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ABSTRACT

Multiplicity code decoders are based on Hermite polynomial inter-

polation with error correction. In order to have a unique Hermite

interpolant one assumes that the field of scalars has characteristic

0 or ≥ ℓ + 1, where ℓ is the maximum order of the derivatives in

the list of values of the polynomial and its derivatives which are

interpolated. For scalar fields of characteristic ℓ + 1, the minimum

number of values for interpolating a polynomial of degree ≤ � is

� + 1 + 2� (ℓ + 1) when ≤ � of the values are erroneous. Here we

give an error-correcting Hermite interpolation algorithm that re-

quires fewer values, that is, that can tolerate more errors, assuming

that the characteristic of the scalar field is either 0 or ≥ � + 1. Our
algorithm requires (ℓ + 1)� + 1 − (ℓ + 1)ℓ/2 + 2� values.

As an example, we consider ℓ = 2. If the error ratio (number

of errors)/(number of evaluations) ≤ 0.16, our new algorithm re-

quires ⌈(4 + 7/17) � − (1 + 8/17)⌉ values, while multiplicity de-

coding requires 25� + 25 values. If the error ratio is ≤ 0.2, our

algorithm requires 5� − 2 evaluations over fields of characteris-

tic 0 or ≥ � + 1, while multiplicity decoding for an error ratio 0.2

over fields of characteristic 3 is not possible for � ≥ 3.

Our algorithm is based on Reed-Solomon interpolation without

multiplicities, which becomes possible for Hermite interpolation

because of the high redundancy necessary for error-correction.
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1 INTRODUCTION

The number of errors which can be corrected when interpolating

a function from values can be dependent on arithmetic properties

of the scalar field. In [2] we have demonstrated that when perform-

ing sparse interpolation in standard basis with powers of the vari-

able, for real values one can correct a much higher error rate than

for complex number values. Here we show that for Hermite pol-

ynomial interpolation with error correction, that is, multiplicity

code decoding [5, 7], for scalar fields of 0 or large characteristic at

higher error rates fewer values are required to compute a unique

interpolant. Our new polynomial-time interpolation algorithm is

specific to polynomials and is based on iterated Reed-Solomon de-

coding, unlike the earlier algorithms, which are based on an error-

locator polynomial with multiple roots (see also Remark 4.1 be-

low).

For ℓ1 ≥ · · · ≥ ℓ= ≥ 0 we interpolate 5 ∈ K[G] of degree
bounded as deg(5 ) ≤ � from values at = distinct arguments b8
with 1 ≤ 8 ≤ =, namely, 0̂8, 9 ∈ K where 5 ( 9) (b8 ) = 0̂8, 9 with

1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ8 at evaluations that are not erroneous.

With 5 ( 9) we denote the 9-th derivative of 5 in G . We impose that

the characteristic of K is either 0 or ≥ ℓ1 + 1 and that � ≥ ℓ1, for

otherwise 5 (ℓ1) = 0 and all non-erroneous 0̂8,ℓ1 = 0. The set of error

locations is

� = {(8, 9) | 5 ( 9) (b8 ) ≠ 0̂8, 9 , 1 ≤ 8 ≤ =, 0 ≤ 9 ≤ ℓ8 }. (1)

As input our algorithms have a degree bound� , [b8 ]1≤8≤= , vectors
�̂8,∗ = [0̂8,0, . . . , 0̂8,ℓ8 ] for 1 ≤ 8 ≤ = and upper bounds for the

number of errors: either � ≥ | { 8 | ∃ 9 : (8, 9) ∈ � } | or �tot ≥ |� |.
Algorithm 4.1 in [3] can interpolate a unique 5 , or prove that none

exists, when the number of values satisfies

!
def
=

=∑

8=1

(ℓ8 +1) ≥ #
def
= �+1+2

�∑

8=1

(ℓ8 +1) = �+1+2�+2
�∑

8=1

ℓ8 . (2)

We show in [3] that if ! < # in (2), one can have multiple inter-

polants: see Example 1 for ℓ1 = 1, K = R and # = � +4�tot, and Ex-
ample 3 (or Section 2 below) for K = Zℓ1+1 and# = �+2�tot (ℓ1+1).
However, in Remark 1 in [3] we observe that for a large bound of

errors �tot and for fieldsK of characteristic 0 or ≥ �+1 the count (2)
is sub-optimal for ℓ1 = 1. In fact, if �tot ≥ �/2 one can interpolate

from 2� + 2�tot values.
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Our Algorithm 4.1 below interpolates from #zero = (ℓ1 + 1)� +
1 −

(ℓ1+1
2

)
+ 2�tot values, provided that = ≥ 2�tot + 1 and that

the characteristic of K is either 0 or ≥ � + 1. For an error bound

�tot >
1
2 (� −

1
2 (ℓ1 + 1) ) our new algorithm requires fewer values

than (2) with � = �tot and ℓ� = ℓ1. The reason for the improvement

is based on the assumption that�-th derivatives of polynomials of

degree � cannot be zero. The general multiplicity code decoder

[3, Algorithm 4.1] divides by ℓ1!, and its count (2) is optimal for

characteristic ≥ ℓ1 + 1. Our new algorithm generalizes the Reed-

Solomon decoder to the Hermite problem. Our algorithm performs

Hermite interpolation by repeated recursive polynomial interpola-

tion at higher and higher derivatives and may divide by �!. The

reduction to standard polynomial interpolation is possible because

one has a high error rate and sufficient redundancy in the values,

and is special to the error correcting Hermite problem. In Exam-

ple 3.1 we perform the calculation for the example in the abstract.

