
Hermite Interpolation With Error Correction: Fields of Zero or
Large Characteristic and Large Error Rate

Erich L. Kaltofen
Dept. of Math., NCSU
Raleigh, NC, USA

Dept. of Comp. Sci., Duke University
Durham, NC, USA
kaltofen@ncsu.edu

Clément Pernet
Laboratoire Jean Kuntzmann, Univ.

Grenoble Alpes, CNRS
Grenoble, France

clement.pernet@univ-grenoble-
alpes.fr

Zhi-Hong Yang
Coll. of Math. and Statistics

Shenzhen University
Shenzhen, China

zhihongyang2020@outlook.com

ABSTRACT

Multiplicity code decoders are based on Hermite polynomial inter-

polation with error correction. In order to have a unique Hermite

interpolant one assumes that the field of scalars has characteristic

0 or ≥ ℓ + 1, where ℓ is the maximum order of the derivatives in

the list of values of the polynomial and its derivatives which are

interpolated. For scalar fields of characteristic ℓ + 1, the minimum

number of values for interpolating a polynomial of degree ≤ � is

� + 1 + 2� (ℓ + 1) when ≤ � of the values are erroneous. Here we

give an error-correcting Hermite interpolation algorithm that re-

quires fewer values, that is, that can tolerate more errors, assuming

that the characteristic of the scalar field is either 0 or ≥ � + 1. Our
algorithm requires (ℓ + 1)� + 1 − (ℓ + 1)ℓ/2 + 2� values.

As an example, we consider ℓ = 2. If the error ratio (number

of errors)/(number of evaluations) ≤ 0.16, our new algorithm re-

quires ⌈(4 + 7/17) � − (1 + 8/17)⌉ values, while multiplicity de-

coding requires 25� + 25 values. If the error ratio is ≤ 0.2, our

algorithm requires 5� − 2 evaluations over fields of characteris-

tic 0 or ≥ � + 1, while multiplicity decoding for an error ratio 0.2

over fields of characteristic 3 is not possible for � ≥ 3.

Our algorithm is based on Reed-Solomon interpolation without

multiplicities, which becomes possible for Hermite interpolation

because of the high redundancy necessary for error-correction.

CCS CONCEPTS

• Mathematics of computing → Interpolation; Computations

in finite fields; • Theory of computation → Error-correcting

codes; • Computing methodologies→ Algebraic algorithms.

KEYWORDS

algebraic error correction codes;multiplicity error correction codes;

Reed-Solomon error correction codes; list decoding;

ACM Reference Format:

Erich L. Kaltofen, Clément Pernet, and Zhi-Hong Yang. 2021. Hermite In-

terpolation With Error Correction: Fields of Zero or Large Characteristic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’21, July 18–23, 2021, Virtual Event, Russian Federation

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8382-0/21/07. . . $15.00
https://doi.org/10.1145/3452143.3465525

and Large Error Rate. In Proceedings of the 2021 International Symposium on

Symbolic and Algebraic Computation (ISSAC ’21), July 18–23, 2021, Virtual

Event, Russian Federation. ACM, New York, NY, USA, 7 pages. https://doi.

org/10.1145/3452143.3465525

1 INTRODUCTION

The number of errors which can be corrected when interpolating

a function from values can be dependent on arithmetic properties

of the scalar field. In [2] we have demonstrated that when perform-

ing sparse interpolation in standard basis with powers of the vari-

able, for real values one can correct a much higher error rate than

for complex number values. Here we show that for Hermite pol-

ynomial interpolation with error correction, that is, multiplicity

code decoding [5, 7], for scalar fields of 0 or large characteristic at

higher error rates fewer values are required to compute a unique

interpolant. Our new polynomial-time interpolation algorithm is

specific to polynomials and is based on iterated Reed-Solomon de-

coding, unlike the earlier algorithms, which are based on an error-

locator polynomial with multiple roots (see also Remark 4.1 be-

low).

For ℓ1 ≥ · · · ≥ ℓ= ≥ 0 we interpolate 5 ∈ K[G] of degree
bounded as deg(5) ≤ � from values at = distinct arguments b8
with 1 ≤ 8 ≤ =, namely, 0̂8, 9 ∈ K where 5 (9) (b8) = 0̂8, 9 with

1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ8 at evaluations that are not erroneous.

With 5 (9) we denote the 9-th derivative of 5 in G . We impose that

the characteristic of K is either 0 or ≥ ℓ1 + 1 and that � ≥ ℓ1, for

otherwise 5 (ℓ1) = 0 and all non-erroneous 0̂8,ℓ1 = 0. The set of error

locations is

� = {(8, 9) | 5 (9) (b8) ≠ 0̂8, 9 , 1 ≤ 8 ≤ =, 0 ≤ 9 ≤ ℓ8 }. (1)

As input our algorithms have a degree bound� , [b8]1≤8≤= , vectors
�̂8,∗ = [0̂8,0, . . . , 0̂8,ℓ8] for 1 ≤ 8 ≤ = and upper bounds for the

number of errors: either � ≥ | { 8 | ∃ 9 : (8, 9) ∈ � } | or �tot ≥ |� |.
Algorithm 4.1 in [3] can interpolate a unique 5 , or prove that none

exists, when the number of values satisfies

!
def
=

=∑

8=1

(ℓ8 +1) ≥ #
def
= �+1+2

�∑

8=1

(ℓ8 +1) = �+1+2�+2
�∑

8=1

ℓ8 . (2)

