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Abstract—A face identification system compares an unknown
input probe image to a gallery of labeled face images in order
to determine the identity of the probe image. The result of
identification is a ranked match list with the most similar gallery
face image at the top (rank 1) and the least similar gallery face
image at the bottom. In many systems, the top ranked gallery
images may look very similar to the probe image as well as to
each other and can sometimes result in the misidentification of the
probe image. Such similar looking faces pertaining to different
identities are referred to as lookalike faces. We hypothesize that
a matcher specifically trained to disambiguate lookalike face
images when combined with a regular face matcher will improve
overall identification performance. This work proposes reranking
the initial ranked match list using a disambiguator especially for
lookalike face pairs. This work also evaluates schemes to select
gallery images in the initial ranked match list that should be re-
ranked. Experiments on the challenging TinyFace dataset shows
that the proposed approach improves the closed-set identification
accuracy of a state-of-the-art face matcher.

I. INTRODUCTION

Biometrics is the science of recognizing individuals using
biological or behavioral traits such as face, fingerprint, iris,
or gait [1]. There are two primary scenarios for recognition,
verification and identification. In verification, a biometric
sample associated with a claimed identity is compared to
a known biometric sample associated with that identity to
render a match or no-match decision. In identification, a
probe biometric sample is compared against a set of labeled
biometric samples (called a gallery) to produce a ranked match
list. The ranked match list contains an ordering of the gallery
samples based on how similar they are to the probe sample
(with the rank 1 sample being judged by the matcher! as the
most similar to the probe). In closed-set identification, the
probe image corresponds to one of the identities represented
in the gallery. This is unlike open-set identification, where the
identity corresponding to the probe image may or may not be
represented in the gallery.

The way a ranked list is used in an identification system,
varies across applications. In some applications, the top k
ranks in the ranked match list are reviewed by a human
investigator — therefore, the rank k£ cumulative identification
accuracy is more important than just the rank 1 identification

'We use the term “matcher” to denote the biometric (e.g., face) recognition
system.
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Fig. 1. Examples of lookalike pairs as judged by an automated face matcher.
Face images are from the TinyFace dataset [3].

®

accuracy (“lights-on mode”). In other applications, there is
no human review, so the rank 1 identification accuracy is of
utmost importance (“lights-out mode”).

In the ranked match list, the correct match may not occur
at rank 1. For example, if the correct match occurs at rank
5 (so still close to the top rank), then it is possible that the
matcher was “confused” by similar-looking faces from rank 1
through rank 4. These lookalike faces may be a special case
in the context of face recognition and one not well-handled by
a general-purpose face matcher [2]. Figure 1 shows examples
of lookalike face image pairs, i.e., imposter face image pairs,
which an automated face matcher judged as being very similar.
These lookalike identities can be viewed as doppelgingers
with respect to that matcher.

In this work, we address the issue of lookalikes in face
recognition. We propose the use of two matchers, the first,
a general-purpose face matcher, and the second, a lookalike
disambiguator. The general-purpose (GP) matcher is trained
just like a normal face recognition system for identification.
The lookalike disambiguator (LD) is trained specifically to
distinguish between lookalikes. The GP matcher compares the
probe face image to all gallery face images to obtain the initial
ranked match list. The LD is then used to rerank a subset of the
ranked match list (the subset of matches to rerank is selected
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Fig. 2. Overview of the proposed approach. A general-purposed matcher compares a probe against all gallery samples to obtain an initial ranked match
list (sorted in ascending order based on distance scores). A rerank selection scheme chooses a subset of gallery samples in the match list to rerank with
the lookalike disambiguator. The lookalike disambiguator compares the probe with the selected gallery samples and outputs a new ranking. The final ranked
match list contains the reranked gallery samples and the unselected gallery samples. The face images with a red border are of different subjects than the probe
image, while the face images with a green border are of the same subject as the probe image.

adaptively based on the match scores). Figure 2 illustrates an
overview of the proposed method.