In Example 3.2 below we show that the new count is minimal at

least for ℓ1 = 2.

2 SMALL CHARACTERISTIC WORST CASE

We slightly modify Example 3 in [3, Section 4]. If the field of scalars

K has finite characteristic ≥ ℓ1 + 1, our count (2) is optimal for

higher derivatives. Let = = 2� + a , for a ≥ 1, and let ℓ1 = · · · =
ℓ2�+a = ?−1 for a prime number ? which is the characteristic of the

field of scalars K, whose cardinality is |K| ≥ 2�+a +1, so that there
exist=+1 distinct elements b8 inK. Let 5 (G) = (G−b1)? · · · (G−ba )?
and let � = deg(5 ) = a? . Then 5 (b1) = · · · = 5 (ba ) = 0 and

5 ( 9) (b8 ) = 0 for all 1 ≤ 8 ≤ = and 1 ≤ 9 ≤ ℓ8 . Therefore 5 and the

zero polynomial interpolate all (2� + a)? − 2� zero values, and �

errors cannot be unambiguously corrected from # = (2� + a)? =

� + 2� (ℓ1 + 1) values. If one adds an (# + 1)-st value 5 (b=+1) then
# +1 = �+1+2� (ℓ1+1) and Algorithm 4.1 in [3] and the algorithm

described in Remark 4.1 interpolate a unique polynomial with ≤ �

erroneous values.

3 ZERO AND LARGE CHARACTERISTIC

Here we generalize Remark 1 in [3] to arbitrarily high derivatives

ℓ1. We assume that the characteristic of K is either 0 or ≥ � +1. Let
�tot ≥ | { 0̂8, 9 | 5 ( 9) (b8 ) ≠ 0̂8, 9 , 1 ≤ 8 ≤ =, 0 ≤ 9 ≤ ℓ8 } | (3)

be a bound on the total number of errors. For an unambiguous

constant coefficient one must assume that = ≥ 2�tot + 1.
Because 5 (�+9) = 0 for 9 ≥ 1 we assume that ℓ1 ≤ � . We can

prove that

! = (ℓ1 + 1) + · · · + (ℓ= + 1) ≥
#zero

def
= (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
+ 2�tot

= � + (� − 1) + · · · + (� − ℓ1) + 1 + 2�tot (4)

is a decodable number of evaluations when 2�tot > � − (ℓ1 + 1)/2,
in which case

#zero < #tot
def
= � + 1 + 2�tot + 2�totℓ1 (for ℓ1 ≥ 1). (5)

For� = 0 we have ℓ1 = 0 and #tot = #zero = = = 2�tot+1. Note that
for 2�tot ≤ � − (ℓ1 + 1)/2 we have #tot ≤ #zero, and 5 is decodable

from #tot evaluations by Algorithm 4.1 in [3]. However, if #zero <

#tot, then a new algorithm is required, because Algorithm 4.1 does

not account for the restriction that the characteristic of K is 0 or

≥ � + 1, and, by Section 2 above, the count #tot is required for

characteristic ≥ ℓ1 + 1.
The assumption = ≥ 2�tot + 1 is explicit here. For the count (2)

in [3] it is implied (see (13) below). In fact, if = = 2�tot is arbitrary

large, one cannot recover an interpolant 5 from 2(ℓ1 + 1)�tot eval-
uations: 5 ′ can interpolate 0̂8, 9 without errors for all 1 ≤ 8 ≤ 2�tot
and 1 ≤ 9 ≤ ℓ1, but 5 and 5 + 1 can both have �tot errors at the 0̂8,0.

Similarly, if = = �tot is arbitrarily large, the list of interpolants of

(ℓ1 + 1)�tot values can be all 5 + 2 for all 2 ∈ K. However, we show
in Lemma 3.1 below that for = ≤ 2�tot the count (4) is sufficient to

obtain a unique 5 (ℓ1) for all interpolants 5 with ≤ �tot errors.

Remark 3.1. Our algorithms use several counts for the number

of values and the number of errors. The upper bound � on the num-

ber of errors in (2) counts the number of b8 where 0̂8, 9 is erroneous

for at least one 9 . Therefore, a “burst” of errors at an index 8 counts

as one error. In the worst case, however, � can be the total number

of errors, whose upper bound we denote by �tot. The count #tot
in (5) is the minimum number of values the multiplicity decoders

require when � = �tot is the number of errors, one for each index

8 , and ℓ1 = · · · = ℓ� . The number of values that are input is ! (2),

which can be more than the minimum count if the inequalities in

our estimates for the recursive calls are not sharp. The count #zero
in (4) is our newminimum count for characteristic “zero” and large

characteristic. �

We first show that the zero polynomial is the only interpolant

of degree ≤ � with evaluations that yield 0 at any of #zero − 2�tot
of the evaluations. Therefore an interpolant 5 of degree ≤ � is

unique, if it exists with ≤ �tot errors in the 0̂8, 9 . For otherwise,

if there were polynomial interpolants, denoted by 5 [1] and 5 [2] ,
both with ≤ �tot errors, then 5 [1] − 5 [2] would be zero at at least

#zero − 2�tot locations.

