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Abstract—Cryptographic protocols are often implemented at
upper layers of communication networks, while error-correcting
codes are employed at the physical layer. In this paper, we con-
sider utilizing readily-available physical layer functions, such
as encoders and decoders, together with shared keys to provide
a threshold-type security scheme. To this end, we first consider
a scenario where the effect of the physical layer is omitted and
all the channels between the involved parties are assumed to
be noiseless. We introduce a model for threshold-secure cod-
ing, where the legitimate parties communicate using a shared
key such that an eavesdropper does not get any information, in
an information-theoretic sense, about the key as well as about
any subset of the input symbols of size up to a certain threshold.
Then, a framework is provided for constructing threshold-
secure codes from linear block codes while characterizing the
requirements to satisfy the reliability and security conditions.
Moreover, we propose a threshold-secure coding scheme, based
on Reed-Muller (RM) codes, that meets security and reliabil-
ity conditions. Furthermore, it is shown that the encoder and
the decoder of the scheme can be implemented efficiently with
quasi-linear time complexity. In particular, a successive cancel-
lation decoder is shown for the RM-based coding scheme. Then
we extend the setup to the scenario where the channel between
the legitimate parties is no longer noiseless. The reliability con-
dition for noisy channels is then modified accordingly, and a
method is described to construct codes attaining threshold se-
curity as well as desired reliability, i.e., robustness against the
channel noise. Moreover, we propose a coding scheme based on
RM codes for threshold security and robustness designed for
binary erasure channels along with a unified successive cancel-
lation decoder. The proposed threshold-secure coding schemes
are flexible and can be adapted for different key lengths.

I. INTRODUCTION

Conventional cryptosystems are often designed to be com-
putationally secure by relying on unproven assumptions of
hardness of mathematical problems. Information-theoretic
security methods provide an alternative approach by con-
structing codes for keyless secure communication, as in
wiretap channels introduced in a seminal work by Wyner [2].
Since then, various types of wiretap channels have been con-
sidered in the literature [3]], [4]], and with employing different
coding schemes as in [5]], [6]].

Several approaches to provide security in the physical
layer assuming shared secret keys have been considered in
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the literature. Such shared keys can be either fixed prior to
communication as in classical cryptographic protocols or
can be extracted from a source of common randomness [7]]
such as characteristics of the physical layer channel, see, e.g.,
[8]-[10]. For instance, a variation of the wiretap channel
model, where a shared secret key is assumed to be constantly
generated by the legitimate parties, namely Alice and Bob, is
studied in [11]]. Another approach is to design an encryption
scheme that utilizes properties of certain modulation schemes
such as orthogonal frequency-division multiplexing (OFDM)
to ensure security, see, e.g., [[12]-[14]. Other related works
include using channel reciprocity properties [15]], classical
stream ciphers at the physical layer [16]], introducing artifi-
cial noise [[17]], multiple-input and multiple-output (MIMO)
systems [18], public-key based McEliece cryptosystem [19],
and using error-correcting codes for encryption [20]], [21].
These prior works either consider noisy channels as in the
wiretap channel model or utilize cryptographic primitives
being evaluated using cryptographic measures rather than
information-theoretical measures to establish security.

Another related line of research is secure network cod-
ing, where a wiretapper has access to a certain number of
edges in a network over which a source wishes to commu-
nicate messages securely. Several works have considered
information-theoretic security measures while designing net-
work codes, see, e.g., [22]], [23]]. A similar line of work has
appeared in the context of index coding, where multiple users
have partial information about a set of messages and want
to receive certain other messages from a central node. The
eavesdropper in this scenario is then assumed to have ac-
cess to a certain number of messages and a certain number
of transmissions while the security of the entire message
block is considered, see, e.g., [24], [25]. Also, in the con-
text of distributed storage, security guarantees are studied
while having trusted storage nodes in untrusted networks.
More specifically, scenarios are considered where an eaves-
dropper/untrusted node has access to a certain number of
coded symbols and the goal is to ensure that it is not feasi-
ble to reconstruct any individual symbol of the message, e.g.,
the message intended for another node, see, e.g., [26]—[28]].
These prior works differ from the setting considered in this
paper in two major aspects. Firstly, they are concerned with
keyless techniques with information-theoretic guarantees,
e.g., secret sharing, and secondly, the eavesdropper is of-
ten assumed to have access to partial information about the
message/set of messages rather than the entire information
block.
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Figure 1. System setup for the proposed coding scheme.

Utilizing error-correcting codes to provide security in
the physical layer enables sharing hardware resources be-
tween reliability and security schemes in low-cost devices.
Consequently, this leads to a promising approach for low-
complexity applications, such as Internet-of-Things (IoT)
networks. In this paper, we consider using block codes to pro-
vide a threshold-type security scheme. A fixed key is assumed
to be securely shared between the legitimate parties Alice and
Bob a priori. First, we consider a scenario where the effect of
the physical layer is abstracted out and all the channels be-
tween the involved parties are assumed to be noiseless. In
other words, Alice communicates to Bob over a noiseless
channel and her transmissions reach an eavesdropper, namely
Eve, also through a noiseless channel, as shown in Figurem
The security condition in this model is described as follows.
Alice encodes her message using the shared key while ensur-
ing that Eve does not obtain any information about the key
as well as about any subset of the input message symbols of
size up to a certain threshold ¢. This condition is referred to
as the t-threshold security condition. Then we consider the
case where Alice and Bob share a noisy channel, while the
eavesdropper Eve acquires Alice’s transmission noise-free.
The considered threshold-type security becomes relevant in
applications where the knowledge of most, if not all, of the
individual data symbols is needed in order to deduce mean-
ingful knowledge about the content of the message. Examples
of this type of data include measurement numbers, network
commands, the index of elements in a dataset, randomly as-
signed identification numbers, as well as barcodes or data in
any application where the data symbols are already scram-
bled, hashed, or masked prior to being encoded. A more
detailed explanation of such applications is discussed in Sec-
tion[[I-B] Furthermore, ensuring the security of the key in the
model guarantees that it can be, theoretically, used infinitely
many times without leaking any information about it or the
messages to Eve.