We show in [3] that if ! < # in (2), one can have multiple inter-

polants: see Example 1 for ℓ1 = 1, K = R and # = � +4�tot, and Ex-
ample 3 (or Section 2 below) for K = Zℓ1+1 and# = �+2�tot (ℓ1+1).
However, in Remark 1 in [3] we observe that for a large bound of

errors �tot and for fieldsK of characteristic 0 or ≥ �+1 the count (2)
is sub-optimal for ℓ1 = 1. In fact, if �tot ≥ �/2 one can interpolate

from 2� + 2�tot values.
241

Our Algorithm 4.1 below interpolates from #zero = (ℓ1 + 1)� +
1 −

(ℓ1+1
2

)
+ 2�tot values, provided that = ≥ 2�tot + 1 and that

the characteristic of K is either 0 or ≥ � + 1. For an error bound

�tot >
1
2 (� −

1
2 (ℓ1 + 1)) our new algorithm requires fewer values

than (2) with � = �tot and ℓ� = ℓ1. The reason for the improvement

is based on the assumption that�-th derivatives of polynomials of

degree � cannot be zero. The general multiplicity code decoder

[3, Algorithm 4.1] divides by ℓ1!, and its count (2) is optimal for

characteristic ≥ ℓ1 + 1. Our new algorithm generalizes the Reed-

Solomon decoder to the Hermite problem. Our algorithm performs

Hermite interpolation by repeated recursive polynomial interpola-

tion at higher and higher derivatives and may divide by �!. The

reduction to standard polynomial interpolation is possible because

one has a high error rate and sufficient redundancy in the values,

and is special to the error correcting Hermite problem. In Exam-

ple 3.1 we perform the calculation for the example in the abstract.

In Example 3.2 below we show that the new count is minimal at

least for ℓ1 = 2.

2 SMALL CHARACTERISTIC WORST CASE

We slightly modify Example 3 in [3, Section 4]. If the field of scalars

K has finite characteristic ≥ ℓ1 + 1, our count (2) is optimal for

higher derivatives. Let = = 2� + a , for a ≥ 1, and let ℓ1 = · · · =
ℓ2�+a = ?−1 for a prime number ? which is the characteristic of the

field of scalars K, whose cardinality is |K| ≥ 2�+a +1, so that there
exist=+1 distinct elements b8 inK. Let 5 (G) = (G−b1)? · · · (G−ba)?
and let � = deg(5) = a? . Then 5 (b1) = · · · = 5 (ba) = 0 and

5 (9) (b8) = 0 for all 1 ≤ 8 ≤ = and 1 ≤ 9 ≤ ℓ8 . Therefore 5 and the

zero polynomial interpolate all (2� + a)? − 2� zero values, and �

errors cannot be unambiguously corrected from # = (2� + a)? =

� + 2� (ℓ1 + 1) values. If one adds an (# + 1)-st value 5 (b=+1) then
+1 = �+1+2� (ℓ1+1) and Algorithm 4.1 in [3] and the algorithm

described in Remark 4.1 interpolate a unique polynomial with ≤ �

erroneous values.

3 ZERO AND LARGE CHARACTERISTIC

Here we generalize Remark 1 in [3] to arbitrarily high derivatives

ℓ1. We assume that the characteristic of K is either 0 or ≥ � +1. Let
�tot ≥ | { 0̂8, 9 | 5 (9) (b8) ≠ 0̂8, 9 , 1 ≤ 8 ≤ =, 0 ≤ 9 ≤ ℓ8 } | (3)

be a bound on the total number of errors. For an unambiguous

constant coefficient one must assume that = ≥ 2�tot + 1.
Because 5 (�+9) = 0 for 9 ≥ 1 we assume that ℓ1 ≤ � . We can

prove that

! = (ℓ1 + 1) + · · · + (ℓ= + 1) ≥
#zero

def
= (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
+ 2�tot

= � + (� − 1) + · · · + (� − ℓ1) + 1 + 2�tot (4)

is a decodable number of evaluations when 2�tot > � − (ℓ1 + 1)/2,
in which case

#zero < #tot
def
= � + 1 + 2�tot + 2�totℓ1 (for ℓ1 ≥ 1). (5)

For� = 0 we have ℓ1 = 0 and #tot = #zero = = = 2�tot+1. Note that
for 2�tot ≤ � − (ℓ1 + 1)/2 we have #tot ≤ #zero, and 5 is decodable

from #tot evaluations by Algorithm 4.1 in [3]. However, if #zero <

#tot, then a new algorithm is required, because Algorithm 4.1 does

not account for the restriction that the characteristic of K is 0 or

≥ � + 1, and, by Section 2 above, the count #tot is required for

characteristic ≥ ℓ1 + 1.
The assumption = ≥ 2�tot + 1 is explicit here. For the count (2)

in [3] it is implied (see (13) below). In fact, if = = 2�tot is arbitrary

large, one cannot recover an interpolant 5 from 2(ℓ1 + 1)�tot eval-
uations: 5 ′ can interpolate 0̂8, 9 without errors for all 1 ≤ 8 ≤ 2�tot
and 1 ≤ 9 ≤ ℓ1, but 5 and 5 + 1 can both have �tot errors at the 0̂8,0.

Similarly, if = = �tot is arbitrarily large, the list of interpolants of

(ℓ1 + 1)�tot values can be all 5 + 2 for all 2 ∈ K. However, we show
in Lemma 3.1 below that for = ≤ 2�tot the count (4) is sufficient to

obtain a unique 5 (ℓ1) for all interpolants 5 with ≤ �tot errors.

Remark 3.1. Our algorithms use several counts for the number

of values and the number of errors. The upper bound � on the num-

ber of errors in (2) counts the number of b8 where 0̂8, 9 is erroneous

for at least one 9 . Therefore, a “burst” of errors at an index 8 counts

as one error. In the worst case, however, � can be the total number

of errors, whose upper bound we denote by �tot. The count #tot
in (5) is the minimum number of values the multiplicity decoders

require when � = �tot is the number of errors, one for each index

8 , and ℓ1 = · · · = ℓ� . The number of values that are input is ! (2),

which can be more than the minimum count if the inequalities in

our estimates for the recursive calls are not sharp. The count #zero
in (4) is our newminimum count for characteristic “zero” and large

characteristic. �

We first show that the zero polynomial is the only interpolant

of degree ≤ � with evaluations that yield 0 at any of #zero − 2�tot
of the evaluations. Therefore an interpolant 5 of degree ≤ � is

unique, if it exists with ≤ �tot errors in the 0̂8, 9 . For otherwise,

if there were polynomial interpolants, denoted by 5 [1] and 5 [2] ,
both with ≤ �tot errors, then 5 [1] − 5 [2] would be zero at at least

#zero − 2�tot locations.