Lemma 3.1. Let ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓ= ≥ 0 and let (8_, 9_) for
_ = 1, . . . , �̂ with 1 ≤ 8_ ≤ = and 0 ≤ 9_ ≤ ℓ8_ be �̂ distinct

arbitrary locations, and let � = {(8_, 9_)}1≤_≤�̂ . Assume that

(ℓ1 + 1) + · · · + (ℓ= + 1) − �̂ ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
, (6)

where
(1
2

)
= 0. Let 6 ∈ K[G] with deg(6) ≤ � such that 6 ( 9) (b8 ) = 0

for 1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ8 and (8, 9) ∉ � .

1. Then 6 (ℓ1) (G) = 0.

2. If = ≥ �̂ + 1, then 6(G) = 0.

Proof. We prove the Lemma by induction on ℓ1. For ℓ1 = 0 we

have 6(b8 ) = 0 at ≥ � + 1 distinct 8 ≠ 8_ , so 6 = 0. Now let ℓ1 ≥ 1

and let �̂0 ≤ = be the number of locations in � with 9_ = 0. We

shall distinguish 2 cases. If = − �̂0 ≥ � + 1 then 6 is zero at ≥ � + 1
distinct arguments b8 and therefore is again equal 0 and the Lemma

is proven. The second case is that �̂0 ≥ =−� . For that, we consider
the zero values of 6′, . . . , 6 (ℓ) . We have

ℓ1 + · · · + ℓ= − (�̂ − �̂0) ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
− = + (= − �)

= ℓ1 (� − 1) + 1 −
(ℓ1
2

)

such values. Therefore the induction hypothesis applies to those

values and we conclude from Fact 1 for ℓ1 − 1 and 6′ that 6 (ℓ1) = 0,
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which is Fact 1.

We finally prove Fact 2, assuming that = ≥ �̂ +1. By assumption

on the characteristic of K and 6 (ℓ1) = 0, we must have deg(6) ≤
ℓ1 − 1. We shall count the zero values of 6,6′, . . . , 6 (ℓ1−1) . Let

<`
def
= | {8 | 1 ≤ 8 ≤ =, ℓ8 ≥ `} | (7)

be the number of `-th derivative values. We have = = <0 ≥ <1 ≥
· · · ≥ <ℓ1 and

! =<0 + · · · +<ℓ1 = (ℓ1 + 1) + · · · + (ℓ= + 1) (see (2)). (8)

We have assumed that <0 = = ≥ �̂ + 1, so <1 + · · · +<ℓ1 ≤ ! −
�̂ − 1. Because <ℓ1 is a minimum, <ℓ1 ≤

(
! − �̂ − 1

) /
ℓ1. Let

�̃ = |{(8_, 9_) | 1 ≤ _ ≤ �̂, 9_ ≤ ℓ1 − 1}| count the locations in

� for derivatives of order ≤ ℓ1 − 1. Note that �̃ ≤ �̂. We bound

<0 + · · · +<ℓ1−1 − �̃ ≥ (ℓ
[new]
1 + 1)� [new] + 1 −

(ℓ [new]1 +1
2

)
, where

deg(6) ≤ � [new]
def
= ℓ1 − 1 and ℓ

[new]
1 = ℓ1 − 1, as follows:

<0 + · · · +<ℓ1−1 − �̃

≥ (! −<ℓ1 ) − �̂

≥
(
1 − 1

ℓ1

)
(! − �̂) + 1

ℓ1
(by<ℓ1 ≤

1

ℓ1

(
! − �̂ − 1

)
)

≥
(
1 − 1

ℓ1

) (
(ℓ1 + 1)� + 1 −

(ℓ1+1
2

) )
+ 1

ℓ1
(by (6))

≥
(
1 − 1

ℓ1

) (
(ℓ1 + 1) ℓ1 −

(ℓ1+1
2

) )
+ 1 (because � ≥ ℓ1)

=
ℓ21 − 1
2
+ 1

≥
ℓ21 − ℓ1

2
+ 1 (because ℓ1 ≥ 1)

= ℓ1 (ℓ1 − 1) −
(ℓ1
2

)
+ 1

= (ℓ [new]1 + 1)� [new] + 1 −
(ℓ [new]1 +1

2

)
. (9)

Therefore, the induction hypothesis applies to the values of 6, . . . ,

6 (ℓ1−1) and establishes Fact 2. �

In Algorithm 4.1, we will need a slightly more general estimate

than (9).

Lemma 3.2. Let ℓ8 , < 9 , � ≥ ℓ1 be as above with ℓ1 ≥ 1, and let

�̃ ≥ 0. Assume that = ≥ �̃ + 1 and

(ℓ1 + 1) + · · · + (ℓ= + 1) − �̃ ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
. (10)

Then<0 + · · · +< 9−1 − �̃ ≥ 9 ( 9 − 1) −
( 9
2

)
+ 1 for all 1 ≤ 9 ≤ ℓ1 + 1.

Proof. We first prove by induction on a ≥ 0 that

!a−�̃ ≥
ℓ1 − a
ℓ1

(
(ℓ1+1)�−

(ℓ1+1
2

) )
+1, where !a

def
=<0+· · ·+<ℓ1−a .

