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Let (Pn(2))n=012,.. be a (vector-space) basis for the univariate polynomials K[z] over a field K such
as the rational numbers or integers modulo a prime number. Examples of bases are standard terms
Pn(x) = z™ or orthogonal polynomials: Chebyshev Polynomials of four kinds. Any polynomial
f(z) € K[z] is then represented as a linear combination of basis terms,

flz) = chpgj(a:),o <0y <9y <o <O =deg(f),Vj:¢; #0. (1)
j=1

The sparsity ¢t < deg(f) with respect to the basis P, has been exploited—since [9] —in interpolation
algorithms that reconstruct the degree/coefficient expansion (9;,¢;j)1<j<; from values a; = f(7;)
at the arguments x < 7; € K. Current algorithms for standard and Chebyshev bases use i =
1,...,N =t + B values when an upper bound B > t is provided on input. The sparsity ¢ can
also be computed “on-the-fly” from N = 2t 4 1 values by a randomized algorithm which fails with
probability O(edeg(f)?), where ¢ < 1 can be chosen on input. See [3] for a list of references.

This note considers Dickson Polynomials for the basis in which a sparse representation is sought.
Wang and Yucas [10, Remark 2.5] define the n-th degree Dickson Polynomials D, x(x,a) € K[z] of
the (k 4 1)’st kind for a parameter a € K, a # 0, and k € Zxo, k # 2 recursively as as follows:

Doy(z,a) =2 —k; Dig(zr,a) =x; Dyi(z,a) =aDy 1 x(z,a) —aDy_op(z,a),Vn>2.  (2)

Here k = 0 and k = 1 yield Dickson Polynomials of the First Kind and the Second Kind, respectively,
denoted by D, o(z,a) = D, (z,a) and D, ;(x,a) = E,(z,a) [8].
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In [3, Section 5], a parameterized basis for the polynomial ring K|[x] is introduced:
W@ =1 W) = ey Vi) = eaV 0 @) - V@), Yz 2 @)

where u,v € K\ {0}, w € K. In Table 1 we give the specific settings of the parameters for which one
obtains the Chebyshev Polynomials of all four Kinds and the Dickson Polynomials of the (k+ 1)’st
Kind for all k£ # 2.

u v w
1. Chebyshev-1 1 2 0 Thla) = V20 ()
2. Chebyshev-2 2 2 0 Ulx) = V220 ()
3. Chebyshev-3 2 2 —1
4. Chebyshev-4 2 2 1
11
5. Dickson-1 L1 0 Dy(xb?) = vy = T, (2)
. n [l7l70] n X
6. Dickson-2 : 0 Ey(x,0?) = b Vit (x) = "U.(%)
I N §
7. Dickson-(k+1) gl L 0 Duuled) = @k Va® 7 (2)

Table 1: Recurrence parameters for basis polynomials

From Table 1, Row 5, we get that a t-sparse polynomial in Dickson Basis of the First Kind is a
t-sparse polynomial in Chebyshev Basis of the First Kind, namely,

t t t

N D (wa) = S (@205 ¢) VN w) = S0 (20%¢) T (), y = o P=a (4)

Therefore, if on input we have the squareroot b of the Dickson Polynomial parameter a, all the
algorithms for sparse interpolation in Chebyshev Basis of the First Kind [7, 4, 1, 3, 6] can be used
to reconstruct the left-side (4). Table 1, Row 6, yields a similar transfer to Dickson Polynomials of
the Second Kind Chebyshev Polynomials of the Second Kind. We also give algorithms for arbitrary
parameters u, v, w, which apply to Dickson Polynomial of the (k+1)’st Kind by Row 7. In particular,
we can compute an integer k£ and a value b that yields the sparsest representation (1) [3, Section 6.

A remaining problem is when the squareroot of a cannot be computed, or does not exist in K.
One may then proceed in two ways. First, one can appeal to a square-free transfer to polynomi-
als € Klz, %] (Laurent polynomials). In [3, Fact 5.1.ii] we give a transform of parameterized basis

polynomials V"™ (z) (3) to Laurent polynomials:

v

=— - - -1 - .
v <y yn+1 +wly y" + v Y ynfl (5)

Substituting in Table 1, Row 7, x = (y + 1/y)/v =b(y + 1/y) = 2 + b*/z = z + a/z we obtain

1 +3
Vn € Z: <y — —)VJ“’”’“)] <_y y)
Yy

(z - g) D, (z + g, a) e o + (k- Daz"' — (k= 1)a" [10]. (6)

Zn-i—l Zn—l
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The identity (6) specializes for k =0 and k =1 to

n an+1

Dn(z—l—g,a) :z"—l—a— and (z— E) En<z+g,a> =" —
z 2" z z

Lol @
Therefore, Z;Zl ¢;Ds, (2 +a/z,a) and (z —a/z) 22:1
sparsity 2t, and (z — a/z2) 22:1 ¢;Ds; (2 4+ a/z,a) is by (6) a Laurent polynomial of sparsity < 4t.
The sparse interpolation algorithms in [4, 5, 6] can recover ¢, ¢; and ¢; from a black box for f,
using at the minimum 4¢ and 8¢ evaluations, respectively. Note that by (6) there can be overlaps
of power terms. One recovers c;(z — a/z)Ds, 1(z + a/z,a) from the sparse Laurent representation
of (z —a/2)f(z + a/z,a) iteratively from j =t down to j = 1 using (6).

With an element b € K for which ? = @ on input, half as many black box evaluations of f are
needed, because the transfer to Laurent polynomials by substituting y = (2 +1/2)/2 in (4) so that
Ty,((241/2)/2) = (2% +1/2%) /2 has the advantage that evaluations at z = w’ fori =0,1,...,2t—1

¢jls, (2 4+ a/z,a) are Laurent polynomials of

produce values at z = w’ for { = —2t+1, —2t+2,...,—1,0,1,...,2t—1. Therefore, at the minimum
only 2t evaluations are required to recover the sparse representation (4) if one has b [7, 3]. For the
special case a = —1 and §; = .-+ = §; (mod 2), a similar savings is possible without a squareroot b

for Dickson Polynomials of the First and Second Kind, because, for example,

1 (= QTn<(Z+§)/2> if n is even,
Dn(z_;’_1>_z T T (z—g)Un_l((erg)/z) it n is odd,

and our algorithms in [3] can be applied.

A second way is to use pseudo-complex numbers « + ¢3 where o, 8 € K and (> = a. Then b is
the symbol ¢. Evaluation of the black box for f modulo (?> — a is possible, for example, for black
boxes that are straight-line programs. Such approach is used in [2].
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