Lemma 3.1. Let ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓ= ≥ 0 and let (8_, 9_) for
_ = 1, . . . , �̂ with 1 ≤ 8_ ≤ = and 0 ≤ 9_ ≤ ℓ8_ be �̂ distinct

arbitrary locations, and let � = {(8_, 9_)}1≤_≤�̂ . Assume that

(ℓ1 + 1) + · · · + (ℓ= + 1) − �̂ ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
, (6)

where
(1
2

)
= 0. Let 6 ∈ K[G] with deg(6) ≤ � such that 6 (9) (b8) = 0

for 1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ8 and (8, 9) ∉ � .

1. Then 6 (ℓ1) (G) = 0.

2. If = ≥ �̂ + 1, then 6(G) = 0.

Proof. We prove the Lemma by induction on ℓ1. For ℓ1 = 0 we

have 6(b8) = 0 at ≥ � + 1 distinct 8 ≠ 8_ , so 6 = 0. Now let ℓ1 ≥ 1

and let �̂0 ≤ = be the number of locations in � with 9_ = 0. We

shall distinguish 2 cases. If = − �̂0 ≥ � + 1 then 6 is zero at ≥ � + 1
distinct arguments b8 and therefore is again equal 0 and the Lemma

is proven. The second case is that �̂0 ≥ =−� . For that, we consider
the zero values of 6′, . . . , 6 (ℓ) . We have

ℓ1 + · · · + ℓ= − (�̂ − �̂0) ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
− = + (= − �)

= ℓ1 (� − 1) + 1 −
(ℓ1
2

)

such values. Therefore the induction hypothesis applies to those

values and we conclude from Fact 1 for ℓ1 − 1 and 6′ that 6 (ℓ1) = 0,

242

which is Fact 1.

We finally prove Fact 2, assuming that = ≥ �̂ +1. By assumption

on the characteristic of K and 6 (ℓ1) = 0, we must have deg(6) ≤
ℓ1 − 1. We shall count the zero values of 6,6′, . . . , 6 (ℓ1−1) . Let

<`
def
= | {8 | 1 ≤ 8 ≤ =, ℓ8 ≥ `} | (7)

be the number of `-th derivative values. We have = = <0 ≥ <1 ≥
· · · ≥ <ℓ1 and

! =<0 + · · · +<ℓ1 = (ℓ1 + 1) + · · · + (ℓ= + 1) (see (2)). (8)

We have assumed that <0 = = ≥ �̂ + 1, so <1 + · · · +<ℓ1 ≤ ! −
�̂ − 1. Because <ℓ1 is a minimum, <ℓ1 ≤

(
! − �̂ − 1

) /
ℓ1. Let

�̃ = |{(8_, 9_) | 1 ≤ _ ≤ �̂, 9_ ≤ ℓ1 − 1}| count the locations in

� for derivatives of order ≤ ℓ1 − 1. Note that �̃ ≤ �̂. We bound

<0 + · · · +<ℓ1−1 − �̃ ≥ (ℓ
[new]
1 + 1)� [new] + 1 −

(ℓ [new]1 +1
2

)
, where

deg(6) ≤ � [new]
def
= ℓ1 − 1 and ℓ

[new]
1 = ℓ1 − 1, as follows:

<0 + · · · +<ℓ1−1 − �̃

≥ (! −<ℓ1) − �̂

≥
(
1 − 1

ℓ1

)
(! − �̂) + 1

ℓ1
(by<ℓ1 ≤

1

ℓ1

(
! − �̂ − 1

)
)

≥
(
1 − 1

ℓ1

) (
(ℓ1 + 1)� + 1 −

(ℓ1+1
2

))
+ 1

ℓ1
(by (6))

≥
(
1 − 1

ℓ1

) (
(ℓ1 + 1) ℓ1 −

(ℓ1+1
2

))
+ 1 (because � ≥ ℓ1)

=
ℓ21 − 1
2
+ 1

≥
ℓ21 − ℓ1

2
+ 1 (because ℓ1 ≥ 1)

= ℓ1 (ℓ1 − 1) −
(ℓ1
2

)
+ 1

= (ℓ [new]1 + 1)� [new] + 1 −
(ℓ [new]1 +1

2

)
. (9)

Therefore, the induction hypothesis applies to the values of 6, . . . ,

6 (ℓ1−1) and establishes Fact 2. �

In Algorithm 4.1, we will need a slightly more general estimate

than (9).

Lemma 3.2. Let ℓ8 , < 9 , � ≥ ℓ1 be as above with ℓ1 ≥ 1, and let

�̃ ≥ 0. Assume that = ≥ �̃ + 1 and

(ℓ1 + 1) + · · · + (ℓ= + 1) − �̃ ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
. (10)

Then<0 + · · · +< 9−1 − �̃ ≥ 9 (9 − 1) −
(9
2

)
+ 1 for all 1 ≤ 9 ≤ ℓ1 + 1.

Proof. We first prove by induction on a ≥ 0 that

!a−�̃ ≥
ℓ1 − a
ℓ1

(
(ℓ1+1)�−

(ℓ1+1
2

))
+1, where !a

def
=<0+· · ·+<ℓ1−a .

