling and assignments:

Samp
x ∉ FV(d) ∪ FV(P)

⊢ {P} x $← d {P # (FV(d) ▷ [x])}

Assn
x ∉ FV(e) ∪ FV(P)

⊢ {P} x← e {P # (FV(e) ▷ [x])}

Using Samp and the fact that the coin-flip distribution B1/2 has
no free variables, we can infer:

⊢ {⊤} x $← B1/2 {(∅ ▷ [x])} ⊢ {⊤} y $← B1/2 {(∅ ▷ [y])}

Applying a variant of the frame rule, we are able to derive:

⊢ {⊤} x $← B1/2; y $← B1/2 {(∅ ▷ [x]) ∗ (∅ ▷ [y])}

Using Assn on P = (∅ ▷ [x]) ∗ (∅ ▷ [y]) and the fact that z is
not a free variable in either P or x ∨ y:

⊢ {P} z← x ∨ y {P # ({x, y} ▷ [z])}

Putting it all together, we get the validity of triple:

⊢ {⊤} Simple {((∅ ▷ [x]) ∗ (∅ ▷ [y])) # ({x, y} ▷ [z])}

stating that z depends on x and y, which are independent.
Example programs: Figure 6 introduces two example

programs. CommonCause (Figure 6a) models a distribution
where two random observations share a common cause.
Specifically, we consider z, x, and y to be independent random
samples, and a and b to be values computed from (x, z)
and (y, z), respectively. Intuitively, z, x, y could represent
independent noisy measurements, while a and b could rep-
resent quantities derived from these measurements. Since a
and b share a common source of randomness z, they are not
independent. However, a and b are independent conditioned
on the value of z—this is a textbook example of conditional

z $← B1/2;
x $← B1/2;
y $← B1/2;
a← x ∨ z;
b← y ∨ z

(a) CommonCause

z $← B1/2;
if z then

x $← Bp; y $← Bp
else

x $← Bq; y $← Bq

(b) CondSamples

Fig. 6: Example programs

independence. Our program logic can establish the following
judgment capturing this fact:

⊢ {⊤} CommonCause {(∅ ▷ [z]) # ((z ▷ [a]) ∗ (z ▷ [b]))}

The program CondSamples (Figure 6b) is a bit more com-
plex: it branches on a random value z, and then assigns x
and y with two independent samples from Bp in the true
branch, and Bq in the false branch. While we might think
that x and y are independent at the end of the program since
they are independent at the end of each branch, this is not true
because their distributions are different in the two branches.
For example, suppose that p = 1 and q = 0. Then at the end
of the first branch (x, y) = (tt, tt) with probability 1, while at
the end of the second branch (x, y) = (ff , ff) with probability
1. Thus observing whether x = tt or x = ff determines the
value of y—clearly, x and y can’t be independent. However,
x and y are independent conditioned on z. Using our program
logic’s proof rules for conditionals, we are able to prove the
following judgment capturing this fact:

⊢ {⊤} CondSamples {(∅ ▷ [z]) # ((z ▷ [x]) ∗ (z ▷ [y]))}

The full development of the separation logic, consisting of
a proof system, a soundness theorem, along with the detailed
verification of the two examples above, can be found in [19].

VII. RelatedWork

Bunched implications and other non-classical logics:
DIBI extends the logic of bunched implications (BI) [11],
and shares many similarities: DIBI can be given a Kripke-
style resource semantics, just like BI, and our completeness
proof relies on a general framework for proving completeness
for bunched logics [14]. The non-commutative conjunction
and exchange rules are inspired by the logic CKBI [14].
The main difference is that our exchange rule is reversed,
due to our reading of separating conjunction ∗ as “can be
combined independently”, rather than “interleaved”. In terms
of models, the probabilistic model of DIBI can be seen as a
natural extension of the probabilistic model for BI [9]—by
lifting distributions to kernels, DIBI is able to reason about
dependencies, while probabilistic BI is not.