In the setups considered in this paper, we deviate from con-
ventional physical-layer security settings by removing any
condition on the channel from Alice to Eve; in fact, we as-
sume this channel is noiseless. However, we still describe
the schemes in a communication setting with the aim of in-
tegrating such schemes with channel coding in the physical

layer. To this end, a general scheme for noiseless channels
using linear block codes for the ¢-threshold-secure coding
scheme is shown. Furthermore, we describe a specific con-
struction based on RM codes [29] that meets the threshold
security condition, and show an encoder and a decoder, with
quasi-linear complexity, to reliably retrieve the message us-
ing the shared key. Moreover, we discuss a general method
for constructing codes, closely related to concatenated codes
[30]], for noisy channels that satisfy the threshold security
requirements with respect to Eve and provide robust com-
munication for Bob in the presence of channel noise. Also,
we propose an explicit RM-based construction that is both
t-threshold-secure and capable of correcting erasures, to-
gether with a unified successive cancellation decoder that
corrects erasures and retrieves the message simultaneously
given the shared key.

The rest of this paper is organized as follows. In Sec-
tion |lI] we describe the setup and formulate the reliability
and the security conditions for noiseless channels based
on information-theoretic measures. The proposed coding
scheme based on linear block codes is described in de-
tail and its security and reliability are evaluated in Section
Then, we describe an explicit coding scheme based on
RM codes together with an encoder and a successive can-
cellation decoder in Section [V] A general construction of
threshold-secure codes for noisy channels together with an
explicit low-complexity RM-based coding scheme for binary
erasure channels (BEC) are discussed in Section [V| Finally,
we conclude the paper in Section [VI, and discuss several
directions for future work.

II. SYSTEM MODEL AND APPLICATIONS

In this section, we discuss the system model considered in
this paper followed by extending certain applications of this
model, as discussed in Section[l]

A. System Model

Consider a system model where Alice wishes to securely
communicate with Bob, both are legitimate parties, through
a noiseless channel. The eavesdropper, namely Eve, is tap-
ping into that channel and observes all the transmitted sym-
bols, as shown in Figure E} Alice and Bob share a common
key sequence k of length k, that can be used for encoding and
decoding of message m of length m. Both the key and the
message symbols are from an alphabet of size ¢, where ¢ is
a prime power. A certain known permutation 7(.) of Alice’s
message sequence m together with the key sequence k is fed
as the input to the encoder, denoted by u, i.e., u = w(k, m).
The length of u is n = m + k and is encoded to a codeword
¢ of length m. The entries in k as well as in m are assumed
to be independent and uniformly distributed. Alice then trans-
mits the codeword ¢ to Bob over the noiseless channel. Bob
receives the codeword and decodes it using the key k to re-
trieve the message m. Eve observes ¢ and aims at extracting



information about the message m as well as the key k. In this
setup, Alice and Bob agree on the encoder and the decoder a
priori, which are also publicly known to Eve.

In this model, the security condition is the following. Al-
though parts of input u are disclosed to Eve, no knowledge,
in an information-theoretic sense, about any subset of size up
to a certain threshold parameter ¢ of the input symbols will be
leaked to Eve. Note that this is different from the traditional
measure of information-theoretic security where the mutual
information between the entire message block and Eve’s ob-
servation needs to be zero/almost zero. In a sense, we con-
sider a sub-block-wise measure of information-theoretic se-
curity. We aim at designing an encoder and a decoder for a
noiseless channel that utilizes a shared key k to encode a mes-
sage m such that the following conditions are met:

1) Reliability: Bob is able to decode the message, knowing
the key, with probability one, i.e.,

H(m|c,k) = 0. (1)

2) Key security: the codeword ¢ does not reveal any infor-
mation about the key k, i.e.,

I(k;c) = 0. 2)

3) t-threshold security: for any v C {uq,us,..., u, } with
|o| < t, we have

H(vle) = H(v), 3

where t is a design parameter specified later.

Remark 1. Note that the secrecy capacity of the communica-
tion system in Figure 1, even with a relaxed security condition
of lim,,, 00 %I(m, ¢) = 0, since ¢ is of length m, i.e., weak
security, is zero [2]]. In a related work [11], a source of com-
mon randomness is required to generate a key with a certain
rate Ry, to ensure non-zero secrecy capacity. However, here, a
key of a fixed length is used repeatedly. In a sense, this implies
that the key rate is zero as the message length grows large.

A formal definition of a ¢-threshold secure code is defined
next.

Definition 1: We say a code is t-threshold secure if it meets
the reliability and security conditions, where ¢ is the maxi-
mum cardinality of any v C {u1,us,..., uy, } that satisfies (3).

It is worth noting that the model considered in this pa-
per subsumes a range of previously studied models, e.g.,
the perfectly-secure one-time-pad (OTP) encryption which
is a code with threshold ¢ = m used once and hence,
we have H(m|c) = H(m). Another related line of work
is on certain types of keyless security schemes known as
unconditionally-secure all-or-nothing transforms (AONT)
[31]. More specifically, cases are studied where the eaves-
dropper observes a vector z whose elements are a subset
of size m — t of the set of elements of ¢, where ¢ is of
length m [32]. The security condition is then translated to
H(v|z) = H(v) for all v of size ¢ as in [32].

B. Applications

As briefly discussed in Section[l] the considered threshold-
type security becomes relevant in applications where the en-
tire message or significant portion of it is needed in order for
an eavesdropper to obtain meaningful knowledge about the
content of the message. In this section, we briefly expand on
one of the applications for the described threshold security
setup in Section|lI-A

Consider an authentication system based on users’ biomet-
ric information, such as fingerprints, e.g., as described in [33]],
where the data is assumed to be hashed prior to encoding. Let
us denote the fingerprint measurement vector as x. Also, let us
have the following two functions: a feature extraction function
f(.) and a secure hash function g(.). The function f(.) is an
arbitrary function that maps the input vector x to another vec-
tor x. The hash function g(.) is a mapping from an input space
of size a to a hash table of size b with the following property:

Pr(glx1) = gloo)lv £ %2) = . @
where x; and x5 are any input vectors, and the resulting load
factor of this hash function is 3 = ¢ [34]. In this example,
when a user scans their fingerprint, the measurement vector x
is processed using f(.) to produce the vector x that is hashed
using the hash function g(.) to produce the hashed vector de-
noted as m, i.e.,

m = g(x) = g(f(%)). (5)

Then the hashed vector m is the input to the threshold-secure
encoder together with the key. This hashed vector is uniformly
distributed by the assumption on the hash function g(.) in (@).
The hashed vector is to be sent to a database that contains the
hashed vectors of all authorized users for authentication. For
an eavesdropper that aims to learn the vector x, knowledge
of the entire m is needed. Let us assume that the eavesdrop-
per has access to the hash function g(.). If m is sent as is, the
probability of successfully acquiring x by the eavesdropper
is % since the eavesdropper can discard any vector that does
not hash to the observed m. However, when using threshold-
secure coding with threshold ¢, and assuming an alphabet of
size g, this probability becomes at most % which is exponen-
tially decaying with ¢. This is because the eavesdropper needs
to retrieve the hashed vector m first. Choosing an appropri-
ate parameter ¢, e.g., in the order of a few tens, combined with
the uniformity of the hash functions, is sufficient to cripple the
eavesdropper in a practical setting.