This paper is organized as follows. Section II reviews
related work. Section III explores the nature of matches in
an identification search. Section IV describes the proposed
reranking schemes and Section V the training approach for the
GP matcher and the LD. Section VI describes the data used
in this work and the lookalike discovery scheme. Section VII
describes the experiments, Section VIII analyzes the results,
and Section IX concludes the work.

II. RELATED WORK
A. Lookalikes in Face Recognition

Analysis of automated face recognition systems reveals
many underlying problems which increase the difficulty of
successful matching. Some problems, like pose and illumi-
nation variations, are due to capture conditions [4] and have
been well-explored in the literature [S]-[7]. Other problems,
such as lookalikes, are inherent to the problem of face recog-
nition itself for both humans and machines. The lookalike
phenomenon has many causes, viz., identical twins, kinship,
surgical manipulations, doppelgingers, and others.

Identical twins were an early interest in the lookalike
problem [8]-[11]. Identical twins, i.e., monozygotic twins,
have near-identical DNA. Although such twins have near-
identical DNA and usually have very similar facial appearance,
other factors such as environment and behavior may introduce
differences in the facial appearance between them [12].

Since the facial appearance of identical twins is especially
similar, some face recognition approaches for identical twins
focus on specific aspects of the facial appearance, rather than
the holistic approach adopted by many general-propose face
matchers. For example, Srinivas et al. use facial marks (e.g.,
freckles, scars, birthmarks) to tell identical twins apart [13].
One analysis showed that identical twins over age 40 are easier
to differentiate by automated face recognition systems [11].
Le et al. propose face aging features to discern between
identical twins [14]. However, not all approaches focus on a

specific aspect of the facial appearance. For example, Sun et al.
train a convolution neural network for distinguishing between
identical twins [15].

Other research approach the lookalike problem more gener-
ally and do not focus strictly on distinguishing identical twins.
Lambda et al. match face regions independently and fuse the
results to facilitate lookalike disambiguation [16]. Smirnov et
al. improve a general-purpose face matcher by maintaining a
list of lookalikes to refine mini-batch selection [17]. Moeini et
al. use 3D models to distinguish lookalike faces [18]. Sadovnik
et al. point out that face similarity and face identity are related,
but different concepts [2]. Classical face matchers are trained
to distinguish between images from different identities (inter-
class variation) while treating disparate images of the same
person as one identity (intra-class variation). However, the
degree of similarity between faces of different identities is
not explicitly modeled during the training process. Their work
emphasizes the need for designing a system that handles face
identity and face similarity differently.

B. Reranking

Computer vision tasks which involve the retrieval of a set
of items, typically return results as an ordered list. The initial
list is based on a set of general-purpose features that rank
items based on their similarity and dissimilarity to the query
(probe). The state-of-the-art for many problems in computer
vision has not advanced to the stage such that the the rank-
1 accuracy is perfect for all possible query images. Thus, a
reranking technique, based on additional features to improve
retrieval performance, is useful for computer vision tasks.

A number of reranking techniques have been proposed for
a variety of problems (e.g., object retrieval or person re-
identification). Shen et al. propose a new similarity metric
for object retrieval and enhance performance by reranking
the initial search results using the nearest neighbors [19].
Garcia et al. propose a reranking method for person re-
identification where small ambiguities specific to the top
ranked matches are removed and the ambiguity-free images
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are reranked [20]. Kim et al. compare the nearest neighbors
of a probe and gallery to rerank a candidate list for person
re-identification [21].

III. MATCH-VICINITY PLOT

A goal of this work is to develop an adaptive selection
scheme that selects a subset of samples in the ranked match list
of an identification system for reranking. The criteria for the
subset is two-fold: (1) the subset should be as small as possible
and (2) the subset should include the gallery sample which
matches the probe. These two criteria are inversely related: the
smallest subset may exclude the correct gallery match, and a
subset which guarantees the inclusion of the correct match has
to necessarily include the entire gallery.

In this section, we analyze the distance scores in the ranked
match list that may offer clues for selecting a subset of gallery
samples that satisfies both criteria. Previous work has shown
the benefit of analyzing the match scores in a ranked list. For
example, Marasco et al. use the ratio of scores in the ranked
match list to the rank-1 score as a feature vector and train a
classifier to distinguish between correct and incorrect rank-1
matches [22].