(11)

The basis a = 0 is (10). Because <0 ≥ �̃ + 1, we have <1 + · · · +
<ℓ1−a ≤ !a − �̃ − 1. Because<ℓ1−a is a minimum,<ℓ1−a ≤ (!a −
�̃ − 1)/(ℓ1 − a) = (!a − �̃)/(ℓ1 − a) − 1/(ℓ1 − a). Therefore

!a+1 − �̃ = (!a −<ℓ1−a ) − �̃ = (!a − �̃) −<ℓ1−a

≥
(
1 − 1

ℓ1 − a
)
(!a − �̃) +

1

ℓ1 − a

≥
(
1 − 1

ℓ1 − a
) ( ℓ1 − a

ℓ1

(
(ℓ1 + 1)� −

(ℓ1+1
2

) )
+ 1

)
+ 1

ℓ1 − a
(by hypothesis (11))

=
ℓ1 − a − 1

ℓ1

(
(ℓ1 + 1)� −

(ℓ1+1
2

) )
+ 1,

the latter of which is (11) for a +1. For 9 = ℓ1−a +1 we have for (11)
with � ≥ ℓ1 that ( 9 −1)/ℓ1 ((ℓ1 +1)� −

(ℓ1+1
2

)
) ≥ ( 9 −1) (ℓ1 +1)/2 ≥

9 ( 9 − 1)/2 = 9 ( 9 − 1) −
( 9
2

)
. �

Example 3.1. We briefly show the calculation for the example

from the abstract. If for ℓ = ℓ1 = · · · = ℓ�tot
= 2 we have #tot =

25�+25 = �+1+2�tot (ℓ+1), then �tot = 4�+4 and �tot/#tot = 4/25.

With ! evaluations by (4) one can correct �
def
= ⌊(! − 3� + 2)/2⌋

errors, because ! ≥ 3� − 2 + 2�. We have � ≥ (! − 3� + 1)/2 and
! − 3� + 1

2!
≥ d

def
=

4

25
⇐⇒ (1−2d)! ≥ 3�−1⇐⇒ ! ≥ 75

17
�− 25

17
.

Therefore with ! = ⌈75�/17−25/17⌉ = ⌈(4+7/17) �− (1+8/17)⌉
one can correct � errors yielding an error rate �/! ≥ (! − 3� +
1)/(2!) ≥ 4/25. Note that = ≥ 2� + 1 is always required.

For #zero = 5� − 2 our new algorithm can correct (#zero − 3� +
2)/2 = � errors, for an error rate �/(5� − 2) > 1/5. The example

in Section 2 shows that for characteristic ? = 3 one has an ambigu-

ous interpolant for #tot = � + 6�tot, which has an error rate of

�tot/#tot = 1/(6 + �/�tot) < 1/5. �
Example 3.2. We now give an example for ℓ1 = 2 where the

count (4) is minimal. Let = = <0 = � + (� − 1) + (� − 2) =

3� − 3, <1 = (� − 1) + (� − 2) = 2� − 3, <2 = � − 2, and

2�tot = 2(� −2) + (� −1) = 3� −5 (� an odd degree bound). Then

(ℓ0+1)+· · ·+(ℓ3�−3+1) = 6�−8 = (ℓ1+1)�−
(ℓ1+1

2

)
+2�tot = #zero−1.

Indeed, there can be two interpolants, the zero polynomial and a

polynomial 5 with 5 ′′(b8 ) = 0 for 1 ≤ 8 ≤ <2, 5
′(b8 ) = 0 for

<2 + 1 ≤ 8 ≤ <2 + (� − 1) = <1, and 5 (b8 ) = 0 for<1 + 1 ≤ 8 ≤
<1 + � = <0. Both polynomials are zero at (� − 2) + (� − 1) +
� = 3� − 3 values, and can have errors at half of the remaining

3� − 5 = 2�tot values. In this example = =<0 = 2�tot + 2. With an

additional value, the bound (4) is satisfied and by Lemma 3.1 there

are no multiple interpolants. Furthermore, with 6� − 7 values one
cannot use Algorithm 4.1 in [3]. One can have errors at the first

� = (3� − 5)/2 = (� − 2) + (� − 1)/2 arguments b8 , so one has

�+1+2∑�
8=1 (ℓ8+1) = �+1+6(�−2)+4(�−1)/2 = 9�−13 > 6�−7

for sufficiently large � .

If 2�tot > 3� − 5, which we have assumed to be even, one

may add new values b3�−2, . . . , b2�tot+2, thereby increasing <0 =

2�tot+2, and set alternatively 0̂3�−2,0 = 5 (b3�−2), 0̂3�−1,0 = 0, . . . ,

0̂2�tot+1 = 5 (b2�tot+1), 0̂2�tot+2,0 = 0. �

Example 3.3. We give an example for ℓ1 = 3,� = 4 and �tot ≥ 3

where the count (4) is minimal. Let 5 (G) = (G2 − 1) (G2 − 5), then
5 ′(G) = 4G (G2 − 3), 5 ′′(G) = 12(G2 − 1), and 5 (3) (G) = 24G . We set

b1 = 0, b2 = 1, b3 = −1, b4 =
√
3, b5 = −

√
3, b6 =

√
5, b7 = −

√
5.

