Hermite Interpolation With Error Correction: Fields of Zero or
Large Characteristic and Large Error Rate

Erich L. Kaltofen
Dept. of Math., NCSU
Raleigh, NC, USA
Dept. of Comp. Sci., Duke University
Durham, NC, USA
kaltofen@ncsu.edu

ABSTRACT

Multiplicity code decoders are based on Hermite polynomial inter-
polation with error correction. In order to have a unique Hermite
interpolant one assumes that the field of scalars has characteristic
0 or > ¢ + 1, where ¢ is the maximum order of the derivatives in
the list of values of the polynomial and its derivatives which are
interpolated. For scalar fields of characteristic £ + 1, the minimum
number of values for interpolating a polynomial of degree < D is
D + 1+ 2E(£ + 1) when < E of the values are erroneous. Here we
give an error-correcting Hermite interpolation algorithm that re-
quires fewer values, that is, that can tolerate more errors, assuming
that the characteristic of the scalar field is either 0 or > D + 1. Our
algorithm requires (£ + 1)D + 1 — (£ + 1)¢/2 + 2E values.

As an example, we consider £ = 2. If the error ratio (number
of errors)/(number of evaluations) < 0.16, our new algorithm re-
quires [(4 + 7/17) D — (1 + 8/17)] values, while multiplicity de-
coding requires 25D + 25 values. If the error ratio is < 0.2, our
algorithm requires 5D — 2 evaluations over fields of characteris-
tic 0 or > D + 1, while multiplicity decoding for an error ratio 0.2
over fields of characteristic 3 is not possible for D > 3.

Our algorithm is based on Reed-Solomon interpolation without
multiplicities, which becomes possible for Hermite interpolation
because of the high redundancy necessary for error-correction.

CCS CONCEPTS

« Mathematics of computing — Interpolation; Computations
in finite fields; « Theory of computation — Error-correcting
codes; - Computing methodologies — Algebraic algorithms.

KEYWORDS

algebraic error correction codes; multiplicity error correction codes;
Reed-Solomon error correction codes; list decoding;

ACM Reference Format:
Erich L. Kaltofen, Clément Pernet, and Zhi-Hong Yang. 2021. Hermite In-
terpolation With Error Correction: Fields of Zero or Large Characteristic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC °21, July 18-23, 2021, Virtual Event, Russian Federation

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8382-0/21/07...$15.00

https://doi.org/10.1145/3452143.3465525

Clément Pernet
Laboratoire Jean Kuntzmann, Univ.
Grenoble Alpes, CNRS
Grenoble, France
clement.pernet@univ-grenoble-
alpes.fr

241

Zhi-Hong Yang
Coll. of Math. and Statistics
Shenzhen University
Shenzhen, China
zhihongyang2020@outlook.com

and Large Error Rate. In Proceedings of the 2021 International Symposium on
Symbolic and Algebraic Computation (ISSAC °21), July 18-23, 2021, Virtual
Event, Russian Federation. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3452143.3465525

1 INTRODUCTION

The number of errors which can be corrected when interpolating
a function from values can be dependent on arithmetic properties
of the scalar field. In [2] we have demonstrated that when perform-
ing sparse interpolation in standard basis with powers of the vari-
able, for real values one can correct a much higher error rate than
for complex number values. Here we show that for Hermite pol-
ynomial interpolation with error correction, that is, multiplicity
code decoding [5, 7], for scalar fields of 0 or large characteristic at
higher error rates fewer values are required to compute a unique
interpolant. Our new polynomial-time interpolation algorithm is
specific to polynomials and is based on iterated Reed-Solomon de-
coding, unlike the earlier algorithms, which are based on an error-
locator polynomial with multiple roots (see also Remark 4.1 be-
low).

For £ > --- > £, > 0 we interpolate f € K[x] of degree
bounded as deg(f) < D from values at n distinct arguments &;
with 1 < i < n, namely, 4;; € K where fU)(&) = d;; with
1 <i<nand0 < j < ¢ at evaluations that are not erroneous.
With f () we denote the j-th derivative of f in x. We impose that
the characteristic of K is either 0 or > #; + 1 and that D > #;, for
otherwise f (&) = 0 and all non-erroneous dj¢, = 0.The set of error
locations is

I={G) I fPE) #ap1<isno<j<a) (1)
As input our algorithms have a degree bound D, [£;]1<i<n, vectors
A\i,* = [dio,...,di¢] for 1 < i < n and upper bounds for the
number of errors: either E > |{i | 3j: (i,j) € I}| or Etor = |I].
Algorithm 4.1 in [3] can interpolate a unique f, or prove that none
exists, when the number of values satisfies

n E E
def def
LE Z(ml) > NED+1+2 § (6+1) = D+1+2E+2 g 4. (2)
i=1 i=1 i=1

We show in [3] that if L < N in (2), one can have multiple inter-
polants: see Example 1 for #; = 1, K = Rand N = D +4Ej,t, and Ex-
ample 3 (or Section 2 below) for K = Zp 11 and N = D+2E; (£1+1).
However, in Remark 1 in [3] we observe that for a large bound of
errors Etot and for fields K of characteristic 0 or > D+1 the count (2)
is sub-optimal for #; = 1. In fact, if Etot > D/2 one can interpolate
from 2D + 2E;ot values.