Given a set of gallery images, G = {g1,92,...,9,} and a
probe image p, we compare the probe to each gallery image
gi € G, resulting in a set of distance scores {d;}. The ranked
match list is constructed such that the gallery is ordered by
distance scores from the smallest to largest. This results in a
ranked match list corresponding to the probe p:

1 2
E:(dé),dz(,),...,d;")),

where, dz(f) is the " smallest distance score. Suppose the
correct match occurs at rank c. A distance score at rank
7 can be normalized relative to the correct match score as,
s — 4@ _ gle)
p — Yp P -

The match scores in the vicinity of the correct match for a
probe p can then be given by match-vicinity vector,

qsp:[séc—s) Sz()c—m Sz()c) Sz(JCH) S;c+5)}
_ [sff—s) 51()0—1) 0 s](fH) s§f+5)},

where, s\ = d') —d\? =o.

We use a match-vicinity plot to depict how the scores change
before and after the correct match is encounted on the ranked
match list. The x-axis of the match-vicinity plot reports the
location relative to the correct match (c & 5) and the y-axis
reports the normalized score (s(?)). The plot depicts the mean
and standard deviation of the normalized scores across m
probes, that is, the mean and standard deviation for each
column in the matrix,

04 T T
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Fig. 3. Match-vicinity plot for the entire TinyFace dataset. The y-axis plots
the mean and standard deviation of the normalized match score, s(0) = dg) —
d(©). The top correct match always occurs at position ¢ (thus the y-axis value
at rank ¢ will always be 0 with a standard deviation of 0). The x-axis varies
the rank & 5 from rank c. Thus, the value at position ¢ — 5 is the mean and
standard deviation of the normalized match score of the 5th item before the
top correct match for all probe searches. Similarly, the value at rank ¢ 4 3
is the mean and standard deviation of the normalized match score of the 3rd
item after the top correct match for all probe searches.

Figure 3 shows the match-vicinity plot using the probe
and gallery-match subsets of the TinyFace dataset (a further
description of the dataset is given in Section VI). The probes
are compared to each gallery sample using the ArcFace
matcher (further information is given in Section V) which
outputs a distance score. The ranked match list is tabulated
by sorting the gallery samples in ascending order based on
the distance score (i.e., rank 1 is the gallery sample with the
smallest distance score). As an example, consider two probe
searches, the first with the top correct match at rank 10 and
the second with the top correct match at rank 20. In the match-
vicinity plot, we consider the samples at positions 5 to 15 for
the first probe search and the samples at position 15 to 25 for
the second probe search. The match-vicinity plot in Figure 3
indicates that the distance scores increase more rapidly after
the correct match is found in the ranked gallery list.

We will exploit the observations above to develop a rerank
selection scheme. We describe such a scheme in Section I'V-B.
The goal of an adaptive selection scheme is to select the top
k items on the ranked match list where & is very close to, but
not below, the rank of the correct match.

IV. RERANK SELECTION SCHEME

In this work, we consider two schemes for selecting images
in the ranked list that have to be reranked: (1) a fixed selection

o sécfs) e s,(,‘i*” 0 sz(,cfl) Sgi%) scheme and (2) an adaptive selection scheme.
: B ) A. Fixed Selection Scheme
Do 51(,(:5) sz(,cm_l) 0 sg,fjl) s](g(::w . .
The fixed selection scheme simply selects the top k ranks
where, p; is the i probe sample. from the ranked match list. It is independent of the match
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scores associated with each gallery sample. Thus, it is sus-
ceptible to unusually high correct match ranks. It will only
consider the first k£ ranks and will simply ignore the correct
match if it were to occur at a rank beyond k.