III. CODING SCHEMES

With a slight abuse of terminology, we refer to a scheme
meeting the reliability and security conditions, as described in
Section[ll} simply as a coding scheme. The coding scheme is
revealed to all parties, i.e., Alice, Bob, and Eve. When con-
structing the coding scheme, we aim at designing an encoder



and a decoder as well as specifying the code. For an input
u = mw(k, m) the encoder produces a codeword c as follows

c=uW =7(k,m)W, 6)

where W is an n X m matrix with n = m + k. In this pro-
posed scheme, we consider this matrix as the transpose of a
generator matrix G of a linear block code.

Consider a [n, m, dmin]q linear block code with generator
matrix G, i.e., a linear block code whose elements are from
an alphabet of size ¢, and has rate R = m/n and minimum
distance d,i,. Note that in this setup no redundancy in the
codeword is required since the channel is noiseless. We aim at
utilizing the generator matrix G of certain linear block codes
to construct a matrix W for our coding scheme such that the
reliability and security conditions are met.

One can assume that the length of the key is less than the
length of the message; otherwise, if k& > m, then the straight-
forward perfectly-secure one-time pad meets the conditions
for t = m. To encode a message m, let us denote the set
of indices of the rows of W that correspond to the message
symbols as A C [m + k] ef {1,2,...,m + k}. Then the set
of indices of the rows corresponding to the key symbols is
A = [m + k] \ A. The matrix W 4 denotes the submatrix of
W with rows indexed by .A, and the matrix W 4. denotes the
submatrix of W with rows indexed by .A°. The codeword c is
then expressed as follows:

c=mW 4 + kW 4. @)

The choice of 7(.), which corresponds to the choice of A and
A°€, is critical in ensuring security and reliability conditions.
Hence, we have the following definition.

Definition 2: A code, as described above, is called proper if
its matrix satisfies the following requirements:

1) The resulting submatrix W4 is full row rank, i.e.,
rank(W_4) = m.

2) The resulting submatrix W 4. is also full row rank, i.e.,
rank(W 4c) = k.

One example of codes that are not proper is the turbo code
[35] whose generator matrix can be written in the form G =
L, A1 As] where I, is the identity matrix whose columns
are dedicated to the message while the rest are dedicated to
the key. Note that A, is some row-permuted version of A, and
such a permutation may not necessarily resultin [A; A7 be-
ing a full row-rank matrix. Hence, this code is not necessarily
proper. A code that is not proper will result in a lower equivo-
cation rate for Eve about the message, and leads to leakage of
information about the key to Eve, as will be clarified through-
out this section.

Next, we show that if a code is proper, then it meets the re-
liability condition, as specified in (I, and the security condi-
tions, as specified in () and (3). The following lemma shows
that the reliability condition is satisfied.

Lemma 1: Suppose that the code used in the coding scheme
is proper, as defined in Definition]2] Then Bob can recover

the message with probability one under maximum a posteri-
ori (MAP) decoding. In other words,

H(mj|c,k) = 0. €]

Proof: By using (7), it can be observed that since Bob
has ¢ and k and since W 4 is full rank, then Bob can subtract
kW 4. from ¢ and then find m from W 4, which has a unique
solution. [ ]

In the next theorem, we show that a proper code meets the
key security condition, as specified in (2). Note that satisfying
this condition is very critical as even a very small leakage of
the key k can lead to the entire key being revealed to Eve af-
ter using the scheme several times, thereby compromising the
security of the message.

Theorem 2: Suppose that the code used in the cod-
ing scheme is proper, as defined in Definition2] Then the
codeword ¢ leaks no information about the key k, i.e.,

I(k;c) = 0. )

Proof: The proof is by observing the following set of
equalities:

I(k;c) = H(c) — H(clk), (10)
=mlogy(q) —H(mW 4 + kW 4c|k), (11)
= mlogy(q) —H (mW 4), (12)
= log,(q)(m — rank(W 4)), (13)
=0, (14)

where (TT)) holds by (7) and the uniformity of the key and mes-
sage symbols, hence the codewords are uniform, (@]) holds
because m and k are independent, (I3) is by noting that el-
ements of m are uniformly distributed and independent, and
holds because rank(W 4) = m as the code is proper ac-
cording to Definition 2} [ |

Additionally, to fully justify the reuse of k for multiple en-
codings, we include the following corollary.

Corollary 3: Suppose that the code used in the cod-
ing scheme is proper, as defined in Definition2] Then the
codewords (cy,ca,...,¢,) of the independent and uniform
messages (my,ma, ..., m,,) leak no information about the key

k,ie.,
I(k;cy,co,...,c,) = 0. (15)

Proof: The proof is by observing the following set of
equalities:

I(k;cy,c2,...,¢,) = H(cy, 02, ..y Cy)
— H(ey, e, ..., ¢ k), (16)
= vmlogy(q)
— HmyW 4, moW 4, ..., m,W 4), (17)
= vmlogy(q) — vH(m;W 4), (18)
= vlogy(q)(m — rank(W 4)), (19)
-0, (20)



where holds by (7), the uniformity of codewords, and
the independence of the key and messages, (I8) holds by in-
dependence and uniformity of messages (mi,mo,...,m,),
where m; is uniformly distributed, (I9) is by noting that
elements of message m; are uniformly distributed and inde-
pendent, and (20) holds because rank(W _4) = m as the code
is proper as in Definition 2] ]

The following lemma is well-known. However, it is
included here as it is instrumental in characterizing the
threshold security of coding schemes based on linear block
codes.