Our Algorithm 4.1 below interpolates from Nyero = (4 +1)D +
1- ({1; 1) + 2Eiot values, provided that n > 2Eiy + 1 and that
the characteristic of K is either 0 or > D + 1. For an error bound
Etot > %(D - %({’1 + 1)) our new algorithm requires fewer values
than (2) with E = Eiot and £g = £;. The reason for the improvement
is based on the assumption that D-th derivatives of polynomials of
degree D cannot be zero. The general multiplicity code decoder
[3, Algorithm 4.1] divides by ¢!, and its count (2) is optimal for
characteristic > #; + 1. Our new algorithm generalizes the Reed-
Solomon decoder to the Hermite problem. Our algorithm performs
Hermite interpolation by repeated recursive polynomial interpola-
tion at higher and higher derivatives and may divide by D!. The
reduction to standard polynomial interpolation is possible because
one has a high error rate and sufficient redundancy in the values,
and is special to the error correcting Hermite problem. In Exam-
ple 3.1 we perform the calculation for the example in the abstract.
In Example 3.2 below we show that the new count is minimal at
least for £; = 2.

2 SMALL CHARACTERISTIC WORST CASE

We slightly modify Example 3 in [3, Section 4]. If the field of scalars
K has finite characteristic > #; + 1, our count (2) is optimal for
higher derivatives. Let n = 2E+ v, forv > 1, andlet 4 = --- =
typ+y = p—1for a prime number p which is the characteristic of the
field of scalars K, whose cardinality is |[K| > 2E+v+1, so that there
exist n+1 distinct elements & in K. Let f(x) = (x—&)P - - - (x=&,)P
and let D = deg(f) = vp. Then f(&) = --- = f(&) = 0 and
f(j)(:f,-) =0foralll1 <i<nand1 < j<¢. Therefore f and the
zero polynomial interpolate all (2E + v)p — 2E zero values, and E
errors cannot be unambiguously corrected from N = (2E + v)p =
D+ 2E(#; + 1) values. If one adds an (N + 1)-st value f(&,+1) then
N+1=D+1+2E(#;+1) and Algorithm 4.1 in [3] and the algorithm
described in Remark 4.1 interpolate a unique polynomial with < E
erroneous values.

3 ZERO AND LARGE CHARACTERISTIC

Here we generalize Remark 1 in [3] to arbitrarily high derivatives
£1. We assume that the characteristic of K is either 0 or > D +1. Let

®)
be a bound on the total number of errors. For an unambiguous
constant coeflicient one must assume that n > 2Eq; + 1.

Because f(D+J) = 0 for j > 1 we assume that #; < D. We can
prove that

Eot 2 | {aij | fOE) #aij1<i<n0<j<t}]

L={B+D)+ -+ +1) >

def
Nero = (+1)D+1- (t;l;l) + 2Etot

=D+(D-1)+---+(D-8)+1+2Ex (4)

is a decodable number of evaluations when 2Eyos > D — (£; +1)/2,
in which case

def
Nero < Not = D + 1+ 2Etot + 2Eiotf1 (fOI’ fH > 1). (5)

For D = 0 we have #; = 0 and Niot = Nyero = n = 2Eot +1. Note that
for 2Etot < D — (£1 +1)/2 we have Mot < Njero, and f is decodable
from Mot evaluations by Algorithm 4.1 in [3]. However, if Nyero <
Not, then a new algorithm is required, because Algorithm 4.1 does

242

not account for the restriction that the characteristic of K is 0 or
> D + 1, and, by Section 2 above, the count Nt is required for
characteristic > #; + 1.

The assumption n > 2Eo + 1 is explicit here. For the count (2)
in [3] it is implied (see (13) below). In fact, if n = 2Ej is arbitrary
large, one cannot recover an interpolant f from 2(#; + 1)E eval-
uations: f” can interpolate d; j without errors for all 1 < i < 2Ejt
and 1 < j < 4, but f and f +1 can both have Eo errors at the dj .
Similarly, if n = Eyo is arbitrarily large, the list of interpolants of
(1 + 1)Eiot values can be all f + ¢ for all ¢ € K. However, we show
in Lemma 3.1 below that for n < 2E; the count (4) is sufficient to
obtain a unique f (1) for all interpolants f with < Eyot errors.