B. Adaptive Selection Scheme

The adaptive selection scheme determines the subset to
be reranked based on the distance scores generated when
comparing the probe with each gallery sample. Given a set
of gallery images G = {g1,92,...,9n} and probe image p,
we compare the probe, p, to each gallery image ¢g; € G,
resulting in a distance score d;. The ranked match list is
constructed such that the gallery is ordered by distance scores
from smallest to largest. This results in a ranked match list,

r— (d(l),d(2)7 . .,d(")> ;

where d() is the i smallest distance score.

In the ideal case, the adaptive selection scheme should select
the top k matches where the correct match occurs at rank
k. In Section III, the match-vicinity plot shows the distance
scores increase at a higher rate from one rank to the next after
encountering the correct match. This motivates us to consider
a rolling sum to capture this phenomenon and select a rerank
subset that is as small as possible but still potentially includes
the correct match.

A rolling sum over ¢ consecutive distance scores is tabulated
over the ranked match list. This is given as,

q—1
Sk _ Z d(k*i)7
i=0

where k > ¢. The rerank subset is the first £ matches in
the ranked match list such that S, > 7 and k is minimized
(i.e., the smallest value of k that satisfies Sy > 7).

V. FACE MATCHING

This work makes use of two face matchers: (1) a general-
purpose (GP) matcher and (2) a lookalike disambiguator (LD).
The GP matcher is an existing, publicly-available matcher
while the LD is adapted from the GP matcher for disambigua-
tion of lookalike face images. Figure 4 shows an overview of
how the LD is created. The lookalike faces can vary across
different face matchers. But the proposed method can be used
with any general-purpose face matcher.

A. General-Purpose (GP) Matcher

The GP matcher is an existing, publicly-available matcher.
The ArcFace matcher [23] is selected due to it high perfor-
mance (99.8% accuracy on the LFW datset [24]). The network,
represented by f(-), takes an input image I and outputs
a 512-dimensional representation of the face image (i.e.,
f(I) € R5'2). Two faces are compared using the euclidean
distance metric, which yields a distance score between the
two faces.

Lookalike Pairs

Gallery
Lookalike
Discovery

Triplet

Lookalike Creation

Disambiguator

s)a|dia] ayj1jexo007

Fig. 4. Overview of the lookalike disambiguator creation. First, lookalike pairs
are discovered from the gallery. Second, the lookalike pairs are converted to
lookalike triplets with an anchor, positive, and negative sample. Lastly, the
lookalike disambiguator network is trained using the lookalike triplets.

B. Lookalike Disambiguator (LD)

The Lookalike Disambiguator (LD) uses the same pre-
trained network as the GP matcher. In our work, the network is
further fine-tuned using lookalike triplets. A lookalike triplet
consists of three images, (I, Iy, I,), where I, is the anchor
sample, I, is the positive sample, and I, is the negative
sample. Images I, and I, originate from the same subject,
while images I, and I,, originate from different subjects. The
images I, and I, are a lookalike face pair (i.e., they are
an imposter pair such that the GP matcher predicts a small
distance score between them).

The triplet embedding loss function is given by:

L= 3 ()= fIp)ly = 1 (Ta) = F(Ia)lly
{a:Ip,1n)}
+ O'margin
where, ||-||, is the euclidean distance and oarein is a user-

tunable parameter for the margin of minimum distance be-
tween positive and negative samples. The network is fined-
tuned in the PyTorch environment with omaein = 0.2 and a
batch size of 32. Stochastic gradient descent trains the network
with an Adam optimizer and learning rate of 0.01.

VI. DATA AND LOOKALIKE DISCOVERY

In this work, the TinyFace dataset is used as previous work
shows this dataset to be a challenging one for the task of
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Fig. 5. Examples of face images in the TinyFace dataset [3].

Score Dlstrlbutlon

0.15 T T
l:lGenume
[ Imposter

01|

p(Score)

0.05 -

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Score

Fig. 6. Genuine and imposter score distribution of the entire TinyFace gallery
set.

identification [3], [25]. The dataset is mined for lookalike
images using the ArcFace matcher.