Lemma 4: [36] For an [n, m, dmin]q linear block code with
generator matrix G, any submatrix of G of size m x (n —
|D|) obtained by deleting columns indexed by elements of D,
where D C [n] with |D| = dyin — 1, has full row rank, i.e.,

rank(Gpe) = m. 21

In the next theorem, we characterize the threshold security
of coding schemes based on linear block codes.

Theorem 5: A coding scheme constructed by a matrix W =
G', where G is the generator matrix of an [, M, dmin]q linear
block code, is t-threshold secure, where t = d,;n — 1, i.€., we
have

H(vlc) = H(v), (22)

for any v C {uq,uz, ..., u,} with |[v| = ¢, and ¢ is the maxi-
mum value for which this condition holds.

Proof: Let u denote the input to the encoder for the cod-
ing scheme, as specified in (). Suppose that v consists of el-
ements of u indexed by B = {iy, s, ...,it} C [n], and % con-
sists of elements of # indexed by B¢ = [n] \ B. Then we have
the following:

I(vic) = H(c) — H(clv), (23)
=mlog,(q) — H(uWpg: + vWg|v), (24)
=mlogy(q) — H(uWge), (25)
= logy(q)(m — rank(Wp)), (26)
=0, 27)

where (24) follows due to codewords being uniformly dis-
tributed and expansion of random variables, (23) holds by
the independence of v and #, (26) holds due to the unifor-
mity of #, and 27) holds by Lemma @] with ¢ = dpin — 1.
Since the mutual information I(v;c¢) is zero, it implies that
the t-threshold security criteria is met for the parameter
t= dmin — ]., i.e.,

H(v|c) = H(v), (28)
for any v with |v| = ¢, where t = din — 1.

Next, we need to show that ¢ = dp,;, — 1 is the maximum
value for which the threshold security condition holds. Con-
sider a codeword in the codebook generated by G that has the

Hamming weight equal to ¢ + 1 = dy,;, with non-zero ele-
ments at indices denoted by F = {i1, i2,...,4141}. Then we
have the following:

H(Uil, ey uit“ |C) = H(uil, ey Ug, IC)

+ H(uit+1 |C7 Uiy g eeny uit)’ (29)
= H(uil, weey U,y |C), (30)
#H(uil,...,uit+l), (31)

where (29) follows from the chain rule of entropy, and (30)
holds because there exists a linear combination of the entries
of ¢ = (c1,¢2, ..., ) such that >0 Nje; = > jeF Vit
Hence, the second term becomes zero, since u;, ,, is uniquely
determined given ¢ and {u;, , ..., u;, }. Therefore, due to (31)),
the threshold security condition does not hold for t+1 = dyyip-
|
Corollary 6: For any t-threshold secure coding scheme,
constructed from a linear block code, with message length m,
key length £, and code length n = m + k, we have t < k.
Proof: The proof follows by Theorem[5] together with
Singleton bound on the minimum distance of a code. [ ]
Next, we characterize Eve’s equivocation about the entire
message m after observing the codeword.
Corollary 7: If the code is proper, then Eve’s equivocation
about the entire encoded message m after observing the code-
word is equal to the entropy of the key, i.e.,

H(mlc) = klogy(q)- (32)
Proof: We have the following
H(m|c) = H(m) — H(c) + H(c|m), (33)
= H (kW _4c + mW _4|m), (34)
= H (kW 4c), (35)
= klogy(q), (36)

where (34) follows due to the uniformity of messages and
codewords, and expansion of random vectors, (33) holds be-
cause of the independence of m and k, and (36) holds by
noting that the matrix W 4. is full row rank since the code is
proper. |

The statement of Corollary[7]can be also rephrased by stat-
ing that the probability of successfully retrieving the entire
message block by Eve is equal to ¢~ *.

Now that we have established the properties that the coding
schemes based on linear block codes satisfy, we need to show
how to maximize the threshold ¢ as stated in Corollary[6] pro-
vided that g is large enough. To this end, we utilize maximum
distance separable (MDS) codes to arrive at the following the-
orem.

Theorem 8: For any message length m and key length &,
there exists a proper code with threshold ¢ = k, provided that
the alphabet size ¢ > m + k + 1.

Proof: To prove the theorem, we give an example of
a code that is shown to be proper with t = k. We utilize



Reed-Solomon (RS) codes, which are a well-known family
of codes that are maximum distance separable (MDS) codes,
ie., dmin = n —m+ 1 =k + 1 [36]. For any [n, m, dwmin]q
RS code, all we need to show is that the matrix W which is
the transpose of the generator matrix G of the RS code can
be used to construct a proper code. One of the properties of
MDS codes is that every set of m columns of the matrix G
are linearly independent [36, Proposition 11.4]. Note that
rows of W correspond to columns of G. Hence, any choice
of m columns of G will have rank m, and the remaining
k columns of G will also have rank k as it is assumed that
k < m. Therefore, the code generated by W is proper, with
threshold t = k. ]

Note that the straightforward Gaussian elimination method,
with complexity O(m?), can be always used for decoding of
coding schemes based on linear block codes. However, when
the underlying linear block code belongs to well-known fam-
ilies of linear block codes, e.g., Reed-Solomon codes, it is
desirable to study low-complexity decoders for the resulting
coding schemes using the off-the-shelf encoding/decoding
methods. For instance, low-complexity decoding of RS codes
is based on a low-complexity computation of the inverse of
a Vandermonde matrix. Now, for the coding schemes based
on RS codes, the evaluation points for the RS encoder are
chosen as consecutive powers of «, where « is a primitive
element of If,. The specific choice of the message and key in-
dices is as follows: the first m rows of W are dedicated for
the message m, and the last k£ rows of W are dedicated for
the key k. Since W is a Vandermonde matrix, this choice of
message indices together with the specific choice of evalua-
tion points result in a scenario where the submatrix W 4 is
also a Vandermonde matrix. To decode a codeword using the
key, the decoder computes n = (¢ — kW 4. )W'. Note that
the inverse of a square Vandermonde matrix of order m can
be computed with complexity O(m?) [37]]. This results in
O(m?) complexity for the decoding in coding schemes based
on RS codes.