(11)

The basis a = 0 is (10). Because <0 ≥ �̃ + 1, we have <1 + · · · +
<ℓ1−a ≤ !a − �̃ − 1. Because<ℓ1−a is a minimum,<ℓ1−a ≤ (!a −
�̃ − 1)/(ℓ1 − a) = (!a − �̃)/(ℓ1 − a) − 1/(ℓ1 − a). Therefore

!a+1 − �̃ = (!a −<ℓ1−a) − �̃ = (!a − �̃) −<ℓ1−a

≥
(
1 − 1

ℓ1 − a
)
(!a − �̃) +

1

ℓ1 − a

≥
(
1 − 1

ℓ1 − a
) (ℓ1 − a

ℓ1

(
(ℓ1 + 1)� −

(ℓ1+1
2

))
+ 1

)
+ 1

ℓ1 − a
(by hypothesis (11))

=
ℓ1 − a − 1

ℓ1

(
(ℓ1 + 1)� −

(ℓ1+1
2

))
+ 1,

the latter of which is (11) for a +1. For 9 = ℓ1−a +1 we have for (11)
with � ≥ ℓ1 that (9 −1)/ℓ1 ((ℓ1 +1)� −

(ℓ1+1
2

)
) ≥ (9 −1) (ℓ1 +1)/2 ≥

9 (9 − 1)/2 = 9 (9 − 1) −
(9
2

)
. �

Example 3.1. We briefly show the calculation for the example

from the abstract. If for ℓ = ℓ1 = · · · = ℓ�tot
= 2 we have #tot =

25�+25 = �+1+2�tot (ℓ+1), then �tot = 4�+4 and �tot/#tot = 4/25.

With ! evaluations by (4) one can correct �
def
= ⌊(! − 3� + 2)/2⌋

errors, because ! ≥ 3� − 2 + 2�. We have � ≥ (! − 3� + 1)/2 and
! − 3� + 1

2!
≥ d

def
=

4

25
⇐⇒ (1−2d)! ≥ 3�−1⇐⇒ ! ≥ 75

17
�− 25

17
.

Therefore with ! = ⌈75�/17−25/17⌉ = ⌈(4+7/17) �− (1+8/17)⌉
one can correct � errors yielding an error rate �/! ≥ (! − 3� +
1)/(2!) ≥ 4/25. Note that = ≥ 2� + 1 is always required.

For #zero = 5� − 2 our new algorithm can correct (#zero − 3� +
2)/2 = � errors, for an error rate �/(5� − 2) > 1/5. The example

in Section 2 shows that for characteristic ? = 3 one has an ambigu-

ous interpolant for #tot = � + 6�tot, which has an error rate of

�tot/#tot = 1/(6 + �/�tot) < 1/5. �
Example 3.2. We now give an example for ℓ1 = 2 where the

count (4) is minimal. Let = = <0 = � + (� − 1) + (� − 2) =

3� − 3, <1 = (� − 1) + (� − 2) = 2� − 3, <2 = � − 2, and

2�tot = 2(� −2) + (� −1) = 3� −5 (� an odd degree bound). Then

(ℓ0+1)+· · ·+(ℓ3�−3+1) = 6�−8 = (ℓ1+1)�−
(ℓ1+1

2

)
+2�tot = #zero−1.

Indeed, there can be two interpolants, the zero polynomial and a

polynomial 5 with 5 ′′(b8) = 0 for 1 ≤ 8 ≤ <2, 5
′(b8) = 0 for

<2 + 1 ≤ 8 ≤ <2 + (� − 1) = <1, and 5 (b8) = 0 for<1 + 1 ≤ 8 ≤
<1 + � = <0. Both polynomials are zero at (� − 2) + (� − 1) +
� = 3� − 3 values, and can have errors at half of the remaining

3� − 5 = 2�tot values. In this example = =<0 = 2�tot + 2. With an

additional value, the bound (4) is satisfied and by Lemma 3.1 there

are no multiple interpolants. Furthermore, with 6� − 7 values one
cannot use Algorithm 4.1 in [3]. One can have errors at the first

� = (3� − 5)/2 = (� − 2) + (� − 1)/2 arguments b8 , so one has

�+1+2∑�
8=1 (ℓ8+1) = �+1+6(�−2)+4(�−1)/2 = 9�−13 > 6�−7

for sufficiently large � .

If 2�tot > 3� − 5, which we have assumed to be even, one

may add new values b3�−2, . . . , b2�tot+2, thereby increasing <0 =

2�tot+2, and set alternatively 0̂3�−2,0 = 5 (b3�−2), 0̂3�−1,0 = 0, . . . ,

0̂2�tot+1 = 5 (b2�tot+1), 0̂2�tot+2,0 = 0. �

Example 3.3. We give an example for ℓ1 = 3,� = 4 and �tot ≥ 3

where the count (4) is minimal. Let 5 (G) = (G2 − 1) (G2 − 5), then
5 ′(G) = 4G (G2 − 3), 5 ′′(G) = 12(G2 − 1), and 5 (3) (G) = 24G . We set

b1 = 0, b2 = 1, b3 = −1, b4 =
√
3, b5 = −

√
3, b6 =

√
5, b7 = −

√
5.

We first treat the case �tot = 3: let= =<0 = 7 = 2�tot+1,<1 = 5,

<2 = 3 and<3 = 1; therefore we evaluate ! = 7 + 5 + 3 + 1 = 16 =

243

Table 1: Values for Example 3.3

0̂8,3 0

0̂8,2 5 ′′(0) 0 0

0̂8,1 0 5 ′(1) 5 ′(−1) 0 0

0̂8,0 0 0 0 0 0 0 0

b8 b1 = 0 b2 = 1 b3 = −1 b4 =
√
3 b5 = −

√
3 b6 =

√
5 b7 = −

√
5

(ℓ1 + 1)� −
(ℓ1+1

2

)
+ 2�tot = #zero − 1 derivates 5 (9) (b8), 0 ≤ 9 ≤ 3,

1 ≤ 8 ≤ < 9 . Of those, 6 values are ≠ 0 : 5 (b1), 5 ′′(b1), 5 ′(b2),
5 ′(b3), 5 (b4), and 5 (b5). If we select 0̂1,2 = 5 ′′(b1), 0̂2,1 = 5 ′(b2),
0̂3,1 = 5 ′(b3) and all other 0̂8, 9 = 0 then both the polynomial 5

and the polynomial 0 have 3 errors, both for 3 distinct b8 ’s. In the

following table, the errors for the 5 polynomial are indicated by red

0’s, while the errors for the zero polynomial are at the 3 derivatives

of 5 . The values are shown in Table 1.