A. TinyFace Dataset

The TinyFace dataset [3] consists of small face images (av-
erage size 20x 16 pixels). The test set comprises three subsets
(probe, gallery-match, and gallery-distractor), of which, only
two are used in this work (probe and gallery-match). 3,728
face images of 2,569 subjects compose the probe set while
4,443 face images of the same 2,569 subjects compose the
gallery-match set (known as the gallery in this work since the
gallery-distractor set is not used because there are no subject
labels required for lookalike discovery). Figure 5 shows ex-
amples of the face images in the dataset. A filtered version of
the probe and gallery-match subsets is also considered in this
work. The filtered version of each subset is manually filtered
to remove faces with a profile view. The filtered portion of the
probe subset contains 2,081 images and the filtered portion of
the gallery-match subset contains 2,461 images. The filtered
version contains 1,145 subjects.

Fig. 7. Examples of lookalike pairs detected by the ArcFace matcher.

B. Lookalike Discovery

The lookalike disambiguator (LD) should be able to suc-
cessfully distinguish between faces that lookalike. Lookalikes
can be curated in many different ways. For example, a human
annotator could review face image repositories, including the
Web, in order to identify doppelgédngers. Lookalikes could
also be deduced using a face matcher. In this work, lookalike
face images are chosen from the TinyFace dataset using the
ArcFace matcher. This is preferable to human annotations as
humans and machines may perceive faces differently, and this
work focuses on automated face matchers.

The entire TinyFace gallery set is mined for lookalike face
images by identifying imposter pairs with low distance scores.
Figure 6 plots the genuine and imposter score distributions of
the gallery set using the ArcFace matcher (the gallery contains
multiple images of the same subject). We select imposter pairs
whose distance score is less than 0.8 since [0, 0.8] represents
a range where p(score|genuine) > p(score|imposter). This
results in the detection of ~679K lookalike pairs (6.9% of all
imposter pairs). Figure 7 shows examples of detected lookalike
face pairs.

Each lookalike pair is further augmented with additional
images of the subjects in the pair to generate several lookalike
triplets. A triplet consist of an anchor sample, a negative
sample, and a positive sample. A lookalike pair comprises two
images, i.e., (I}, 1 Jl) where I! is the first image of subject i
and I; I is the first image of subject j. At least two triplets
are constructed from a single lookalike pair. The first triplet,
(I},I7,1}), contains the first image of subject i (I}) as the
anchor sample, the second image of subject i (I?) as the
positive sample, and the first image of subject j (I; 1) as the
negative sample. The second triplet, (I}, 17, I}'), contains the
first image of subject j (I, 1) as the anchor sample, the second
image of subject j (I; 2) as the positive sample, and the first
image of subject i (I; 1) as the negative sample. If subject ¢
or j has more than two face samples each, then additional
lookalike triplets can be constructed. The triplets are used to
fine-tune the LD as described in Section V-B for 5 epochs.

VII. EXPERIMENTS

Experiments include an evaluation of: (1) the proposed
reranking selection scheme, and (2) an identification perfor-
mance analysis with and without reranking the gallery samples
using the Lookalike Disambiguator. Results are reported on the
the filtered version of the TinyFace dataset as the identification
results on the entire dataset is lower (due to pose variations).
As pose variation is not studied in this work, we use the
filtered data which has profile-view faces removed.
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TABLE 1
RESULTS OF PARAMETER SEARCH FOR ¢ AND T
ON THE FILTERED TINYFACE GALLERY.

Surplus Size .

q Total Per Search Hit Rate T

1 270,276 142.5 55.77% 0.7695
2 294,003 155.0 61.68% 1.378
3 295,173 155.6 62.20% 1.958
4 296,353 156.2 62.63% 2.511
5 297,541 156.8 63.05% 3.049
6 298,737 157.5 63.52% 3.574
7 299,942 158.1 63.78% 4.090
8 301,152 158.8 63.94% 4.597
9 302,365 159.4 64.21% 5.094
10 | 303,583 160.0 64.63% 5.584

A. Parameter Selection

The adaptive selection scheme requires two parameters,
7 (rolling sum threshold) and ¢ (number of scores considered
in rolling sum). These values are estimated from the gallery
set. The gallery contains 2,461 face images of 1,145 subjects;
some subjects have multiple images. Simulation of a probe
search using the GP matcher (without using the probe set from
the TinyFace data) is achieved by using one image from the
gallery as a probe. This is repeated for each image in the
gallery set for which at least one other image of the same
subject exists (there are 1,897 such images). The rolling sum
is tabulated for each search operation. The average value of the
rolling sum across all searches is taken at the position where
the top correct match occurs. This is repeated for varying
values of ¢ from 1 to 10.