IV. Low-COMPLEXITY CONSTRUCTION

In this section, we focus on designing binary codes to
meet the reliability and security conditions while providing
encoding and decoding algorithms with linear/quasi-linear
complexity. To this end, we consider Reed-Muller codes due
to their recursive construction and low-complexity decoder.
In addition, since they are designed with the objective of
maximizing the minimum distance, given their particular re-
cursive structure, we can achieve a reasonably high threshold
t for the t-threshold security.

It is worth noting that various types of decoders for
Reed-Muller codes are proposed in the literature, see, e.g.,
[29], [38], [39]. However, the proposed decoder here differs
from these works as it has different constraints and objec-
tives. The goal of the decoder here is not to correct errors, but
rather to successfully recover the message from an error-free

codeword encoded by having the message as well as the key
as the input. Also, the message cannot be retrieved com-
pletely without complete knowledge of the key itself. This
shows the need to adapt or modify encoders/decoders in
such a way that they can be utilized for threshold-security
decoding accordingly.

A. Encoder

First, a brief description of Reed-Muller codes is provided.
An RM(s,7) code is a [2°,3°7 (5),2°7 "]y linear block
code. The generator matrix of the RM(s, r) code, denoted by
G(s,r), is obtained by keeping the rows with the Hamming
weight of at least 2°~" from the matrix F* = (F$*)7 and re-
moving the remaining rows, where ® denotes the Kronecker

product, T is the transpose operator, and F is the following
kernel matrix
1 0
e

Although there are different ways of describing the encod-
ing and the generator matrix of RM codes, the above descrip-
tion helps us to choose the message and key indices, which is
the next step towards designing a code that is proper. Due to
the recursive structure of F, it can be observed that indices of
the rows with the lowest weight, the second lowest weight, etc,
from F correspond to indices of columns with the highest col-
umn weight, the second highest weight, etc, from F, respec-
tively. When specifying the matrix G(s,r) as a sub-matrix of
F” we choose the set of indices of the removed rows from F
as A to assign the rows of W dedicated for the key, while the
indices of the remaining rows are used as the message indices
A. Then we have the following proposition.

Proposition 9: The choice of the sets A, and A° as men-
tioned above results in a proper code.

Proof: To prove this proposition, it suffices to show that
W 4 and W 4. are both full row rank.

First, it is shown that W 4 is full row rank. Note that for a
full rank lower-triangular matrix, a submatrix obtained by re-
moving a subset of columns and rows with the same indices
results also in a full rank lower-triangular matrix. Also, note
that A€ is the subset of indices of deleted columns as well as
that of the rows dedicated for the key from F. Hence, the ma-
trix W 4 is full row rank.

Next, we show that W 4c is full row rank. This is done by
induction. Note that £ < m is assumed, as mentioned before.
Also, to simplify the proof, let us have ' = s — r, and also
re-express k and m in the remainder of the proof as follows

=0

(37)

and



where we have ' < f;lJ. Note that W 4. contains the

74 (%) rows dedicated for the key from F with the same
number of lowest-weight columns removed. Let this matrix
be also denoted by F(s, 7). Let also F'(s, ') denote the ma-

trix that contains the .. (%) rows dedicated for the key

from F with only Z::Ol (:) lowest weight columns removed.

Due to the recursive structure of the matrix F, F(s,r’) can be
expressed as follows:

s
i

F(s—1,7"—1) 0

no_
F(s,r) = F(s—1,7) F(s—1,7)]"

(38)

Next, we show that the matrix F(s,r’) is full row rank for

the maximum value r’ = |51 | and for s > 2 by induction

on s. Then it will be discussed why this also holds for ' <
s—1

étep 1: The induction basis is for s = 2 and ' = 0, and
for s = 3 and ' = 1, which can be easily verified, i.e., for
s =2and ' = 0, the rank of F(2,0) is 1. Also, for s = 3 and
r’ =1, the rank of F(3, 1) is 4.

Step 2: Suppose that the induction hypothesis holds for s
and s is odd. Then we have the following matrix:

F(s,r" —1) 0

F'(s,r") F(s,r") (39)

F(s+1,7") =

We need to show that rank(F(s + 1,77)) = Z:/:O (**h.

Note that F(s,r’) is full row rank by induction hypothésis,
i.e., rank(F(s,r’)) = Z:/:O (%). Then F(s,r’ — 1), which
contains a subset of the rows in F(s, '), is also full row rank.
Hence, we have rank(F(s,r’ — 1)) = Z::Ol (%). Therefore,

rank(F(s + 1,7")) = rank(F(s, 7’ — 1))

+ rank(F(s, ")), (40)

Z(?)+ (S) (41)
=0 ¢ 1=0 ¢

S0

=0

(42)

which is equal to the number of rows in F(s + 1,r’). Hence,
it is full row rank.

For even s with corresponding parameter /, we need to
show the following matrix is full row rank

roy o | F(sr) 0
Fls+ 1, +1) = [F’(s,r’+ 1) F(s,r' + 1)] - @3

First, we have rank(F(s,7’)) = ZT/ (%) by induction hy-

pothesis. Regarding r/ank(F/(s,r’ + 01))1, we can see that
F'(s,7” + 1) has >;_, () rows that are also included in
F(s,r’). However, when considering the indices of such rows
in [F'(s,7" + 1) F(s,r" + 1)], the corresponding rows are
independent from all other rows in [F(s,r’), 0]. Further-

more, there are (7,,‘_7_1) additional rows in F'(s,7’ + 1) that

are linearly independent from the remaining rows due to the
structure of the zero blocks in this matrix, similar to (38). We
can then find the rank of F(s + 1,7’ + 1) as follows

rank(F(s + 1,7’ + 1)) = rank(F(s, 7))

+ rank(F'(s,7" + 1)), (44)
" S " S
-2 (0)+x()
S
(0 1>, 45)
r’+1
= (S JZF 1>. (46)
=0

Hence, F(s+ 1,7’ + 1) is full row rank, and the induction hy-
pothesis holds for s + 1 with the maximum value of r’. For
keys of shorter lengths, it is straightforward to see that for
any r” < r/, the matrix F(s,r"") whose rows are a subset of
F(s, r') with additional columns inserted at different locations
is also full row rank. This completes the proof. [ ]
Remark 2. In the proposed scheme based on RM codes, we
haven = 2%, m =", (5),forsomer > s/2, and k = n —
m < m. Note that the underlying RM code has rate R > %
By using Theorem [5|and noting that the minimum distance of
the underlying code is 2°~", the achievable threshold security
parameter ¢ for the RM-based scheme with parameters (s, r)
ist = 2°77 — 1. Note that, in general, for an RM code of
constant rate, i.e., R = O(1), we have r = s/2 + O(y/s).
Hence, the threshold security parameter of the corresponding

scheme is t = v/nexp(O(y/logn)).