There are other non-classical logics that aim to model
dependencies. Independence-friendly (IF) logic [29] and de-
pendence logic [30] introduce new quantifiers and proposi-
tional atoms to state that a variable depends, or does not
depend, on another variable; these logics are each equivalent
in expressivity to existential second-order logic. More recently,
Durand et al. [31] proposed a probabilistic team semantics for

11

dependence logic, and Hannula et al. [32] gave a descriptive
complexity result connecting this logic to real-valued Turing
machines. Under probabilistic team semantics, the universal
and existential quantifiers bear a resemblance to our separating
and dependent conjunctions, respectively. It would be interest-
ing to understand the relation between these two logics, akin
to how the semantics of propositional IF forms a model of
BI [33]

Conditional independence, join dependency, and logic:
There is a long line of research on logical characterizations of
conditional independence and join dependency. The literature
is too vast to survey here. On the CI side, we can point to work
by Geiger and Pearl [34] on graphical models; on the JD side,
the survey by Fagin and Vardi [35] describes the history of the
area in database theory. There are several broadly similar ap-
proaches to axiomatizing the general properties of conditional
dependence, including graphoids [10] and separoids [27].

Categorical probability: The view of conditional inde-
pendence as a factorization of Markov kernels has previously
been explored [36, 37, 38]. Taking a different approach, Simp-
son [39] has recently introduced category-theoretic structures
for modeling conditional independence, capturing CI and JD
as well as analogues in heaps and nominal sets [40]. Roughly
speaking, conditional independence in heaps requires two
disjoint portions except for a common overlap contained in
the part that is conditioned; this notion can be smoothly
accommodated in our framework as a DIBI model where
kernels are Kleisli arrows for the identity monad ([41]) also
consider a similar notion of separation). Simpson’s notion of
conditional independence in nominal sets suggests that there
might be a DIBI model where kernels are Kleisli arrows for
some monad in nominal sets, although the appropriate monad
is unclear.

Program logics: Bunched logics are well-known for their
role in separation logics, program logics for reasoning about
heap-manipulating [12] and concurrent programs [42, 43].
Recently, separation logics have been developed for proba-
bilistic programs. Our work is most related to PSL [9], where
separation models probabilistic independence. Batz et al. [44]
gives a different, quantitative interpretation to separation in
their logic QSL, and uses it to verify expected-value properties
of probabilistic heap-manipulating programs. Finally, there are
more traditional program logics for probabilistic program. The
Ellora logic by Barthe et al. [45] has assertions for modeling
independence, but works with a classical logic. As a result,
basic structural properties of independence must be introduced
as axioms, rather than being built-in to the logical connectives.

VIII. Discussion and Future Directions

We have presented DIBI, a new bunched logic to rea-
son about dependence and independence, together with its
Kripke semantics and a sound and complete proof system.
We provided two concrete models, based on Markov and
powerset kernels, that can capture conditional independence-
like notions. We see several directions for further investigation.

Generalizing the two models: The probabilistic and re-
lational models share many similarities: both MD and MP are
sets of Kleisli arrows, and use Kleisli composition to interpret
⊙; both ⊕ operators correspond to parallel composition. Since
both the distribution and powerset monads are commutative
strong monads [46, 47], which come with a double strength
bi-functor stA,B : T (A) × T (B) → T (A × B) that seems
suitable for defining ⊕, it is natural to consider more general
models based on Kleisli arrows for such monads. Indeed,
variants of conditional independence could make sense in other
settings; taking the multiset monad instead of the powerset
monad would lead to a model where we can assert join
dependency in bags, rather than relations, and the free vector
space monad could be connected to subspace models of the
graphoid axioms [48].