We first treat the case �tot = 3: let= =<0 = 7 = 2�tot+1,<1 = 5,

<2 = 3 and<3 = 1; therefore we evaluate ! = 7 + 5 + 3 + 1 = 16 =
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Table 1: Values for Example 3.3

0̂8,3 0

0̂8,2 5 ′′(0) 0 0

0̂8,1 0 5 ′(1) 5 ′(−1) 0 0

0̂8,0 0 0 0 0 0 0 0

b8 b1 = 0 b2 = 1 b3 = −1 b4 =
√
3 b5 = −

√
3 b6 =

√
5 b7 = −

√
5

(ℓ1 + 1)� −
(ℓ1+1

2

)
+ 2�tot = #zero − 1 derivates 5 ( 9) (b8 ), 0 ≤ 9 ≤ 3,

1 ≤ 8 ≤ < 9 . Of those, 6 values are ≠ 0 : 5 (b1), 5 ′′(b1), 5 ′(b2),
5 ′(b3), 5 (b4), and 5 (b5). If we select 0̂1,2 = 5 ′′(b1), 0̂2,1 = 5 ′(b2),
0̂3,1 = 5 ′(b3) and all other 0̂8, 9 = 0 then both the polynomial 5

and the polynomial 0 have 3 errors, both for 3 distinct b8 ’s. In the

following table, the errors for the 5 polynomial are indicated by red

0’s, while the errors for the zero polynomial are at the 3 derivatives

of 5 . The values are shown in Table 1.

The case �tot ≥ 4 is handled as in Example 3.2 by adding 0̂8,0 =

5 (b8), 0̂9,0 = 0, 0̂10,0 = 5 (b10), . . . , 0̂2�tot−1,0 = 0, 0̂2�tot,0 = 5 (b2�tot
),

0̂2�tot+1 = 0 and setting = =<0 = 2�tot + 1. �

4 HERMITE DECODING OVER ZERO / LARGE
CHARACTERISTIC

From the proof of Lemma 3.1 we can obtain a decoding algorithm,

which is based on a Reed-Solomon decoder. Those Reed-Solomon

algorithms receive as input 0̂8,0 ∈ K and distinct b8 ∈ K for 8 =

1, . . . , = and a degree bound � < =, and compute a polynomial 5 of

degree ≤ � such that 5 (b8 ) ≠ 0̂8,0 at no more than � = ⌊ (= − � −
1)/2 ⌋ indices 8 . The algorithms also indicate if no such 5 exists.

Our Algorithm 4.1 in [3] specializes for ℓ1 = · · · = ℓ= = 0 to a

Reed-Solomon decoder.

We now present our new Hermite interpolation algorithm with

error correction. Our algorithm iterates on ℓ1, but a subsequent

recursive iteration may not satisfy = [new] ≥ 2�
[new]
tot + 1. In that

case the algorithm returns the unique 5 ( 9
∗) for some 9∗ ≤ ℓ1, with

which one can complete the original interpolation for = ≥ 2�tot+1.

4.1 Error-correcting Hermite interpolation
(zero / large char)

Input:
◮Bounds �, �tot ∈ Z≥0;
the scalar field K has characteristic 0 or ≥ � + 1.
◮A set of = distinct argument values {b1, . . . , b=} ⊆ K;
◮A list of = row vectors �̂ = [�̂8,∗]1≤8≤= where

◮ ℓ1 ≥ · · · ≥ ℓ= ≥ 0; we shall have � ≥ ℓ1,

for otherwise all error-free 0̂8,ℓ1 are 0.
◮ �̂8,∗ = [0̂8,0, . . . , 0̂8,ℓ8 ] ∈ K1×ℓ8 ;
◮ (ℓ1 + 1) + · · · + (ℓ= + 1) ≥ (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
+ 2�tot.

Output:

We call 5 (G) ∈ K[G] an interpolant if the following are satisfied:
◮ deg(5 ) ≤ � ;
◮: = |� | ≤ �tot for � = {(8_, 9_)}1≤_≤:

= {(8, 9) | 5 ( 9) (b8 )≠0̂8, 9 , 1≤8≤=, 1≤ 9≤ℓ8 };
◮ 5 ( 9) (b8 ) = 0̂8, 9 for all 1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ8 and (8, 9) ∉ � .

◮Case = ≥ 2�tot + 1 :
◮The interpolant 5 (G) ∈ K[G] and the error locations

� = {(8_, 9_)}1≤_≤: ;
◮Or a message indicating there is no such interpolant.

◮Case = ≤ 2�tot :
◮A 9∗ with 0 ≤ 9∗ ≤ ℓ1 and 6(G) ∈ K[G] and the error

locations � = {(8_, 9_)}1≤_≤: , which satisfy
◮ deg(6) ≤ � − 9∗;
◮: = |� | ≤ �tot for

� = {(8_, 9_)}1≤_≤:
= {(8, 9) | 6 ( 9) (b8 )≠0̂8, 9 , 1≤8≤< 9∗ , 9

∗≤ 9≤ℓ8 };
◮6 ( 9) (b8 ) = 0̂8, 9 for all 1 ≤ 8 ≤ < 9∗ , 9

∗ ≤ 9 ≤ ℓ8 and (8, 9) ∉ � ;
◮ If at least one interpolant 5 exists, 6 = 5 ( 9

∗) , which is then

unique for all interpolants; specifically, if 9∗ = 0 then 6 is

a unique interpolant;
◮Or a message indicating there is no interpolant 5 . Note that

a 6 may be returned even if there is no interpolant.

1. If ℓ1 = 0, then = ≥ � + 1 + 2�tot: perform Reed-Solomon interpo-

lation and return either 5 or “no interpolant exists.”