REMARK 3.1. Our algorithms use several counts for the number
of values and the number of errors. The upper bound E on the num-
ber of errors in (2) counts the number of &; where 4; ; is erroneous
for at least one j. Therefore, a “burst” of errors at an index i counts
as one error. In the worst case, however, E can be the total number
of errors, whose upper bound we denote by Etot. The count Nt
in (5) is the minimum number of values the multiplicity decoders
require when E = Eio is the number of errors, one for each index
i,and #; = --- = £g. The number of values that are input is L (2),
which can be more than the minimum count if the inequalities in
our estimates for the recursive calls are not sharp. The count Nyero
in (4) is our new minimum count for characteristic “zero” and large
characteristic. O

We first show that the zero polynomial is the only interpolant
of degree < D with evaluations that yield 0 at any of Nyero — 2Etot
of the evaluations. Therefore an interpolant f of degree < D is
unique, if it exists with < Eyo errors in the 4; j. For otherwise,
if there were polynomial interpolants, denoted by f (1] and f (21,
both with < Eiot errors, then f[l] - f[z] would be zero at at least

Nyero — 2Eiot locations.

LEMMA 3.1. Let 1 > £ - >ty 2 0 and let (iy, j;) for
A=1...,Ewithl < iy < nand0 < j; < &, be E distinct

arbitrary locations, and let I = {(ifl’j/l)}1</1<f' Assume that

(G+D+ -+ +1) —E> (G +1)D+1- (171,

>
<

(6)

where (é) = 0. Let g € K[x] with deg(g) < D such that g/ (&) = 0
for1<i<nand0<j<¢tand(i,j) ¢l

1. Then g(fl)(x) =0.

2. Ifn > E+1, theng(x) = 0.

Proor. We prove the Lemma by induction on #;. For #; = 0 we
have g(&;) = 0at > D + 1 distinct i # iy, so g = 0. Now let ; > 1
and let Ey < n be the number of locations in I with Jy = 0. We
shall distinguish 2 cases. If n — Eo > D +1then giszeroat > D+1
distinct arguments &; and therefore is again equal 0 and the Lemma
is proven. The second case is that Ey > n— D. For that, we consider
the zero values of ¢/, . .. ,g([). We have

b4+t —(E-Eo) > (4 +1)D+1- ("71) = n+(n-D)
=a(D-1)+1-(%)

such values. Therefore the induction hypothesis applies to those
values and we conclude from Fact 1 for #; — 1 and g’ that g(fl) =0,

which is Fact 1.
We finally prove Fact 2, assuming that n > E + 1. By assumption
on the characteristic of K and g(4) = 0, we must have deg(g) <

£1 — 1. We shall count the zero values of g, ¢/, . . ., g(fl’l). Let
my S 1<i<ng > p)l)
be the number of p-th derivative values. We have n = mg > my >
- > my, and
L=mo+--+mpy=(L1+1)+--+{n+1) (see(2). (8
We have assumed that mg = n > E+l, somy+---+mpy < L—

E - 1. Because my, is a minimum, mg, < (L - E-1)/ti. Let
E = [{(ix,ja) | 1 £ A < E, jj £ & — 1}| count the locations in

I for derivatives of order < £ — 1. Note that E < E. We bound
_ [new]
~+my_1—E > (t’l[new] L)

¥
my+--), where

deg(g) < DInevl dzeft’l —1land [l[new] ={ — 1, as follows:

mo+---+my_1—E
>(L-my)-E
1 = 1 1 -~
2(1——)(L—E)+— (bymfIS[—(L—E—l))
> (1=)@+ 004 1= () + 1 by (6)
1

> (1- _)(({1 +1) 4 - ({1;1)) +1 (because D > #)

= +1
2

22—

>
2

=0(h-1) -

+1 (because f; > 1)

() +1
f[new]

= (emevl ppplrewl g (7,

©
Therefore, the induction hypothesis applies to the values of g, . . .,
g([l_l) and establishes Fact 2. O

In Algorithm 4.1, we will need a slightly more general estimate
than (9).