The case �tot ≥ 4 is handled as in Example 3.2 by adding 0̂8,0 =

5 (b8), 0̂9,0 = 0, 0̂10,0 = 5 (b10), . . . , 0̂2�tot−1,0 = 0, 0̂2�tot,0 = 5 (b2�tot
),

0̂2�tot+1 = 0 and setting = =<0 = 2�tot + 1. �

4 HERMITE DECODING OVER ZERO / LARGE
CHARACTERISTIC

From the proof of Lemma 3.1 we can obtain a decoding algorithm,

which is based on a Reed-Solomon decoder. Those Reed-Solomon

algorithms receive as input 0̂8,0 ∈ K and distinct b8 ∈ K for 8 =

1, . . . , = and a degree bound � < =, and compute a polynomial 5 of

degree ≤ � such that 5 (b8) ≠ 0̂8,0 at no more than � = ⌊ (= − � −
1)/2 ⌋ indices 8 . The algorithms also indicate if no such 5 exists.

Our Algorithm 4.1 in [3] specializes for ℓ1 = · · · = ℓ= = 0 to a

Reed-Solomon decoder.

We now present our new Hermite interpolation algorithm with

error correction. Our algorithm iterates on ℓ1, but a subsequent

recursive iteration may not satisfy = [new] ≥ 2�
[new]
tot + 1. In that

case the algorithm returns the unique 5 (9
∗) for some 9∗ ≤ ℓ1, with

which one can complete the original interpolation for = ≥ 2�tot+1.

4.1 Error-correcting Hermite interpolation
(zero / large char)

Input:
◮Bounds �, �tot ∈ Z≥0;
the scalar field K has characteristic 0 or ≥ � + 1.
◮A set of = distinct argument values {b1, . . . , b=} ⊆ K;
◮A list of = row vectors �̂ = [�̂8,∗]1≤8≤= where

◮ ℓ1 ≥ · · · ≥ ℓ= ≥ 0; we shall have � ≥ ℓ1,

for otherwise all error-free 0̂8,ℓ1 are 0.
◮ �̂8,∗ = [0̂8,0, . . . , 0̂8,ℓ8] ∈ K1×ℓ8 ;
◮ (ℓ1 + 1) + · · · + (ℓ= + 1) ≥ (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
+ 2�tot.

Output:

We call 5 (G) ∈ K[G] an interpolant if the following are satisfied:
◮ deg(5) ≤ � ;
◮: = |� | ≤ �tot for � = {(8_, 9_)}1≤_≤:

= {(8, 9) | 5 (9) (b8)≠0̂8, 9 , 1≤8≤=, 1≤ 9≤ℓ8 };
◮ 5 (9) (b8) = 0̂8, 9 for all 1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ8 and (8, 9) ∉ � .

◮Case = ≥ 2�tot + 1 :
◮The interpolant 5 (G) ∈ K[G] and the error locations

� = {(8_, 9_)}1≤_≤: ;
◮Or a message indicating there is no such interpolant.

◮Case = ≤ 2�tot :
◮A 9∗ with 0 ≤ 9∗ ≤ ℓ1 and 6(G) ∈ K[G] and the error

locations � = {(8_, 9_)}1≤_≤: , which satisfy
◮ deg(6) ≤ � − 9∗;
◮: = |� | ≤ �tot for

� = {(8_, 9_)}1≤_≤:
= {(8, 9) | 6 (9) (b8)≠0̂8, 9 , 1≤8≤< 9∗ , 9

∗≤ 9≤ℓ8 };
◮6 (9) (b8) = 0̂8, 9 for all 1 ≤ 8 ≤ < 9∗ , 9

∗ ≤ 9 ≤ ℓ8 and (8, 9) ∉ � ;
◮ If at least one interpolant 5 exists, 6 = 5 (9

∗) , which is then

unique for all interpolants; specifically, if 9∗ = 0 then 6 is

a unique interpolant;
◮Or a message indicating there is no interpolant 5 . Note that

a 6 may be returned even if there is no interpolant.

1. If ℓ1 = 0, then = ≥ � + 1 + 2�tot: perform Reed-Solomon interpo-

lation and return either 5 or “no interpolant exists.”

2. If = ≥ 2�tot + 1 and

! = (ℓ1 + 1) + ··· + (ℓ= + 1)
≥ � + 1 + 2(ℓ1 + 1) + ··· + 2(ℓ�tot

+ 1), (12)

call Algorithm 4.1 in [3] with � = �tot to interpolate 5 . Note

that if = ≥ �tot, ! ≥ � + 1 + 2∑�tot
8=1 (ℓ8 + 1) =⇒ = ≥ 2�tot + 1,

because if = ≤ 2�tot we would have

2(ℓ1+1) + ··· + 2(ℓ�tot
+1)

≥ (ℓ1+1) + ··· + (ℓ�tot
+1) + (ℓ�tot+1+1) + ··· + (ℓ=+1), (13)

in contradiction to (12).

A second algorithm is described in Remark 4.1 below.

3. �0 ← ⌊ (= − � − 1)/2 ⌋. If �0 ≥ 0 then attempt a Reed-Solomon

interpolation of 5 from 0̂8,0 for 1 ≤ 8 ≤ = with degree bound

� and with bound �0 for the number of errors. If the decoding

yields a candidate 5 , then check if 5 , 5 ′, . . . , 5 (ℓ1) interpolate all
0̂8, 9 with ≤ �tot errors.

If there is success and = ≥ 2�tot + 1, then return 5 and the er-

ror locations. By Lemma 3.1 with �̂ = 2�tot the interpolant is

unique.