However, it is not easy to define an operation generalizing
⊕ from our concrete models. The obvious choice—taking ⊕
as f1 ⊕ f2 = (f1 ⊗ f2); st—gives a total operation, but in our
concrete models ⊕ is partial, since it is not possible to compose
two arrows that disagree on their domain overlap. For instance
in the probabilistic model, there is no sensible way to use ⊕
to combine a kernel encoding the normal distribution N(0, 1)
on x with another encoding the Dirac distribution of x = 1.
We do not know how to model such coherence requirements
between two Kleisli arrows in a general categorical model,
and we leave this investigation to future work.

Restriction and intuitionistic DIBI: A challenge in de-
signing the program logic is ensuring that formulas in the as-
sertion logic satisfy restriction (see [19]), and one may wonder
if a classical version of DIBI would be more suitable for the
program logic—if assertions were not required to be preserved
under kernel extensions, it might be easier to show that they
satisfy restriction. However, a classical logic would require
assertions to specify the dependence structure of all variables,
which can be quite complicated. Moreover, intuitionistic logics
like probabilistic BI can also satisfy the restriction property, so
the relevant design choice is not classical versus intuitionistic.

Rather, the more important point appears to be whether the
preorder can extend a kernel’s domain. If this is allowed—
as in DIBI—then kernels satisfying an assertion may have
extraneous variables in the domain. However, this choice also
makes the dependent conjunction P # Q more flexible: Q does
not need to exactly describe the domain of the second kernel,
which is useful since the range of the first kernel cannot be
constrained by P. This underlying tension—allowing the range
to be extended, while restricting the domain—is an interesting
subject for future investigation.

Acknowledgments

We thank the anonymous reviewers for thoughtful com-
ments and feedback. This work was partially supported by
the EPSRC grant (EP/S013008/1), the ERC Consolidator
Grant AutoProbe (#101002697) and a Royal Society Wolfson
Fellowship. This work was also partially supported by the NSF
(#2023222 and #1943130) and Facebook.

12

References

[1] D. Kozen, “Semantics of probabilistic programs,”
Journal of Computer and System Sciences, vol. 22,
no. 3, pp. 328–350, 1981. [Online]. Available: https:
//doi.org/10.1016/0022-0000(81)90036-2

[2] A. D. Gordon, T. Graepel, N. Rolland, C. V.
Russo, J. Borgström, and J. Guiver, “Tabular: a
schema-driven probabilistic programming language,” in
ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), San Diego,
California. ACM, 2014, pp. 321–334. [Online].
Available: https://doi.org/10.1145/2535838.2535850

[3] N. D. Goodman, V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum, “Church: a language
for generative models,” CoRR, 2012. [Online]. Available:
http://arxiv.org/abs/1206.3255

[4] F. D. Wood, J. van de Meent, and V. Mansinghka, “A
new approach to probabilistic programming inference,”
in International Conference on Artificial Intelligence and
Statistics (AISTATS), Reykjavik, Iceland, 2014, pp. 1024–
1032.

[5] T. Ehrhard, M. Pagani, and C. Tasson, “Measurable
cones and stable, measurable functions: a model for
probabilistic higher-order programming,” Proceedings of
the ACM on Programming Languages, no. POPL, pp.
59:1–59:28, 2018. [Online]. Available: https://doi.org/
10.1145/3158147

[6] S. Staton, H. Yang, F. D. Wood, C. Heunen, and
O. Kammar, “Semantics for probabilistic programming:
higher-order functions, continuous distributions, and
soft constraints,” in IEEE Symposium on Logic in
Computer Science (LICS), New York, New York.
ACM, 2016, pp. 525–534. [Online]. Available: https:
//doi.org/10.1145/2933575.2935313

[7] F. Dahlqvist and D. Kozen, “Semantics of higher-order
probabilistic programs with conditioning,” Proceedings
of the ACM on Programming Languages, no. POPL,
pp. 57:1–57:29, 2020. [Online]. Available: https://doi.
org/10.1145/3371125

[8] S. Barocas, M. Hardt, and A. Narayanan, Fairness and
Machine Learning, 2019, http://www.fairmlbook.org.