2. If = ≥ 2�tot + 1 and

! = (ℓ1 + 1) + ··· + (ℓ= + 1)
≥ � + 1 + 2(ℓ1 + 1) + ··· + 2(ℓ�tot

+ 1), (12)

call Algorithm 4.1 in [3] with � = �tot to interpolate 5 . Note

that if = ≥ �tot, ! ≥ � + 1 + 2∑�tot
8=1 (ℓ8 + 1) =⇒ = ≥ 2�tot + 1,

because if = ≤ 2�tot we would have

2(ℓ1+1) + ··· + 2(ℓ�tot
+1)

≥ (ℓ1+1) + ··· + (ℓ�tot
+1) + (ℓ�tot+1+1) + ··· + (ℓ=+1), (13)

in contradiction to (12).

A second algorithm is described in Remark 4.1 below.

3. �0 ← ⌊ (= − � − 1)/2 ⌋. If �0 ≥ 0 then attempt a Reed-Solomon

interpolation of 5 from 0̂8,0 for 1 ≤ 8 ≤ = with degree bound

� and with bound �0 for the number of errors. If the decoding

yields a candidate 5 , then check if 5 , 5 ′, . . . , 5 (ℓ1) interpolate all
0̂8, 9 with ≤ �tot errors.

If there is success and = ≥ 2�tot + 1, then return 5 and the er-

ror locations. By Lemma 3.1 with �̂ = 2�tot the interpolant is

unique.

If there is success and = ≤ 2�tot,

then 9∗ ← ℓ1;

6← 5 (ℓ1) ;
� [ high] ← {(8, ℓ1) | 5 (ℓ1) (b8 ) ≠ 0̂8,ℓ1 , 1 ≤ 8 ≤ <ℓ1 };
go to Step 6.

By Lemma 3.1 with �̂ = 2�tot, for all interpolants the ℓ1-st
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derivative is unique. In Example 4.2 we show that the inter-

polants may be ambiguous.

4. Here we know that if there is an interpolant 5 , then either = <

� + 1 or the number :0 of errors for 5 in 0̂8,0 satisfies :0 ≥
�0 + 1 ≥ (= − � − 1)/2 − 1/2 + 1 = (= − �)/2. Note that the
Reed-Solomon algorithm may compute in Step 3 a candidate

for 5 which fails the error count elsewhere, in which case any

interpolant 5 has more than �0 errors in the 0̂8,0. Both cases

lead to = ≤ � + 2:0. Therefore, if an interpolant 5 exists, we

have ≤ �tot − :0 errors in the remaining values 0̂8, 9 , with 1 ≤
8 ≤ <1, 1 ≤ 9 ≤ ℓ8 . The number of such values for 5 ′, . . . , 5 (ℓ1)

is bounded as

ℓ1 + · · · + ℓ= ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
+ 2�tot − =

≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
+ 2�tot − � − 2:0

= ℓ1 (� − 1) + 1 −
(ℓ1
2

)
+ 2(�tot − :0) . (14)

Recursively, call Algorithm 4.1with degree bound� [new] = �−1,
error bound

�
[ high]
tot ←

⌊ 1
2

(
ℓ1 + · · · + ℓ= − ℓ1 (� − 1) − 1 +

(ℓ1
2

) ) ⌋

(which is ≥ �tot − :0), (15)

= [new] ← <1 and derivative values 0̂
[new]
8, 9−1 ← 0̂8, 9 for 1 ≤ 8 ≤

<1 and 1 ≤ 9 ≤ ℓ8 ;

The recursive call may for = [new] =<1 ≤ 2�
[ high]
tot return 9∗, 6

and � , for = [new] ≥ 2�
[ high]
tot + 1 return an interpolant, denoted

by 5 [high] , and � , or in either case “no interpolant.”

If “no interpolant” was returned then return that no interpolant

5 exists.

Because we use 9∗ and 6 in subsequent steps, we assign 5 [high]

appropriately.

If = [new] ≥ 2�
[ high]
tot + 1 then 9∗ ← 0; 6← 5 [high] .

5. Shift the derivatives orders to pre-recursive call values.

9∗ ← 9∗ + 1; � [ high] ← {(8_, 9_ + 1) | (8_, 9_) ∈ � }.
6. �

[ low]
tot ← �tot − |� [ high] |; if = ≤ 2�

[ low]
tot then return 9∗, 6 and

� [ high] .
7. Now = ≥ 2�

[ low]
tot + 1, where � [ low]tot is an upper bound for the

allowed number of errors in the derivatives of order ≤ 9∗ −
1. One can attempt to complete the interpolation of the then

unique 5 .

From 6 compute 5̄ (G) = 23G
3 + · · · + 2 9∗G 9

∗
with 5̄ ( 9

∗)
= 6.

Note that 3 ≤ � . One can integrate 6 9∗-times because the

characteristic of K is 0 or ≥ � + 1.
8. We interpolate (5 mod G 9

∗ ) = 5 − 5̄ from the derivative values

of order ≤ 9∗ − 1.
� [new] ← 9∗ − 1; ℓ [new]8 ← min{ℓ8 , 9∗ − 1} for all 1 ≤ 8 ≤ =;

0̂
[new]
8, 9 ← 0̂8, 9 − 5̄ ( 9) (b8 ) for all 1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ

[new]
8 .

Recursively, call Algorithm 4.1 with � [new] , � [ low]tot , [b8 ]1≤8≤= ,
�̂ [new].