LEMMA 3.2. Let £;, mj, D > £ be as above with £; > 1, and let
E > 0. Assume thatn > E + 1 and

(G+1)++(a+1)—E> (g +1)D+1- (177). (10)

Thenmg + - - +m]1—E>](]—1) ()+1foralll<]<t’1+l
ProoFr. We first prove by induction on v > 0 that

LV—Ez

def
((t’1+l)D (€1+1))+1, where Ly, = mg+- - +me—y
(11)

The basis v = 0 is (10). Because mo > E+1 wehavemy +--- +
mg,—y < L, — E — 1. Because my,—y is a minimum, m¢,_, < (L, —
E-1)/(t1 —v) =(Ly—E)/(t1 —v) — 1/(1 — v). Therefore

141

243

E=(L, -

> (1- m)(LV

Lyy1 - me — v) - (Lv - E) me—v

—E)+

1—V

1 ¢t +
>(1- [1_V)(1[((& +1)D - (3 1))+1)+[1_V
(by hypothesis (11))
- %((ﬁ +1)D - ("1“)) +1,

the latter of which is (11) for v+ 1. For j = £; —v+1 we have for (11)
with D > ¢ that (j—1)/6((6+1)D - (“31) > (-1 (a1 +1)/2 >
jG-1/2=j(G-D-().0

ExaMmPLE 3.1. We briefly show the calculation for the example

from the abstract. If for £ = #; = --- = fg,, = 2 we have Not =
25D+25 = D+1+2Et0t([+1), then Etot =4D+4 and Etot/Mot = 4/25.

def
With L evaluations by (4) one can correct E = [(L-3D+2)/2]
errors, because L > 3D — 2+ 2E. We have E > (L — 3D +1)/2 and

L-3D+1 _ def 4 25
> p=— e (1-2p)L = 3D- 1<=>L>—D——

2L 25 17
Therefore with L = [75D/17—25/17] = |'(4+7/17)D—(1+8/l7)'|

one can correct E errors yielding an error rate E/L > (L — 3D +
1)/(2L) > 4/25. Note that n > 2E + 1 is always required.

For Nyero = 5D — 2 our new algorithm can correct (Nyero — 3D +
2)/2 = D errors, for an error rate D/(5D — 2) > 1/5. The example
in Section 2 shows that for characteristic p = 3 one has an ambigu-
ous interpolant for Niot = D + 6Etot, which has an error rate of
Etot/Not = 1/(6 + D/Etot) < 1/5.0

ExAMPLE 3.2. We now give an example for #; = 2 where the
count (4) is minimal. Let n = mg = D+ (D —-1)+ (D - 2) =
3D-3,m = (D-1)+(D-2) =2D-3,my =D -2, and
2Eiot =2(D-2)+(D—-1) =3D -5 (D an odd degree bound). Then
(fo+1)+ - +(&5p_3+1) = 6D=8 = (£+1)D— ("] +2Eot = Nyero—1.
Indeed, there can be two interpolants, the zero polynomial and a
polynomial f with f”/(&) = 0for 1 < i < mgy, f’(&) = 0 for
mp+1<i<mp+(D—-1)=my,and f(&) =0form;+1<i<
m1 + D = myg. Both polynomials are zero at (D — 2) + (D — 1) +
D = 3D — 3 values, and can have errors at half of the remaining
3D — 5 = 2E;ot values. In this example n = mg = 2E;ot + 2. With an
additional value, the bound (4) is satisfied and by Lemma 3.1 there
are no multiple interpolants. Furthermore, with 6D — 7 values one
cannot use Algorithm 4.1 in [3]. One can have errors at the first
E=(3D-5)/2=(D-2)+ (D - 1)/2 arguments &;, so one has
D+1+2YE (£+1) = D+1+6(D-2)+4(D-1)/2 = 9D-13 > 6D-7
for sufficiently large D.

If 2Exot > 3D — 5, which we have assumed to be even, one
may add new values &3p_s, ..., &2F, ,+2, thereby increasing mg =
2Eot+2, and set alternatively &SD—Z,O = f(§3D—2)’ d3D—1,0 =0,...,

ArE 41 = f(E2E41)s GoE 420 = 0.0

ExaMPLE 3.3. We give an example for 4 =3,D = 4and Eot > 3
where the count (4) is minimal. Let f(x) = (x? — 1)(x? — 5), then
F/(x) = 4x(x® - 3), f"(x) = 12(x% - 1), andf(3) (x) = 24x. We set
H=086=1,6=-18=V3§E=-V3§=5§&=—-5

We first treat the case Erot = 3:letn = mg = 7 = 2Ejot+1, mq = 5,
my = 3 and m3 = 1; therefore we evaluate L=7+5+3+1=16 =

Table 1: Values for Example 3.3

di’3 0

aio | f(0) 0 0

di,1 0 ffy f'(-y 0 0

di,() 0 0 0 0 0 0 0

& | 4=0 &H=1 &H=-1 &=V3 &=-V3 &L=V5 &=-5

(& +1)D — ([1;1) + 2Etot = Nyero — 1 derivates f(j)(§i), 0<j<3,
1 < i < mj. Of those, 6 values are # 0: f(&1), f”/(&1), f/(&2),
f'(&), f(&4), and f(&5). If we select d12 = f”(&1), dz,1 = f'(&2),
d31 = f'(&) and all other d; ; = 0 then both the polynomial f
and the polynomial 0 have 3 errors, both for 3 distinct &;’s. In the
following table, the errors for the f polynomial are indicated by red
0’s, while the errors for the zero polynomial are at the 3 derivatives
of f. The values are shown in Table 1.