[9] G. Barthe, J. Hsu, and K. Liao, “A probabilistic sepa-
ration logic,” Proceedings of the ACM on Programming
Languages, no. POPL, pp. 55:1–55:30, 2019.

[10] J. Pearl and A. Paz, Graphoids: A graph-based logic for
reasoning about relevance relations. : University of
California (Los Angeles). Computer Science Department,
1985.

[11] P. W. O’Hearn and D. J. Pym, “The logic of bunched
implications,” Bulletin of Symbolic Logic, vol. 5, pp.
215–244, 1999.

[12] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local
reasoning about programs that alter data structures,”
in International Workshop on Computer Science Logic
(CSL), Paris, France, 2001, pp. 1–19. [Online].

Available: https://doi.org/10.1007/3-540-44802-0 1
[13] D. Galmiche, M. Marti, and D. Méry, “Relating labelled

and label-free bunched calculi in BI logic,” in Automated
Reasoning with Analytic Tableaux and Related Methods.
Springer International Publishing, 2019, pp. 130–146.

[14] S. Docherty, “Bunched logics: a uniform approach,”
Ph.D. dissertation, UCL (University College London),
2019.

[15] D. Galmiche and D. Larchey-Wendling, “Expressivity
properties of Boolean BI through relational models,”
in Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), Kolkata, India. Springer,
2006, pp. 357–368.

[16] Q. Cao, S. Cuellar, and A. W. Appel, “Bringing order
to the separation logic jungle,” in Asian Symposium on
Programming Languages and Systems (APLAS), Suzhou,
China. Springer, 2017, pp. 190–211.

[17] D. J. Pym, P. W. O’Hearn, and H. Yang, “Possible
worlds and resources: the semantics of BI,” Theoretical
Computer Science, vol. 315, no. 1, pp. 257–305,
2004. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0304397503006248

[18] T. Hoare, B. Möller, G. Struth, and I. Wehrman, “Con-
current Kleene algebra and its foundations,” The Journal
of Logic and Algebraic Programming, vol. 80, no. 6, pp.
266–296, 2011.

[19] J. Bao, S. Docherty, J. Hsu, and A. Silva, “A
Bunched Logic for Conditional Independence,” in
IEEE Symposium on Logic in Computer Science
(LICS), Rome, Italy, 2021. [Online]. Available: https:
//arxiv.org/abs/2008.09231

[20] R. Goldblatt, “Varieties of complex algebras,” Annals of
Pure and Applied Logic, vol. 44, no. 3, pp. 173–242,
1989. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/0168007289900328

[21] M. Giry, “A categorical approach to probability theory,”
Categorical aspects of topology and analysis, pp. 68–85,
1982.

[22] E. Moggi, “Notions of computation and monads,”
Information and Computation, vol. 93, no. 1, pp. 55–92,
1991, selections from 1989 IEEE Symposium on Logic
in Computer Science. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/0890540191900524

[23] P. Panangaden, Labelled Markov Processes. Imperial
College Press, 2009.

[24] R. Fagin, “Multivalued dependencies and a new normal
form for relational databases,” ACM Trans. Database
Syst., vol. 2, no. 3, pp. 262–278, 1977. [Online].
Available: https://doi.org/10.1145/320557.320571

[25] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
databases. : Addison-Wesley Reading, 1995, vol. 8.

[26] A. P. Dawid, “Conditional independence in statistical
theory,” Journal of the Royal Statistical Society: Series
B (Methodological), vol. 41, no. 1, pp. 1–15, 1979.