B. Decoder

In this part, we discuss a low-complexity successive cancel-
lation (SC) decoder to decode the message in the RM-based
coding scheme while utilizing the shared key. As Reed-Muller
codes are closely related to polar codes [40], a decoder closely
related to that of polar codes described in [40] is natural. How-
ever, there are fundamental differences that will be clarified
throughout this section.

The decoder is described in Algorithm [T} We first embed
erasures within the entries of the codeword ¢ in order to get
a vector of length n, denoted by z, by inserting the erasures
at locations indexed by .A¢. More specifically, z = m (ex, ¢)
where c is the codeword and e, is an erasure vector of length k
such that the permutation places the erasures at locations de-
noted by A°. Note that, as mentioned before, A€ corresponds
to the location of the key bits at the encoder.

The decoder takes the key bits k, the codeword embed-
ded with erasures z = (e, ¢), indices of the key bits A°
and a recursion index 7 as inputs, and outputs the vector
u = [uy, Uz, ..., un] = m(k,m) from which the message can
be retrieved m = u 4. The high-level idea of the decoder is
as follows. The vector z is divided into two parts; z?/ -



Algorithm 1 Successive cancellation decoder (Decoder)
1: Initialization: ¢ = 1.
2: Input: k, 27" = 7y (e, ¢), A°, i.
3: Output: A7, uf.
4: if n = 2 then

5 if zo = e then

6 u; = k;

7.  else

8 U; = 22

9: end if

10: if z1 = e then

11: Ui—1 = ki1
12:  else

13: Uj—1 = U; D 21
14:  end if

15: h? = [ui,l D u,, ui]
16: else

17:  H < Decoder(ks, ZZ/2+1, AS, 240)
8. 2P =n o

19: W’ « Decoder(k, 21/, AS,2i — 1)
200 hY =[h" oK, K|

21: end if

22: return A}

[21, 22, ., 2 /2] and ZZ/QH = [Zn/241> Znj242, s 2Zn), that
are decoded successively. As opposed to the SC decoder of
polar codes [40], the second sub-block is processed first, can-
celled from the first sub-block, and then the first sub-block
is processed. Each of these sub-blocks is also decoded
recursively by splitting them into two parts and so on.
Remark 3. When describing the recursive SC decoding pro-
cess we often use the binary tree terminology in which the
input codeword, i.e., z, is assigned to the root of the tree and
then the first and the second sub-blocks are assigned to the left
child and the right child, respectively. The decisions are made
at the leaves of the tree and then are re-encoded and propa-
gated back through the tree, see, e.g., [41]] for more details.

The following claim verifies that the decoder successfully
outputs the message bits with probability 1 for any key length.
Note that since the proof follows by induction, we discard the
assumption that k& < m and simply show the claim for any
k< n.

Claim 10: The RM-based coding scheme can be success-
fully decoded using the SC decoder in Algorithm (1| for any
key length k£ < n.

Proof: We use induction on [, where n = 2! to show
that the claim holds.

Step 1: For the induction basis, consider n = 2. We need
to show decoding is successful for £ = 0,1,2. For £k = 0,
which corresponds to the case with no erasure, the induction
hypothesis holds trivially as F is non-singular. For £ = 1,
one needs to show the induction hypothesis for both possible

cases for A°. First, let us consider that z; = e and 29 = ¢y,
which corresponds to u; = ki, and us = m;. In this case,
the decoder outputs u; = k; and uy = zo. For the other case
where z; = ¢y and 25 = e, which corresponds to u; = mq
and ug = k1, the decoder first corrects the erasure, assigning
ug = ky. It then computes uy = my = us B 21 = k1 P 21.
Finally, we show it succeeds for k = 2, where both z; and
29 are erased. Then u; = k1 and us = ko and the decoder is
successful.

Step 2: Now, suppose that the induction hypothesis holds
for n = 2! and for any k < 2!, where k is the length of the key,
regardless of the indices of the key bits. However, note that, as
specified before, the row indices corresponding to the key bits
and the column indices corresponding to the erasures are the
same and are both denoted by .A°. We now show that the claim
is true for n = 2!*1 and any k < 2!+, Let us split the key in-
dices A into two sets, A$ and .A$, with sizes |.A§| = k; and
|AS| = ko, where k = ky + ko, as follows. The set .A$ consists
of the indices of erasures in z?/ 2, Also, let k; denote the cor-
responding part of the key of size k. Similarly, .A§ consists
of the indices of erasures in 2/, 1 Also, let ko denote the
corresponding part of the key of size k5. First, the right child
with input 27 /2410 which has k5 erasures, is processed. Note
that there are also ko known key bits indexed by .4$ in the sec-
ond half sub-block u’ /2410 Note that the decoder for the right
child has an input of length n’ = 2! and k' = k erasures as
well as key bits ko indexed by .AS. The decoder succeeds by
the induction hypothesis. The right child then passes

u2/2+1F5®l ) z?/2 ) zT/z = 21”2
to the left child. The decoder is then run on E;L/ 2, which is
of length n’ = 2! and has k' = k; erasures and key bits k;
indexed by A$. The decoder is successful on this node as well
by the induction hypothesis. Hence, the decoder is successful
for n = 2/*1 which completes the proof of the claim. [ ]

V. ROBUSTNESS

In this section we study a natural scenario for extension
of the considered setup and the results. In particular, it is as-
sumed that a noisy channel is present between the legitimate
parties and the goal is to study the robustness of the frame-
work and the proposed solution when channel noise is present.

The revised system model, shown in Figure[2] is as follows:
the channel between Alice and Bob is no longer noiseless,
and it can be a certain type of channel to be studied, e.g.,
binary symmetric channel (BSC), binary erasure channel
(BEC), additive-white Gaussian noise channel (AWGN), etc.
However, for the eavesdropper, we still consider a worst-case
scenario from the legitimate parties’ perspective. In other
words, it is assumed that Eve receives the transmitted code-
word through a noiseless channel, and hence, she has access
to the codeword error-free. Alice aims to utilize a coding
scheme such that the threshold security requirement at Eve
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Figure 2. Modified setup for the proposed coding scheme in the presence of
a noisy channel.

is satisfied while establishing a reliable communication with
Bob that is robust in the presence of channel noise.