A perfect selection scheme would choose the minimum
number of gallery items necessary to achieve 100% identifica-
tion accuracy at rank 1. This means the scheme would choose
the first k£ gallery items only if the correct gallery match for
a probe occurs at rank k. This gives rise to two conflicting
criteria: (1) select as few samples as possible and (2) ensure the
selection includes the correct gallery match (the only way of
ensuring this is to select the entire gallery). Thus, the efficacy
of the selection for reranking is evaluated using two metrics,
hit rate and surplus size. The hit rate measure the fraction
of searches for which the selection scheme chooses a gallery
subset that includes the correct match. The surplus size reports
the number of samples included in the subset with rank higher
than the rank of the correct match (e.g., if the selected subset
is of size 12 and the correct match occurs at rank 10, then
this results in a surplus size of 2). The metrics are reported in
Table I for ¢ ranging from 1 to 10.

B. Rerank Selection Schemes

Two selection scheme are evaluated: fixed and adaptive.
For each scheme, two histograms are plotted: (1) number of
gallery items selected (pool size) and (2) number of gallery
item selected beyond the correct match (surplus size). A small
rerank pool size is generally better. However, a large pool size
is not inherently bad: it could be that the correct match occurs
at a lower rank so it is preferable to select a large number of
gallery samples to rerank. This is why the surplus size is a

TABLE 11
POOL SIZE AND HIT RATE FOR FIXED AND ADAPTIVE RERANK
SELECTION SCHEMES. THE POOL SIZE STATISTICS ARE
MINIMUM/AVERAGE/MEDIAN/MAXIMUM.

Scheme Pool Size Hit Rate
Fixed 246/246/246/246 80.1%
Adaptive | 15/20.66/18/121 71.3%

Frequency
Frequency

o % 00 ) ™ %0 00
Num. of Gallery Items Selected Beyond Correct Match

(b) Fixed Surplus Size

Number of Gallery Items Selected for Reranking

(a) Fixed Pool Size

Frequency
Frequency

o m e 150 0 250 20 o 50 00 10 £ %0 a0
Number of Gallery Items Selected for Reranking Num. of Gallery Items Selected Beyond Correct Match

(c) Adaptive Pool Size (d) Adaptive Surplus Size

Fig. 8. Pool and surplus size for the fixed and adaptive rerank selection
scheme.

useful metric. This plot show how many extra gallery samples
at ranks beyond the correct match are selected as part of the
subset to rerank.

In this experiment, k& = 246 (top 10% of the ranked match
list) for the fixed scheme and the parameters for the adaptive
schemes are set to 7 = 5.584 and ¢ = 10 (parameters with
highest hit rate in Table I). Table II reports statistics about
the number of gallery items selected and the hit rate. Figure 8
shows histograms of the pool size and the surplus size for both
the fixed and adaptive schemes.

C. Identification with Reranking

This experiment evaluates the closed-set identification per-
formance before and after reranking. The GP matcher com-
pares the TinyFace gallery and probe sets to obtain a ranked
match list. A subset of the ranked match list is reranked using
the Lookalike Disambiguator. A Cumulative Match Character-
istic (CMC) curve is tabulated from the ranked match list by
recording what percentage of probes have the correct gallery
match occur at rank ¢ or better. Figure 9 shows the CMC curve
before reranking (original ranking) and after reranking using
the fixed and adaptive selection schemes.