[27] ——, “Separoids: A mathematical framework for condi-
tional independence and irrelevance,” Annals of Mathe-

13

https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1145/2535838.2535850
http://arxiv.org/abs/1206.3255
https://doi.org/10.1145/3158147
https://doi.org/10.1145/3158147
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/3371125
https://doi.org/10.1145/3371125
http://www.fairmlbook.org
https://doi.org/10.1007/3-540-44802-0_1
http://www.sciencedirect.com/science/article/pii/S0304397503006248
http://www.sciencedirect.com/science/article/pii/S0304397503006248
https://arxiv.org/abs/2008.09231
https://arxiv.org/abs/2008.09231
http://www.sciencedirect.com/science/article/pii/0168007289900328
http://www.sciencedirect.com/science/article/pii/0168007289900328
http://www.sciencedirect.com/science/article/pii/0890540191900524
http://www.sciencedirect.com/science/article/pii/0890540191900524
https://doi.org/10.1145/320557.320571

matics and Artificial Intelligence, vol. 32, no. 1-4, pp.
335–372, 2001.

[28] J. Pearl and T. Verma, “The logic of representing
dependencies by directed graphs,” in AAAI Conference
on Artificial Intelligence, Seattle, WA, 1987, pp. 374–
379. [Online]. Available: http://www.aaai.org/Library/
AAAI/1987/aaai87-067.php

[29] J. Hintikka and G. Sandu, “Informational independence
as a semantical phenomenon,” in Logic, Methodology
and Philosophy of Science VIII, ser. Studies
in Logic and the Foundations of Mathematics.
Elsevier, 1989, vol. 126, pp. 571–589. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0049237X08700661

[30] J. Väänänen, Dependence Logic: A New Approach to
Independence Friendly Logic, ser. London Mathematical
Society Student Texts. Cambridge University Press,
2007.

[31] A. Durand, M. Hannula, J. Kontinen, A. Meier,
and J. Virtema, “Probabilistic team semantics,” in
International Symposium on Foundations of Information
and Knowledge Systems (FoIKS), Budapest, Hungary,
ser. Lecture Notes in Computer Science, vol. 10833.
Springer, 2018, pp. 186–206. [Online]. Available:
https://doi.org/10.1007/978-3-319-90050-6 11

[32] M. Hannula, J. Kontinen, J. Van den Bussche, and
J. Virtema, “Descriptive complexity of real computation
and probabilistic independence logic,” in IEEE Sympo-
sium on Logic in Computer Science (LICS), Saarbrücken,
Germany, 2020, pp. 550–563.

[33] S. Abramsky and J. A. Väänänen, “From IF to BI,”
Synthese, vol. 167, no. 2, pp. 207–230, 2009. [Online].
Available: https://doi.org/10.1007/s11229-008-9415-6

[34] D. Geiger and J. Pearl, “Logical and algorithmic
properties of conditional independence and graphical
models,” The Annals of Statistics, vol. 21, no. 4, pp.
2001–2021, 1993. [Online]. Available: http://www.jstor.
org/stable/2242326

[35] R. Fagin and M. Y. Vardi, “The theory of
data dependencies - an overview,” in International
Colloquium on Automata, Languages and Programming
(ICALP), Antwerp, Belgium, 1984, pp. 1–22. [Online].
Available: https://doi.org/10.1007/3-540-13345-3 1

[36] B. Jacobs and F. Zanasi, “A formal semantics of influence
in bayesian reasoning,” in International Symposium on
Mathematical Foundations of Computer Science (MFCS),
Aalborg, Denmark, ser. Leibniz International Proceedings
in Informatics, vol. 83. Schloss Dagstuhl–Leibniz
Center for Informatics, 2017, pp. 21:1–21:14. [Online].
Available: https://doi.org/10.4230/LIPIcs.MFCS.2017.21

[37] K. Cho and B. Jacobs, “Disintegration and bayesian
inversion via string diagrams,” Math. Struct. Comput.
Sci., vol. 29, no. 7, pp. 938–971, 2019. [Online].
Available: https://doi.org/10.1017/S0960129518000488

[38] T. Fritz, “A synthetic approach to markov kernels,
conditional independence and theorems on sufficient

statistics,” Advances in Mathematics, vol. 370, pp. 107–
239, 2020. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0001870820302656

[39] A. Simpson, “Category-theoretic structure for
independence and conditional independence,” in
Conference on the Mathematical Foundations of
Programming Semantics (MFPS), Halifax, Canada,
2018, pp. 281–297. [Online]. Available: https:
//doi.org/10.1016/j.entcs.2018.03.028

[40] A. M. Pitts, Nominal Sets: Names and Symmetry in
Computer Science, ser. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2013.