Note that the assumption on Eve’s observation here makes
it reasonable to keep the conditions in (2) and (3) the same in
this revised model. On the other hand, the reliability condi-
tion in (I) needs to be modified to account for the noisy chan-
nel. We do this from a conventional block coding perspective
where reliability is measured in terms of a certain number of
errors and erasures that can be corrected. More specifically,
the reliability condition is still stated as

H(mly, k) =0, (47)

provided that the number of erasures and errors introduced in
y satisfies a certain condition that depends on the underlying
coding scheme. For instance, consider coding schemes based
on linear block codes. Suppose that the minimum distance of
the robustness coding scheme is D;,;, when the key is fixed,
which is different from the minimum distance of the threshold
security coding scheme, i.e., dyin. Then the condition on the
number of errors and erasures is simply 27 + p < Dyin — 1,
where 7 is the number of errors and p is the number of era-
sures, same as in conventional block codes.

In the remainder of this section, we discuss a general
method to construct codes for threshold security and robust-
ness, and describe an explicit low-complexity construction
based on Reed-Muller codes for binary erasure channels
along with a SC decoder.

A. General construction

A straightforward solution to construct coding schemes
for the setting described in this section is by utilizing con-
catenation of two codes. More specifically, a coding scheme,
constructed to guarantee the desired threshold security in the
error-free case, would be concatenated with an inner code,
that can be an off-the-shelf block code, to guarantee the de-
sired reliability for Alice-Bob communication. Although
this solution is straightforward, one needs to ensure that the
threshold security guarantee is not compromised when more
redundancy is added through the inner encoder which will be
then revealed to Eve.

In the aforementioned concatenation scheme, the overall
encoder and decoder at Alice and Bob, respectively, are re-
ferred to as supercoder and superdecoder, respectively. The

construction of the concatenated scheme is described in more
details next. Consider a proper coding scheme, that guar-
antees threshold security requirement, that is obtained from
an [n,m, dmin], linear block code with the generator matrix
WZ. Also, consider an error-correcting code, used as an in-
ner code to guarantee the reliability, that is an [N, m, Dyinq
linear block code with the generator matrix denoted by G,.. It
is important to note that both codes have the same dimension
m.
The encoding process is as follows. First, u = w(k,m) is
passed through the outer threshold security encoder that mul-
tiplies # by W. The result is then passed to the inner encoder,
which multiplies its input by G,.. Then the resulting codeword
¢ = uWG, is transmitted to Bob through the noisy chan-
nel. Bob receives a corrupted version of the codeword c, de-
noted as y, and passes it through the decoder consisting of
an inner decoder and an outer decoder. The inner decoder re-
trieves ¢ = uW. Note that we have ¢ error-free provided that
the number of errors and/or erasures satisfies the given con-
dition on the reliability guarantee of the inner code. Then ¢
together with the key k are passed through the outer decoder,
designed for the threshold security coding scheme; hence, re-
trieving m. The following lemma states that this construction
does not compromise the key and threshold security condi-
tions.

Lemma 11: The aforementioned concatenation scheme re-
sults in a ¢-threshold secure code.

Proof: To show that the lemma holds, we need to have
rank(WG,) = m, rank(W4G,) = m, rank(W4-G,) = k,
and rank(Wg.G,.) = m, where A and A° are chosen such
that the code is proper, as stated in Definition [2] and B¢ is as
defined in Theorem [5] It can be observed that all these equa-
tions hold simply because G, is full row rank. [ ]

B. Low-complexity construction

In this section, we aim at presenting a unified coding
scheme, for threshold security and robustness, that can be
decoded using one unified SC decoder. This would poten-
tially result in more efficient hardware implementation and
improved latency compared to the general concatenated
scheme.

In particular, a scenario with binary symbol erasures is con-
sidered, where at most p = D;, — 1 erasures are assumed
to occur with Dy,;, being the minimum distance of the un-
derlying code. For the proposed coding scheme, an encoder
is presented together with a superdecoder that simultaneously
corrects erasures and decodes the message using the key. To
this end, the coding scheme presented for noiseless channels
in Section [[V]is extended to be utilized along with an RM-
based code to handle binary erasures.

1) Encoder: In the considered scheme, the same RM code
is used for threshold security and robustness. More specifi-
cally, an RM(s, r) is used, which is, as previously described,
a[2°, 37 (%),2°7 "], with the generator matrix denoted by

i



G(s,r) = 6T (5,1)G(s.7), (49)
_[GT(s=1,r—=1) GT(s—1,r)] [G(s—1,r—1) 0 (50)
| 0 GT(S—l,T) G(s—1,7r) G(s—1,7)|’

[GT(s—1,r=1)G(s—1,7r—1) + GT (s—1,7)G(s—1,7) G'(s—1,7)G(s—1,r) 51)
| GT(s—1,7)G(s—1,r) G'(s—1,7)G(s—1,7)|"

_ _(N}(s—l,r—l)+(~}(sfl,r) é(sfl,r) (52)
B G(s—1,7) G(s—1,7)

G(s, ). The encoder with input u, consisting of both the mes-
sage and the key, outputs the codeword c¢ specified as follows:

c=uG"(s,r)G(s,7) = uG(s,r), (48)

where G(s,r) is a notation introduced here to denote
GT(s,7)G(s, 7). Note that the encoder can be implemented
recursively, since G(s,r) can be expressed recursively as
shown in (52).

Note that the encoder described by @8] utilizes the con-
struction presented in Section [[V-A] which achieves threshold
security parameter t = 2°~" — 1, and we use the same choice
of indices dedicated for the key and the message that results
in a proper code.

2) Decoder: We present a unified SC superdecoder for the
coding scheme described above that corrects p < Dy —
1 erasures, where D,,;;, = 2°7", and recovers the message
given the shared key. The recursive decoder takes the received
bit sequence y7', the shared key k, key indices A€, code pa-
rameters s, 7, and a recursion parameter j as inputs. Initially,
7 = 1. It outputs AP, i.e., which is equal to the codeword ¢
provided that p < Dy — 1, as well as u} = w(k, m), which
is used to retrieve the message m, and a recursion index j’
used to track the index of the last decoded bit. A pseudocode
for the decoder is shown in Algorithm 2] The following claim
shows the success of the described decoder.