There are<0 + · · · +< 9∗−1 values in �̂ [new]. By �
[ low]
tot ≤ �tot

we have

(ℓ1 + 1) + ··· + (ℓ= + 1) − 2� [ low]tot

≥ (ℓ1 + 1) + ··· + (ℓ= + 1) − 2�tot
≥ (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
,

and by Lemma 3.2 with �̃ = 2�
[ low]
tot we have

<0 + · · · +< 9∗−1 − 2� [ low]tot

≥ 9∗ ( 9∗ − 1) −
( 9∗
2

)
+ 1

= (ℓ [new]1 + 1)� [new] −
(ℓ [new]1 +1

2

)
+ 1, (16)

so the input specifications are satisfied with = ≥ 2�
[ low]
tot +

1. Therefore, the recursive call returns either an interpolant,

denoted by 5 [mod] , and error index set � [ low] , or a message

indicating that there is no interpolant.

9. If no interpolant 5 [mod] and error index set � [ low] is computed

in Step 8, then return that no interpolant 5 exists.

10. The total number of errors satisfies |� [ low] |+|� [ high] | ≤ �
[ low]
tot +

|� [ high] | = �tot.

If = ≥ 2�tot + 1
then return 5 ← 5̄ + 5 [mod] and � ← � [ low] ∪ � [ high] ;
Else return 9∗ ← 0, 6← 5̄ + 5 [mod] and � ← � [ low] ∪ � [ high] .

Remark 4.1. Step 2 performs multiplicity code decoding when

the error rate is small. Our algorithm in [3] is, for polynomial

interpolation, essentially the Welch-Berlekamp algorithm, which

is described in [5, Section 3.1.1]. There is the following alterna-

tive, based on Lagrange interpolation and Chinese remaindering

with error correction. In [8] a Lagrangian interpolation formula

is given for Hermite polynomial interpolation. For a polynomial

5 (G) ∈ K[G] we have
5 (G) ≡ 5 (b8 ) + 5 ′(b8 ) (G − b8 ) + · · ·

+ 5 (ℓ8 ) (b8 )
ℓ8 !

(G − b8 )ℓ8 (mod (G − b8 ) (ℓ8+1) ), 1 ≤ 8 ≤ =.

Therefore, one can Chinese remainder the polynomial residues∑ℓ8
9=0 0̂8, 9/ 9 !(G − b8 )

9 with respect to the polynomial moduli (G −
b8 )ℓ8+1, and correct erroneous residues; see [4] and the literature

cited there. Each erroneous residue requires another good residue,

so if the residues for 8 = 1, 2, . . . , �tot are erroneous one needs an

additional (ℓ1 +1) + · · · + (ℓ�tot
+1) good values, in addition to � +1

good values, which is the count (2). �

Remark 4.2. When Algorithm 4.1 returns “no interpolant,” in

both the cases = ≥ 2�tot + 1 and = ≤ 2�tot for some inputs the

algorithm computes an order 9∗ ≥ 1 and a polynomial 6 that in-

terpolates all 9-th order derivatives for 9∗ ≤ 9 ≤ ℓ1 with |� | ≤ �tot
errors. Optionally, the triple 9∗, 6, � could be returned as a partial

solution. �

Example 4.1. If= ≥ 2�tot+1, any valid inputwith no interpolant
will be flagged. We show by example that for = ≤ 2�tot, a 9∗ and
6 may be returned even if there is no unique interpolant. Let = =

2�tot ≥ 2� and ℓ1 = 1, <1 = 2� ; then = + <1 = (ℓ1 + 1)� +
1 −

(ℓ1+1
2

)
+ 2�tot and the input specification is satisfied. Suppose

for a polynomial 5 of degree ≤ � we have 5 ′(b8 ) = 0̂8,1 for all

1 ≤ 8 ≤ 2� , and 0̂8,0 = 5 (b8 ) and 0̂�tot+8,0 = 5 (b8 ) + 1 for all
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1 ≤ 8 ≤ �tot. Both 5 and 5 + 1 interpolate all points with �tot
errors, but Algorithm 4.1 returns 9∗ = 1 and 5 ′ either in Step 3 or

in Step 6. �

Example 4.2. We show by example that in Step 3 for = ≤ 2�tot
there may be ambiguous interpolants. Let ℓ1 = 1, = = 2�tot − (� +
1) ≥ 3� + 1 and <1 = 3� + 1. Then (ℓ1 + 1) + (ℓ2 + 1) = = +
<1 = 2� + 2�tot = (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
+ 2�tot and the input

specifications are satisfied. Now let 5 be a polynomial of degree

≤ � and let 0̂8,0 = 5 (b8 ) for 1 ≤ 8 ≤ �tot, let 0̂8,0 = 5 (b8 ) + 1 for

�tot + 1 ≤ 8 ≤ = and let 0̂8,1 = 5 ′(b8 ) for 1 ≤ 8 ≤ <1. Now 5 has

�tot−(�+1) = (=−(�+1))/2 errors at (�tot+1, 0), . . . (=, 0) andwill
be computed in Step 3, but 5 +1 has �tot errors at (1, 0), . . . , (�tot, 0)
and constitutes a second interpolant with ≤ �tot errors. Therefore,

a successful interpolant found in Step 3 does not constitute the

only solution, and Step 6 can only return the unique 5 ′. �

Example 4.3. We show another example which in Step 3 for

= ≤ 2�tot has two interpolants, now for ℓ1 = 2. Let <0 = <1 =

<2 = 3� − 2 = �tot and ℓ1 = · · · = ℓ3�−2 = 2. Then (ℓ1 + 1) + · · · +
(ℓ3�−2 + 1) = (ℓ1 + 1)� + 1 −