[41] J. Brotherston and C. Calcagno, “Classical BI: A
logic for reasoning about dualising resources,” in
ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), Savannah, Georgia.
ACM, 2009, pp. 328—-339. [Online]. Available:
https://doi.org/10.1145/1480881.1480923

[42] P. W. O’Hearn, “Resources, concurrency, and
local reasoning,” Theoretical Computer Science,
vol. 375, no. 1, pp. 271–307, 2007, festschrift
for John C. Reynolds’s 70th birthday. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S030439750600925X

[43] S. Brookes, “A semantics for concurrent separation
logic,” Theoretical Computer Science, vol. 375, no.
1–3, pp. 227–270, 2007. [Online]. Available: https:
//doi.org/10.1016/j.tcs.2006.12.034

[44] K. Batz, B. L. Kaminski, J. Katoen, C. Matheja,
and T. Noll, “Quantitative separation logic: a logic
for reasoning about probabilistic pointer programs,”
Proceedings of the ACM on Programming Languages,
no. POPL, pp. 34:1–34:29, 2019. [Online]. Available:
https://doi.org/10.1145/3290347

[45] G. Barthe, T. Espitau, M. Gaboardi, B. Grégoire, J. Hsu,
and P. Strub, “An assertion-based program logic for
probabilistic programs,” in European Symposium on
Programming (ESOP), Thessaloniki, Greece, 2018, pp.
117–144. [Online]. Available: https://doi.org/10.1007/
978-3-319-89884-1 5

[46] B. Jacobs, “Semantics of weakening and contraction,”
Annals of pure and applied logic, vol. 69, no. 1, pp. 73–
106, 1994.

[47] A. Kock, “Monads on symmetric monoidal closed cate-
gories,” Archiv der Mathematik, vol. 21, no. 1, pp. 1–10,
1970.

[48] S. Lauritzen, Graphical Models. Clarendon Press, 1996.

14

http://www.aaai.org/Library/AAAI/1987/aaai87-067.php
http://www.aaai.org/Library/AAAI/1987/aaai87-067.php
http://www.sciencedirect.com/science/article/pii/S0049237X08700661
http://www.sciencedirect.com/science/article/pii/S0049237X08700661
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/s11229-008-9415-6
http://www.jstor.org/stable/2242326
http://www.jstor.org/stable/2242326
https://doi.org/10.1007/3-540-13345-3_1
https://doi.org/10.4230/LIPIcs.MFCS.2017.21
https://doi.org/10.1017/S0960129518000488
http://www.sciencedirect.com/science/article/pii/S0001870820302656
http://www.sciencedirect.com/science/article/pii/S0001870820302656
https://doi.org/10.1016/j.entcs.2018.03.028
https://doi.org/10.1016/j.entcs.2018.03.028
https://doi.org/10.1145/1480881.1480923
http://www.sciencedirect.com/science/article/pii/S030439750600925X
http://www.sciencedirect.com/science/article/pii/S030439750600925X
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1145/3290347
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5

	Introduction
	Overview of the contributions
	The Logic DIBI
	Syntax and semantics
	Proof system
	Soundness and Completeness of DIBI

	Models of DIBI
	Memories, distributions, and Markov kernels
	A concrete probabilistic model of DIBI
	Relations, join dependency, and powerset kernels
	A concrete relational model of DIBI

	Application: Modeling Conditional and Join Dependencies
	Conditional independence
	Join dependency
	Proving and validating the semi-graphoid axioms

	Application: Conditional Probabilistic Separation Logic
	Related Work
	Discussion and Future Directions