Claim 12: The proposed unified RM-based coding scheme
together with the unified SC superdecoder in Algorithm[2]suc-
cessfully retrieves the message as long as p < Dy — 1.

Proof: Let the received sequence be denoted by y
which has at most p erasures. Let also the key bits be de-
noted by k which are assigned to entries of u indexed by
elements of A°. We use induction on the parameter s of the
underlying RM code of length 2° to prove the claim. The in-
duction hypothesis is that the decoder is successful for any
RM-based coding scheme of length 2° with some parameter
r < s, and a key with size Zf:r-{—l (Z) assuming there are at
most p = 2°7" — 1 erasures. The induction base is s = 0, for
which the induction hypothesis is trivial. Now, suppose that
the induction hypothesis holds for s and we want to show it
for s + 1.

Case 1: r = 0,i.e., we have an RM(s+1, 0) which becomes
a repetition code of length n = 2571, In this case, G(s +1,0)

Algorithm 2 Unified SC decoder for binary erasures (DecBE)
1: Input: k, y7', A s, 1, j.
2: Output: A7, ul, j'.
3: if r = 0 then

4 IT=[j,j+1,.,j+2°-1]

5: 41 <+ index of any non-erasure bit in y7".
6: forie A°do

7 u; = k;

8:  end for

9. eI\ A°

10: Uy = Yy Diede Uy
11: h711 = [yi17yi17"'7yi1]
12 j=5+425-1
13: else
o g=y’e Yn/241
15 K, ul"? j) « DecBE(ky, 9, AS, s—1,7—1, )
16:  hhy= u?/2(~}(s —1,7)
17: K = [h] & hy, W)
18y =yt @h' = [y1,9]
19: | = argmin (number of erasures in y;)
j€1,2
20: 3’,u5’l’€2+1,j’ < DecBE(kz,y,, A, s—1,7,j1 + 1)
21:  h' = [/ﬁ’,h’l’}
2: hY=Haeh"
23: end if
24: return uy, hY, j’

is the all-ones matrix and the entries of codeword are all equal
to the sum of entries in u. Note that the number of message
bits is m = Y°7_ (**!) = 1 and we have 257! — 1 key
bits. Also, the maximum number of erasures the code can cor-
rect is 2571 — 1. Hence, the decoder successfully retrieves the
message bit using the non-erasure symbols, which there is at
least one, in y7'. Suppose that the non-erasure bit is indexed
by ¢;. Since the locations of the key bits are known, we can
place them at their respective locations retrieving u;’s for all
i € A°. Next, the message bit located at ' is retrieved as
Uy = Yi; PicAc U, and the corresponding codeword is also
retrieved correctly. Hence, the decoder is successful. Note that
this case corresponds to lines 4-12 of Algorithm[2]

Case 2: r > 0. The code length is n = 25! and the



key length is Zf:; 1 (‘5‘:1) We split the key indices into
two parts, namely A and A$, representing the key bits k;
and ks in the first and the second half sub-blocks of u, re-
spectively. The lengths of ky and k; are [A§| = Y7 (%)
and |A5| = Y7 ., (5). respectively, due to the afore-
mentioned choice of indices. The decoder first computes
gy =y Yn o41 Which will have at most 257177 — 1
erasures. It then passes this to the left child, in the bi-
nary tree representation terminology discussed -earlier,
along with k; and the set of its corresponding indices AS.
The left child decodes a codeword of length n’ = 2° us-
ing a code with parameter ' = r — 1 > 0, which can
correct up to 25— 2st+1=7 _ 1 erasures, and re-
trieves the message bits in u?/ 2 given the key k; of length
Sisi1(5) = X, (5). The decoder on the left child
is successful by induction hypothesis. It outputs u?/ % and
h). After that, the decoder computes h}, = u?/ *G(s,r) fol-
lowed by W' = [h] & h), h,]. Then, the decoder computes
g7 =y @ h' and chooses either @?/ Zor gt /2+1, Whichever
has a smaller number of erasures, and passes it to the right
child together with ko and the corresponding set of indices
A$. The number of erasures in what is passed to this child is
at most 257177 /2 — 1 = 2577 — 1, and the length of the key
is >°7_, 1 (3)- The decoder on this child decodes a codeword
of length n’ = 2% using a code with parameter v’ = r > 0,
which can correct up to 95— _1 = 25=" _1 erasures and re-
trieves the message bits in u; /241 using the key ko of length
i1 (5) = 241 (5)- Decoding here is also success-
ful by induction hypothesis. It outputs u /241 and hY. The
overall decoder then computes h” = [k, h}] and outputs

" =h @& h"” and u}. Hence, uf is retrieved and the proof is
complete. ]

VI. CONCLUSION

In this work, we propose a model for threshold-secure cod-
ing with a shared key such that specific conditions for reli-
ability and security based on information-theoretic measures
are met. The specification of such model includes a threshold
parameter which is to be designed based on the application
for such coding schemes. Also, methods for utilizing error-
correcting linear block codes in constructing threshold-secure
coding schemes are discussed, where the parameter ¢ of the
threshold-secure scheme is shown to be directly related to the
minimum distance of the underlying linear block code. Fur-
thermore, a coding scheme based on Reed-Muller codes is de-
scribed. Its encoding is done recursively and is shown to sat-
isfy the conditions for a proper code. Moreover, a setup taking
into account the noise in the communication channel between
legitimate parties is considered. Then, a robust and threshold-
secure coding scheme, based on code concatenation, is sug-
gested for general channels. Also, a unified coding scheme
built upon Reed-Muller codes for both threshold security and
robustness in the presence of erasures is described.

A possible direction for future work is to design coding
schemes based on punctured Reed-Muller codes to allow
for more flexible rates. To this end, ideas from punctured
schemes for closely related polar codes can be useful [42]],
[43]]. Also, it is interesting to explore whether unified cod-
ing schemes for threshold security and robustness, similar to
the RM-based scheme presented in Section|V-B| can be con-
structed from other well-known families of codes. Another
possible direction of future work is to study threshold security
in settings with wiretap channels, where the eavesdropper’s
channel is also noisy. Also, extending the considered setup to
multi-user scenarios, as in wiretap multiple access [44]] or as
in multi-user secret sharing setups [28]], is another interesting
future direction.
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