If there is success and = ≤ 2�tot,

then 9∗ ← ℓ1;

6← 5 (ℓ1) ;
� [high] ← {(8, ℓ1) | 5 (ℓ1) (b8) ≠ 0̂8,ℓ1 , 1 ≤ 8 ≤ <ℓ1 };
go to Step 6.

By Lemma 3.1 with �̂ = 2�tot, for all interpolants the ℓ1-st

244

derivative is unique. In Example 4.2 we show that the inter-

polants may be ambiguous.

4. Here we know that if there is an interpolant 5 , then either = <

� + 1 or the number :0 of errors for 5 in 0̂8,0 satisfies :0 ≥
�0 + 1 ≥ (= − � − 1)/2 − 1/2 + 1 = (= − �)/2. Note that the
Reed-Solomon algorithm may compute in Step 3 a candidate

for 5 which fails the error count elsewhere, in which case any

interpolant 5 has more than �0 errors in the 0̂8,0. Both cases

lead to = ≤ � + 2:0. Therefore, if an interpolant 5 exists, we

have ≤ �tot − :0 errors in the remaining values 0̂8, 9 , with 1 ≤
8 ≤ <1, 1 ≤ 9 ≤ ℓ8 . The number of such values for 5 ′, . . . , 5 (ℓ1)

is bounded as

ℓ1 + · · · + ℓ= ≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
+ 2�tot − =

≥ (ℓ1 + 1)� + 1 −
(ℓ1+1

2

)
+ 2�tot − � − 2:0

= ℓ1 (� − 1) + 1 −
(ℓ1
2

)
+ 2(�tot − :0) . (14)

Recursively, call Algorithm 4.1with degree bound� [new] = �−1,
error bound

�
[high]
tot ←

⌊ 1
2

(
ℓ1 + · · · + ℓ= − ℓ1 (� − 1) − 1 +

(ℓ1
2

)) ⌋

(which is ≥ �tot − :0), (15)

= [new] ← <1 and derivative values 0̂
[new]
8, 9−1 ← 0̂8, 9 for 1 ≤ 8 ≤

<1 and 1 ≤ 9 ≤ ℓ8 ;

The recursive call may for = [new] =<1 ≤ 2�
[high]
tot return 9∗, 6

and � , for = [new] ≥ 2�
[high]
tot + 1 return an interpolant, denoted

by 5 [high] , and � , or in either case “no interpolant.”

If “no interpolant” was returned then return that no interpolant

5 exists.

Because we use 9∗ and 6 in subsequent steps, we assign 5 [high]

appropriately.

If = [new] ≥ 2�
[high]
tot + 1 then 9∗ ← 0; 6← 5 [high] .

5. Shift the derivatives orders to pre-recursive call values.

9∗ ← 9∗ + 1; � [high] ← {(8_, 9_ + 1) | (8_, 9_) ∈ � }.
6. �

[low]
tot ← �tot − |� [high] |; if = ≤ 2�

[low]
tot then return 9∗, 6 and

� [high] .
7. Now = ≥ 2�

[low]
tot + 1, where � [low]tot is an upper bound for the

allowed number of errors in the derivatives of order ≤ 9∗ −
1. One can attempt to complete the interpolation of the then

unique 5 .

From 6 compute 5̄ (G) = 23G
3 + · · · + 2 9∗G 9

∗
with 5̄ (9

∗)
= 6.

Note that 3 ≤ � . One can integrate 6 9∗-times because the

characteristic of K is 0 or ≥ � + 1.
8. We interpolate (5 mod G 9

∗) = 5 − 5̄ from the derivative values

of order ≤ 9∗ − 1.
� [new] ← 9∗ − 1; ℓ [new]8 ← min{ℓ8 , 9∗ − 1} for all 1 ≤ 8 ≤ =;

0̂
[new]
8, 9 ← 0̂8, 9 − 5̄ (9) (b8) for all 1 ≤ 8 ≤ = and 0 ≤ 9 ≤ ℓ

[new]
8 .

Recursively, call Algorithm 4.1 with � [new] , � [low]tot , [b8]1≤8≤= ,
�̂ [new].

There are<0 + · · · +< 9∗−1 values in �̂ [new]. By �
[low]
tot ≤ �tot

we have

(ℓ1 + 1) + ··· + (ℓ= + 1) − 2� [low]tot

≥ (ℓ1 + 1) + ··· + (ℓ= + 1) − 2�tot
≥ (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
,

and by Lemma 3.2 with �̃ = 2�
[low]
tot we have

<0 + · · · +< 9∗−1 − 2� [low]tot

≥ 9∗ (9∗ − 1) −
(9∗
2

)
+ 1

= (ℓ [new]1 + 1)� [new] −
(ℓ [new]1 +1

2

)
+ 1, (16)

so the input specifications are satisfied with = ≥ 2�
[low]
tot +

1. Therefore, the recursive call returns either an interpolant,

denoted by 5 [mod] , and error index set � [low] , or a message

indicating that there is no interpolant.

9. If no interpolant 5 [mod] and error index set � [low] is computed

in Step 8, then return that no interpolant 5 exists.

10. The total number of errors satisfies |� [low] |+|� [high] | ≤ �
[low]
tot +

|� [high] | = �tot.

If = ≥ 2�tot + 1
then return 5 ← 5̄ + 5 [mod] and � ← � [low] ∪ � [high] ;
Else return 9∗ ← 0, 6← 5̄ + 5 [mod] and � ← � [low] ∪ � [high] .

Remark 4.1. Step 2 performs multiplicity code decoding when

the error rate is small. Our algorithm in [3] is, for polynomial

interpolation, essentially the Welch-Berlekamp algorithm, which

is described in [5, Section 3.1.1]. There is the following alterna-

tive, based on Lagrange interpolation and Chinese remaindering

with error correction. In [8] a Lagrangian interpolation formula

is given for Hermite polynomial interpolation. For a polynomial

5 (G) ∈ K[G] we have
5 (G) ≡ 5 (b8) + 5 ′(b8) (G − b8) + · · ·

+ 5 (ℓ8) (b8)
ℓ8 !