The case Etot > 4 is handled as in Example 3.2 by adding dgo =
f(&),d90 =0,d100 = f(£10), - - -» A2E—1,0 = 0, G2E, 5,0 = f(&2E,,)s
d2E,+1 = 0 and setting n = mg = 2Egot + 1. O

4 HERMITE DECODING OVER ZERO / LARGE
CHARACTERISTIC

From the proof of Lemma 3.1 we can obtain a decoding algorithm,
which is based on a Reed-Solomon decoder. Those Reed-Solomon
algorithms receive as input d;9 € K and distinct & € K for i =
1,...,nand a degree bound D < n, and compute a polynomial f of
degree < D such that f(&;) # d;o atnomorethan E=| (n—D —
1)/2 | indices i. The algorithms also indicate if no such f exists.
Our Algorithm 4.1 in [3] specializes for £ = --- = f; = 0 to a
Reed-Solomon decoder.

We now present our new Hermite interpolation algorithm with

error correction. Our algorithm iterates on #1, but a subsequent
recursive iteration may not satisfy n["%! > 2Et[:tew] + 1. In that
case the algorithm returns the unique f (") for some j* < £, with

which one can complete the original interpolation for n > 2Eiot+1.

4.1 Error-correcting Hermite interpolation
(zero / large char)

Input:
>Bounds D, Eiot € Z>0;
the scalar field K has characteristic 0 or > D + 1.
> A set of n distinct argument values {£1,..., &} € K;
» A list of n row vectors A = [Ai,*]lgiSn where
¢ > -+ >, > 0; we shall have D > ¢,
for otherwise all error-free d; ¢, are 0.

> Aps = g0, .., dig] € KX,
S A1)+ 4 (G +1) 2 (0 +1)D+1— (137) + 2By
Output:
We call f(x) € K[x] an interpolant if the following are satisfied:
>deg(f) < D;

k= I < Eyot for I = {(iz, ja) h<a<k
={(i,) | fO(&)#aiy, 1<i<n 1<j<8);
’f(j)(’g’i) =qg;jforall1<i<nand0<j<{and(ij) ¢1.

244

> Casen > 2Eiot + 1:
> The interpolant f(x) € K[x] and the error locations
I'={(n i) h<asks
> Or a message indicating there is no such interpolant.
> Casen < 2Eiot:
>A j* with 0 < j* < £ and g(x) € K[x] and the error
locations I = {(i}, ja) }1<a <k, Which satisfy
>deg(g) < D —j%
>k = |I| < Etot for
I'={(inj)h<azk
={(i,j) | gV (&) #as j, 1<ismje, j*<j<t);
»gU (&) = ajjforall1 <i <mje, j* < j < and (i,) ¢ I;
>If at least one interpolant f exists, g = f ("), which is then
unique for all interpolants; specifically, if j* = 0 then g is
a unique interpolant;
> Or a message indicating there is no interpolant f. Note that
a g may be returned even if there is no interpolant.

1. Ift; =0, thenn > D + 1+ 2Eot: perform Reed-Solomon interpo-
lation and return either f or “no interpolant exists.”
. Ifn > 2Eiot + 1 and

Do

L=(+1)++ (£ +1)

>D+1+2(H+1)++2(4g,, +1), (12)

call Algorithm 4.1 in [3] with E = Eiot to interpolate f. Note
thatifn > Epor, L > D+ 142359 (4+1) = n > 2B + 1,
because if n < 2Eo we would have

2(01+1) + - + 2(Lg, , +1)
> (O+1) + - + (fg, +1) + (g e1+D) + - + (by+1),

(13)

in contradiction to (12).
A second algorithm is described in Remark 4.1 below.

3. Ep « | (n—=D—1)/2].IfEy > 0 then attempt a Reed-Solomon
interpolation of f from d;o for 1 < i < n with degree bound
D and with bound Ey for the number of errors. If the decoding
yields a candidate f, then check if f, f’, ... ,f(fl) interpolate all
dj,j with < Eot errors.

If there is success and n > 2Eiot + 1, then return f and the er-
ror locations. By Lemma 3.1 with E= 2Eot the interpolant is
unique.
If there is success and n < 2Ejot,
then j* « ty;

g — f(fl);

IMER (G, 01) | £ (&) # i1 < i< mey)

go to Step 6.
By Lemma 3.1 with E = 2F, for all interpolants the #;-st

derivative is unique. In Example 4.2 we show that the inter-
polants may be ambiguous.