(3
2

)
+ 2�tot and the input conditions

are satisfied. Suppose that 5 interpolates 0̂8, 9 without error for all

8 and 9 = 0 and 9 = 2. If 0̂8,1 = 5 ′(b8 ) + 1 then 6(G) = 5 (G) + G
interpolates 0̂8, 9 for all 8 and 9 = 1, 2. Both 5 and 6 have ≤ �tot
errors. �

Algorithm 4.1 makes recursive calls with different error bounds,

so if for the recursive call = [new] ≥ 2�
[new]
tot + 1 that recursive

call may produce a unique interpolant. Therefore, if = ≤ 2�tot ini-

tially, the returned 6 may have 9∗ < ℓ1. We now prove that the

input/output specifications are enforced by Algorithm 4.1.

Theorem 4.1. Algorithm 4.1 computes an interpolant 5 or 6 if

one or more interpolants exist. If = ≥ 2�tot + 1 it returns the then

unique 5 or diagnoses that no such 5 exists. If = ≤ 2�tot and there

exists at least one interpolant 5 , then 5 ( 9
∗)

= 6, which is unique for

all interpolants.

Proof. We first consider the case = ≤ 2�tot. If there is no in-

terpolant 5 for all values in �̂ with ≤ �tot errors, then either the

6 or “no interpolant” outputs are correct. Now suppose that there

is one interpolant 5 or more. By Lemma 3.1 the ℓ1-st derivatives

of all such interpolants are unique. Therefore, Step 3, if success-

ful, computes a correct 9∗ = ℓ1 and 6. Otherwise, all interpolants

have ≥ (= − �)/2 errors in the 0̂8,0, and by (14) and (15) there are

≤ �tot −:0 ≤ �
[ high]
tot errors in all other values 0̂8, 9 with 9 ≥ 1. The

number of values for any 5 ′ is bounded as

<1 + · · · +<ℓ1 = ℓ1 + · · · + ℓ= ≥ ℓ1 (� − 1) + 1 +
(ℓ1
2

)
+ 2� [ high]tot ,

which is the induction hypothesis for the correctness of Algorithm

4.1, and Steps 5 and 6 return correct outputs.

Because the 9∗-th derivative of all possible interpolants 5 ′ is
equal to 6 after Step 5 by hypothesis, and the number of errors in

derivatives of order ≤ 9∗ − 1 of any possible interpolant 5 [mod]

in Step 8 satisfies the input specifications by (16), Steps 7–10 by

hypothesis correctly compute the unique 5 [mod] or flag that none
exists.

We now consider the case = ≥ 2�tot + 1. If there exists an inter-

polant 5 , which is then unique, then 6 = 5 ( 9
∗) at Step 7 by the hy-

pothesis for Step 4. In Step 8 the input specifications for 5 mod G 9
∗

are satisfied and the Step computes by induction hypothesis cor-

rectly the missing residue of 5 . If no 5 exists, Step 9 will flag such

input, because only interpolants with ≤ �tot errors are returned in

Step 10. �

Theorem 4.2. Algorithm 4.1 performs $ (ℓ1 (� + ℓ21 )!(log!)
2 ×

loglog(!)) arithmetic operations inK, where ! = (ℓ1+1)+· · ·+(ℓ=+1)
(2).

Proof. New interpolant polynomials are computed only in Steps 1–

3 of each recursive invocation. Themost costly is Step 3with$ (� ×
!(log!)2 loglog(!)) arithmetic steps. The cost for the Reed-Solomon

algorithm and Step 2 is$ (!(log!)2 loglog(!)), but in Step 3 there

are evaluations of polynomials of degree ≤ � at <0, <1, . . . ,<ℓ1

points. Note that � < ! which implies �2
= $ (�!) for the cost of

computing all derivatives of 5 in Step 3. The recursive descent in

Step 4 may take ℓ1 recursive calls before a candidate 6 is produced,

at a total cost of $ (ℓ1�!(log!)2 loglog(!)).
Subsequently, �̂ is updated, again for each new interpolant 5̄

at cost no more than$ (�!(log!)2 loglog(!)). Then the algorithm

continues at the new global derivative order ℓ
[new]
1 = 9∗ − 1 ≤

ℓ1 − 1 in Step 8, computing interpolants and updating �̂. Because

the recursive call at Step 8 can be reached at most ℓ1 times, as the

global order 9∗ decreases each time, and<0 + · · · +< 9∗−1 < ! and

� [new] < ℓ1, the overall complexity is bounded by ℓ1 times the

bound $ (ℓ21!(log!)
2 loglog(!)) for each subsequent descent. �

Remark 4.3. List-decoding of multiplicity codes [1, 6] interpo-

lates in polynomial-time a list of valid polynomials, that is, code

words, from a message word of polynomial values, which contain

errors, from fewer than #tot (5) evaluations. If the list-decoding

error-rate is no more than the error rate for our new count #zero
(4) and the number of distinct arguments = is sufficiently large,

then for fields of characteristic 0 or ≥ � + 1 the returned list con-

tains no more than one element. Our new algorithm could also per-

form Reed-Solomon list-decoding and list-decode from a number

of evaluations < #zero. �
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