VIII. ANALYSIS

Based on Table II, the fixed selection scheme appears more
successful than the adaptive selection scheme as the hit rate
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Fig. 9. Cumulative Match Characteristic (CMC) curve showing the identifica-
tion accuracy at ranks 1 to 20. Note that both the proposed reranking schemes
increase rank-1 accuracy. However, the adaptive scheme has a much smaller
surplus size making it more efficient in terms of time and computation. Note
that no alignment module was used by the face matcher.

is 80.1% (an increase of 8.8% over the adaptive scheme).
However, the surplus size for the adaptive scheme is much
smaller (compare Figure 8b and Figure 8d). In the fixed
scheme, unlike the adaptive scheme, there is no mechanism
to deduce if fewer than a predetermined number of samples
are needed for a particular query. Thus, the adaptive scheme is
able to select subsets for reranking with smaller surplus sizes
than the fixed scheme.

Figure 10 shows two match-vicinity plots, one in which only
searches where the correct match occurs in the top 20 ranks are
included and another in which only searches where the correct
match occurs at rank 500 or above are included. We see that in
the case of probes with a “top 20” hit, there is a pronounced
increase in the distance score after the correct match. Such
an increase is conspicuously absent in the case of a “beyond
500" hit. This suggest that the adaptive scheme will work best
for searches where the correct gallery sample occurs at higher
ranks. This may also explain why the adaptive scheme has a
lower hit rate than the fixed scheme (Table II). This means,
the criteria used by the adaptive scheme to perform reranking
occurs for a smaller proportion of probe searches.

The adaptive scheme also includes a smaller surplus size
overall. The total surplus size across all probe searches for the
fixed scheme is 393,538 versus 25,364 for the adaptive scheme
— a reduction of 368,174 samples to be reranked (a 93.6%
reduction). This is a reduction of 176.9 samples per probe
query. The role of the lookalike disambiguator is to distin-
guish between similar-looking faces, a difficult problem. By
reducing the number of samples that must be disambiguated,
the chances of improving identification performance increases.

Figure 9 shows the identification accuracy for the original
ranking by the GP matcher and the reranked performance
using the fixed scheme and the adaptive scheme. The reranking

Mean Score Mean Score
Std. Dev. of Scores Std. Dev. of Scores.

Position

(b) Rank 500 and Beyond

" Position
(a) Ranks in Top 20
Fig. 10. Match-vicinity plots for specific groups of probes in the filtered
TinyFace dataset. (a) shows the match-vicinity plot only of probes for which
the correct gallery samples occur in the top 20 ranks. red(b) shows the match-

vicinity plot only of probes for which the correct gallery samples occur at
rank 500 or higher.

improves performance modestly (an increase in identification
accuracy of 7.40% at rank 1 for the fixed scheme and 8.89%
at rank 1 for the adaptive scheme). The fixed and the adaptive
schemes performed similarly for identification at the top few
ranks (where improvement is most prominent), but the fixed
scheme drops below the original ranking at rank 6 while
the adpative scheme outperforms the original ranking. In
addition, the adaptive scheme selects far fewer gallery samples
for reranking making it more efficient. The hit rate for the
fixed scheme is 8.8% higher than the adaptive scheme. This
means that there are more rerank subsets selected by the fixed
scheme which include the correct gallery match, but the rank-
1 identification accuracy is still commensurate with that of
the adaptive scheme. This suggests that the adaptive scheme
only selects subsets with a chance for improved identification
accuracy.

IX. CONCLUSION

This work addresses the lookalike problem for face identifi-
cation systems. It proposes the use of a lookalike disambigua-
tor to distinguish between similar-looking face images. This
is achieved by selecting a subset of gallery images to rerank
based on an initial ranking by a general-purpose face matcher.
The selection scheme and lookalike disambiguator proposed
in this work show a modest improvement in identification
accuracy in a closed-set identification experiment.

Possible future work includes evaluating other features use-
ful for lookalike disambiguation such as motion information.
The subset selection scheme could possibly benefit from a
principled approach for deducing the subset to rerank rather
than rely on heuristic measures. This evaluation could be
extended to other datasets and modalities to verify that the
observations described in this work are applicable in other
situations.
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