(G − b8)ℓ8 (mod (G − b8) (ℓ8+1)), 1 ≤ 8 ≤ =.

Therefore, one can Chinese remainder the polynomial residues∑ℓ8
9=0 0̂8, 9/ 9 !(G − b8)

9 with respect to the polynomial moduli (G −
b8)ℓ8+1, and correct erroneous residues; see [4] and the literature

cited there. Each erroneous residue requires another good residue,

so if the residues for 8 = 1, 2, . . . , �tot are erroneous one needs an

additional (ℓ1 +1) + · · · + (ℓ�tot
+1) good values, in addition to � +1

good values, which is the count (2). �

Remark 4.2. When Algorithm 4.1 returns “no interpolant,” in

both the cases = ≥ 2�tot + 1 and = ≤ 2�tot for some inputs the

algorithm computes an order 9∗ ≥ 1 and a polynomial 6 that in-

terpolates all 9-th order derivatives for 9∗ ≤ 9 ≤ ℓ1 with |� | ≤ �tot
errors. Optionally, the triple 9∗, 6, � could be returned as a partial

solution. �

Example 4.1. If= ≥ 2�tot+1, any valid inputwith no interpolant
will be flagged. We show by example that for = ≤ 2�tot, a 9∗ and
6 may be returned even if there is no unique interpolant. Let = =

2�tot ≥ 2� and ℓ1 = 1, <1 = 2� ; then = + <1 = (ℓ1 + 1)� +
1 −

(ℓ1+1
2

)
+ 2�tot and the input specification is satisfied. Suppose

for a polynomial 5 of degree ≤ � we have 5 ′(b8) = 0̂8,1 for all

1 ≤ 8 ≤ 2� , and 0̂8,0 = 5 (b8) and 0̂�tot+8,0 = 5 (b8) + 1 for all

245

1 ≤ 8 ≤ �tot. Both 5 and 5 + 1 interpolate all points with �tot
errors, but Algorithm 4.1 returns 9∗ = 1 and 5 ′ either in Step 3 or

in Step 6. �

Example 4.2. We show by example that in Step 3 for = ≤ 2�tot
there may be ambiguous interpolants. Let ℓ1 = 1, = = 2�tot − (� +
1) ≥ 3� + 1 and <1 = 3� + 1. Then (ℓ1 + 1) + (ℓ2 + 1) = = +
<1 = 2� + 2�tot = (ℓ1 + 1)� + 1 −

(ℓ1+1
2

)
+ 2�tot and the input

specifications are satisfied. Now let 5 be a polynomial of degree

≤ � and let 0̂8,0 = 5 (b8) for 1 ≤ 8 ≤ �tot, let 0̂8,0 = 5 (b8) + 1 for

�tot + 1 ≤ 8 ≤ = and let 0̂8,1 = 5 ′(b8) for 1 ≤ 8 ≤ <1. Now 5 has

�tot−(�+1) = (=−(�+1))/2 errors at (�tot+1, 0), . . . (=, 0) andwill
be computed in Step 3, but 5 +1 has �tot errors at (1, 0), . . . , (�tot, 0)
and constitutes a second interpolant with ≤ �tot errors. Therefore,

a successful interpolant found in Step 3 does not constitute the

only solution, and Step 6 can only return the unique 5 ′. �

Example 4.3. We show another example which in Step 3 for

= ≤ 2�tot has two interpolants, now for ℓ1 = 2. Let <0 = <1 =

<2 = 3� − 2 = �tot and ℓ1 = · · · = ℓ3�−2 = 2. Then (ℓ1 + 1) + · · · +
(ℓ3�−2 + 1) = (ℓ1 + 1)� + 1 −

(3
2

)
+ 2�tot and the input conditions

are satisfied. Suppose that 5 interpolates 0̂8, 9 without error for all

8 and 9 = 0 and 9 = 2. If 0̂8,1 = 5 ′(b8) + 1 then 6(G) = 5 (G) + G
interpolates 0̂8, 9 for all 8 and 9 = 1, 2. Both 5 and 6 have ≤ �tot
errors. �

Algorithm 4.1 makes recursive calls with different error bounds,

so if for the recursive call = [new] ≥ 2�
[new]
tot + 1 that recursive

call may produce a unique interpolant. Therefore, if = ≤ 2�tot ini-

tially, the returned 6 may have 9∗ < ℓ1. We now prove that the

input/output specifications are enforced by Algorithm 4.1.

Theorem 4.1. Algorithm 4.1 computes an interpolant 5 or 6 if

one or more interpolants exist. If = ≥ 2�tot + 1 it returns the then

unique 5 or diagnoses that no such 5 exists. If = ≤ 2�tot and there

exists at least one interpolant 5 , then 5 (9
∗)

= 6, which is unique for

all interpolants.

Proof. We first consider the case = ≤ 2�tot. If there is no in-

terpolant 5 for all values in �̂ with ≤ �tot errors, then either the

6 or “no interpolant” outputs are correct. Now suppose that there

is one interpolant 5 or more. By Lemma 3.1 the ℓ1-st derivatives

of all such interpolants are unique. Therefore, Step 3, if success-

ful, computes a correct 9∗ = ℓ1 and 6. Otherwise, all interpolants

have ≥ (= − �)/2 errors in the 0̂8,0, and by (14) and (15) there are

≤ �tot −:0 ≤ �
[high]
tot errors in all other values 0̂8, 9 with 9 ≥ 1. The

number of values for any 5 ′ is bounded as

<1 + · · · +<ℓ1 = ℓ1 + · · · + ℓ= ≥ ℓ1 (� − 1) + 1 +
(ℓ1
2

)
+ 2� [high]tot ,

which is the induction hypothesis for the correctness of Algorithm

4.1, and Steps 5 and 6 return correct outputs.