. Here we know that if there is an interpolant f, then either n <
D + 1 or the number ky of errors for f in d;¢ satisfies kg >
Eoy+1>(n-D-1)/2-1/2+1 = (n— D)/2. Note that the
Reed-Solomon algorithm may compute in Step 3 a candidate
for f which fails the error count elsewhere, in which case any
interpolant f has more than Ej errors in the d;o. Both cases
lead to n < D + 2kg. Therefore, if an interpolant f exists, we
have < Etot — ko errors in the remaining values d; j, with 1 <
i <mj, 1< j < ¢.The number of such values for f”,. ..,f(fl)
is bounded as

b+ o+t > (G +1)D+1— (7 + 2B —n

> (6 +1)D+1— ("F") + 2Bt — D - 2kg

=0(D-1)+1— (%) +2(Eot — ko). (14)
Recursively, call Algorithm 4.1 with degree bound DI"*%1 = D1,
error bound
high 1
B e L5+ - a0 -1 -1+ () |
(which is > Eiot — ko), (15)
nl"e%l m, and derivative values dl.[’r}e_‘f] —djjfor1 <i<

myand1 < j < &
[high]
tot

and I, for ploew] > 2Et[0};1gh] +1 return an interpolant, denoted

The recursive call may for n["%] = m; < 2E return j*, g

by fhighl and I, or in either case “no interpolant”

If “no interpolant” was returned then return that no interpolant
f exists.

Because we use j* and g in subsequent steps, we assign f[
appropriately.

Ifnlnevl > 2Etlol:igh] +1 then j* « 0; g « flhighl,

. Shift the derivatives orders to pre-recursive call values.

high|

J e+ I (i, a4 1) | () €).

. Et[olfwl — Etot — |I[high] [;ifn < 2Et[olfw] then return j*, g and
lhigh]

. Nown > ZEt[olto vl 1, where Et[olto "1 is an upper bound for the

allowed number of errors in the derivatives of order < j* —
1. One can attempt to complete the interpolation of the then
unique f.

From g compute f(x) = cdxd + o+ Cj*xj* with f(j*) =g
Note that d < D. One can integrate g j*-times because the
characteristic of Kis 0 or > D + 1.

. We interpolate (f mod x/)= f = f from the derivative values
of order < j* — 1.
D[new] -]* —1; [i[neW]

— min{f, j* — 1} forall1 <i < n;
d[new]

i,j — di,j —f(J)(gl)foralll <i<n and 0 <] < [i[l‘lew].

Recursively, call Algorithm 4.1 with plnew] Et[oltow], [&il1<i<n,
A‘[new]_

[low]

ot < Etot

There are mg + - - - + mj+_1 values in A new], By E
we have

245

(B +1)+ -+ (b +1) - 2EtlolfWJ

>(f+1)++ (L +1) — 2Ei0t
>(f+1)D+1- ("),

[low]

ot~ We have

and by Lemma 3.2 with E = 2E

2E[low]

mo+ -+ Mmjr—1 = 2hyy

> G -1 - () +1

[new]
= (" yplrewl (7) L1 (16)

so the input specifications are satisfied with n > 2Et[olf vl
1. Therefore, the recursive call returns either an interpolant,
denoted by f[m0d] and error index set I''°V] or a message
indicating that there is no interpolant.

9. If no interpolant f [m°41 and error index set 11V is computed

in Step 8, then return that no interpolant f exists.

The total number of errors satisfies |[I[10W 1|+ |1l highl| < E

|rihighl| = Fyoy.

Ifn > 2Eiot + 1

then return f « f + f[modl gng 1 llow] plhigh],

Else return j* «— 0, g « f + f[mod] gng llowl rlhigh]

[low]

10. ot

+

REMARK 4.1. Step 2 performs multiplicity code decoding when
the error rate is small. Our algorithm in [3] is, for polynomial
interpolation, essentially the Welch-Berlekamp algorithm, which
is described in [5, Section 3.1.1]. There is the following alterna-
tive, based on Lagrange interpolation and Chinese remaindering
with error correction. In [8] a Lagrangian interpolation formula
is given for Hermite polynomial interpolation. For a polynomial
f(x) € K[x] we have

f) = fE)+f(E)x—E)+---

(&) (&
L g

Therefore, one can Chinese remainder the polynomial residues

(mod (x — (fi)(fi“)),l <i<n

?:0 aij/j'(x — §i)j with respect to the polynomial moduli (x —
&)+ and correct erroneous residues; see [4] and the literature
cited there. Each erroneous residue requires another good residue,
so if the residues for i = 1, 2,..., Etot are erroneous one needs an
additional (£ +1) +- - -+ (g, +1) good values, in addition to D+1

good values, which is the count (2). O

REMARK 4.2. When Algorithm 4.1 returns “no interpolant,” in
both the cases n > 2Eiot + 1 and n < 2E;o; for some inputs the
algorithm computes an order j* > 1 and a polynomial g that in-
terpolates all j-th order derivatives for j* < j < £ with |I| < Eqot
errors. Optionally, the triple j*, g, could be returned as a partial
solution. O