Because the 9∗-th derivative of all possible interpolants 5 ′ is
equal to 6 after Step 5 by hypothesis, and the number of errors in

derivatives of order ≤ 9∗ − 1 of any possible interpolant 5 [mod]

in Step 8 satisfies the input specifications by (16), Steps 7–10 by

hypothesis correctly compute the unique 5 [mod] or flag that none
exists.

We now consider the case = ≥ 2�tot + 1. If there exists an inter-

polant 5 , which is then unique, then 6 = 5 (9
∗) at Step 7 by the hy-

pothesis for Step 4. In Step 8 the input specifications for 5 mod G 9
∗

are satisfied and the Step computes by induction hypothesis cor-

rectly the missing residue of 5 . If no 5 exists, Step 9 will flag such

input, because only interpolants with ≤ �tot errors are returned in

Step 10. �

Theorem 4.2. Algorithm 4.1 performs $ (ℓ1 (� + ℓ21)!(log!)
2 ×

loglog(!)) arithmetic operations inK, where ! = (ℓ1+1)+· · ·+(ℓ=+1)
(2).

Proof. New interpolant polynomials are computed only in Steps 1–

3 of each recursive invocation. Themost costly is Step 3with$ (� ×
!(log!)2 loglog(!)) arithmetic steps. The cost for the Reed-Solomon

algorithm and Step 2 is$ (!(log!)2 loglog(!)), but in Step 3 there

are evaluations of polynomials of degree ≤ � at <0, <1, . . . ,<ℓ1

points. Note that � < ! which implies �2
= $ (�!) for the cost of

computing all derivatives of 5 in Step 3. The recursive descent in

Step 4 may take ℓ1 recursive calls before a candidate 6 is produced,

at a total cost of $ (ℓ1�!(log!)2 loglog(!)).
Subsequently, �̂ is updated, again for each new interpolant 5̄

at cost no more than$ (�!(log!)2 loglog(!)). Then the algorithm

continues at the new global derivative order ℓ
[new]
1 = 9∗ − 1 ≤

ℓ1 − 1 in Step 8, computing interpolants and updating �̂. Because

the recursive call at Step 8 can be reached at most ℓ1 times, as the

global order 9∗ decreases each time, and<0 + · · · +< 9∗−1 < ! and

� [new] < ℓ1, the overall complexity is bounded by ℓ1 times the

bound $ (ℓ21!(log!)
2 loglog(!)) for each subsequent descent. �

Remark 4.3. List-decoding of multiplicity codes [1, 6] interpo-

lates in polynomial-time a list of valid polynomials, that is, code

words, from a message word of polynomial values, which contain

errors, from fewer than #tot (5) evaluations. If the list-decoding

error-rate is no more than the error rate for our new count #zero
(4) and the number of distinct arguments = is sufficiently large,

then for fields of characteristic 0 or ≥ � + 1 the returned list con-

tains no more than one element. Our new algorithm could also per-

form Reed-Solomon list-decoding and list-decode from a number

of evaluations < #zero. �

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation

under Grant CCF-1717100 (Kaltofen).

REFERENCES
[1] Venkatesan Guruswami and Carol Wang. 2011. Optimal rate list decoding via

derivative codes. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and
José D. P. Rolim (Eds.). Springer, 593–604.

[2] Erich L. Kaltofen and Clément Pernet. 2014. Sparse Polynomial Interpolation
Codes and Their Decoding Beyond Half the Minimal Distance. In ISSAC 2014 Proc.
39th Internat. Symp. Symbolic Algebraic Comput., Katsusuke Nabeshima (Ed.). As-
sociation for Computing Machinery, New York, N. Y., 272–279. URL: http://users.
cs.duke.edu/~elk27/bibliography/14/KaPe14.pdf.

[3] Erich L. Kaltofen, Clément Pernet, and Zhi-Hong Yang. 2020. Hermite Rational
Function Interpolation with Error Correction. In Computer Algebra in Scientific
Computing, CASC 2020 (Lect. Notes Comput. Sci., Vol. 12291), F. Boulier, M. England,
T. Sadykov, and E. Vorozhtsov (Eds.). Springer, 335–357. URL: http://users.cs.duke.
edu/~elk27/bibliography/20/KPY20.pdf.

246

[4] Majid Khonji, Clément Pernet, Jean-Louis Roch, Thomas Roche, and Thomas Stal-
inski. 2010. Output-sensitive decoding for redundant residue systems. In Proc.
2010 Internat. Symp. Symbolic Algebraic Comput. ISSAC 2010, Stephen M. Watt
(Ed.). Association for Computing Machinery, New York, N. Y., 265–272. URL:
https://dl.acm.org/doi/10.1145/1837934.1837985.

[5] Swastik Kopparty. 2014. Some remarks on multiplicity codes. In Discrete Geom-
etry and Algebraic Combinatorics: AMS Spec. Session (Contemporary Mathematics,
Vol. 625), Alexander Barg and Oleg R. Musin (Eds.). 155–176. URL: https://sites.

math.rutgers.edu/~sk1233/multcode-survey.pdf.
[6] Swastik Kopparty. 2015. List-decoding multiplicity codes. Theory of Computing

11, 1 (2015), 149–182. URL: https://sites.math.rutgers.edu/~sk1233/part2.pdf.
[7] M. Yu. Rosenbloom andMichael A. Tsfasman. 1997. Codes for the<-metric. Prob-

lemy Peredachi Informatsii 33, 1 (1997), 55–63.
[8] A. Spitzbart. 1960. A Generalization of Hermite’s Interpolation Formula. The

American Mathematical Monthly 67, 1 (1960), 42–46. DOI: 10.1080/00029890.1960.
11989446.

247

	Abstract
	1 Introduction
	2 Small Characteristic Worst Case
	3 Zero and Large Characteristic
	4 Hermite Decoding Over Zero / Large Characteristic
	4.1 Error-correcting Hermite interpolation (zero / large char)

	Acknowledgments
	References