ExampLE 4.1. Ifn > 2E;ot+1, any valid input with no interpolant
will be flagged. We show by example that for n < 2E, a j* and
g may be returned even if there is no unique interpolant. Let n =
2Etot = 2D and £ = 1, m; = 2D;thenn+m; = (4 + 1)D +
1- ([1; l) + 2Eot and the input specification is satisfied. Suppose
for a polynomial f of degree < D we have f’(&;) = d;; for all
1 i < 2D,and d;9 = f(&) and dg, 450 = f(&) + 1 for all

1 < i < Eiot. Both f and f + 1 interpolate all points with Eiot
errors, but Algorithm 4.1 returns j* = 1 and f” either in Step 3 or
in Step 6. O

ExAMPLE 4.2. We show by example that in Step 3 for n < 2E;ot
there may be ambiguous interpolants. Let ; = 1, n = 2Eot — (D +
1) >3D+1andmy; =3D+1.Then (41 +1)+ (L +1) =n+
mi; = 2D+ 2E; = (4 +1)D+1 — ([1;1) + 2E;ot and the input
specifications are satisfied. Now let f be a polynomial of degree
< D and let ﬁi,O = f(&) for 1 < i < Epor, let di’() = f(&) + 1 for
Eiot+1 <i<nandletd;; = f'(&) for 1 <i < my. Now f has
Etot—(D+1) = (n—(D+1))/2 errors at (Eot+1,0), ... (n,0) and will
be computed in Step 3, but f+1 has Eot errors at (1,0), . . ., (Etot, 0)
and constitutes a second interpolant with < Et errors. Therefore,
a successful interpolant found in Step 3 does not constitute the
only solution, and Step 6 can only return the unique f’. O

ExAaMmPLE 4.3. We show another example which in Step 3 for
n < 2Eit has two interpolants, now for 1 = 2. Let mg = my =
my=3D—-2=FEqandfy =---=fp_o=2.Then (4 +1)+--- +
(p—2+1)=(1+1)D+1—- (3) + 2Eiot and the input conditions
are satisfied. Suppose that f interpolates d; ; without error for all
iand j = 0and j = 2.If d;1 = /(&) + 1 then g(x) = f(x) +x
interpolates d; j for all i and j = 1,2. Both f and g have < Eiqt
errors. O

Algorithm 4.1 makes recursive calls with different error bounds,

so if for the recursive call n["eV] > 2Et[:tew] + 1 that recursive
call may produce a unique interpolant. Therefore, if n < 2E;o; ini-
tially, the returned g may have j* < £;. We now prove that the

input/output specifications are enforced by Algorithm 4.1.

THEOREM 4.1. Algorithm 4.1 computes an interpolant f or g if
one or more interpolants exist. If n > 2Eiot + 1 it returns the then
unique f or diagnoses that no such f exists. If n < 2Eiot and there
exists at least one interpolant f, then f(j*) = g, which is unique for
all interpolants.

Proor. We first consider the case n < 2Eiq. If there is no in-
terpolant f for all values in A with < Eiot errors, then either the
g or “no interpolant” outputs are correct. Now suppose that there
is one interpolant f or more. By Lemma 3.1 the #;-st derivatives
of all such interpolants are unique. Therefore, Step 3, if success-
ful, computes a correct j* = £ and g. Otherwise, all interpolants
have > (n — D)/2 errors in the d; 9, and by (14) and (15) there are
< Etot — ko < Et[ol;lgh] errors in all other values d; j with j > 1. The
number of values for any f’ is bounded as

[high]

m1+-»-+m[1:f1+--~+£’nZZI(D—1)+1+(21)+2 ot

which is the induction hypothesis for the correctness of Algorithm
4.1, and Steps 5 and 6 return correct outputs.

Because the j*-th derivative of all possible interpolants f’ is
equal to g after Step 5 by hypothesis, and the number of errors in
derivatives of order < j* — 1 of any possible interpolant f [mod]
in Step 8 satisfies the input specifications by (16), Steps 7-10 by
hypothesis correctly compute the unique f (mod] ¢ flag that none
exists.

246

We now consider the case n > 2Eiyt + 1. If there exists an inter-
polant f, which is then unique, then g = f (") at Step 7 by the hy-
pothesis for Step 4. In Step 8 the input specifications for f mod x/ ’
are satisfied and the Step computes by induction hypothesis cor-
rectly the missing residue of f.If no f exists, Step 9 will flag such
input, because only interpolants with < E;t errors are returned in
Step 10. O

THEOREM 4.2. Algorithm 4.1 performs O(£1(D + t’f)L(log L)? %
loglog(L)) arithmetic operations in K, where L = (£1+1)+- - +(£p+1)

).

Proor. New interpolant polynomials are computed only in Steps 1-
3 of each recursive invocation. The most costly is Step 3 with O(D X
L(log L)? loglog(L)) arithmetic steps. The cost for the Reed-Solomon
algorithm and Step 2 is O(L(log L)? loglog(L)), but in Step 3 there
are evaluations of polynomials of degree < D at mq, my,...,mg
points. Note that D < L which implies D? = O(DL) for the cost of
computing all derivatives of f in Step 3. The recursive descent in
Step 4 may take ¢; recursive calls before a candidate g is produced,
at a total cost of O(£; DL(log L)? loglog(L)).

Subsequently, Ais updated, again for each new interpolant f
at cost no more than O(DL(log L)? loglog(L)). Then the algorithm

continues at the new global derivative order t’l[newl =j*-1x<

£1 — 1 in Step 8, computing interpolants and updating A. Because
the recursive call at Step 8 can be reached at most #; times, as the
global order j* decreases each time, and mg + - - - + mj+_1 < L and
DIew]l < ¢ the overall complexity is bounded by #; times the
bound O(ZIZL(log L)% loglog(L)) for each subsequent descent. 0

REMARK 4.3. List-decoding of multiplicity codes [1, 6] interpo-
lates in polynomial-time a list of valid polynomials, that is, code
words, from a message word of polynomial values, which contain
errors, from fewer than Nt (5) evaluations. If the list-decoding
error-rate is no more than the error rate for our new count Nyero
(4) and the number of distinct arguments n is sufficiently large,
then for fields of characteristic 0 or > D + 1 the returned list con-
tains no more than one element. Our new algorithm could also per-
form Reed-Solomon list-decoding and list-decode from a number
of evaluations < Nyero. O

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation
under Grant CCF-1717100 (Kaltofen).

REFERENCES

[1] Venkatesan Guruswami and Carol Wang. 2011. Optimal rate list decoding via
derivative codes. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and
José D. P. Rolim (Eds.). Springer, 593-604.

Erich L. Kaltofen and Clément Pernet. 2014. Sparse Polynomial Interpolation
Codes and Their Decoding Beyond Half the Minimal Distance. In ISSAC 2014 Proc.
39th Internat. Symp. Symbolic Algebraic Comput., Katsusuke Nabeshima (Ed.). As-
sociation for Computing Machinery, New York, N. Y., 272-279. URL: http://users.
cs.duke.edu/~elk27/bibliography/14/KaPe14.pdf.

Erich L. Kaltofen, Clément Pernet, and Zhi-Hong Yang. 2020. Hermite Rational
Function Interpolation with Error Correction. In Computer Algebra in Scientific
Computing, CASC 2020 (Lect. Notes Comput. Sci., Vol. 12291), F. Boulier, M. England,
T. Sadykov, and E. Vorozhtsov (Eds.). Springer, 335-357. URL: http://users.cs.duke.
edu/~elk27/bibliography/20/KPY20.pdf.

[2

&

[4] Majid Khonji, Clément Pernet, Jean-Louis Roch, Thomas Roche, and Thomas Stal-

[5

inski. 2010. Output-sensitive decoding for redundant residue systems. In Proc.
2010 Internat. Symp. Symbolic Algebraic Comput. ISSAC 2010, Stephen M. Watt
(Ed.). Association for Computing Machinery, New York, N. Y., 265-272. URL:
https://dl.acm.org/doi/10.1145/1837934.1837985.

Swastik Kopparty. 2014. Some remarks on multiplicity codes. In Discrete Geom-
etry and Algebraic Combinatorics: AMS Spec. Session (Contemporary Mathematics,
Vol. 625), Alexander Barg and Oleg R. Musin (Eds.). 155-176. URL: https://sites.

247

math.rutgers.edu/~sk1233/multcode-survey.pdf.

Swastik Kopparty. 2015. List-decoding multiplicity codes. Theory of Computing
11, 1 (2015), 149-182. URL: https://sites.math.rutgers.edu/~sk1233/part2.pdf.

M. Yu. Rosenbloom and Michael A. Tsfasman. 1997. Codes for the m-metric. Prob-
lemy Peredachi Informatsii 33, 1 (1997), 55-63.

A. Spitzbart. 1960. A Generalization of Hermite’s Interpolation Formula. The
American Mathematical Monthly 67, 1 (1960), 42-46. DOI: 10.1080/00029890.1960.
11989446.

	Abstract
	1 Introduction
	2 Small Characteristic Worst Case
	3 Zero and Large Characteristic
	4 Hermite Decoding Over Zero / Large Characteristic
	4.1 Error-correcting Hermite interpolation (zero / large char)

	Acknowledgments
	References

